WO2009063957A1 - Fine bubble diffusing apparatus and method - Google Patents

Fine bubble diffusing apparatus and method Download PDF

Info

Publication number
WO2009063957A1
WO2009063957A1 PCT/JP2008/070727 JP2008070727W WO2009063957A1 WO 2009063957 A1 WO2009063957 A1 WO 2009063957A1 JP 2008070727 W JP2008070727 W JP 2008070727W WO 2009063957 A1 WO2009063957 A1 WO 2009063957A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
water supply
supply pipe
area
Prior art date
Application number
PCT/JP2008/070727
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Minamidate
Original Assignee
Ebisu-Science, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebisu-Science, Co., Ltd. filed Critical Ebisu-Science, Co., Ltd.
Priority to CN2008801156170A priority Critical patent/CN101918328A/en
Priority to JP2008555340A priority patent/JP4374069B2/en
Publication of WO2009063957A1 publication Critical patent/WO2009063957A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • C02F3/165Activated sludge processes using surface aeration the aerator having a vertical axis using vertical aeration channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a conduit surrounding the stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an apparatus and a method for diffusing fine bubbles from the bottom of a target water area such as a river, a pond, a swamp, or a sea sword.
  • the fine bubble generator is known as a device for purifying water by increasing the amount of dissolved oxygen by mixing fine bubbles in tap water or river water, for example.
  • the fine bubbles are, for example, bubbles having a diameter of 1 mm or less, a large specific surface area, a long residence time in water, and excellent diffusibility in water. Taking advantage of the properties of these microbubbles, it has the potential to be applied in a wide range of areas, including purification of domestic water and river water, and fishery-related matters.
  • the present inventors rotate a rotating disk at a high speed in a liquid to generate a high-speed liquid flow and a negative pressure state in the liquid.
  • a device for generating a fine bubble in the liquid was proposed by making a bubble mixed liquid flow into the liquid and applying the bubble mixed liquid flow to a mesh member to subdivide the bubbles (see Patent Document 1). According to this apparatus, fine bubbles having a long residence time in the liquid can be stably generated.
  • the following methods can be considered as a method of diffusing the fine bubbles generated in this way to the entire target water area of a relatively wide depth of several meters or more such as rivers, swamps, ponds, and sea bream. .
  • the rotating disk of the fine bubble generator of Patent Document 1 is positioned near the bottom of the target water area, and the disk is rotated to generate fine bubbles and mixed in water.
  • a fine bubble is generated in a tank installed on land to produce a fine bubble mixture, and this fine bubble mixture is passed through a water pipe that extends to the vicinity of the bottom of the target water area. Send it in with an amplifier.
  • Patent Document 1 Patent No. 3 9 5 8 3 4 6 Disclosure of Invention
  • the present invention has been made in view of the above problems, and an object thereof is to provide an apparatus and a method capable of diffusing fine bubbles over the entire target water area with relatively small power.
  • a bubble mixing tank disposed on or near the surface of the target water area where fine bubbles are diffused, a water supply pipe extending from the tank toward the bottom of the target water area, and the tank Water supply means, and means for mixing fine bubbles into the water in the tank, the water level of the tank being higher than the water level of the target water area, and the target water area from the tank through the water pipe A water flow toward the bottom of the water is formed, and it is placed on this water flow and the bubble mixed water is sent toward the bottom of the water area to diffuse the fine bubbles.
  • Water is supplied to the tank by means of water supply, and the water level in the tank is made higher than the water level in the target water area to give potential energy, so that the water in the tank passes through the water pipe toward the bottom of the target water area (downward). It begins to flow. Then, by placing the fine bubbles mixed with water in the tank on this flow, the fine bubbles are moved to the vicinity of the bottom of the target water area. Spread from here into the target water area.
  • this apparatus it is possible to form a water flow that flows from the upper side to the lower side of the target water area with relatively small power, and to diffuse near the bottom of the target water area while keeping the diameter of the fine bubbles small.
