JPWO2009128338A1 - Photometric device - Google Patents

Photometric device Download PDF

Info

Publication number
JPWO2009128338A1
JPWO2009128338A1 JP2010508166A JP2010508166A JPWO2009128338A1 JP WO2009128338 A1 JPWO2009128338 A1 JP WO2009128338A1 JP 2010508166 A JP2010508166 A JP 2010508166A JP 2010508166 A JP2010508166 A JP 2010508166A JP WO2009128338 A1 JPWO2009128338 A1 JP WO2009128338A1
Authority
JP
Japan
Prior art keywords
light
light receiving
wavelength
cut
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010508166A
Other languages
Japanese (ja)
Other versions
JP5378359B2 (en
Inventor
雄三 井崎
雄三 井崎
政義 鶴岡
政義 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2010508166A priority Critical patent/JP5378359B2/en
Publication of JPWO2009128338A1 publication Critical patent/JPWO2009128338A1/en
Application granted granted Critical
Publication of JP5378359B2 publication Critical patent/JP5378359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0243Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows having a through-hole enabling the optical element to fulfil an additional optical function, e.g. a mirror or grating having a throughhole for a light collecting or light injecting optical fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

測光装置(2)の受光部(4)は、カットフィルタ(26)によりカットされる短波長側の光に対応した位置に配置された受光素子(4a)を含み、カットフィルタ(26)によりカットされる短波長側の光に対応した位置に配置された受光素子(4a)の出力が暗電流出力として用いられる。演算回路(6)には、カットされる短波長側の光よりも長波長側の波長の光に対応した位置に配置された各受光素子(4a)からの測光出力を、暗電流出力を用いて補正する補正回路(30)が設けられている。The light receiving unit (4) of the photometric device (2) includes a light receiving element (4a) arranged at a position corresponding to light on the short wavelength side cut by the cut filter (26), and cut by the cut filter (26). The output of the light receiving element (4a) arranged at a position corresponding to the light on the short wavelength side is used as the dark current output. The arithmetic circuit (6) uses a dark current output as a photometric output from each light receiving element (4a) arranged at a position corresponding to light having a wavelength longer than the shorter wavelength to be cut. A correction circuit (30) is provided for correction.

Description

本発明は、測定対象物からの光を分光して各波長毎の光の輝度等を測定する測光装置の改良に関する。   The present invention relates to an improvement in a photometric device that splits light from an object to be measured and measures the luminance and the like of each wavelength.

従来から、測定対象物からの光の波長を分光してその各波長の輝度等を測定する測光装置が知られている。   2. Description of the Related Art Conventionally, a photometric device that splits the wavelength of light from a measurement object and measures the luminance and the like of each wavelength is known.

この従来の測光装置では、測定対象物からの光を回折格子により各波長毎に分光し、各波長に分光された光を受光部としての固体撮像素子で受光し、この固体撮像素子からの出力に基づき各波長の光の輝度、色度等を測定するものとされている。   In this conventional photometric device, light from a measurement object is dispersed at each wavelength by a diffraction grating, and the light dispersed at each wavelength is received by a solid-state image sensor as a light receiving unit, and output from the solid-state image sensor Based on the above, the luminance, chromaticity, etc. of light of each wavelength are measured.

この従来の測光装置には、受光部の各受光素子に光が入射していない場合でも、熱雑音により固体撮像素子から暗電流が出力される(暗電流出力)。   In this conventional photometric device, a dark current is output from the solid-state image sensor due to thermal noise even when no light is incident on each light receiving element of the light receiving unit (dark current output).

そこで、測定対象物からの光が受光部に入射しない状態で固体撮像素子からの暗電流出力を検出し、ついで、測定対象物からの光を受光部に入射させて固体撮像素子からの測光出力を検出し、この測光出力と暗電流出力との差分を演算により求めて、暗電流出力を除去することにより各受光素子からの測光出力を補正するという複数回の測定を行う構成の測光装置が提案されている。   Therefore, the dark current output from the solid-state image sensor is detected in a state where the light from the measurement object is not incident on the light receiving unit, and then the light from the measurement object is incident on the light receiving unit and the photometric output from the solid-state image sensor. A photometric device configured to perform a plurality of measurements to detect the difference between the photometric output and the dark current output by calculation and correct the photometric output from each light receiving element by removing the dark current output. Proposed.

