JPWO2009063957A1 - Microbubble diffusion device and method - Google Patents

Microbubble diffusion device and method Download PDF

Info

Publication number
JPWO2009063957A1
JPWO2009063957A1 JP2008555340A JP2008555340A JPWO2009063957A1 JP WO2009063957 A1 JPWO2009063957 A1 JP WO2009063957A1 JP 2008555340 A JP2008555340 A JP 2008555340A JP 2008555340 A JP2008555340 A JP 2008555340A JP WO2009063957 A1 JPWO2009063957 A1 JP WO2009063957A1
Authority
JP
Japan
Prior art keywords
water
tank
water supply
supply pipe
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008555340A
Other languages
Japanese (ja)
Other versions
JP4374069B2 (en
Inventor
誠 南舘
誠 南舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of JP4374069B2 publication Critical patent/JP4374069B2/en
Publication of JPWO2009063957A1 publication Critical patent/JPWO2009063957A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • C02F3/165Activated sludge processes using surface aeration the aerator having a vertical axis using vertical aeration channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a conduit surrounding the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

本発明の微細気泡拡散装置1は、微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混合槽2と、槽2から対象水域の底方向に延びる送水管3と、槽2から下方に突出し、側面に複数の給水口5が開けられた給水管4と、給水管4に接続された水中ポンプ6と、槽2内の水に微細気泡を発生させる装置10を備える。ポンプ6を稼動させると、給水管4の中心部に上向きの中心水流が形成され、この中心水流に伴うベンチュリ効果により、給水管4の給水口5から水が取り込まれて、給水管4内を上昇して槽2に汲み上げられる。この結果、槽2の水位が対象水域の水位よりも高くなり、槽2から送水管3を通って対象水域の底方向へ向う水流が形成され、この水流に乗せて気泡混合水を水域の底方向へ送って微細気泡を拡散させる。このように、比較的小さい動力で微細気泡を対象水域全体に渡って拡散できる装置及び方法を提供できる。The fine bubble diffusing device 1 of the present invention includes a bubble mixing tank 2 disposed on or near the surface of a target water area for diffusing fine bubbles, a water supply pipe 3 extending from the tank 2 toward the bottom of the target water area, and a tank 2. And a submersible pump 6 connected to the water supply pipe 4 and a device 10 for generating fine bubbles in the water in the tank 2. When the pump 6 is operated, an upward central water flow is formed at the center of the water supply pipe 4, and water is taken in from the water supply port 5 of the water supply pipe 4 due to the venturi effect associated with this central water flow, Raised and pumped into tank 2. As a result, the water level of the tank 2 becomes higher than the water level of the target water area, and a water flow is formed from the tank 2 through the water pipe 3 toward the bottom of the target water area. Send in the direction to diffuse the fine bubbles. In this way, it is possible to provide an apparatus and method that can diffuse fine bubbles over the entire target water area with relatively small power.

Description

本発明は、微細気泡を、河川や池、沼、海のいけすなどの対象水域の底から拡散させる装置及び方法に関する。   The present invention relates to an apparatus and a method for diffusing fine bubbles from the bottom of a target water area such as a river, a pond, a marsh, or an ocean sacrificial.

微細気泡発生装置は、例えば、水道水や河川水の水中に微細気泡を混入させて溶存酸素量を増加させ、水を浄化するための装置として知られている。微細気泡とは、例えば、径が1mm以下の気泡であり、比表面積が大きく、水中での滞留時間が長いとともに水中での拡散性も優れている。この微細気泡の性質を活かして、生活用水や河川水の浄化、また漁業関係などにわたる広い範囲に適用される可能性を有している。
本発明者らは、このような微細気泡を発生させる装置として、回転ディスクを液中で高速回転させて液中に高速液流と負圧状態を生じさせ、この負圧を利用して気体を液中に取り込んで気泡混合液流を作り、さらにこの気泡混合液流をメッシュ部材に当てて気泡を細分化して、液中に微細気泡を発生させる装置を提案した(特許文献1参照)。この装置によれば、液中での滞留時間の長い微細気泡を安定的に発生させることができる。
このようにして発生させた微細気泡を、河川や沼、池、海のいけすなどの比較的広く水深が数m以上の対象水域の全体に拡散させる方法としては、以下に示す方法が考えられる。
(1)特許文献1の微細気泡発生装置の回転ディスクを対象水域の底部近傍に位置させて、同ディスクを回転させて微細気泡を発生し、水中に混合する。
(2)陸上に設置された槽内で微細気泡を発生させて、微細気泡混合液を作製し、この微細気泡混合液を、対象水域の底部近傍まで延びる送水管を通してポンプなどで送り込む。
しかし、上記(1)の案では、対象水域の水深が数m以上と深い場合、回転ディスクの回転軸もそれだけ長くする必要があり、そのような長い回転軸を高速で回転させることは困難である。また、上記(2)の案では、微細気泡混合液がポンプのインペラを通過する際に複数の気泡が合体してしまい、微細気泡の特性を発揮できない。
一方、加圧した気体をセラミックなどの多孔質体を通して液体中に送り込んで、微細気泡を発生させる装置も提案されている。しかしこの装置の場合、多孔質体を水底近くに設置すると、加圧気体を水圧を上回る圧力にして送り込む必要があり、高出力のコンプレッサ等が必要になり、エネルギ消費が多いとともに装置が大型化する。
特許第3958346号
The fine bubble generating device is known as a device for purifying water by mixing fine bubbles in tap water or river water to increase the amount of dissolved oxygen, for example. The fine bubbles are, for example, bubbles having a diameter of 1 mm or less, a large specific surface area, a long residence time in water, and excellent diffusibility in water. Taking advantage of the properties of these fine bubbles, it has the potential to be applied to a wide range of areas, including purification of domestic water and river water, as well as fishery-related matters.
As a device for generating such fine bubbles, the present inventors rotate a rotating disk in liquid at high speed to generate a high-speed liquid flow and a negative pressure state in the liquid, and use this negative pressure to generate gas. A device has been proposed in which a bubble mixed liquid flow is formed by taking it into the liquid, and the bubble mixed liquid flow is applied to a mesh member to subdivide the bubbles to generate fine bubbles in the liquid (see Patent Document 1). According to this apparatus, fine bubbles having a long residence time in the liquid can be stably generated.
The following method can be considered as a method for diffusing the fine bubbles generated in this manner over the entire target water area having a relatively wide water depth of several meters or more, such as rivers, swamps, ponds, and sea bream.
(1) The rotating disk of the fine bubble generator of Patent Document 1 is positioned near the bottom of the target water area, and the disk is rotated to generate fine bubbles and mixed in water.
(2) A fine bubble is generated in a tank installed on land to produce a fine bubble mixed solution, and this fine bubble mixed solution is fed by a pump or the like through a water supply pipe extending to the vicinity of the bottom of the target water area.
However, in the plan of (1) above, when the water depth of the target water area is as deep as several meters or more, it is necessary to lengthen the rotating shaft of the rotating disk, and it is difficult to rotate such a long rotating shaft at high speed. is there. In the plan (2), when the fine bubble mixture passes through the impeller of the pump, a plurality of bubbles are combined, and the characteristics of the fine bubbles cannot be exhibited.
On the other hand, an apparatus for generating fine bubbles by sending pressurized gas into a liquid through a porous body such as ceramic has been proposed. However, in the case of this device, if the porous body is installed near the bottom of the water, it is necessary to send the pressurized gas to a pressure exceeding the water pressure, which requires a high-output compressor, etc., which consumes a lot of energy and increases the size of the device. To do.
Japanese Patent No. 3958346