  • the inside of the target water area can be diffused while maintaining the diameter of the fine bubbles with less power.
  • the microbubble here means a diameter having a diameter of several hundreds or several tens of ⁇ m or less and a slow rising speed in water.
  • the term “near the bottom of the target water area” as used herein means the vicinity of the bottom of the water area where the bubbles are to diffuse (for example, the area where the bubbles are to diffuse in the sea at a depth of 5 Om to the sea floor). If the depth is 2 Om or more, it means 20 m), not the physical bottom of the body of water (bottom soil such as the seabed or lake bottom).
  • the length of the water pipe may be shorter than the bottom depth of the target water area.
  • the water supply means has a water supply pipe projecting downward from the tank, and a submersible pump connected to the water supply pipe, and the pump supplies water in the target water area from the water supply pipe. It can be pumped into the tank.
  • the tank, water pipe, and water pipe can be assembled as a single unit. If a moving function is attached to this unit, for example, fine bubbles can be automatically diffused while moving the unit over a wide target water area such as a river or lake.
  • the water supply pipe and the water supply pipe are arranged close to each other, and the horizontal cross-sectional shape of the tank is a shape connecting the horizontal cross sections of the water supply pipe and the water supply pipe. preferable.
  • a turbulent flow is a flow turbulence, vortex, or swirl flow, etc., which is a flow other than a quiet flow along the direction of travel of the flow.
  • the some water supply opening is opened in the side surface of the said water supply pipe
  • the static pressure in the water supply pipe is lower than the surroundings due to the effect of Berne T, and it passes through the water supply port from the outside of the water supply pipe. Water flows in (bench lily effect).
  • a water flow with less turbulence and vortices can be formed in the water supply pipe, bubble mixing tank, and water supply pipe, and the bubble mixed water is sent to the bottom of the target water area and diffused on this water flow. Bubbles can be diffused near the bottom of the target water area while keeping the diameter small. A large amount of water can also flow with relatively little power. In addition, by using a submersible pump, the power flow can be reduced by shortening the flow path for water.
  • the position of the water supply inlet of the water supply pipe is not limited to the side surface of the water supply pipe as long as the above-described bench lily effect can be generated.
  • the number of water supply ports is not limited to a plurality.
  • a bubble mixing tank disposed on or near the surface of the target water area for diffusing the fine bubbles, a water supply pipe extending from the tank toward the bottom of the target water area, Water supply means to the tank, and means for mixing fine bubbles into the water in the tank, the water level of the tank is made higher than the water level of the target water area, and from the tank through the water pipe
  • a micro-bubble diffusing device that forms a water flow toward the bottom of the target water area and sends the bubble mixed water toward the bottom of the water area by being put on the water flow to diffuse micro-bubbles
  • the water supply means includes the tank A water supply pipe projecting downward from the water supply opening and means for forming an upward central water flow at the center of the water supply pipe. Water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water in the pipe is raised and pumped into the tank.
  • water in the target water area is taken into the pipe from the water supply port of the water supply pipe due to the bench-lily effect, so that water having a flow rate that is many times the substantial flow rate of the submersible pump can be pumped into the tank.
  • a bubble mixing tank is disposed on or near the surface of the target water area where fine bubbles are diffused, and water is supplied to the tank to control the water level in the tank.
  • a water flow from the tank to the vicinity of the bottom of the target water area is formed at a level higher than the water level, and the mixed water is sent to the bottom of the water area and spreads on the water flow.
  • a bubble mixing tank is disposed on or near the surface of the target water area where fine bubbles are diffused, and the fine bubbles are mixed in water in the tank, and water is added to the tank.
  • the water level in the tank is made higher than the water level in the target water area to form a water flow from the tank toward the bottom of the target water area, and the bubble mixed water is placed near the bottom of the water area on the water flow.
  • a method of diffusing fine bubbles, which is sent to and diffused comprising: a water supply pipe projecting downward from the tank and having a water supply opening; and means for forming an upward central water flow at the center of the water supply pipe. Due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water supply pipe is raised and pumped into the tank.