また、受光部の端部にマスクを設けて、測定対象物からの光がそのマスクで被覆された受光素子に入射しないようにして、マスクで被覆された受光素子からの暗電流出力とマスクで被覆されていない各受光素子からの測光出力とを同時に検出し、各受光素子からの測光出力を補正するという同時測定構成の測光装置も提案されている(例えば、特許文献1参照)。
特開昭58−158528号公報
In addition, a mask is provided at the end of the light receiving portion so that light from the measurement object does not enter the light receiving device covered with the mask, and the dark current output from the light receiving device covered with the mask and the mask are used. There has also been proposed a photometric device having a simultaneous measurement configuration in which the photometric output from each light receiving element that is not covered is simultaneously detected and the photometric output from each light receiving element is corrected (see, for example, Patent Document 1).
JP 58-158528 A

ところで、その複数回の測定を行う構成の測光装置では、精密に測定することは可能であるが、測定に時間がかかるという不都合がある。   By the way, in the photometric device configured to perform the measurement a plurality of times, it is possible to measure accurately, but there is a disadvantage that the measurement takes time.

同時測定の構成の測光装置では、測定スピードの向上を図ることができるが、受光部にマスクを設けなければならず、受光部の構造に変更を加えなければならないという不都合がある。また、各受光素子から出力される暗電流は、一様とは限らず、マスクで被覆された受光素子からの暗電流出力を一律に差し引いて、測光出力を補正により求めたとしても、必ずしも、正確に暗電流出力を除去できるとは限らず、精密測定という観点からは今一つ不十分である。   In the photometry device having the simultaneous measurement configuration, the measurement speed can be improved, but there is a disadvantage that a mask must be provided in the light receiving unit, and the structure of the light receiving unit must be changed. In addition, the dark current output from each light receiving element is not necessarily uniform, and even if the dark current output from the light receiving element covered with the mask is uniformly subtracted to obtain the photometric output by correction, It is not always possible to remove the dark current output accurately, and it is insufficient from the viewpoint of precise measurement.

本発明の目的は、既存の受光部の構造を変更することなく、かつ、測定精度の低下を抑制しつつ、しかも測定スピードの向上を図ることのできる測光装置に関する。   An object of the present invention relates to a photometric device capable of improving the measurement speed without changing the structure of an existing light receiving unit and suppressing a decrease in measurement accuracy.

本発明の測光装置は、測定対象物からの光を分光して測光する分光測光光学系と、該分光測光光学系により波長毎に分光された光を受光する受光部と、該受光部の測光出力に基づき測光特性を演算する演算回路とを有し、前記分光測光光学系は、測定対象物からの光を平行光束に変換するコリメータレンズと、該コリメータレンズを通過した光束を波長毎に分解する波長分解素子と、波長毎に分解された各光束を前記受光部にそれぞれ集光させる集光レンズと、可視光よりも短波長側の光をカットするカットフィルタとを有し、前記受光部は、波長毎に分光された光をそれぞれ受光する複数個の受光素子を有し、該複数個の受光素子は、分光された光の所定の波長の位置に対応して一定方向に配列されると共に、前記複数個の受光素子は、前記カットフィルタによりカットされる短波長側の光に対応した位置にも配列され、前記カットフィルタによりカットされる短波長側の光に対応した位置に配置された受光素子の出力が、暗電流出力として用いられ、前記演算回路には、カットされる短波長側の光よりも長波長側の波長の光に対応した位置に配置された各受光素子からの測光出力を、前記暗電流出力を用いて補正する補正回路が、設けられていることを特徴とする。   A photometric device according to the present invention includes a spectrophotometric optical system that spectrally measures light from an object to be measured, a light receiving unit that receives light separated by wavelength by the spectrophotometric optical system, and photometry of the light receiving unit A spectrophotometric optical system that converts light from a measurement object into a parallel light beam, and a light beam that has passed through the collimator lens is decomposed for each wavelength. A wavelength resolving element, a condensing lens that condenses each light beam decomposed for each wavelength on the light receiving unit, and a cut filter that cuts light on a shorter wavelength side than visible light, and the light receiving unit Has a plurality of light receiving elements that respectively receive the light dispersed for each wavelength, and the plurality of light receiving elements are arranged in a predetermined direction corresponding to the position of the predetermined wavelength of the dispersed light. And the plurality of light receiving elements are arranged in front of each other. The output of the light receiving element arranged at the position corresponding to the light on the short wavelength side cut by the cut filter and arranged at the position corresponding to the light on the short wavelength side cut by the cut filter is a dark current output. The arithmetic circuit uses the dark current output for the photometric output from each light receiving element arranged at a position corresponding to the light having a wavelength on the longer wavelength side than the light on the shorter wavelength side to be cut. A correction circuit for correction is provided.

本発明の測光装置において、前記カットフィルタが、コリメータレンズの前に設けられ、該カットフィルタが、各波長の感度を補正するための色ガラスフィルタであることが好ましい。   In the photometric device of the present invention, it is preferable that the cut filter is provided in front of a collimator lens, and the cut filter is a color glass filter for correcting the sensitivity of each wavelength.

本発明の測光装置において、前記カットフィルタが、コリメータレンズの後ろに設けられ、該カットフィルタが、各波長の感度を補正するための色ガラスフィルタであることが好ましい。   In the photometric device of the present invention, it is preferable that the cut filter is provided behind a collimator lens, and the cut filter is a color glass filter for correcting the sensitivity of each wavelength.