本発明は上記の問題点に鑑みてなされたものであって、比較的小さい動力で微細気泡を対象水域全体に渡って拡散できる装置及び方法を提供することを目的とする。
本発明の微細気泡拡散装置においては、微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混合槽と、該槽から前記対象水域の底方向へ延びる送水管と、前記槽への給水手段と、前記槽内の水に微細気泡を混合する手段と、を備え、前記槽の水位を前記対象水域の水位よりも高くして、前記槽から前記送水管を通って前記対象水域の底方向へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底方向へ送って微細気泡を拡散させる。
槽に給水手段により水を給水し槽内の水の水位を対象水域の水位よりも高くして位置エネルギを与えことにより、槽内の水は送水管を通って対象水域の底方向(下方)へ流れるようになる。そして、槽内で水に混合された微細気泡をこの流れに乗せることにより、微細気泡を対象水域の底付近まで移動させ、そこから対象水域内へ拡散させる。この装置によれば、比較的小さい動力で対象水域の上方から下方へ流れる水流を形成することができ、微細気泡の径を小さく保ったまま対象水域の底付近に拡散させることができる。特に、気泡混合水をポンプで圧送する場合に比べて、少ない動力で微細気泡の径を保ったまま対象水域内を拡散させることができる。
なお、ここにいう微細気泡とは、径が数百もしくは数十μmオーダー以下で、水中での上昇速度が遅いものをいう。また、当然のことながら、ここにいう「対象水域の底付近」とは、気泡を拡散させたい水域の底付近(例えば、海底までの深さ50mの海において、気泡を拡散させたい領域が深さ20m以上の場合、20m付近)という意味であって、その水域の物理的な底(海底や湖底などの底土)という意味ではない。なお、送水管の下端から出た水は、慣性で一定程度下に沈むので、送水管の長さは、対象水域の底の深さより短くてもよい場合もある。
本発明においては、前記給水手段が、前記槽から下方に突出した給水管と、該給水管に接続された水中ポンプと、を有し、前記給水管から前記対象水域内の水を前記ポンプで前記槽に汲み上げることとできる。
この場合、槽と送水管、給水管とを1個のユニットとして組み立てることができる。このユニットに移動機能を取り付ければ、例えば、川や湖沼などの広い対象水域内をユニットを移動させながら自動的に微細気泡を拡散できる。
さらに、本発明においては、前記送水管と給水管とが近接して並設されており、前記槽の水平断面形状が、前記送水管と給水管の水平断面をつないだ形状であることが好ましい。
槽に余分な部分があると、水がそこに滞ったり、乱流が起きたりして所望の水流が形成されない場合があるので、槽の断面に送水管と給水管の断面をつないだ部分以外の部分が形成されないことが好ましい。乱流は、送水管内においても生じさせないことが好ましい。ここで、乱流とは、流れの乱れや渦、あるいは旋回流などであって、流れのマクロな進行方向に沿う静かな流れ以外の流れのことである。乱流があると、せっかく混合した微細気泡同士がぶつかって合体し、合体して大きくなった気泡が浮きやすくなるからである。このような、微細気泡の合体を起こさせずに、あたかも微細気泡混合流が送水管内を静かに沈んでいくように水が流れることが好ましい。この観点から、送水管における水流の流速は0.1m/sec程度以下であることが好ましい。
本発明においては、前記給水管の側面に複数の給水口が開けられており、前記給水管の下端部に前記水中ポンプが接続されていることとできる。そして、水中ポンプを稼動させると、給水管の側面の給水口から対象水域の水が同管内に取り込まれ上昇して気泡混合槽内に汲み上げられる。つまり、給水管の中に形成された水中ポンプの水流により、ベルヌーイの定理の効果で、給水管内の静圧が周りよりも低下し、そこへ給水管の外から給水口を通って水が流れ込む(ベンチュリ効果)。この場合、給水管や気泡混合槽、送水管内に、乱れや渦の少ない水流を形成でき、この水流に乗せて気泡混合水を対象水域の底付近へ送って拡散させるので、微細気泡の径を小さく保ったまま対象水域の底付近に気泡を拡散させることができる。また、比較的少ない動力で大量の水を流すこともできる。また、水中ポンプを用いることにより、水を送る流路を短くして動力を低減できる。
なお、給水管の給水口の位置は、上記ベンチュリ効果が生じうるのであれば、給水管の側面に限定されるものではない。また、給水口の数も複数に限定されるものではない。
本発明の他の微細気泡拡散装置においては、微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混合槽と、該槽から前記対象水域の底方向に延びる送水管と、前記槽への給水手段と、前記槽内の水に微細気泡を混合する手段と、を備え、前記槽の水位を前記対象水域の水位よりも高くして、前記槽から前記送水管を通って前記対象水域の底方向へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底方向へ送って微細気泡を拡散させる微細気泡拡散装置であって、前記給水手段が、前記槽から下方に突出し給水口が開けられた給水管と、該給水管の中心部に上向きの中心水流を形成する手段と、を有し、該中心水流に伴うベンチュリ効果により、前記給水管の給水口から対象水域の水が同管内に取り込まれ、該給水管内を上昇して前記槽内に汲み上げられる。
本発明によれば、ベンチュリ効果により、給水管の給水口から対象水域の水が同管内に取り込まれるので、水中ポンプの実質的な流量の何倍もの流量の水を槽にくみ上げることができる。また、給水管中で管内の水全体がそのまま持ち上げられるような流れが生じる。給水管内の水の流れによって槽内の水位が上昇すると、槽内の水は送水管の方に流れ、同管を通って下方へ向かう。この流れに微細気泡を混入することにより、微細気泡が混合した水を対象水域の底付近まで送ることができる。
本発明の微細気泡拡散方法においては、微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置し、該槽に水を給水して槽内水の水位を前記対象水域の水位よりも高くして前記槽から前記対象水域の底付近へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底付近へ送って拡散させる。
本発明の他の微細気泡拡散方法においては、微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置し、該槽内で水中に微細気泡を混合し、該槽に水を給水して該槽内の水位を前記対象水域の水位よりも高くして前記槽から前記対象水域の底付近へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって、前記槽から下方に突出し給水口が開けられた給水管と、該給水管の中心部に上向きの中心水流を形成する手段と、を設けておき、該中心水流に伴うベンチュリ効果により、前記給水管の給水口から対象水域の水を同管内に取り込み、該給水管内を上昇させて前記槽内に汲み上げる。
発明の効果
以上の説明から明らかなように、本発明によれば、槽に給水手段により水を給水し槽内の水位を対象水域の水位よりも高くして位置エネルギを与えることで、槽から送水管を通って対象水域の下方へ流れる水流を形成している。槽へは比較的小さい動力で給水できるので、小さい動力で微細気泡を対象水域の底付近から拡散させることができる。
This invention is made | formed in view of said problem, Comprising: It aims at providing the apparatus and method which can diffuse a fine bubble over the whole target water area with comparatively small power.
In the fine bubble diffusing apparatus of the present invention, a bubble mixing tank disposed on or near the surface of the target water area for diffusing the fine bubbles, a water supply pipe extending from the tank toward the bottom of the target water area, and the tank Water supply means and means for mixing fine bubbles into the water in the tank, the water level of the tank is made higher than the water level of the target water area, and the target water area passes through the water pipe from the tank A water flow toward the bottom of the water is formed, and it is placed on this water flow to send the bubble mixed water toward the bottom of the water area to diffuse the fine bubbles.
Water is supplied to the tank by means of water supply, and the water level in the tank is made higher than the water level of the target water area to give potential energy, so that the water in the tank passes through the water pipe to the bottom of the target water area (downward) To flow into. Then, by placing the fine bubbles mixed with water in the tank on this flow, the fine bubbles are moved to the vicinity of the bottom of the target water area and diffused from there into the target water area. According to this apparatus, it is possible to form a water flow that flows from the upper side to the lower side of the target water area with relatively small power, and to diffuse near the bottom of the target water area while keeping the diameter of the fine bubbles small. In particular, compared with the case where bubble mixed water is pumped by a pump, the inside of the target water area can be diffused while maintaining the diameter of the fine bubbles with less power.
The fine bubbles referred to here are those having a diameter of several hundreds or several tens of μm or less and a slow rising speed in water. Of course, the term “near the bottom of the target water area” as used herein means the vicinity of the bottom of the water area where the bubbles are desired to diffuse (for example, in the sea having a depth of 50 m to the sea bottom, the region where the bubbles are desired to diffuse is deep. In the case of 20 m or more, it means 20 m) and not the physical bottom of the water area (sediment such as the seabed or lake bottom). In addition, since the water which came out from the lower end of the water pipe sinks to a certain extent by inertia, the length of the water pipe may be shorter than the bottom depth of the target water area.
In the present invention, the water supply means has a water supply pipe projecting downward from the tank and a submersible pump connected to the water supply pipe, and the pump supplies water in the target water area from the water supply pipe. It can be pumped into the tank.
In this case, the tank, the water supply pipe, and the water supply pipe can be assembled as one unit. If a moving function is attached to this unit, for example, fine bubbles can be automatically diffused while moving the unit in a wide target water area such as a river or a lake.
Furthermore, in the present invention, the water supply pipe and the water supply pipe are arranged close to each other, and the horizontal cross-sectional shape of the tank is preferably a shape connecting the horizontal cross sections of the water supply pipe and the water supply pipe. .
If there is an extra part in the tank, water may stagnate there, or turbulent flow may occur and the desired water flow may not be formed, so other than the part where the cross section of the water pipe and water pipe are connected to the cross section of the tank It is preferable that this part is not formed. The turbulent flow is preferably not generated even in the water pipe. Here, the turbulent flow is a flow turbulence, a vortex, a swirl flow, or the like, and is a flow other than a quiet flow along a macro traveling direction of the flow. This is because, if there is a turbulent flow, the mixed fine bubbles collide with each other and coalesce, and bubbles that have become coalesced and become larger tend to float. It is preferable that the water flow as if the fine bubble mixed flow gently sinks in the water pipe without causing such coalescence of fine bubbles. From this point of view, the flow rate of the water flow in the water pipe is preferably about 0.1 m / sec or less.
In the present invention, a plurality of water supply ports may be opened on a side surface of the water supply pipe, and the submersible pump may be connected to a lower end portion of the water supply pipe. And if a submersible pump is operated, the water of a target water area will be taken in into the pipe from the water supply port of the side surface of a water supply pipe, will rise, and will be pumped up in a bubble mixing tank. In other words, due to the flow of the submersible pump formed in the water supply pipe, the static pressure in the water supply pipe is lower than the surroundings due to the effect of Bernoulli's theorem, and water flows into the water through the water supply port from the outside of the water supply pipe (Venturi effect). In this case, a water flow with less turbulence and vortices can be formed in the water supply pipe, bubble mixing tank, and water supply pipe, and the bubble mixed water is sent and diffused near the bottom of the target water area on this water flow. Air bubbles can be diffused near the bottom of the target water area while being kept small. In addition, a large amount of water can be allowed to flow with relatively little power. Moreover, by using a submersible pump, the flow path for sending water can be shortened to reduce power.
In addition, the position of the water supply port of a water supply pipe | tube is not limited to the side surface of a water supply pipe | tube, if the said venturi effect can arise. Further, the number of water supply ports is not limited to a plurality.
In another fine bubble diffusing device of the present invention, a bubble mixing tank disposed on or near the surface of the target water area for diffusing fine bubbles, a water supply pipe extending from the tank toward the bottom of the target water area, Water supply means to the tank, and means for mixing fine bubbles in the water in the tank, the water level of the tank is higher than the water level of the target water area, the water through the water pipe from the tank A fine bubble diffusing device that forms a water flow toward the bottom of the target water area, and sends the bubble mixed water toward the bottom of the water area by spreading on the water flow, and diffuses the fine bubbles, the water supply means from the tank A water supply pipe projecting downward and having a water supply opening opened, and means for forming an upward central water flow at the center of the water supply pipe, and from the water supply opening of the water supply pipe by the venturi effect associated with the central water flow Water in the target water area is taken into the pipe, Water pipe rises is pumped into the tank.
According to the present invention, due to the venturi effect, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, so that water having a flow rate that is many times the substantial flow rate of the submersible pump can be pumped into the tank. Moreover, the flow which the whole water in a pipe | tube is lifted as it is in a water supply pipe | tube arises. When the water level in the tank rises due to the flow of water in the water supply pipe, the water in the tank flows toward the water supply pipe and travels downward through the pipe. By mixing the fine bubbles in this flow, the water mixed with the fine bubbles can be sent to the vicinity of the bottom of the target water area.
In the method for diffusing fine bubbles according to the present invention, a bubble mixing tank is disposed on or near the surface of the target water area where fine bubbles are diffused, and water is supplied to the tank to adjust the water level in the tank to the water level of the target water area. A water flow from the tank to the vicinity of the bottom of the target water area is formed, and the bubble mixed water is sent to the water area near the bottom of the water area to be diffused.
In another method of diffusing fine bubbles of the present invention, a bubble mixing tank is disposed on or near the surface of a target water area where fine bubbles are diffused, the fine bubbles are mixed in water in the tank, and water is poured into the tank. Water is supplied to make the water level in the tank higher than the water level in the target water area to form a water flow from the tank to the vicinity of the bottom of the target water area. A fine bubble diffusing method for sending and diffusing, comprising a water supply pipe projecting downward from the tank and having a water supply opening, and means for forming an upward central water flow at the center of the water supply pipe, Due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water supply pipe is raised and pumped into the tank.
Effects of the Invention As is apparent from the above description, according to the present invention, water is supplied to the tank by means of water supply, and the water level in the tank is made higher than the water level of the target water area to give potential energy. A water flow that flows down the target water area through the water pipe is formed. Since water can be supplied to the tank with relatively small power, fine bubbles can be diffused from near the bottom of the target water area with small power.

