CN102007389A - Photometer - Google Patents
Photometer Download PDFInfo
- Publication number
- CN102007389A CN102007389A CN200980113172.7A CN200980113172A CN102007389A CN 102007389 A CN102007389 A CN 102007389A CN 200980113172 A CN200980113172 A CN 200980113172A CN 102007389 A CN102007389 A CN 102007389A
- Authority
- CN
- China
- Prior art keywords
- light
- wavelength
- filter
- output
- cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 22
- 238000005375 photometry Methods 0.000 claims description 16
- 239000005315 stained glass Substances 0.000 claims 2
- 238000000354 decomposition reaction Methods 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 29
- 239000011521 glass Substances 0.000 description 14
- 238000003384 imaging method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 238000002798 spectrophotometry method Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- CJDNEKOMKXLSBN-UHFFFAOYSA-N 1-chloro-3-(4-chlorophenyl)benzene Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC(Cl)=C1 CJDNEKOMKXLSBN-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0208—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0218—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0243—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows having a through-hole enabling the optical element to fulfil an additional optical function, e.g. a mirror or grating having a throughhole for a light collecting or light injecting optical fiber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2803—Investigating the spectrum using photoelectric array detector
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
技术领域technical field
本发明涉及使来自测定对象物的光线分光而测定各波长的光线的亮度等的测定装置的改进。The present invention relates to an improvement of a measuring device which separates light from an object to be measured to measure the luminance and the like of light of each wavelength.
背景技术Background technique
在现有技术中周知一种测光装置,其使来自测定对象物的光线的波长分光而测定它的各个波长的亮度等。Conventionally, there is known a photometric device that splits wavelengths of light from an object to be measured to measure luminance and the like at each wavelength thereof.
作为现有技术的测光装置,利用衍射光栅使来自测定对象物的光线按波长分开,并由作为受光部的固体摄像器件来接收按各波长分开的光线,根据来自该固体摄像器件的输出测定各波长的光线的亮度、色度等。As a photometric device in the prior art, light rays from an object to be measured are separated into wavelengths by a diffraction grating, and the light rays separated into wavelengths are received by a solid-state imaging device as a light-receiving part, and measured based on the output from the solid-state imaging device. Brightness, chromaticity, etc. of light of each wavelength.
在现有测光装置中,即便在光线没有入射到受光部的各受光元件的情况,也会有暗电流因热噪声而从固体摄像器件输出(暗电流输出)。In conventional photometry devices, dark current is output from the solid-state imaging device (dark current output) due to thermal noise even when light is not incident on the light receiving elements of the light receiving unit.
因而,提出一种构成为进行多次测定的测光装置,在来自测定对象物的光线并不入射到受光部的状态下,检测来自固体摄像器件的暗电流输出,随后,使来自测定对象物的光线入射在受光部而检测来自固体摄像器件的测光输出,通过运算求出该测光输出与暗电流输出的差分,从而通过去除暗电流输出修正来自各受光元件的测光输出。Therefore, a photometric device configured to perform multiple measurements is proposed, in which the dark current output from the solid-state imaging device is detected in a state where the light from the object to be measured does not enter the light receiving part, and then the output from the object to be measured is detected. The photometric output from the solid-state imaging device is detected by the light incident on the light receiving part, and the difference between the photometric output and the dark current output is obtained by calculation, so that the photometric output from each light receiving element is corrected by removing the dark current output.
此外,还提出一种同时测定结构的测光装置,在受光部的端部设置罩体,并使来自测定对象物的光线不入射到由所述罩体包覆的受光元件上,同时检测来自由罩体包覆的受光元件的暗电流输出与来自没有由罩体包覆的各受光元件的测光输出,而且修正来自各受光元件的测光输出(例如,参照专利文献1)。In addition, a photometric device with a simultaneous measurement structure is also proposed. A cover is provided at the end of the light-receiving part, and the light from the object to be measured is not incident on the light-receiving element covered by the cover, and simultaneously detected. The dark current output of the light receiving element covered by the cover is compared with the photometric output from each light receiving element not covered by the cover, and the photometric output from each light receiving element is corrected (for example, refer to Patent Document 1).
专利文献1:日本特开昭58-158528号公报Patent Document 1: Japanese Patent Application Laid-Open No. 58-158528
发明内容Contents of the invention
然而,作为其结构为进行多次测定的测光装置,尽管能够精密测定,但是不当之处是测定较耗费时间。However, although precise measurement is possible as a photometric device configured to perform multiple measurements, the disadvantage is that the measurement takes time.