また、本発明の測光装置において、前記カットフィルタが、380nm以下の波長の光をカットすることが好ましい。   In the photometric device of the present invention, it is preferable that the cut filter cuts light having a wavelength of 380 nm or less.

さらに、本発明の測光装置は、前記補正回路には、前記カットフィルタによりカットされる短波長側の光に対応した位置に配置された受光素子の暗電流出力と、カットされる短波長側の光よりも長波長側の各波長の光に対応した位置に配置された各受光素子の出力であって、かつ、当該各受光素子に光が当たらない状態で測定により求められた出力との比を各受光素子毎に保存する記憶部が接続され、前記補正回路は短波長側の光よりも長波長側の各波長の光に対応した位置に配置された各受光素子毎の暗電流出力を前記比に基づいて求めることが好ましい。   Furthermore, in the photometric device of the present invention, the correction circuit includes a dark current output of a light receiving element arranged at a position corresponding to light on a short wavelength side cut by the cut filter, and a short wavelength side to be cut. The output of each light receiving element arranged at a position corresponding to the light of each wavelength longer than the light, and the output obtained by measurement in a state where the light does not strike each light receiving element Is stored for each light receiving element, and the correction circuit outputs a dark current output for each light receiving element arranged at a position corresponding to light of each wavelength on the longer wavelength side than light on the short wavelength side. It is preferable to determine based on the ratio.

本発明によれば、既存の受光部の構造を変更することなく、かつ、測定精度の低下を抑制しつつ、しかも測定スピードの向上を図ることができるという効果を奏する。   According to the present invention, there is an effect that the measurement speed can be improved without changing the structure of the existing light receiving unit and suppressing the decrease in measurement accuracy.

本発明に係わる測光装置の構成の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of a structure of the photometry apparatus concerning this invention. 本発明に係わるカットフィルタの透過率を示す光学特性図である。It is an optical characteristic figure which shows the transmittance | permeability of the cut filter concerning this invention. 本発明に係わる受光部の平面図である。It is a top view of the light-receiving part concerning this invention. 本発明に係わる各受光素子のラインから出力される暗電流出力の一例を示す説明図である。It is explanatory drawing which shows an example of the dark current output output from the line of each light receiving element concerning this invention.

符号の説明Explanation of symbols

1 測定対象物
2 測光装置
4 受光部
6 演算回路
4a 受光素子
15 分光測光光学系
26 色ガラスフィルタ(カットフィルタ)
27 コリメータレンズ
28 回折格子(波長分解素子)
30 補正回路
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Photometry apparatus 4 Light-receiving part 6 Arithmetic circuit 4a Light receiving element 15 Spectrophotometry optical system 26 Color glass filter (cut filter)
27 Collimator lens 28 Diffraction grating (wavelength resolving element)
30 Correction circuit

以下に、本発明に係わる測光装置の実施の形態を、図面を参照しつつ説明する。   Embodiments of a photometric device according to the present invention will be described below with reference to the drawings.

図1は、本発明に係わる測光装置、例えば、分光放射計の構成の概要を示す説明図である。 この図1において、1は、液晶パネル、信号灯、冷陰極管、誘導灯、LED等の測定対象物、2は、測光装置である。   FIG. 1 is an explanatory diagram showing an outline of the configuration of a photometric device according to the present invention, for example, a spectroradiometer. In FIG. 1, reference numeral 1 denotes an object to be measured such as a liquid crystal panel, a signal lamp, a cold cathode tube, a guide lamp, and an LED, and 2 denotes a photometric device.

測光装置2は、測定対象物1からの光を受光する光学系3と、受光部4と、回路部5とを有する。回路部5は、受光部4の測光出力に基づき測光特性(測色データ(輝度、色度、色温度))を演算する演算回路6、AC電源7、DC−DC電源8、LCD表示器9、操作キー10、外部同期入力コネクタ11、A/Dコンバータ12、CCDアナログPCB(CCDアナログプリント基板ボード)13とを有する。   The photometric device 2 includes an optical system 3 that receives light from the measurement object 1, a light receiving unit 4, and a circuit unit 5. The circuit unit 5 includes an arithmetic circuit 6 that calculates photometric characteristics (colorimetric data (luminance, chromaticity, color temperature)) based on the photometric output of the light receiving unit 4, an AC power source 7, a DC-DC power source 8, and an LCD display 9. , An operation key 10, an external synchronization input connector 11, an A / D converter 12, and a CCD analog PCB (CCD analog printed circuit board) 13.