図1は、本発明の実施の形態に係る微細気泡発生装置を模式的に説明する図である。
図2は、図1の微細気泡発生装置の平面図である。
図3は、微細気泡拡散装置の試作品を示す写真である。
図4は、微細気泡拡散状態を説明する写真である。
図5は、微細気泡拡散状態を説明する写真である。
図6は、微細気泡拡散状態を説明する写真である。
図7は、微細気泡拡散状態を説明する写真である。
図8は、微細気泡拡散状態を説明する写真である。
図9は、微細気泡拡散状態を説明する写真である。
図10は、給水管の給水口を塞いだ状態を示す写真である。
図11は、給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明する写真である。
図12は、給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明する写真である。
図13は、本発明の実施の形態に係る微細気泡拡散装置の他の例を説明する図である。
FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
FIG. 2 is a plan view of the microbubble generator of FIG.
FIG. 3 is a photograph showing a prototype of the fine bubble diffusing device.
FIG. 4 is a photograph for explaining the state of fine bubble diffusion.
FIG. 5 is a photograph explaining the state of fine bubble diffusion.
FIG. 6 is a photograph for explaining the state of fine bubble diffusion.
FIG. 7 is a photograph explaining the state of fine bubble diffusion.
FIG. 8 is a photograph explaining the state of fine bubble diffusion.
FIG. 9 is a photograph for explaining the state of fine bubble diffusion.
FIG. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
FIG. 11 is a photograph for explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
FIG. 12 is a photograph for explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
図1は、本発明の実施の形態に係る微細気泡発生装置を模式的に説明する図である。
図2は、図1の微細気泡発生装置の平面図である。
図3は、図1の微細気泡発生装置の送水管下端付近の構造を説明する図である。
微細気泡発生装置1は、図1に示すように、微細気泡を拡散させる対象水域内の水が貯留される気泡混合槽2を有する。この気泡混合槽2は、対象水域の水面上又はその近傍に配置されるもので、平面形状は、後述するように図2に示す瓢箪型の形状である。
気泡混合槽2の底面には、下方へ延びる送水管3が設けられている。送水管3の長さは、槽2の底面から対象水域の底面近傍までの長さである。さらに、気泡混合槽2の底面には、下方に延びる給水管4が、送水管3と並んで設けられている。給水管4の長さは、送水管3に比べて短い。図2に示すように、送水管3と給水管4とは近接して並設されており、槽2の水平断面形状は、送水管3と給水管4の水平断面をつないだ瓢箪型の形状である。なお、図1、2においては、送水管3と給水管4との間にややスキマがあいているが、これらは接していてもよい。
給水管4の側面には、複数の給水口5が開けられている。また、図3に示すように、給水管4の下端は底板4aで塞がれており、同底板4aの中央に、開口4bが開けられている。底板4aには、水中ポンプ6が取り付けられている(水中ポンプの具体的な仕様については後述の実施例で説明する)。水中ポンプ6は、モータを収容した箱状のハウジング6aを有し、ハウジング6aの側面には給水口6bが形成されており、上面には上方に突出する吐出口6cが形成されている。水中ポンプ6は、パッキン7を介して給水管4の底板4aに取り付けらており、吐出口6cが底板4aの開口4bから給水管4内に突き出している。
水中ポンプ6を稼動させると、図3に示すように、給水管4の中央部に、給水管4の下端から上方に向かう水の流れが生じる。この水流により、ベルヌーイの定理の効果で、給水管4内の静圧が周りよりも低下し、そこへ給水管4の外から給水口5を通って水が流れ込む(ベンチュリ効果)。このような作用により、給水管4の側面の給水口5から対象水域の水が同管内に取り込まれ(吸い込まれ)、管4内を上昇して槽2内に汲み上げられる。なお、水中ポンプ6の容量と給水管4の径及び長さ、給水口5の大きさ・位置などの関係を、このような取り込み(吸い込み)が生じるように調整することが必要になるが、その関係の一例については実施例の項で後述する。
槽2には、微細気泡発生装置10が設けられており、槽2内の液中に微細気泡を発生させて気泡混合水を形成する。なお、微細気泡発生装置としては、例えば、上述した特許第3958346号のものを使用できる。
以下、この微細気泡発生装置の具体例を説明する
微細気泡発生装置は、モータと、モータによって回転される回転軸と、回転軸の先端に取り付けられた回転ディスクと、回転軸の外周をスペースをおいて取り囲む、気体導入口を有する筒体と、筒体の先端部に取り付けられた、ディスクの外周縁をスキマを隔てて取り囲むフランジと、フランジの周囲から先に延び出すように設けられた、筒状のメッシュ部材と、を具備する。
ディスクを液中で回転させることにより、遠心力によりディスク下面の液を外方向に流し、この液の流れによってディスクとフランジとのスキマから筒体内の気体を吸い出しながら液と混合させて気泡混合液流を作り、この液流をメッシュ部材に当てて通しながら気泡を細分化する。
なお、メッシュ部材は、メッシュ網であり、その開口サイズは、50〜500メッシュ、好ましくは、100〜400メッシュである。また、メッシュ部材は、重ねられた複数のメッシュ網である。
この微細気泡発生装置の具体的な構造を図面を参照して説明する。
図4は、微細気泡発生装置の構成の一例を説明する図であり、図4(A)は断面図、図4(B)は一部断面図である。
微細気泡発生装置10は、モータ12と、モータ12によって回転される回転軸14と、回転軸14の先端に取り付けられた回転ディスク15を備える。さらに、回転軸14の外周をスペースをおいて取り囲む筒体16と、筒体16の先に設けられて、回転ディスク15の外周縁をスキマを隔てて取り囲む筒状のメッシュ部材20とを備える。
モータ12の出力軸12aには、カップリング13を介して回転軸14が連結されている。回転軸14の先端には、回転ディスク15が取り付けられている。回転ディスク15は、先端に向って先細の薄い円錐状の部材である。同ディスク15の、モータ12の側の面は平面となっており、周縁のエッジは鋭く尖るように加工されている。回転ディスク15は、回転軸14の先端に螺合や接着剤などにより取り付けられる。
モータ12と回転ディスク15との間には、回転軸14をスペースを開けて取り囲む筒体16が取り付けられている。筒体16は、モータ回転軸14と同軸上の軸孔16aを有する部材で、モータ12を覆う基部17と、回転軸14に沿って延びる中央部18と、外方向に張り出す先端フランジ部19とからなる。各部は別々に作製したものを組み立てたものでも、各部が一体に作製されたものでもよい。
中央部18の基部寄り(モータ12寄り)の部分には、気体導入口18aが開けられている。この気体導入口18aを介して、筒体16の外部と軸孔16aの中とが連通する。先端フランジ部19は、短い円柱状の部分であり、中央部18の先端に嵌合固定されている。フランジ部19の先端面19aは中央が凹むように錐状に傾斜している。この先端面19aと回転ディスク15との間には、空間が形成されている。また、図4(B)に示すように、フランジ部19の先端の外周縁と、回転ディスク15の外周縁との間にはスキマdが開いている。スキマdの幅は、小型の機械で1mm以下であることが好ましい。混入気泡の寸法を小さくするにもスキマdは小さい方が好ましい。なお、大型の機械では、5〜10mm程度以下で可能な限り小さいことが好ましい。
なお、気体導入口18aには、様々な種類のガス源を接続することもできる。
フランジ部19の周囲には、筒状のメッシュ部材20が、フランジ部19の先に延び出すように取り付けられている。筒状メッシュ部材20は、例えば、3層に重ねられた筒状のメッシュ網21a、21b、22cで構成される。各メッシュ網の好ましい開口サイズは、50〜500メッシュ、より好ましくは100〜400メッシュである。
次に、この微細気泡発生装置の動作を説明する。
図5は、微細気泡発生装置の使用状態を説明する図である。
まず、装置10の回転ディスク15が下となるように保持し、回転ディスク15を水中に沈める。このとき、筒体16の空気導入口18aは水面上とする。回転ディスク15と筒体1のフランジ部19との間には小さいスキマdが開いているので、同スキマdから液体が筒体16の軸孔16a内に入り込む。そして、モータ12を駆動して回転軸14を回転させて、回転ディスク15を回転させる。すると、回転ディスク15の遠心力により、同ディスク15の近傍に存在する液体が高速で外方向に流れる。これにより、ディスク15とフランジ先端面19aとの間の空間が負圧になり、さらに回転させると、軸孔16a内には水がなくなると思われる。その結果、筒体16の空気導入口18aから筒体軸孔16aへ空気が連続して引き込まれる。
軸孔16a内に引き込まれた空気は、回転ディスク15とフランジ部19との間のスキマdから外方向に流される。このときに、高速の液流に空気が混合され、気泡混合液流が形成される。この気泡混合液流は、フランジ部19の周囲に配置されているメッシュ部材20に当たりながら同部材を通過する。このとき、回転ディスク15の高速回転により気泡混合液流はかなりの高速でメッシュ部材20に当たることになる。メッシュ部材20は、前述のように3層のメッシュ網21で作製されているので、気泡は内側のメッシュ網21aから外側のメッシュ網21cへ通過するごとに細分化され、最終的には非常に微細な気泡となる。なお、回転ディスク15は高速回転しているので、遠心力により発生する気泡混合液流もかなりの高速で螺旋状に回転するが、メッシュ部材20に当たる毎に速度が緩和される。このため、渦や、液面が盛り上がるなどの液の乱れは発生せず、微細な気泡がメッシュ部材20から全方向へ均等に拡散していく。
次に、図1を参照してこの微細気泡拡散装置1の作用を説明する。
ここでは、槽2を対象水域中に浮揚させて使用する例を説明する。槽2を対象水域中に浮揚させると、送水管3の下端や給水管4の給水口5から同管内に対象水域中の水が入り、槽2内にも水が貯留される。そして、送水管4に取り付けた水中ポンプ6を稼動させると、前述のように、給水管4の側面の給水口5から対象水域の水が同管内に取り込まれ、管内を上昇して槽2内に汲み上げられる。この結果、槽2内の水の水位H1は上昇し、対象水域の水位H2よりも高くなる。水中ポンプ6を稼動し続けると、槽2にはさらに水が汲み上げられるが、水は槽2にさらに蓄積されることはなく、槽2内の水の位置エネルギにより、同水は槽内を送水管3の方へ流れ、同管3を通って下方へ向うようになる。この際、槽2の平面形状には、送水管3と給水管4の以外のスペースがほとんどないため、槽内の水が滞ったり、乱流が起きることがない。そして、図1の矢印で示すような、給水管4から、槽2、送水管3への水流が形成される。
この水中ポンプと給水口からの水取り込みの技術的意義は次のとおりである。
その第一は、給水される水の流れに乱流や渦などがほとんど生じないため(あたかも、給水管内の水が、乱れることなくそのまま持ち上がっていく感じ)、気泡混合槽内でも水の乱れがほとんど生じず、微細気泡混合手段によって微細気泡の混合された水が、微細気泡の径を小さく保ったまま送水管を通って水底方向に運ばれることである。
その第2は、水中ポンプの送水量の何倍もの水を給水できるので、小動力・小設備費で比較的大量の水を処理できることである(実施例及びそのデータは後述する)。
そして、槽2内の水中に微細気泡発生装置10で微細気泡を発生させると、微細気泡が混合した水は、この水流に乗って送水管3を通って下方まで送られ、同管3の下開口から対象水域の底面付近に拡散される。
また、槽2に浮揚手段を設けて槽2を対象水域に浮揚させるようにすることもできる。らに、そのような槽2に移動手段を設けて対象水域内を移動できるようにすれば、広い対象水域内に自動的に微細気泡を拡散させることができる。また、送水管3の先に、水底に沿って延びる付属の送水管を取り付けてもよい。この送水管の側面に送水口を設ければ、この送水口から微細気泡を発生させることができる。
槽2の容積や送水管3や給水管4の寸法、ポンプ6の性能は、対象水域の規模に応じて適宜選択する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
FIG. 2 is a plan view of the microbubble generator of FIG.
FIG. 3 is a view for explaining the structure near the lower end of the water supply pipe of the fine bubble generating apparatus of FIG.
As shown in FIG. 1, the fine bubble generating device 1 has a bubble mixing tank 2 in which water in a target water area where fine bubbles are diffused is stored. The bubble mixing tank 2 is disposed on or near the water surface of the target water area, and the planar shape is a bowl shape shown in FIG. 2 as described later.