  • water is supplied to the tank by the water supply means, and the water level in the tank is made higher than the water level of the target water area to give the potential energy, so that the water pipe is connected from the tank. It forms a water flow that passes through the target water area.
  • water can be supplied with relatively small power, fine bubbles can be diffused from the bottom of the target water area with small power.
  • FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the microbubble generator of FIG.
  • Figure 3 is a photograph showing a prototype of a microbubble diffusion device.
  • Fig. 4 is a photograph explaining the state of fine bubble diffusion.
  • Figure 5 is a photograph explaining the state of microbubble diffusion.
  • Fig. 6 is a photograph explaining the state of microbubble diffusion.
  • Figure 7 is a photograph explaining the state of microbubble diffusion.
  • Fig. 8 is a photograph explaining the state of fine bubble diffusion.
  • Fig. 9 is a photograph explaining the state of fine bubble diffusion.
  • Fig. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
  • Fig. 11 is a photograph explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
  • Fig. 12 is a photograph explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
  • FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the microbubble generator of FIG.
  • FIG. 3 is a diagram for explaining the structure near the lower end of the water supply pipe of the microbubble generator of FIG. The
  • the fine bubble generating device 1 has a bubble mixing tank 2 in which water in a target water area where fine bubbles are diffused is stored.
  • the bubble mixing tank 2 is disposed on or near the water surface of the opposite water area, and the planar shape is a bowl-shaped shape as shown in FIG. 2 as described later.
  • a water supply pipe 3 extending downward is provided on the bottom surface of the bubble mixing tank 2.
  • the length of the water pipe 3 is the length from the bottom surface of the tank 2 to the vicinity of the bottom surface of the target water area.
  • a water supply pipe 4 extending downward is provided alongside the water supply pipe 3 on the bottom surface of the bubble mixing tank 2.
  • the length of the water supply pipe 4 is shorter than that of the water supply pipe 3.
  • the water pipe 3 and the water supply pipe 4 are arranged in close proximity to each other, and the horizontal cross-sectional shape of the tank 2 is a vertical shape connecting the horizontal cross sections of the water supply pipe 3 and the water supply pipe 4 It is. In Figs. 1 and 2, there is a slight gap between the water supply pipe 3 and the water supply pipe 4, but these may be in contact.
  • a plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4. As shown in FIG. 3, the lower end of the water supply pipe 4 is closed by a bottom plate 4a, and an opening 4b is opened at the center of the bottom plate 4a.
  • a submersible pump 6 is attached to the bottom plate 4a (specific specifications of the submersible pump will be described in an example described later).
  • the submersible pump 6 has a box-shaped housing 6 a that houses a motor.
  • a water supply port 6 b is formed on the side surface of the housing 6 a, and a discharge port 6 c that protrudes upward is formed on the upper surface. It is formed.
  • the submersible pump 6 is attached to the bottom plate 4 a of the water supply pipe 4 via the packing 7, and the discharge port 6 c projects into the water supply pipe 4 from the opening 4 b of the bottom plate 4 a.
  • the tank 2 is provided with a fine bubble generator 10, which generates fine bubbles in the liquid in the tank 2, thereby forming bubble mixed water.
  • a fine bubble generator 10 which generates fine bubbles in the liquid in the tank 2, thereby forming bubble mixed water.
  • the above-mentioned Japanese Patent No. 3 95 8 3 4 6 can be used as the microbubble generator.
  • the fine bubble generating device includes a motor, a rotating shaft rotated by the motor, a rotating disk attached to a tip of the rotating shaft, a cylinder having a gas introduction port surrounding the outer periphery of the rotating shaft with a space, A flange that is attached to the tip of the cylinder and surrounds the outer periphery of the disk with a gap; and a cylindrical mesh member that is provided so as to extend from the periphery of the flange.