在同时测定的结构的测光装置中,尽管可以实现测定速度的提高,然而其不当之处在于必须给受光部设置罩体且必须改变受光部的结构。此外,从各受光元件输出的暗电流未必一样,即便是一律扣除来自被罩体包覆的受光元件的暗电流输出并通过修正求出测光输出,也未必可以准确去除暗电流输出,因而从精密测定的观点来看是现有不足之一。In the photometric device configured for simultaneous measurement, although the measurement speed can be improved, it is disadvantageous in that a cover must be provided for the light-receiving part and the structure of the light-receiving part must be changed. In addition, the dark current output from each light-receiving element is not necessarily the same. Even if the dark current output from the light-receiving element covered by the cover is subtracted uniformly and the photometric output is obtained through correction, the dark current output may not be accurately eliminated. Therefore, from precision It is one of the existing deficiencies from the point of view of measurement.
本发明的目的涉及一种测光装置,其不仅不用改变现有受光部的结构,并且既可抑制测定精度的降低,还可获得实现测定速度的提高的效果。An object of the present invention is to provide a photometric device capable of suppressing reduction in measurement accuracy and improving measurement speed without changing the structure of an existing light receiving unit.
本发明的测光装置,其特征在于,包括:对来自测定对象物的光线进行分光并进行测光的分光测光光学系统;接收由该分光测光光学系统按波长分开的光线的受光部;根据该受光部的测光输出来运算测光特性的运算电路,所述分光测光光学系统具有:把来自测定对象物的光线变换成平行光束的准直透镜;按波长使通过了该准直透镜的光束分解的波长分解元件;使按波长分解了的各光束分别聚集在所述受光部的集光透镜;阻隔与可视光相比短波长一侧的光线的截止滤光器,所述受光部具有分别接收按波长分开了的光线的多个受光元件,所述多个受光元件与被分开的光线的指定的波长的位置对应而沿恒定方向排列,而且,所述多个受光元件排列在与由所述截止滤光器阻隔的短波长一侧的光线对应的位置上,配置在与由所述截止滤光器阻隔的短波长一侧的光线对应的位置上的受光元件的输出作为暗电流输出加以使用,在所述运算电路中设置有修正电路,该修正电路使用所述暗电流输出来修正配置在与相较于被阻隔的短波长一侧的光线而言的长波长一侧的波长的光线相对应的位置上的各受光元件产生的测光输出。The photometry device of the present invention is characterized in that it includes: a spectrophotometry optical system for splitting and measuring light from an object to be measured; a light receiving unit for receiving light separated by wavelength by the spectrophotometry optical system; An arithmetic circuit for calculating photometric characteristics based on the photometric output of the light receiving unit. The spectrophotometric optical system includes: a collimator lens that converts light from the object to be measured into parallel beams; A wavelength splitting element for splitting the light beam of the lens; a light collecting lens for collecting the light beams separated by wavelength on the light receiving part; a cut filter for blocking light rays on the shorter wavelength side than visible light, the The light-receiving unit has a plurality of light-receiving elements for respectively receiving light beams separated by wavelengths, the plurality of light-receiving elements are arranged in a constant direction corresponding to positions of specified wavelengths of the separated light rays, and the plurality of light-receiving elements are arranged In the position corresponding to the light on the short-wavelength side cut off by the cut filter, the output of the light-receiving element arranged at the position corresponding to the light on the short-wavelength side cut off by the cut filter is obtained as The dark current output is used, and a correction circuit is provided in the arithmetic circuit, and the correction circuit uses the dark current output to correct the long-wavelength side of light compared to the blocked short-wavelength side. The photometric output produced by each light receiving element at the position corresponding to the wavelength of light.
在本发明的测光装置中,优选的是,所述截止滤光器设置在准直透镜之前,该截止滤光器是用来修正各波长的敏感度的有色玻璃滤光器。In the photometry device of the present invention, preferably, the cut filter is arranged before the collimator lens, and the cut filter is a colored glass filter for correcting the sensitivity of each wavelength.
在本发明的测光装置中,优选的是,所述截止滤光器设置在准直透镜之后,该截止滤光器是用来修正各波长的敏感度的有色玻璃滤光器。In the photometry device of the present invention, preferably, the cutoff filter is arranged after the collimator lens, and the cutoff filter is a colored glass filter for correcting the sensitivity of each wavelength.