A water supply pipe 3 extending downward is provided on the bottom surface of the bubble mixing tank 2. The length of the water pipe 3 is the length from the bottom surface of the tank 2 to the vicinity of the bottom surface of the target water area. Furthermore, a water supply pipe 4 extending downward is provided alongside the water supply pipe 3 on the bottom surface of the bubble mixing tank 2. The length of the water supply pipe 4 is shorter than that of the water supply pipe 3. As shown in FIG. 2, the water supply pipe 3 and the water supply pipe 4 are arranged close to each other, and the horizontal cross-sectional shape of the tank 2 is a bowl-shaped shape connecting the horizontal cross sections of the water supply pipe 3 and the water supply pipe 4. It is. In FIGS. 1 and 2, there is a slight gap between the water supply pipe 3 and the water supply pipe 4, but these may be in contact with each other.
A plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4. Moreover, as shown in FIG. 3, the lower end of the water supply pipe 4 is closed with a bottom plate 4a, and an opening 4b is opened at the center of the bottom plate 4a. A submersible pump 6 is attached to the bottom plate 4a (specific specifications of the submersible pump will be described in an embodiment described later). The submersible pump 6 includes a box-shaped housing 6a that houses a motor. A water supply port 6b is formed on a side surface of the housing 6a, and a discharge port 6c that protrudes upward is formed on the upper surface. The submersible pump 6 is attached to the bottom plate 4a of the water supply pipe 4 via the packing 7, and the discharge port 6c protrudes into the water supply pipe 4 from the opening 4b of the bottom plate 4a.
When the submersible pump 6 is operated, as shown in FIG. 3, a flow of water is generated in the central portion of the water supply pipe 4 from the lower end of the water supply pipe 4 upward. Due to the effect of Bernoulli's theorem, the static pressure in the water supply pipe 4 is lower than the surroundings, and water flows from the outside of the water supply pipe 4 through the water supply port 5 (Venturi effect). By such an action, the water in the target water area is taken into (sucked in) the water supply port 5 on the side surface of the water supply pipe 4, rises in the pipe 4, and is pumped into the tank 2. It is necessary to adjust the relationship between the capacity of the submersible pump 6 and the diameter and length of the water supply pipe 4 and the size and position of the water supply port 5 so that such intake (suction) occurs. An example of the relationship will be described later in the example section.
The tank 2 is provided with a fine bubble generator 10, which generates fine bubbles in the liquid in the tank 2 to form bubble mixed water. In addition, as a microbubble generator, the thing of the patent 3958346 mentioned above can be used, for example.
Hereinafter, a specific example of the fine bubble generating device will be described. The fine bubble generating device includes a motor, a rotating shaft rotated by the motor, a rotating disk attached to the tip of the rotating shaft, and a space around the outer periphery of the rotating shaft. A cylinder having a gas inlet, and a flange attached to the tip of the cylinder, surrounding the outer periphery of the disk with a gap, and extending from the periphery of the flange. A cylindrical mesh member.
By rotating the disk in the liquid, the liquid on the lower surface of the disk is caused to flow outward by centrifugal force, and this liquid flow mixes with the liquid while sucking out the gas in the cylinder from the gap between the disk and the flange. A flow is created, and bubbles are subdivided while passing this liquid flow through the mesh member.
In addition, a mesh member is a mesh net | network, The opening size is 50-500 mesh, Preferably, it is 100-400 mesh. Further, the mesh member is a plurality of mesh meshes that are stacked.
A specific structure of the fine bubble generator will be described with reference to the drawings.
4A and 4B are diagrams for explaining an example of the configuration of the fine bubble generating device. FIG. 4A is a cross-sectional view, and FIG. 4B is a partial cross-sectional view.
The microbubble generator 10 includes a motor 12, a rotating shaft 14 rotated by the motor 12, and a rotating disk 15 attached to the tip of the rotating shaft 14. Furthermore, a cylindrical body 16 that surrounds the outer periphery of the rotary shaft 14 with a space, and a cylindrical mesh member 20 that is provided at the tip of the cylindrical body 16 and surrounds the outer peripheral edge of the rotary disk 15 with a gap.
A rotating shaft 14 is connected to the output shaft 12 a of the motor 12 via a coupling 13. A rotating disk 15 is attached to the tip of the rotating shaft 14. The rotating disk 15 is a thin conical member that tapers toward the tip. The surface of the disk 15 on the motor 12 side is a flat surface, and the peripheral edge is processed so as to be sharp. The rotating disk 15 is attached to the tip of the rotating shaft 14 by screwing or an adhesive.
A cylindrical body 16 is attached between the motor 12 and the rotary disk 15 so as to surround the rotary shaft 14 with a space. The cylindrical body 16 is a member having a shaft hole 16a coaxial with the motor rotation shaft 14, and includes a base portion 17 covering the motor 12, a central portion 18 extending along the rotation shaft 14, and a distal end flange portion 19 projecting outward. It consists of. Each part may be an assembly of separately manufactured parts, or each part may be integrally manufactured.
A gas inlet 18a is opened at a portion of the central portion 18 near the base (closer to the motor 12). The outside of the cylinder 16 and the inside of the shaft hole 16a communicate with each other through the gas introduction port 18a. The front end flange portion 19 is a short cylindrical portion, and is fitted and fixed to the front end of the central portion 18. The front end surface 19a of the flange portion 19 is inclined in a cone shape so that the center is recessed. A space is formed between the front end surface 19a and the rotary disk 15. Further, as shown in FIG. 4B, a gap d is opened between the outer peripheral edge at the tip of the flange portion 19 and the outer peripheral edge of the rotary disk 15. The width of the gap d is preferably 1 mm or less with a small machine. In order to reduce the size of the mixed bubbles, it is preferable that the gap d is small. In a large machine, it is preferably about 5 to 10 mm or less and as small as possible.