  • the mesh member is a mesh net, and the opening size thereof is 50 to 500 mesh, preferably 100 to 400 mesh.
  • the mesh member is a plurality of mesh nets stacked.
  • FIG. 4A and 4B are diagrams for explaining an example of the configuration of the microbubble generator, in which FIG. 4A is a cross-sectional view and FIG. 4B is a partial cross-sectional view.
  • the microbubble generator 10 includes a motor 12, a rotating shaft 14 rotated by the motor 12, and a rotating disk 15 attached to the tip of the rotating shaft 14. Further, a cylindrical body 16 that surrounds the outer periphery of the rotating shaft 14 with a space, and a cylindrical mesh member 2 that is provided at the tip of the cylindrical body 16 and surrounds the outer peripheral edge of the rotating disk 15 with a gap. 0.
  • the rotating shaft 1 4 is connected to the output shaft 1 2 a of the motor 1 2 through the coupling 1 3. It is tied.
  • a rotating disk 15 is attached to the tip of the rotating shaft 14.
  • the rotating disk 15 is a thin conical member that tapers toward the tip.
  • the surface of the disk 15 on the side of the motor 12 is a flat surface, and the peripheral edge is machined to be sharp.
  • the rotating disk 15 can be attached to the end of the rotating shaft 14 by an adhesive or the like.
  • the cylindrical body 16 is a member having a shaft hole 16 a on the same axis as the motor rotating shaft 14, a base portion 17 covering the motor 12, a central portion 18 extending along the rotating shaft 14, It consists of a flange 19 that projects outward.
  • Each part can be an assembly of parts made separately, or each part can be made in one piece.
  • a gas inlet 1 8a is opened in the central portion 1 8 near the base (near the motor 1 2).
  • the outside of the cylindrical body 16 communicates with the inside of the shaft hole 16 a through the gas introduction port 18 a.
  • the front flange portion 19 is a short cylindrical portion, and is fitted and fixed to the front end of the central portion 18.
  • the front end surface 19 a of the flange portion 19 is inclined in a conical shape so that the center is recessed.
  • a space is formed between the front end surface 19 a and the rotating disk 15. Further, as shown in FIG. 4 (B), a gap d is opened between the outer peripheral edge of the front end of the flange portion 19 and the outer peripheral edge of the rotating disk 15.
  • the width of the gap d is preferably l mm or less with a small machine. In order to reduce the size of the bubbles, it is preferable that the gap d is small. For large machines, it is preferably about 5 to 1 Om m or less and as small as possible.
  • the cylindrical mesh member 20 is composed of, for example, cylindrical mesh nets 21a, 21b, 22c stacked in three layers.
  • the preferred opening size of each mesh net is 50-500 mesh, more preferably
  • FIG. 5 is a diagram for explaining the usage state of the microbubble generator.
  • the rotating disk 15 of the apparatus 10 is held so that it is at the bottom, and the rotating disk 15 is submerged in water.
  • the air introduction port 18 a of the cylindrical body 16 is on the water surface. Since a small gap d is opened between the rotating disk 15 and the flange portion 19 of the cylinder 1, liquid enters the shaft hole 16 a of the cylinder 16 from the gap d.
  • the motor 12 is driven to rotate the rotating shaft 14, and the rotating disk 15 is rotated.
  • the centrifugal force of the rotating disk 15 the liquid existing in the vicinity of the disk 15 flows at high speed outward.
  • the air drawn into the shaft hole 16 a flows outward from a gap d between the rotating disk 15 and the flange portion 19. At this time, air is mixed with the high-speed liquid flow, and a bubble mixed liquid flow is formed.
  • This bubble mixed liquid flow passes through the member while hitting the mesh member 20 arranged around the flange portion 19. At this time, the bubble mixed liquid flow hits the mesh member 20 at a considerably high speed due to the high-speed rotation of the rotating disk 15. Since the mesh member 20 is made of the three-layer mesh net 21 as described above, bubbles are subdivided each time they pass from the inner mesh net 21a to the outer mesh net 21c. Ultimately, it becomes very fine bubbles.