此外,在本发明的测光装置中,优选的是,所述截止滤光器阻隔波长在380nm以下的光线。Furthermore, in the photometry device of the present invention, preferably, the cut filter cuts off light with a wavelength of 380 nm or less.
而且,本发明的测光装置优选的是:所述修正电路连接有存储部,该存储部对各个受光元件保存下述输出比,即:配置在与由所述截止滤光器阻隔的短波长一侧的光线相对应的位置上的受光元件的暗电流输出,与在配置在与相较于被阻隔的短波长一侧的光线而言的长波长一侧的各波长的光线相对应的位置上的各受光元件的输出、并且是在该各受光元件不受到光照的状况下借助测定所求出的输出的之比;所述修正电路根据上述之比,求出配置在与相较于短波长一侧的光线而言长波长一侧的各波长的光线对应的位置上的各受光元件的暗电流输出。Furthermore, in the photometry device of the present invention, it is preferable that the correction circuit is connected to a storage unit that stores the output ratio of each light receiving element that is placed at the short wavelength that is cut off by the cut filter. The dark current output of the light receiving element at the position corresponding to the light on one side corresponds to the position corresponding to the light of each wavelength on the long wavelength side compared to the light on the short wavelength side that is blocked. The output of each light-receiving element on the above-mentioned light-receiving element, and it is the ratio of the output obtained by measurement under the condition that each light-receiving element is not illuminated; For the light on the wavelength side, the dark current output of each light receiving element at the position corresponding to the light of each wavelength on the long wavelength side.
通过本发明,不仅不用改变现有受光部的结构,并且既可抑制测定精度的降低,还可获得实现测定速度的提高的效果。According to the present invention, not only does not need to change the structure of the existing light receiving part, but also can suppress the reduction of the measurement accuracy, and can also obtain the effect of realizing the improvement of the measurement speed.
附图说明Description of drawings
图1是表示本发明所述测光装置的结构的概况的说明图;FIG. 1 is an explanatory diagram showing the outline of the structure of the photometry device according to the present invention;
图2是表示本发明所述截止滤光器的透射率的光学特性图;Fig. 2 is an optical characteristic diagram representing the transmittance of the cut-off filter of the present invention;
图3是本发明所述受光部的俯视图;Fig. 3 is a top view of the light receiving part of the present invention;
图4是表示从本发明所述的各受光元件的线路输出的暗电流输出的一例的说明图。4 is an explanatory diagram showing an example of a dark current output output from a line of each light receiving element according to the present invention.
附图标记说明:Explanation of reference signs:
1测定对象物1Measurement object
2测光装置2 light metering device
4受光部4 light receiving part
6运算电路6 operation circuit
4a受光元件4a light receiving element
15分光测光光学系统15 spectrophotometric optical system
26有色玻璃滤光器(截止滤光器)26 colored glass filter (cut filter)
27准直透镜27 collimating lens
28衍射光栅(波长分解元件)28 Diffraction gratings (wavelength resolution elements)
30修正电路30 Correction circuit
具体实施方式Detailed ways
下面,一边参照附图一边说明本发明所述的测光装置的实施方式。Hereinafter, embodiments of the photometry device according to the present invention will be described with reference to the drawings.
实施例Example
图1是表示本发明所述测光装置例如分光放射计的结构的概况的说明图。在图1中,1是液晶面板、信号灯、冷阴极管、引导灯、LED等测定对象物,2是测光装置。FIG. 1 is an explanatory diagram showing an outline of the configuration of a photometric device such as a spectroradiometer according to the present invention. In FIG. 1 , 1 is a measurement object such as a liquid crystal panel, a signal lamp, a cold cathode tube, a guide lamp, and an LED, and 2 is a photometric device.