演算回路6は、例えばCPUから構成される。AC電源7、DC−DC電源8は、演算回路6に電力を供給し、操作キー10は、演算回路6に向けて測光に要求される各種の指令を入力するのに用いられる。LCD表示器9は、測光特性その他の指令を表示するのに用いられる。外部同期入力コネクタ11は、測定対象物1の発光に同期して測定するタイミングを指示するのに用いられる。CCDアナログPCB13は、受光部4の測光出力をアナログ出力するのに用いられる。A/Dコンバータ12は、そのアナログ出力をデジタル出力に変換して演算回路6に入力させるのに用いられる。   The arithmetic circuit 6 is composed of, for example, a CPU. The AC power supply 7 and the DC-DC power supply 8 supply power to the arithmetic circuit 6, and the operation keys 10 are used to input various commands required for photometry to the arithmetic circuit 6. The LCD display 9 is used to display photometric characteristics and other commands. The external synchronization input connector 11 is used to instruct the timing for measurement in synchronization with the light emission of the measurement object 1. The CCD analog PCB 13 is used for analog output of the photometric output of the light receiving unit 4. The A / D converter 12 is used to convert the analog output into a digital output and input it to the arithmetic circuit 6.

光学系3は、視準光学系14と分光測光光学系15とから大略構成されている。視準光学系14は、対物レンズ16、アパーチャミラー17、全反射ミラー18、リレーレンズ19、20、ファインダーシャッター21、接眼レンズ22から大略構成されている。測定対象物1からの光は、対物レンズ16を通じてアパーチャミラー17に導かれ、このアパーチャミラー17により反射されて全反射ミラー18に導かれる。この全反射ミラー18に導かれた光は、リレーレンズ19、20により測定対象物1と共役な位置1’にリレーされ、この共役な位置1’にリレーされた測定対象物1の像が接眼レンズ22を介して測定者に視準される。ファインダーシャッター21は、超低輝度の測定対象物1を測定する際に、接眼レンズ22の側から外光がリレーレンズ20、19、全反射ミラー18、アパーチャミラー17を経て、分光測光光学系15に混入するのを防止する役割を有する。   The optical system 3 is roughly composed of a collimating optical system 14 and a spectrophotometric optical system 15. The collimating optical system 14 is generally composed of an objective lens 16, an aperture mirror 17, a total reflection mirror 18, relay lenses 19 and 20, a finder shutter 21, and an eyepiece lens 22. Light from the measurement object 1 is guided to the aperture mirror 17 through the objective lens 16, reflected by the aperture mirror 17, and guided to the total reflection mirror 18. The light guided to the total reflection mirror 18 is relayed to the position 1 ′ conjugate with the measurement object 1 by the relay lenses 19 and 20, and the image of the measurement object 1 relayed to the conjugate position 1 ′ is an eyepiece. It is collimated by the measurer via the lens 22. When the finder shutter 21 measures the measurement object 1 with extremely low brightness, external light passes through the relay lenses 20 and 19, the total reflection mirror 18, and the aperture mirror 17 from the eyepiece lens 22 side, and the spectrophotometric optical system 15. It has a role to prevent contamination.

分光測光光学系15は、視準光学系14と共用の対物レンズ16、アパーチャミラー17を有すると共に、リレーレンズ23、バンドルファイバ24、ターレット板25、色ガラスフィルタ26、コリメータレンズ27、回折格子28、集光レンズ29を有する。   The spectrophotometric optical system 15 includes an objective lens 16 and an aperture mirror 17 shared with the collimation optical system 14, and also includes a relay lens 23, a bundle fiber 24, a turret plate 25, a colored glass filter 26, a collimator lens 27, and a diffraction grating 28. And a condensing lens 29.

アパーチャミラー17は、開口17aを有する。このアパーチャミラー17は、明るさ調整に用いられる。ここでは、4種のアパーチャミラーが準備され、この図1には、そのうちの1個のアパーチャミラー17が分光測光光学系15の光路に挿入されている状態が、示されている。   The aperture mirror 17 has an opening 17a. The aperture mirror 17 is used for brightness adjustment. Here, four types of aperture mirrors are prepared, and FIG. 1 shows a state in which one of the aperture mirrors 17 is inserted in the optical path of the spectrophotometric optical system 15.

リレーレンズ23は、バンドルファイバ24の入射端面24aに測定対象物1の像を形成する。バンドルファイバ24は、測定対象物1からの光を混合してその偏光を解消する機能を果たす。ターレット板25は、素通しの開口25a、10倍減光のNDフィルタ25b、100倍減光のNDフィルタ25c、遮光部25dを有し、バンドルファイバ24の出射端面24bから出射された光の光量を調整する機能を果たす。コリメータレンズ27は、バンドルファイバ24の出射端面24bの位置に焦点を有し、このバンドルファイバ24から出射された光を平行光束に変換する役割を果たす。   The relay lens 23 forms an image of the measurement object 1 on the incident end face 24 a of the bundle fiber 24. The bundle fiber 24 has a function of mixing light from the measurement object 1 and depolarizing the light. The turret plate 25 includes a through-opening 25a, a 10-fold attenuation ND filter 25b, a 100-fold attenuation ND filter 25c, and a light-shielding portion 25d. The turret plate 25 determines the amount of light emitted from the exit end face 24b of the bundle fiber 24. Play the function of adjusting. The collimator lens 27 has a focal point at the position of the emission end face 24b of the bundle fiber 24, and plays a role of converting the light emitted from the bundle fiber 24 into a parallel light flux.