Various types of gas sources can be connected to the gas inlet 18a.
A cylindrical mesh member 20 is attached around the flange portion 19 so as to extend beyond the flange portion 19. The cylindrical mesh member 20 includes, for example, cylindrical mesh nets 21a, 21b, and 22c that are stacked in three layers. The preferred opening size of each mesh net is 50 to 500 mesh, more preferably 100 to 400 mesh.
Next, the operation of this fine bubble generator will be described.
FIG. 5 is a diagram for explaining a use state of the fine bubble generating device.
First, the rotating disk 15 of the apparatus 10 is held so as to be down, and the rotating disk 15 is submerged in water. At this time, the air inlet 18a of the cylinder 16 is on the water surface. Since a small gap d is opened between the rotary disk 15 and the flange portion 19 of the cylinder 1, the liquid enters the shaft hole 16 a of the cylinder 16 from the gap d. Then, the motor 12 is driven to rotate the rotating shaft 14 and the rotating disk 15 is rotated. Then, the liquid existing in the vicinity of the disk 15 flows outward at a high speed due to the centrifugal force of the rotating disk 15. As a result, the space between the disk 15 and the flange front end surface 19a becomes a negative pressure, and if it is further rotated, it is considered that there is no water in the shaft hole 16a. As a result, air is continuously drawn from the air inlet 18a of the cylinder 16 into the cylinder shaft hole 16a.
The air drawn into the shaft hole 16 a flows outward from the gap d between the rotating disk 15 and the flange portion 19. At this time, air is mixed with the high-speed liquid flow to form a bubble mixed liquid flow. This bubble mixed liquid flow passes through the member while hitting the mesh member 20 disposed around the flange portion 19. At this time, the bubble mixed liquid flow hits the mesh member 20 at a considerably high speed by the high-speed rotation of the rotary disk 15. Since the mesh member 20 is made of the three-layer mesh net 21 as described above, the bubbles are subdivided each time they pass from the inner mesh net 21a to the outer mesh net 21c. It becomes a fine bubble. Since the rotating disk 15 rotates at a high speed, the air bubble mixed liquid flow generated by the centrifugal force also rotates in a spiral at a considerably high speed, but the speed is alleviated each time it hits the mesh member 20. For this reason, turbulence and liquid disturbance such as a rise in the liquid level do not occur, and fine bubbles uniformly diffuse from the mesh member 20 in all directions.
Next, the operation of the fine bubble diffusing apparatus 1 will be described with reference to FIG.
Here, an example in which the tank 2 is used while being floated in the target water area will be described. When the tank 2 is floated in the target water area, water in the target water area enters the pipe from the lower end of the water supply pipe 3 or the water supply port 5 of the water supply pipe 4, and the water is also stored in the tank 2. Then, when the submersible pump 6 attached to the water supply pipe 4 is operated, as described above, the water in the target water area is taken into the pipe from the water supply port 5 on the side surface of the water supply pipe 4 and rises in the pipe to raise the inside of the tank 2. Pumped up. As a result, the water level H1 of the water in the tank 2 rises and becomes higher than the water level H2 of the target water area. If the submersible pump 6 is continuously operated, water is further pumped into the tank 2, but the water is not further accumulated in the tank 2, and the water is sent through the tank by the potential energy of the water in the tank 2. It flows toward the water pipe 3 and goes downward through the pipe 3. At this time, since there is almost no space other than the water supply pipe 3 and the water supply pipe 4 in the planar shape of the tank 2, water in the tank does not stagnate and turbulent flow does not occur. And the water flow from the water supply pipe | tube 4 to the tank 2 and the water supply pipe | tube 3 as shown by the arrow of FIG. 1 is formed.
The technical significance of water intake from the submersible pump and water supply port is as follows.
The first is that there is almost no turbulence or vortex in the flow of the water supplied (as if the water in the water supply pipe is lifted up without being disturbed), so there is no turbulence in the bubble mixing tank. Little water is generated, and the water in which the fine bubbles are mixed by the fine bubble mixing means is conveyed toward the bottom of the water through the water pipe while keeping the diameter of the fine bubbles small.
The second is that since many times the amount of water sent by the submersible pump can be supplied, a relatively large amount of water can be treated with low power and small equipment costs (examples and data will be described later).
When fine bubbles are generated in the water in the tank 2 by the fine bubble generator 10, the water in which the fine bubbles are mixed is sent to the lower side through the water pipe 3 along this water flow, It is diffused from the opening near the bottom of the target water area.
In addition, a levitation unit may be provided in the tank 2 so that the tank 2 is levitated in the target water area. Furthermore, if a moving means is provided in such a tank 2 so that it can move in the target water area, the fine bubbles can be automatically diffused in the wide target water area. Further, an attached water supply pipe extending along the bottom of the water may be attached to the tip of the water supply pipe 3. If a water supply port is provided on the side surface of the water supply tube, fine bubbles can be generated from the water supply port.
The volume of the tank 2, the dimensions of the water supply pipe 3 and the water supply pipe 4, and the performance of the pump 6 are appropriately selected according to the scale of the target water area.