测光装置2具有接收自测定对象物1的光线的光学系统3、受光部4和电路部5。电路部5具有基于受光部4的测光输出而对测光特性(测色数据(亮度、色度、色温))进行运算的运算电路6、AC电源7、DC-DC电源8、LCD显示器9、操作键10、外部同步输入连接器11、A/D转换器12、CCD模拟PCB(CCD模拟印刷电路板)13。The
运算电路6由例如CPU构成。AC电源7、DC-DC电源8用于给运算电路6提供电力,操作键10用于向运算电路6输入测光所要求的各种指令。LCD显示器9用于显示测光特性和其它指令。外部同步输入连接器11用于以与测定对象物1的发光相同步的方式指示测定的定时。CCD模拟PCB13用于模拟输出受光部4的测光输出。A/D转换器12用于把该模拟输出转换成数字输出并输入给运算电路6。The
光学系统3大体由对准光学系统14和分光测光光学系统15构成。对准光学系统14大体由物镜16、带孔反射镜17、全反射镜18、中继透镜19、20、取景快门21、目镜22构成。来自测定对象物1的光线通过物镜16被引导给带孔反射镜17,借助该带孔反射镜17反射而引导至全反射镜18。引导至该全反射镜18的光线,通过中继透镜19、20而中继到与测定对象物1共轭的位置1,被中继到该共轭的位置1的测定对象物1的像经过目镜22而被测定者对准到。取景快门21具有如下作用,即:可防止在测定超低亮度的测定对象物1时,外光从目镜22的一侧经过中继透镜20、19、全反射镜18、带孔反射镜17而混入分光测光光学系统15中。The optical system 3 is generally composed of an alignment
分光测光光学系统15既具有与对准光学系统14共用的物镜16、带孔反射镜17,还具有中继透镜23、光纤束24、塔式板25、有色玻璃滤光器26、准直透镜27、衍射光栅28、集光透镜29。The spectrophotometric
带孔反射镜17具有开口17a。该带孔反射镜17用于调整明亮度。在此处,预备有四种带孔反射镜,图1中表示的是其中之一的带孔反射镜17被插入在分光测光光学系统15的光路之中的状况。The apertured mirror 17 has an
中继透镜23将测定对象物1的像形成在光纤束24的入射端面24a。光纤束24起到将来自测定对象物1的光线混合并消除它的偏振光的功能。塔式板25具有透明开口25a、10倍减光的ND滤光器25b、100倍减光的ND滤光器25c、遮光部25d,并起到调整从光纤束24的出射端面24b出射的光的光量的功能。准直透镜27的焦点在光纤束24的出射端面24b的位置,并具有把从该光纤束24出射的光线变换成平行光束的作用。The
如图2所示,有色玻璃滤光器26发挥一系列作用,比方说具有修正各波长的敏感度的作用、以及作为阻隔与可视光相比短波长一侧例如在波长380nm以下的短波长一侧的光的截止滤光器发挥作用。该有色玻璃滤光器26的透射率按波长设定。As shown in FIG. 2 , the
衍射光栅28具有作为波长分解元件的功能,波长分解元件使通过了准直透镜27的光束按波长分解。集光透镜29具有使按波长分解的各光束分别聚集到受光部4的作用。The
如图3所示,受光部4呈长方形状,且沿横向具有n个受光元件例如128个、256个、512个、1024个等,沿纵向具有m个受光元件例如128个、256个、512个、1024个等。在此处,横向方向的受光元件4a是与被分开的光线的指定的波长的位置相对应而沿恒定方向排列的受光元件。纵向的受光元件4a集中在一起形成一条线路(1ライン),与各波长的位置相对应的每条线路的输出,经过A/D转换器12而输入到运算电路6中。该受光部4(受光元件)包括配置在与由有色玻璃滤光器26阻隔的短波长一侧的光线对应的位置上的受光元件。例如,在图3中表示有四条线路的受光元件4a,所述四条线路的受光元件4a配置在与波长在380nm以下的短波长一侧的光线相对应的位置上,配置在与由所述有色玻璃滤光器26阻隔的短波长一侧的光线对应的位置上的受光元件4a的各线路所产生的输出作为暗电流输出来使用。As shown in FIG. 3 , the
在运算电路6中设置有修正电路30。修正电路30连接有存储部31,所述存储部31对各个受光元件4a保存下述输出比,即:配置在与由有色玻璃滤光器26阻隔的短波长一侧的光线相对应的位置上的受光元件4a的暗电流输出、与配置在与长波长一侧的各波长的光线(该光线相较于被有色玻璃滤光器26阻隔的短波长一侧的光线而言)相对应的位置上的各受光元件4a的输出之间的比,并且是与在该各受光元件4a不受到光照的状况下借助测定所求出的输出之间的比。A correction circuit 30 is provided in the
为了使配置在与长波长一侧的各波长的光线(该光线相较于由有色玻璃滤光器26阻隔的短波长一侧的光线而言)相对应的位置上的各受光元件4a处于不受到光照的状况,例如把测光装置2配置在暗室内,由此同时测定受光部4的各受光元件4a的输出。In order to make each light receiving
各受光元件4a的各线路的暗电流输出如图4所示,每个受光元件4a存在波动、或者是受光部4的每个个体存在波动。预先通过测定来求出所述各受光元件4a的暗电流输出。若将配置在与由有色玻璃滤光器26阻隔的短波长一侧的光线相对应的位置上的受光元件4a的线路的暗电流输出取为X0,用于可视光的实际测光的受光元件4a(即:配置在与并不被有色玻璃滤光器26阻隔的波长的光线相对应的位置上的受光元件4a)的线路之中的例如某一线路的暗电流输出取为X,则其比为X/X0。该数值比X/X0以对应着各线路的方式被存储在存储部31。修正电路30根据数值比X/X0求出每一个受光元件4a的线路的暗电流输出。As shown in FIG. 4 , the dark current output of each line of each light receiving