色ガラスフィルタ26は、図2に示すように、各波長の感度を補正する役割と、可視光よりも短波長側、例えば、波長380nm以下の短波長側の光を遮光するカットフィルタとしての役割とを果たす。この色ガラスフィルタ26は、波長毎にその透過率が設定されている。   As shown in FIG. 2, the colored glass filter 26 serves to correct the sensitivity of each wavelength and to serve as a cut filter that blocks light on a shorter wavelength side than visible light, for example, a shorter wavelength side having a wavelength of 380 nm or less. And fulfill. The transmittance of the colored glass filter 26 is set for each wavelength.

回折格子28は、コリメータレンズ27を通過した光束を波長毎に分解する波長分解素子としての機能を有する。集光レンズ29は、波長毎に分解された各光束を受光部4にそれぞれ集光させる役割を有する。   The diffraction grating 28 has a function as a wavelength resolving element that decomposes the light beam that has passed through the collimator lens 27 for each wavelength. The condensing lens 29 has a role of condensing each light beam decomposed for each wavelength on the light receiving unit 4.

受光部4は、図3に示すように、長方形状とされ、横方向にn個、例えば、128個、256個、512個、1024個等、縦方向にm個、例えば、128個、256個、512個、1024個等の受光素子を有する。ここでは、この横方向の受光素子4aが、分光された光の所定の波長の位置に対応して一定方向に配列された受光素子である。縦方向の受光素子4aは、まとめて、1ラインとされ、各波長の位置に対応するライン毎の出力がA/Dコンバータ12を介して演算回路6に入力される。その受光部4(受光素子)は、色ガラスフィルタ26によりカットされる短波長側の光に対応した位置に配置された受光素子を含む。例えば、図3には、波長380nm以下の短波長側の光に対応した位置に配置された4ラインの受光素子4aが示されており、この色ガラスフィルタ26によりカットされる短波長側の光に対応した位置に配置された受光素子4aの各ラインからの出力が、暗電流出力として用いられる。   As shown in FIG. 3, the light receiving unit 4 has a rectangular shape, and has n pieces in the horizontal direction, for example, 128 pieces, 256 pieces, 512 pieces, 1024 pieces, etc., and m pieces in the vertical direction, for example, 128 pieces, 256 pieces. , 512, 1024 light receiving elements. Here, the light receiving elements 4a in the lateral direction are light receiving elements arranged in a fixed direction corresponding to the position of a predetermined wavelength of the dispersed light. The light receiving elements 4a in the vertical direction are collectively formed as one line, and the output for each line corresponding to the position of each wavelength is input to the arithmetic circuit 6 via the A / D converter 12. The light receiving unit 4 (light receiving element) includes a light receiving element disposed at a position corresponding to light on the short wavelength side cut by the colored glass filter 26. For example, FIG. 3 shows four lines of light-receiving elements 4 a arranged at positions corresponding to light on the short wavelength side with a wavelength of 380 nm or less, and light on the short wavelength side cut by the colored glass filter 26. The output from each line of the light receiving element 4a arranged at the position corresponding to is used as the dark current output.

演算回路6には、補正回路30が設けられている。補正回路30には、色ガラスフィルタ26によりカットされる短波長側の光に対応した位置に配置された受光素子4aの暗電流出力と、色ガラスフィルタ26によりカットされる短波長側の光よりも長波長側の、各波長の光に対応した位置に配置された各受光素子4aの出力であって、かつ、この受光素子4aに光が当たらない状態で測定により求められた出力との比を、各受光素子4a毎に、保存する記憶部31が接続されている。   The arithmetic circuit 6 is provided with a correction circuit 30. The correction circuit 30 includes a dark current output of the light receiving element 4 a arranged at a position corresponding to the light on the short wavelength side cut by the color glass filter 26, and light on the short wavelength side cut by the color glass filter 26. The ratio of the output of each light receiving element 4a arranged at the position corresponding to the light of each wavelength on the long wavelength side and the output obtained by measurement in a state where the light receiving element 4a is not exposed to light. Is stored for each light receiving element 4a.

色ガラスフィルタ26によりカットされる短波長側の光よりも長波長側の、各波長の光に対応した位置に配置された各受光素子4aに、光が当たらない状態とするために、例えば、測光装置2を暗室内に配置して、受光部4の各受光素子4aの出力を同時に測定する。   In order to make each light receiving element 4a arranged at a position corresponding to the light of each wavelength on the long wavelength side than the light on the short wavelength side cut by the colored glass filter 26 not to receive light, for example, The photometric device 2 is disposed in the dark room, and the outputs of the light receiving elements 4a of the light receiving unit 4 are simultaneously measured.