次に、図1の微細気泡拡散装置の試作品を用いて実際に微細気泡を拡散させた実験を説明する。
図6は、微細気泡拡散装置の試作品を示す写真である。
この微細気泡拡散装置の各部の寸法や仕様を以下に示す。
気泡混合槽2(写真の上部のステンレス製の部分):長さ350mm、深さ230mm、容積20リットル、
送水管3(写真の右側の赤いテープが巻かれた透明なアクリル製の筒):径200mm、長さ870mm、
給水管4(写真の左側の灰色の塩ビ製の筒):径120mm、長さ500mm:
この給水管4の側面に複数の給水口5が開けられている、
水中ポンプ6(給水管4の下端に取付けられた黒色のポンプ)(リオ・パワーヘッドRio3100(商品名、神畑養魚株式会社製):仕様は、最大流出量:55リットル/min(50Hz)、57リットル/min(60Hz)、最大揚程:290cm(50Hz)、290cm(60Hz)、電圧:100V、消費電力:55W(50Hz)、64W(60Hz)。吐出口の径は22mm、長さは22mmである。
微細気泡発生装置10としては、上述のものを使用した。
この例の装置を使用して微細気泡を拡散させた状態を説明する。
図7〜図9は、微細気泡拡散状態を説明する写真である。
微細気泡を拡散させる対象水域として、径400mm、高さ1000mm、容量115リットルの水槽(各写真において、外側の透明なアクリル製の槽)を準備した。
まず、水槽内に115リットルの水を貯留し、微細気泡拡散装置1をホイストで吊り上げて水槽の上方から水槽に入れた。このとき、前述のように、送水管3の開口端部や給水管4の給水口5から水が入り込み、槽2内に水が貯留された。次に、水中ポンプ6を稼動させた。すると、前述のように給水管4の給水口5から水が取り込まれて槽2内に汲み上げられ、図7(A)に示すように、槽2内の水位は水槽の水位より約10mm程度(図1のd)高くなった。
そして、微細気泡発生装置10を槽2内に設置し、微細気泡を発生させた。発生させた直後は、図7(B)に示すように、微細気泡はまだ槽2内に留まっている。その後、水中ポンプ6を稼動させながら微細気泡を発生させ続けると、図8(A)に示すように、微細気泡は、送水管3内を下降し始めた。そして、図8(B)に示すように、微細気泡は送水管3の下端に達し、図9(A)に示すように、送水管3の下端部付近が白く濁った。その後、図9(B)に示すように、送水管3の下端部から水槽内へ出て、水槽内を上昇しながら拡散された。
微細気泡拡散装置の各部の寸法や性能の他の例を以下に示す。
送水管3:径200mm、長さ1.8m、
給水管4:径120mm、長さ0.5m、
給水口5:径15mm、
給水口5の位置及び個数:給水管の上端から0.3m近辺の位置に22個設置、
送水管3内の気泡混合水の沈降速度:約7cm/sec。
比較として、この例の微細気泡拡散装置の給水口5を塞いで、前述と同様の実験を行った。
図10は、給水管の給水口を塞いだ状態を示す写真である。
図11、12は、給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明する写真である。
図10の写真に示すように、給水管4(図の右側の灰色の塩ビ製の筒)の給水口5をガムテープで塞いだ。そして、図1と同様に、装置1を対象水域中に入れて、槽2や送水管3、給水管4内に水を貯留させた。その後、給水管4に取り付けた水中ポンプ6を稼動させた。そして、図11Aに示すように、微細気泡発生装置10を槽2内に設置し、同装置10を数秒間稼働させて微細気泡を発生させた。図11Aにおいて、槽2(写真上部のステンレス製の部分)の下方に白く濁って見えるものが発生した微細気泡である。
図11Bは、微細気泡発生から約30秒後の状態を撮影したものである。写真に示すように、発生した微細気泡は、送水管3内をほとんど下降せず留まっている。さらに、図12は、図11Bの状態から約10秒経過した状態を撮影したものである。発生した微細気泡は、図11Aの状態からやや下降している。気泡で白く濁った水の移動を目視とコンベックスで測定した結果、移動速度は約0.7cm/secであった。なお、気泡の上昇速度は遅いので無視した。この値は、給水管4の給水口5を塞いだ場合の1/10程度の値である。つまり、給水管4に給水口5を設けることにより、設けない場合に比べて約10倍程度の流量を得ることができる。
ただし、給水管4の給水口5を塞いだ場合、送水管3を流れる水の流量は、実質的には、ポンプ6のみの能力によるものである。この場合、送水管3内の気泡の沈降速度は約0.7cm/secであることから、流量に換算すると約13.2リットル/minとなる。この値は、前述のポンプ6の最大流量のカタログ値(5.5リットル/min)の約1/4程度となる。このような差の出る理由は不明である。ただし、たとえカタログ値の最大流量と比較したとしても、ベンチュリ効果のある場合の流量は2.5倍はあるといえ、本発明の効果は確認できた。
図13は、本発明の実施の形態に係る微細気泡拡散装置の他の例を説明する図である。
この微細気泡拡散装置は、ポンプ6Aを水面上の、槽2に取り付けている。この例ではポンプ6Aの吸込管6bは、ポンプ6Aのハウジング6aから水中に延びている。また、吐出管6cは、ハウジング6aから給水管4の底板4aに開けられた孔4bに延びており、同孔4bから給水管4内に突き出している。孔4bの周囲はシール8で塞がれている。この例においても、ポンプ6Aを稼働させることにより、給水管4の中心に沿った水流が生じ、この水流に伴って給水口5から水が同管4内に取り込まれ、給水管4内を上昇して槽3内に汲み上げられる。ただし、吸込管6bと吐出管6cの流路抵抗の分だけ消費動力は多くなる。
Next, an experiment in which fine bubbles are actually diffused using a prototype of the fine bubble diffusing apparatus in FIG. 1 will be described.
FIG. 6 is a photograph showing a prototype of the fine bubble diffusing device.
The dimensions and specifications of each part of this fine bubble diffusing device are shown below.
Bubble mixing tank 2 (the stainless steel part at the top of the photo): length 350 mm, depth 230 mm, volume 20 liters,
Water pipe 3 (transparent acrylic tube wound with red tape on the right side of the photo): diameter 200 mm, length 870 mm,
Water supply pipe 4 (gray PVC tube on the left side of the photo): diameter 120 mm, length 500 mm:
A plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4.
Submersible pump 6 (black pump attached to the lower end of the water supply pipe 4) (Rio Powerhead Rio 3100 (trade name, manufactured by Kamihata Fish Co., Ltd.): specifications are maximum outflow: 55 liters / min (50 Hz), 57 Liter / min (60 Hz), maximum head: 290 cm (50 Hz), 290 cm (60 Hz), voltage: 100 V, power consumption: 55 W (50 Hz), 64 W (60 Hz) The diameter of the discharge port is 22 mm and the length is 22 mm. .
As the fine bubble generating device 10, the above-mentioned one was used.
A state where fine bubbles are diffused using the apparatus of this example will be described.
7 to 9 are photographs explaining the fine bubble diffusion state.
A water tank having a diameter of 400 mm, a height of 1000 mm, and a capacity of 115 liters (in each photograph, an outer transparent acrylic tank) was prepared as a target water area for diffusing fine bubbles.
First, 115 liters of water was stored in the water tank, and the fine bubble diffusing device 1 was lifted with a hoist and put into the water tank from above the water tank. At this time, as described above, water entered from the opening end of the water supply pipe 3 and the water supply port 5 of the water supply pipe 4, and water was stored in the tank 2. Next, the submersible pump 6 was operated. Then, as described above, water is taken in from the water supply port 5 of the water supply pipe 4 and pumped into the tank 2, and as shown in FIG. 7A, the water level in the tank 2 is about 10 mm from the water level of the water tank ( D) in FIG.
And the fine bubble generator 10 was installed in the tank 2, and the fine bubble was generated. Immediately after the generation, the fine bubbles still remain in the tank 2 as shown in FIG. Thereafter, when the fine bubbles were continuously generated while the submersible pump 6 was operated, the fine bubbles began to descend in the water supply pipe 3 as shown in FIG. And as shown in FIG.8 (B), the fine bubble reached the lower end of the water pipe 3, and as shown in FIG. 9 (A), the lower end part vicinity of the water pipe 3 became cloudy white. Then, as shown to FIG. 9 (B), it came out in the water tank from the lower end part of the water pipe 3, and it diffused, raising the inside of a water tank.
Other examples of dimensions and performance of each part of the fine bubble diffusing device are shown below.
Water pipe 3: diameter 200mm, length 1.8m,
Water supply pipe 4: diameter 120mm, length 0.5m,
Water supply port 5: Diameter 15mm,
Position and number of water supply ports 5: 22 installed at a position near 0.3 m from the upper end of the water supply pipe,
Sedimentation speed of bubble mixed water in the water pipe 3: about 7 cm / sec.
As a comparison, the same experiment as described above was performed by closing the water supply port 5 of the fine bubble diffusing device of this example.
FIG. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
11 and 12 are photographs for explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
As shown in the photograph of FIG. 10, the water supply port 5 of the water supply pipe 4 (the gray PVC tube on the right side of the figure) was closed with gummed tape. And like FIG. 1, the apparatus 1 was put in the target water area, and water was stored in the tank 2, the water supply pipe 3, and the water supply pipe 4. As shown in FIG. Thereafter, the submersible pump 6 attached to the water supply pipe 4 was operated. And as shown to FIG. 11A, the microbubble generator 10 was installed in the tank 2, and the apparatus 10 was operated for several seconds, and the microbubble was generated. In FIG. 11A, fine bubbles are generated which appear white and cloudy below the tank 2 (the stainless steel part in the upper part of the photograph).
FIG. 11B is a photograph of a state about 30 seconds after the generation of fine bubbles. As shown in the photograph, the generated fine bubbles are hardly lowered in the water supply pipe 3 and remain. Further, FIG. 12 is a photograph of a state in which about 10 seconds have elapsed from the state of FIG. 11B. The generated fine bubbles are slightly lowered from the state of FIG. 11A. As a result of measuring the movement of white turbid water with bubbles by visual observation and convex, the moving speed was about 0.7 cm / sec. In addition, since the rising speed of the bubbles was slow, it was ignored. This value is about 1/10 when the water supply port 5 of the water supply pipe 4 is closed. That is, by providing the water supply port 5 in the water supply pipe 4, it is possible to obtain a flow rate of about 10 times that in the case where it is not provided.
However, when the water supply port 5 of the water supply pipe 4 is closed, the flow rate of the water flowing through the water supply pipe 3 is substantially due to the ability of only the pump 6. In this case, since the sedimentation speed of the bubbles in the water supply pipe 3 is about 0.7 cm / sec, it is about 13.2 liters / min when converted to a flow rate. This value is about ¼ of the catalog value (5.5 liter / min) of the maximum flow rate of the pump 6 described above. The reason for this difference is unknown. However, even if compared with the maximum flow rate of the catalog value, it can be said that the flow rate in the case of the venturi effect is 2.5 times, and the effect of the present invention was confirmed.
FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention.
In this fine bubble diffusing device, the pump 6A is attached to the tank 2 on the water surface. In this example, the suction pipe 6b of the pump 6A extends underwater from the housing 6a of the pump 6A. The discharge pipe 6c extends from the housing 6a to a hole 4b formed in the bottom plate 4a of the water supply pipe 4, and protrudes into the water supply pipe 4 from the hole 4b. The periphery of the hole 4 b is closed with a seal 8. Also in this example, by operating the pump 6A, a water flow along the center of the water supply pipe 4 is generated, and water is taken into the pipe 4 from the water supply port 5 along with this water flow, and rises in the water supply pipe 4 Then, it is pumped up into the tank 3. However, the power consumption increases by the flow path resistance of the suction pipe 6b and the discharge pipe 6c.