  • the rotating disk 15 rotates at a high speed
  • the bubble mixed liquid flow generated by the centrifugal force also rotates in a spiral at a considerably high speed, but the speed is alleviated each time it hits the mesh member 20. For this reason, turbulence and turbulence of the liquid such as the liquid surface rising do not occur, and fine bubbles are diffused uniformly from the mesh member 20 in all directions.
  • tank 2 When tank 2 is levitated into the target water area, it enters the pipe from the lower end of water pipe 3 or water inlet 5 of water pipe 4. Water in the target water area enters and water is stored in tank 2 as well. Then, when the submersible pump 6 attached to the water supply pipe 4 is operated, the water in the target water area is taken into the pipe from the water supply port 5 on the side surface of the water supply pipe 4 as described above, and rises in the pipe to raise the tank 2 Pumped inside. As a result, the water level H 1 in the tank 2 rises and becomes higher than the water level H 2 in the target water area.
  • the water in which the microbubbles are mixed is sent to the lower side through the water pipe 3 along this water flow, It diffuses from the bottom opening to the bottom of the target water area.
  • tank 2 can be provided with a levitation means so that tank 2 is levitated into the target water area. Furthermore, if a moving means is provided in such a tank 2 so that it can move within the target water area, the fine bubbles can be automatically diffused into the wide target water area. In addition, an attached water pipe that extends along the bottom of the water may be attached to the end of the water pipe 3. Les. If a water supply port is provided on the side surface of the water supply tube, fine bubbles can be generated from the water supply port.
  • the volume of tank 2, the dimensions of water supply pipe 3 and water supply pipe 4, and the performance of pump 6 are appropriately selected according to the size of the target water area.
  • Figure 6 is a photograph showing a prototype of a microbubble diffusion device.
  • Bubble mixing tank 2 (Stainless steel part at the top of the photo): Length 3 5 Omm, depth 2 30 mm, volume 20 liters,
  • Water pipe 3 transparent acrylic tube with red tape on the right side of the photo: diameter 200 mm, length 8 70 mm,
  • Water supply pipe 4 (gray PVC tube on the left side of the photo): Diameter 120 mm, length 50 mm:
  • a plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4,
  • Submersible pump 6 black pump attached to the lower end of the water supply pipe 4 (Rio Pa ⁇ ichi head R io 3 1 00 (trade name, manufactured by Kamihata Fish Co., Ltd.): Specifications, maximum outflow amount: 5 5 liters Zm in (50 Hz), 5 7 liters / min (60 Hz), maximum lift: 29 cm (50 Hz), 29 cm (60 Hz), voltage: 100
  • V power consumption: 5 5W (5 0 Hz), 6 4 W (6 0 Hz).
  • the diameter of the discharge port is 22 mm and the length is 22 mm.
  • the fine bubble generator 10 As the fine bubble generator 10, the above-mentioned one was used.
  • Water pipe 3 diameter 20 O mm, length 1.8 m,
  • Water supply pipe 4 diameter 12 O mm, length 0.5 m,
  • Settling speed of the bubble mixed water in the water pipe 3 about 7 c mZ sec;
  • Fig. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
  • FIGs 11 and 12 are photographs that explain the diffusion of fine bubbles when the water supply port of the water supply pipe is closed.
  • Figure 1 1 shows a picture taken about 30 seconds after the generation of fine bubbles.
  • the generated microbubbles stay in the water pipe 3 almost without descending.
  • Fig. 12 is a photograph of a state in which approximately 10 seconds have elapsed from the state of Fig. 11B.
  • the generated microbubbles are slightly lowered from the state shown in Fig. 11A.
  • the moving speed was about 0.7 cm / sec.
  • the rising speed of the bubble was slow, it was ignored.
  • This value is about 1/10 when the water supply port 5 of the water supply pipe 4 is closed. In other words, by providing the water supply pipe 5 with the water supply port 5, a flow rate of about 10 times that obtained without the water supply port 5 can be obtained.