各受光素子4aの各ライン毎の暗電流出力は、図4に示すように、受光素子4a毎にばらつきがあり、また、受光部4の個体ごとにばらつきがある。この各受光素子4a毎の暗電流出力を、あらかじめ測定により求める。色ガラスフィルタ26によりカットされる短波長側の光に対応した位置に配置された受光素子4aのラインの暗電流出力をX0、可視光の実際の測光に用いられる受光素子4a、すなわち、色ガラスフィルタ26によりカットされない波長の光に対応した位置に配置された受光素子4aのラインのうち、例えば、あるラインの暗電流出力をXとすると、その比は、X/X0である。記憶部31には、各ライン毎に対応してこの比X/X0が記憶されている。補正回路30は、各受光素子4aのライン毎の暗電流出力を比X/X0に基づいて求める。As shown in FIG. 4, the dark current output for each line of each light receiving element 4 a varies for each light receiving element 4 a and varies for each individual light receiving unit 4. The dark current output for each light receiving element 4a is obtained in advance by measurement. The dark current output of the line of the light receiving element 4a arranged at a position corresponding to the light on the short wavelength side cut by the color glass filter 26 is X 0 , the light receiving element 4a used for actual photometry of visible light, that is, the color out of the lines of the light receiving element 4a which is arranged at a position corresponding to the light of a wavelength that is not cut by the glass filter 26, for example, when the dark current output of one line and X, the ratio is X / X 0. The storage unit 31 stores this ratio X / X 0 corresponding to each line. Correction circuit 30 obtains based on the dark current output for each line of the light receiving elements 4a to the ratio X / X 0.

ここで、ある測定時のある受光素子(符号4bで示す)のラインからの測光出力をy、その測定時の符号4bで示す受光素子のラインからの暗電流出力をy’、その測定時のカットされた短波長側の光に対応する受光素子のラインの暗電流出力をy”とすると、
y’=y”×(X/X0)であり、
補正回路30は、上記式に基づいて、ある測定時点で各受光素子4aのライン毎に補正後の暗電流出力y’を演算すると共に、この各受光素子4aのラインからの測光出力yを、暗電流出力y’を用いて補正し、精密な測光特性を算出する。
Here, the photometric output from a line of a light receiving element (indicated by reference numeral 4b) at a certain measurement is y, the dark current output from the line of the light receiving element indicated by reference numeral 4b at the time of measurement is y ', If the dark current output of the line of the light receiving element corresponding to the cut short wavelength side light is y ″,
y ′ = y ″ × (X / X 0 )
Based on the above formula, the correction circuit 30 calculates a corrected dark current output y ′ for each line of each light receiving element 4a at a certain measurement time point, and calculates a photometric output y from the line of each light receiving element 4a. Correction is performed using the dark current output y ′, and precise photometric characteristics are calculated.

このような補正を行うと、受光素子4aのライン毎の暗電流出力にばらつきがある場合でも、正確な補正を行うことができる。また、熱雑音により、暗電流出力に変動がある場合でも、正確な補正を行うことができる。   When such correction is performed, accurate correction can be performed even when the dark current output for each line of the light receiving element 4a varies. In addition, accurate correction can be performed even when the dark current output varies due to thermal noise.

なお、そのカットされた短波長側の光に対応する受光素子4aのラインの暗電流出力X0には、複数個のラインの暗電流出力の平均値を用いることもできる。例えば、図3には、短波長側の4ラインが、色ガラスフィルタ26によりカットされる波長の光に対応するラインとして示されているが、この場合には、この4ラインのそれぞれの暗電流出力の総和を求め、この暗電流出力の総和を4で除した値を平均暗電流出力として用いることができる。Note that the dark current output X 0 of the line of the light receiving elements 4a corresponding to the light of the cut short-wavelength side, it is also possible to use an average value of the dark current output of a plurality of lines. For example, in FIG. 3, four lines on the short wavelength side are shown as lines corresponding to light having a wavelength cut by the color glass filter 26. In this case, each dark current of the four lines is shown. The sum of outputs can be obtained, and a value obtained by dividing the sum of dark current outputs by 4 can be used as the average dark current output.