Claims (10)

微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混合槽と、
該槽から前記対象水域の底方向に延びる送水管と、
前記槽への給水手段と、
前記槽内の水に微細気泡を混合する手段と、
を備え、
前記槽の水位を前記対象水域の水位よりも高くして、前記槽から前記送水管を通って前記対象水域の底方向へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底方向へ送って微細気泡を拡散させる微細気泡拡散装置であって、
前記給水手段が、
前記槽から下方に突出し給水口が開けられた給水管と、
該給水管の中心部に上向きの中心水流を形成する手段と、を有し、
該中心水流に伴うベンチュリ効果により、前記給水管の給水口から対象水域の水が同管内に取り込まれ、該給水管内を上昇して前記槽内に汲み上げられることを特徴とする微細気泡拡散装置。
A bubble mixing tank disposed on or near the surface of the target water area for diffusing fine bubbles; and
A water pipe extending from the tank toward the bottom of the target water area;
Water supply means to the tank;
Means for mixing fine bubbles into the water in the tank;
With
The water level of the tank is made higher than the water level of the target water area, a water flow is formed from the tank through the water pipe toward the bottom of the target water area, and the bubble mixed water is put on the water flow in the water area. A fine bubble diffusing device that diffuses fine bubbles by sending it toward the bottom,
The water supply means
A water supply pipe protruding downward from the tank and having a water supply opening opened;
Means for forming an upward central water flow at the center of the water supply pipe,
A fine bubble diffusing device characterized in that due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and is lifted and pumped into the tank.
前記中心水流を形成する手段が、前記給水管の下部に設置された水中ポンプであることを特徴とする請求項1に記載の微細気泡拡散装置。 2. The fine bubble diffusing apparatus according to claim 1, wherein the means for forming the central water flow is a submersible pump installed at a lower portion of the water supply pipe. 微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混合槽と、
該槽から前記対象水域の底付近まで延びる送水管と、
前記槽への給水手段と、
前記槽内の水に微細気泡を混合する手段と、
を備え、
前記槽の水位を前記対象水域の水位よりも高くして、前記槽から前記送水管を通って前記対象水域の底付近へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底付近へ送って微細気泡を拡散させる微細気泡拡散装置であって、
前記給水手段が、
前記槽から下方に突出し、側面に複数の給水口が開けられた給水管と、
該給水管の下端部に取り付けられた水中ポンプと、を有し、
該水中ポンプを稼動させると、前記給水管の側面の給水口から対象水域の水が同管内に取り込まれ、該給水管内を上昇して前記槽内に汲み上げられることを特徴とする微細気泡拡散装置。
A bubble mixing tank disposed on or near the surface of the target water area for diffusing fine bubbles; and
A water pipe extending from the tank to near the bottom of the target water area;
Water supply means to the tank;
Means for mixing fine bubbles into the water in the tank;
With
The water level of the tank is made higher than the water level of the target water area, a water flow is formed from the tank through the water pipe toward the bottom of the target water area, and the bubble mixed water is put on the water flow in the water area. A fine bubble diffusing device that sends near the bottom and diffuses fine bubbles,
The water supply means
A water supply pipe protruding downward from the tank and having a plurality of water supply openings opened on the side surface,
A submersible pump attached to the lower end of the water supply pipe,
When the submersible pump is operated, the water in the target water area is taken into the pipe from the water supply port on the side surface of the water supply pipe, and the fine bubble diffusing apparatus rises in the water supply pipe and is pumped into the tank .
前記水中ポンプが、給水口と吐出口とを有し、
前記吐出口が、前記給水管の底の中央に位置し、
前記水中ポンプを稼働して前記給水管の中心部に上向きの中心水流を形成し、
該中心水流に伴うベンチュリ効果により、前記給水管の給水口から対象水域の水が同管内に取り込まれることを特徴とする請求項2又は3に記載の微細気泡拡散装置。
The submersible pump has a water supply port and a discharge port,
The discharge port is located at the center of the bottom of the water supply pipe;
Operate the submersible pump to form an upward central water flow at the center of the water supply pipe,
4. The fine bubble diffusing device according to claim 2, wherein water in the target water area is taken into the pipe from a water supply port of the water supply pipe by a venturi effect accompanying the central water flow.
前記送水管と給水管とが近接して並設されており、前記槽の水平断面形状が、前記送水管と給水管の水平断面をつないだ形状であることを特徴とする請求項1〜4のいずれか1項に記載の微細気泡拡散装置。 The water supply pipe and the water supply pipe are juxtaposed in parallel, and the horizontal cross-sectional shape of the tank is a shape connecting the horizontal cross sections of the water supply pipe and the water supply pipe. The fine bubble diffusing apparatus according to any one of the above. 前記気泡混合槽内の前記給水管から前記送水管へ向かう水流中で、乱流が実質的に生じないことを特徴とする請求項1〜5のいずれか1項に記載の微細気泡拡散装置。 6. The fine bubble diffusing apparatus according to claim 1, wherein a turbulent flow is substantially not generated in a water flow from the water supply pipe to the water supply pipe in the bubble mixing tank. 前記槽内の水に微細気泡を混合する手段が、該槽内の水中で回転ディスクを高速回転させて高速水流と負圧状態を生じさせ、この負圧を利用して気体を液中に取り込んで気泡混合水流を作り、さらにこの気泡混合水流をメッシュ部材に当てて気泡を細分化して前記槽内の水中に放出することを特徴とする請求項1〜6のいずれか1項に記載の微細気泡拡散装置。 The means for mixing fine bubbles into the water in the tank causes the rotating disk to rotate at a high speed in the water in the tank to generate a high-speed water flow and a negative pressure state, and gas is taken into the liquid using this negative pressure. The bubble mixed water flow is made by the above, and the bubble mixed water flow is further applied to the mesh member to subdivide the bubbles and discharge them into the water in the tank. Bubble diffuser. 微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置し、
該槽内で水中に微細気泡を混合し、
該槽に水を給水して該槽内の水位を前記対象水域の水位よりも高くして前記槽から前記対象水域の底付近へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって、
前記槽から下方に突出し給水口が開けられた給水管と、該給水管の中心部に上向きの中心水流を形成する手段と、を設けておき、
該中心水流に伴うベンチュリ効果により、前記給水管の給水口から対象水域の水を同管内に取り込み、該給水管内を上昇させて前記槽内に汲み上げることを特徴とする微細気泡拡散方法。
Place a bubble mixing tank on or near the water surface of the target water area to diffuse fine bubbles,
Mixing fine bubbles in water in the tank,
Water is supplied to the tank, and the water level in the tank is made higher than the water level of the target water area to form a water flow from the tank toward the bottom of the target water area. A method of diffusing fine bubbles that is sent near the bottom of a body of water to diffuse,
A water supply pipe projecting downward from the tank and having a water supply port opened, and means for forming an upward central water flow at the center of the water supply pipe,
A fine bubble diffusing method characterized in that due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water supply pipe is raised and pumped into the tank.
微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置し、
該槽に水を給水して槽内水の水位を前記対象水域の水位よりも高くして前記槽から前記対象水域の底付近へ向う水流を形成し、この水流に乗せて気泡混合水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって、
前記槽から下方に突出し側面に複数の給水口が開けられた給水管と、該給水管の下端部に取り付けられた水中ポンプと、を設けておき、
該水中ポンプを稼動させて、前記給水管の側面の給水口から対象水域の水を同管内に取り込み、該給水管内を上昇させて前記槽内に汲み上げることを特徴とする微細気泡拡散方法。
Place a bubble mixing tank on or near the water surface of the target water area to diffuse fine bubbles,
Water is supplied to the tank, and the water level in the tank is made higher than the water level of the target water area to form a water flow from the tank toward the bottom of the target water area. A method of diffusing fine bubbles that is sent near the bottom of a body of water to diffuse,
A water supply pipe projecting downward from the tank and having a plurality of water supply ports opened on the side surface, and a submersible pump attached to the lower end of the water supply pipe,
A method of diffusing fine bubbles, wherein the submersible pump is operated to take water in a target water area from a water supply port on a side surface of the water supply pipe into the pipe, and the water supply pipe is raised and pumped into the tank.
前記気泡混合槽内の前記給水管から前記送水管へ向かう水流中で、乱流を実質的に生じさせないことを特徴とする請求項8又は9に記載の微細気泡拡散方法。 10. The fine bubble diffusing method according to claim 8, wherein a turbulent flow is not substantially generated in a water flow from the water supply pipe to the water supply pipe in the bubble mixing tank.
JP2008555340A 2007-11-12 2008-11-07 Microbubble diffusion device and method Expired - Fee Related JP4374069B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007293141 2007-11-12
JP2007293141 2007-11-12
JP2008148275 2008-06-05
JP2008148275 2008-06-05
PCT/JP2008/070727 WO2009063957A1 (en) 2007-11-12 2008-11-07 Fine bubble diffusing apparatus and method