  • the flow rate of the water flowing through the water supply pipe 3 is substantially due to the capacity of the pump 6 alone.
  • the settling speed of the bubbles in the water supply pipe 3 is about 0.7 cmZsec, when converted to a flow rate, it becomes about 13.2 liters min.
  • This value is about 1 Z 4 of the power tag value (5.5 liters Z m i n) of the maximum flow rate of the pump 6 described above. The reason for this difference is unknown.
  • the flow rate in the case of the bench lily effect is 2.5 times, and the effect of the present invention was confirmed.
  • FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention.
  • a pump 6 A is attached to a tank 2 on the water surface.
  • the suction pipe 6b of the pump 6A extends from the housing 6a of the pump 6A into the water.
  • the discharge pipe 6c is connected to the bottom plate 4a of the water supply pipe 4 from the housing 6a. It extends to the hole 4b opened in the hole and protrudes from the hole 4b to the water supply pipe 4 ⁇ . The periphery of the hole 4 b is closed with a seal 8.

Abstract

This aims to provide a fine bubble diffusing apparatus (1) comprising a bubble mixing bath (2) arranged over or near the water surface of an object water area, in which fine bubbles are diffused, a water supply pipe (3) extending from the bath (2) toward the bottom of the object water area, a water feed pipe (4) protruding downward from the bath (2) and having a plurality of water feed ports (5) opened in its side face, an underwater pump (6) connected to the water feed pipe (4), and a device (10) for producing fine bubbles in the water of the bath (2). When the pump (6) is run, an upward center water flow is established in the center portion of the water feed pipe (4), and the water is sucked from the water feed ports (5) of the water feed pipe (4) by the Venturi effect accompanying that center water flow, so that the water rises in the water feed pipe (4) and is pumped up into the bath (2). As a result, the water level of the bath (2) becomes higher than the water level of the object water area thereby to establish a water flow directed from the bath (2) through the water supply pipe (3) toward the bottom of the object water area, so that the bubble-mixed water is carried on the water flow toward the bottom of the water area thereby to diffuse the fine bubbles. Thus, the apparatus and method can diffuse the fine bubbles all over the object water area by the relatively low power.

Description

明 細 書 微細気泡拡散装置及び方法 技術分野  Technical description Microbubble diffusion device and method
本発明は、 微細気泡を、 河川や池、 沼、 海のいけすなどの対象水域の底から 拡散させる装置及び方法に関する。  The present invention relates to an apparatus and a method for diffusing fine bubbles from the bottom of a target water area such as a river, a pond, a swamp, or a sea sword.
¾ 技 了 ¾ Technical completion
微細気泡発生装置は、 例えば、 水道水や河川水の水中に微細気泡を混入させ て溶存酸素量を増加させ、 水を浄化するための装置として知られている。 微細 気泡とは、 例えば、 径が 1 m m以下の気泡であり、 比表面積が大きく、 水中で の滞留時間が長いとともに水中での拡散性も優れている。 この微細気泡の性質 を活かして、 生活用水や河川水の浄化、 また漁業関係などにわたる広い範囲に 適用される可能性を有している。  The fine bubble generator is known as a device for purifying water by increasing the amount of dissolved oxygen by mixing fine bubbles in tap water or river water, for example. The fine bubbles are, for example, bubbles having a diameter of 1 mm or less, a large specific surface area, a long residence time in water, and excellent diffusibility in water. Taking advantage of the properties of these microbubbles, it has the potential to be applied in a wide range of areas, including purification of domestic water and river water, and fishery-related matters.