在这里,若将某一测定时的来自某个受光元件(其由附图标记4b表示)的线路的测光输出取为y,将在该测定时的来自以附图标记4b表示的受光元件的线路的暗电流输出取为y’,将在该测定时的与被阻隔的短波长一侧的光线相对应的受光元件的线路的暗电流输出取为y”,Here, if the photometric output from a line of a certain light-receiving element (which is represented by reference numeral 4b) at a certain measurement time is taken as y, the light-receiving element from the light-receiving element represented by
公式记为y’=y”×(X/X0),The formula is recorded as y'=y”×(X/X 0 ),
则修正电路30根据上述公式,对在某一测定时刻下对各受光元件4a的每一条线路的修正后的暗电流输出y’进行运算,并借助暗电流输出y’修正来自各受光元件4a的线路的测光输出y,从而算出精密的测光特性。Then the correction circuit 30 calculates the corrected dark current output y' of each line of each light receiving
像这样进行修正,则即便在各受光元件4a的线路的暗电流输出存在波动的情况下,也可以进行准确修正。此外,即便在由于热噪声而使暗电流输出存在变动的情况下,也能够进行准确修正。By performing correction in this way, accurate correction can be performed even when the dark current output of the line of each light receiving
另外,对于与受到阻隔的短波长一侧的光线相对应的受光元件4a的线路的暗电流输出X0,也可以使用多个线路的暗电流输出的平均值。例如,在图3中短波长一侧的四条线路作为与由有色玻璃滤光器26阻隔的波长的光线相对应的线路而被表示,但是,在这种情况下,可以求出这四条线路的暗电流输出总和,把该暗电流输出总和除以4后得到的数值作为平均暗电流输出来使用。In addition, as the dark current output X 0 of the line of the
在上述实施例中,作为受光元件使用了CCD的固体摄像器件,不过可以使用其它CMOS等受光元件。此外,在本实施例中,使用阻隔短波长一侧的波长的滤波器并利用了测定波长的短波长一侧的领域,从而获得暗电流输出,但是也可采用如下结构,即:使用阻隔测定波长的长波长一侧的波长(例如大约在780nm以上的波长、或者是大约在830nm以上的波长)的滤光器来检测暗电流输出并进行修正。而且,还可以利用带通滤光器、使用短波长一侧和长波长一侧两方来检测暗电流输出,进而用于修正。此外,截止滤光器也可以配置在准直透镜之后。In the above-described embodiments, a CCD solid-state imaging device is used as a light receiving element, but other light receiving elements such as CMOS may be used. In addition, in this embodiment, a dark current output is obtained by using a filter that cuts off wavelengths on the short-wavelength side and using a region on the short-wavelength side of the measurement wavelength, but a configuration that uses a cutoff measurement The dark current output is detected and corrected by using a filter with a wavelength on the long wavelength side (for example, a wavelength of about 780 nm or more, or a wavelength of about 830 nm or more). Furthermore, the dark current output can be detected using a bandpass filter using both the short-wavelength side and the long-wavelength side, and can be used for correction. In addition, the cut filter can also be arranged after the collimator lens.