Publications (2)

Publication Number Publication Date
JP4374069B2 JP4374069B2 (en) 2009-12-02
JPWO2009063957A1 true JPWO2009063957A1 (en) 2011-03-31

Family

ID=40638805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555340A Expired - Fee Related JP4374069B2 (en) 2007-11-12 2008-11-07 Microbubble diffusion device and method

Country Status (3)

Country Link
JP (1) JP4374069B2 (en)
CN (1) CN101918328A (en)
WO (1) WO2009063957A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769325B1 (en) * 2010-03-23 2011-09-07 悟 高森 Water quality improvement device for dam lakes, rivers or lakes
JP5774848B2 (en) * 2010-12-27 2015-09-09 株式会社御池鐵工所 Water quality improvement device and water quality improvement method
NL2007305C2 (en) * 2011-08-26 2013-02-27 Id4Tech B V AERATOR AND METHOD FOR AERATING A LIQUID.
CN105417740B (en) * 2014-09-17 2018-08-17 郑伟 A kind of device of surface water layering oxygenation
CN109851042A (en) * 2019-04-12 2019-06-07 广州易能克科技有限公司 Water oxygenation equipment
JP7458729B2 (en) 2019-09-26 2024-04-01 大和ハウス工業株式会社 bubble generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108799U (en) * 1989-02-16 1990-08-29
JPH03238096A (en) * 1990-02-15 1991-10-23 Nkk Corp Device for supplying oxygen to deep layer water
JPH08299982A (en) * 1995-05-10 1996-11-19 Mitsuo Okamoto Aeration device for bottom water layer
JP3394402B2 (en) * 1996-11-21 2003-04-07 ゼニヤ海洋サービス株式会社 Telescopic single pipe type deep aeration circulation device
JP2003088886A (en) * 2001-09-19 2003-03-25 Yokogawa Electric Corp Method and device for increasing dissolved oxygen
JP4255813B2 (en) * 2003-11-21 2009-04-15 株式会社荏原製作所 Fine air supply device
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP3958346B1 (en) * 2006-07-11 2007-08-15 南舘 誠 Microbubble generator

Also Published As

Publication number Publication date
JP4374069B2 (en) 2009-12-02
WO2009063957A1 (en) 2009-05-22
CN101918328A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4374069B2 (en) Microbubble diffusion device and method
JP4802154B2 (en) Ultrafine bubble generator
JP5717104B2 (en) Floating matter recovery pump device and shape of suction passage of recovery vessel
JP4392540B1 (en) Production equipment for fine bubble dispersed water
JP5800185B2 (en) Microbubble generating once-through pump
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP2012007524A5 (en)
WO2013038748A1 (en) Air diffusing method provided with hydroelectric power generating device and air diffuser
JP2008132437A (en) Microbubble generation apparatus
JP2013022477A5 (en)
JP2014097449A5 (en)
JP6944286B2 (en) Ultra-fine bubble generator
KR102038132B1 (en) Aerator using eddy flow
JP2012125690A (en) Through-flow pump aeration apparatus
JP4570050B2 (en) Convection inducing device in tank
CN108503052A (en) A kind of underwater microbubble aerator of differential dual-impeller and its method
EP4062997A1 (en) Device for the gasification, pumping and mixing of fluids
JP2020065996A (en) Rotary type water purification system
JP6242465B1 (en) Water quality improvement equipment
CN108069525A (en) A kind of self-propelled micro-nano oxygen increasing equipment
JPH0433520B2 (en)
KR20180095204A (en) Aerator for water purification
US10532331B2 (en) Artificial-whirlpool generator
CN205367909U (en) Portable pure oxygen bubbling machine on water
JP5774848B2 (en) Water quality improvement device and water quality improvement method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090105

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090105