上記実施例では、受光素子としてCCDの固体撮像素子を用いたが、その他CMOS等の受光素子を用いることができる。また、本実施例では、暗電流出力を得るために短波長側の波長をカットするフィルタにより、測定波長より短波長側の領域を利用したが、測定波長より長波長側の波長(例えば約780nm以上の波長、又は約830nm以上の波長)をカットするフィルタを用いて暗電流出力を検出し、補正する構成とすることもできる。さらに、バンドパスフィルタを用いて、短波長側と長波長側の両方を用いて暗電流出力を検出し、補正に利用することもできる。また、カットフィルタは、コリーメータレンズの後ろに配置することもできる。   In the above embodiment, a CCD solid-state image sensor is used as the light receiving element, but other light receiving elements such as CMOS can be used. Further, in this embodiment, in order to obtain a dark current output, a filter that cuts the wavelength on the short wavelength side is used, but the region on the short wavelength side from the measurement wavelength is used. A dark current output may be detected and corrected using a filter that cuts the above wavelength or a wavelength of about 830 nm or more. Furthermore, it is possible to detect a dark current output using both a short wavelength side and a long wavelength side using a bandpass filter and use it for correction. The cut filter can also be disposed behind the collimator lens.

Claims (5)

測定対象物からの光を分光して測光する分光測光光学系と、
該分光測光光学系により波長毎に分光された光を受光する受光部と、
該受光部の測光出力に基づき測光特性を演算する演算回路とを有し、
前記分光測光光学系は、
測定対象物からの光を平行光束に変換するコリメータレンズと、
該コリメータレンズを通過した光束を波長毎に分解する波長分解素子と、
波長毎に分解された各光束を前記受光部にそれぞれ集光させる集光レンズと、
可視光よりも短波長側の光をカットするカットフィルタとを有し、
前記受光部は、
波長毎に分光された光をそれぞれ受光する複数個の受光素子を有し、
該複数個の受光素子は、分光された光の所定の波長の位置に対応して一定方向に配列されると共に、前記複数個の受光素子は、前記カットフィルタによりカットされる短波長側の光に対応した位置にも配列され、
前記カットフィルタによりカットされる短波長側の光に対応した位置に配置された受光素子の出力が、暗電流出力として用いられ、
前記演算回路には、カットされる短波長側の光よりも長波長側の波長の光に対応した位置に配置された各受光素子からの測光出力を、前記暗電流出力を用いて補正する補正回路が、設けられていることを特徴とする測光装置。
A spectrophotometric optical system for spectrophotometrically measuring light from a measurement object;
A light receiving unit that receives light separated by wavelength by the spectrophotometric optical system;
An arithmetic circuit that calculates photometric characteristics based on the photometric output of the light receiving unit;
The spectrophotometric optical system is:
A collimator lens that converts light from the measurement object into a parallel light beam;
A wavelength resolving element that decomposes the light beam that has passed through the collimator lens for each wavelength;
A condensing lens for condensing each light beam decomposed for each wavelength on the light receiving unit;
It has a cut filter that cuts light on the shorter wavelength side than visible light,
The light receiving unit is
It has a plurality of light receiving elements that respectively receive the light separated for each wavelength,
The plurality of light receiving elements are arranged in a fixed direction corresponding to a position of a predetermined wavelength of the dispersed light, and the plurality of light receiving elements are light on a short wavelength side cut by the cut filter. Is also arranged at the position corresponding to
The output of the light receiving element arranged at a position corresponding to the light on the short wavelength side cut by the cut filter is used as a dark current output,
In the arithmetic circuit, a correction for correcting the photometric output from each light receiving element arranged at a position corresponding to light having a wavelength on the longer wavelength side than the light on the shorter wavelength side to be cut using the dark current output. A photometric device characterized in that a circuit is provided.
前記カットフィルタが、コリメータレンズの前に設けられ、該カットフィルタが、各波長の感度を補正するための色ガラスフィルタであることを特徴とする請求項1に記載の測光装置。   The photometric device according to claim 1, wherein the cut filter is provided in front of a collimator lens, and the cut filter is a color glass filter for correcting the sensitivity of each wavelength. 前記カットフィルタが、コリメータレンズの後ろに設けられ、該カットフィルタが、各波長の感度を補正するための色ガラスフィルタであることを特徴とする請求項1に記載の測光装置。   2. The photometric device according to claim 1, wherein the cut filter is provided behind a collimator lens, and the cut filter is a color glass filter for correcting the sensitivity of each wavelength. 前記カットフィルタが、380nm以下の波長の光をカットすることを特徴とする請求項1又は請求項2に記載の測光装置。   The photometric device according to claim 1, wherein the cut filter cuts light having a wavelength of 380 nm or less. 前記補正回路には、前記カットフィルタによりカットされる短波長側の光に対応した位置に配置された受光素子の暗電流出力と、カットされる短波長側の光よりも長波長側の各波長の光に対応した位置に配置された各受光素子の出力であって、かつ、当該各受光素子に光が当たらない状態で測定により求められた出力との比を各受光素子毎に保存する記憶部が接続され、前記補正回路は、短波長側の光よりも長波長側の各波長の光に対応した位置に配置された各受光素子毎の暗電流出力を前記比に基づいて求めることを特徴とする請求項1ないし請求項3のいずれか1項に記載の測光装置。   The correction circuit includes a dark current output of a light receiving element arranged at a position corresponding to the light on the short wavelength side cut by the cut filter, and each wavelength on the longer wavelength side than the light on the short wavelength side to be cut. A memory for storing for each light receiving element the ratio of the output of each light receiving element arranged at a position corresponding to the light of the light source and the output obtained by measurement in a state where the light receiving element does not receive light. And the correction circuit obtains a dark current output for each light receiving element arranged at a position corresponding to light of each wavelength on the longer wavelength side than light on the shorter wavelength side based on the ratio. The photometric device according to any one of claims 1 to 3, wherein the photometric device is characterized.
JP2010508166A 2008-04-15 2009-03-30 Photometric device Active JP5378359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010508166A JP5378359B2 (en) 2008-04-15 2009-03-30 Photometric device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008105267 2008-04-15
JP2008105267 2008-04-15
JP2010508166A JP5378359B2 (en) 2008-04-15 2009-03-30 Photometric device
PCT/JP2009/056437 WO2009128338A1 (en) 2008-04-15 2009-03-30 Photometer