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-105267 | 2008-04-15 | ||
JP2008105267 | 2008-04-15 | ||
PCT/JP2009/056437 WO2009128338A1 (en) | 2008-04-15 | 2009-03-30 | Photometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102007389A true CN102007389A (en) | 2011-04-06 |
CN102007389B CN102007389B (en) | 2013-05-15 |
Family
ID=41199037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980113172.7A Expired - Fee Related CN102007389B (en) | 2008-04-15 | 2009-03-30 | Metering device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5378359B2 (en) |
KR (1) | KR101239573B1 (en) |
CN (1) | CN102007389B (en) |
WO (1) | WO2009128338A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5150939B2 (en) * | 2008-10-15 | 2013-02-27 | 大塚電子株式会社 | Optical characteristic measuring apparatus and optical characteristic measuring method |
JP5738073B2 (en) * | 2011-05-27 | 2015-06-17 | 株式会社トプコン | Photometric device |
KR102024812B1 (en) * | 2017-10-31 | 2019-11-04 | 주식회사 맥사이언스 | Apparatus and Method for measuring Chromatic-luminance and Spectral-radiance simultaneously |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2530480A1 (en) | 1975-07-09 | 1977-01-27 | Bayer Ag | SINGLE-BEAM PHOTOMETER |
JPS58158528A (en) * | 1982-03-16 | 1983-09-20 | Union Giken:Kk | Light measuring device |
DE3215367A1 (en) * | 1982-04-24 | 1983-11-03 | Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen | DEVICE FOR REDUCING MEASURING ERRORS IN SPECTRAL PHOTOMETERS |
KR890001688B1 (en) * | 1985-08-03 | 1989-05-13 | 재단법인 한국표준연구소 | Spectrophotometer System for Color Measurement of Samples |
JPH02253126A (en) * | 1989-03-27 | 1990-10-11 | Kuraray Co Ltd | Device and method for detecting wavelength of light |
JP2984494B2 (en) * | 1992-12-11 | 1999-11-29 | オリンパス光学工業株式会社 | Dark output correction device for solid-state imaging device |
EP0729017B1 (en) * | 1995-02-25 | 1998-07-08 | Hewlett-Packard GmbH | Method for measurement and compensation of stray light in a spectrometer |
KR100612531B1 (en) * | 2001-10-01 | 2006-08-11 | 유디 테크놀로지 코포레이션 | Apparatus and method for real-time IR spectroscopy |
JP2005189217A (en) * | 2003-12-26 | 2005-07-14 | Topcon Corp | Spectral characteristic measuring device |
-
2009
- 2009-03-30 WO PCT/JP2009/056437 patent/WO2009128338A1/en active Application Filing
- 2009-03-30 KR KR1020107019594A patent/KR101239573B1/en active IP Right Grant
- 2009-03-30 CN CN200980113172.7A patent/CN102007389B/en not_active Expired - Fee Related
- 2009-03-30 JP JP2010508166A patent/JP5378359B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2009128338A1 (en) | 2011-08-04 |
CN102007389B (en) | 2013-05-15 |
KR101239573B1 (en) | 2013-03-18 |
JP5378359B2 (en) | 2013-12-25 |
KR20100106619A (en) | 2010-10-01 |
WO2009128338A1 (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8699023B2 (en) | Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method | |
TWI405958B (en) | Optical system for measurement | |
KR20090056858A (en) | Optical property measuring device | |
CN101813517B (en) | Device for measuring brightness | |
JP2010237097A (en) | Two-dimensional spectrometric apparatus and method | |
WO2012015264A2 (en) | Full-range calibration apparatus for a spectrometer for analysis of the light spectrum, and method for acquiring information using the apparatus | |
JP4333050B2 (en) | Optical system for measurement and tristimulus photoelectric colorimeter equipped with this optical system | |
CN105758566B (en) | Glass surface stress meter | |
JP5012323B2 (en) | Polychromator and method for correcting stray light | |
JP2010025558A (en) | Optical system for measurement | |
JP2002013981A (en) | Photometer | |
JP2012032444A (en) | Single lens reflex camera | |
CN102007389A (en) | Photometer | |
CN201611279U (en) | Brightness measuring unit | |
CN201352150Y (en) | Photometric device | |
US8476574B1 (en) | Method of deconvolution of spectral data | |
KR101054017B1 (en) | Calibration method of the spectrometer | |
JP2017227625A (en) | Brightness colorimeter with corrected measurement error caused by linearly polarized light | |
JP6631001B2 (en) | Stimulus value direct reading type colorimeter | |
JP7494851B2 (en) | Spectrophotometer | |
CN116113810A (en) | Optical device, color brightness meter and color meter | |
JP2013171007A (en) | Optical power meter | |
JP4413385B2 (en) | Photometric device | |
CN212459386U (en) | Optical measuring instrument | |
JP2011196750A (en) | Spectral sensitivity characteristic measuring instrument and method of measuring spectral sensitivity characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130515 Termination date: 20150330 |
|
EXPY | Termination of patent right or utility model |