Publications (2)

Publication Number Publication Date
JPWO2009128338A1 true JPWO2009128338A1 (en) 2011-08-04
JP5378359B2 JP5378359B2 (en) 2013-12-25

Family

ID=41199037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010508166A Active JP5378359B2 (en) 2008-04-15 2009-03-30 Photometric device

Country Status (4)

Country Link
JP (1) JP5378359B2 (en)
KR (1) KR101239573B1 (en)
CN (1) CN102007389B (en)
WO (1) WO2009128338A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150939B2 (en) * 2008-10-15 2013-02-27 大塚電子株式会社 Optical characteristic measuring apparatus and optical characteristic measuring method
JP5738073B2 (en) * 2011-05-27 2015-06-17 株式会社トプコン Photometric device
KR102024812B1 (en) * 2017-10-31 2019-11-04 주식회사 맥사이언스 Apparatus and Method for measuring Chromatic-luminance and Spectral-radiance simultaneously

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2530480A1 (en) 1975-07-09 1977-01-27 Bayer Ag SINGLE-BEAM PHOTOMETER
JPS58158528A (en) * 1982-03-16 1983-09-20 Union Giken:Kk Light measuring device
DE3215367A1 (en) * 1982-04-24 1983-11-03 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen DEVICE FOR REDUCING MEASURING ERRORS IN SPECTRAL PHOTOMETERS
KR890001688B1 (en) * 1985-08-03 1989-05-13 재단법인 한국표준연구소 Color-measuring spectrophotometer system for source
JPH02253126A (en) * 1989-03-27 1990-10-11 Kuraray Co Ltd Device and method for detecting wavelength of light
JP2984494B2 (en) * 1992-12-11 1999-11-29 オリンパス光学工業株式会社 Dark output correction device for solid-state imaging device
EP0729017B1 (en) * 1995-02-25 1998-07-08 Hewlett-Packard GmbH Method for measurement and compensation of stray light in a spectrometer
JP2005504313A (en) * 2001-10-01 2005-02-10 ユーディー テクノロジー コーポレーション Apparatus and method for real-time IR spectroscopy
JP2005189217A (en) * 2003-12-26 2005-07-14 Topcon Corp Equipment for measuring spectral characteristics

Also Published As

Publication number Publication date
CN102007389B (en) 2013-05-15
KR101239573B1 (en) 2013-03-18
JP5378359B2 (en) 2013-12-25
CN102007389A (en) 2011-04-06
KR20100106619A (en) 2010-10-01
WO2009128338A1 (en) 2009-10-22

Similar Documents

Publication Publication Date Title
TWI405958B (en) Optical system for measurement
CN104568155A (en) Spectroscopic measurement device and spectroscopic measurement method
JP2010237097A (en) Two-dimensional spectrometric apparatus and method
CN101813517B (en) Device for measuring brightness
JP5378359B2 (en) Photometric device
JP2010025558A (en) Optical system for measurement
JP4333050B2 (en) Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system
JP2012032444A (en) Single lens reflex camera
JP2006317595A (en) Optical apparatus and its control method
CN201611279U (en) Brightness measuring unit
JP2009300257A (en) Optical system for measurement
US20150247798A1 (en) Optical system and optical quality measuring apparatus
US8476574B1 (en) Method of deconvolution of spectral data
JP5207484B2 (en) Imaging device
JP2006071741A (en) Focus detecting device
CN101799324A (en) Brightness meter
JP2012021819A (en) Photometric device
KR101825994B1 (en) Luminance and color meter with wave plate
CN101311813B (en) Optical apparatus and manufacturing method of optical apparatus
JP4413385B2 (en) Photometric device
JP2002206967A (en) Photometer and colorimeter
JP7494851B2 (en) Spectrophotometer
JP7441380B2 (en) distance measuring device
RU2427814C1 (en) Method of measuring lens transmission coefficient
JP2011069847A (en) Focus detector and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250