本発明者らは、 このような微細気泡を発生させる装置として、 回転ディスク を液中で高速回転させて液中に高速液流と負圧状態を生じさせ、 この負圧を利 用して気体を液中に取り込んで気泡混合液流を作り、 さらにこの気泡混合液流 をメッシュ部材に当てて気泡を細分化して、 液中に微細気泡を発生させる装置 を提案した (特許文献 1参照) 。 この装置によれば、 液中での滞留時間の長い 微細気泡を安定的に発生させることができる。  As a device for generating such fine bubbles, the present inventors rotate a rotating disk at a high speed in a liquid to generate a high-speed liquid flow and a negative pressure state in the liquid. A device for generating a fine bubble in the liquid was proposed by making a bubble mixed liquid flow into the liquid and applying the bubble mixed liquid flow to a mesh member to subdivide the bubbles (see Patent Document 1). According to this apparatus, fine bubbles having a long residence time in the liquid can be stably generated.
このようにして発生させた微細気泡を、 河川や沼、 池、 海のいけすなどの比 較的広く水深が数 m以上の対象水域の全体に拡散させる方法としては、 以下に 示す方法が考えられる。  The following methods can be considered as a method of diffusing the fine bubbles generated in this way to the entire target water area of a relatively wide depth of several meters or more such as rivers, swamps, ponds, and sea bream. .
( 1 ) 特許文献 1の微細気泡発生装置の回転ディスクを対象水域の底部近傍に 位置させて、 同ディスクを回転させて微細気泡を発生し、 水中に混合する。  (1) The rotating disk of the fine bubble generator of Patent Document 1 is positioned near the bottom of the target water area, and the disk is rotated to generate fine bubbles and mixed in water.
( 2 ) 陸上に設置された槽内で微細気泡を発生させて、 微細気泡混合液を作製 し、 この微細気泡混合液を、 対象水域の底部近傍まで延びる送水管を通してポ ンプなどで送り込む。 (2) A fine bubble is generated in a tank installed on land to produce a fine bubble mixture, and this fine bubble mixture is passed through a water pipe that extends to the vicinity of the bottom of the target water area. Send it in with an amplifier.
しかし、 上記 (1 ) の案では、 対象水域の水深が数 m以上と深い場合、 回転 ディスクの回転軸もそれだけ長くする必要があり、 そのような長い回転軸を高 速で回転させることは困難である。 また、 上記 (2 ) の案では、 微細気泡混合 液がポンプのインペラを通過する際に複数の気泡が合体してしまい、 微細気泡 の特性を発揮できない。  However, in the proposal (1) above, when the water depth of the target water area is as deep as several meters or more, it is necessary to lengthen the rotation axis of the rotating disk, and it is difficult to rotate such a long rotation axis at high speed. It is. In the above plan (2), when the fine bubble mixed solution passes through the impeller of the pump, a plurality of bubbles are combined, and the characteristics of the fine bubbles cannot be exhibited.
一方、 加圧した気体をセラミックなどの多孔質体を通して液体中に送り込ん で、 微細気泡を発生させる装置も提案されている。 しかしこの装置の場合、 多 孔質体を水底近くに設置すると、 加圧気体を水圧を上回る圧力にして送り込む 必要があり、 高出力のコンプレッサ等が必要になり、 エネルギ消費が多いとと もに装置が大型化する。  On the other hand, an apparatus has also been proposed in which pressurized gas is sent into a liquid through a porous material such as ceramic to generate fine bubbles. However, in the case of this device, if a porous body is installed near the bottom of the water, it is necessary to send the pressurized gas at a pressure higher than the water pressure, which requires a high-output compressor, etc., which consumes a lot of energy. Larger equipment.
特許文献 1 :特許第 3 9 5 8 3 4 6号 発明の開示  Patent Document 1: Patent No. 3 9 5 8 3 4 6 Disclosure of Invention
本発明は上記の問題点に鑑みてなされたものであって、 比較的小さい動力で 微細気泡を対象水域全体に渡って拡散できる装置及び方法を提供することを目 的とする。  The present invention has been made in view of the above problems, and an object thereof is to provide an apparatus and a method capable of diffusing fine bubbles over the entire target water area with relatively small power.
本発明の微細気泡拡散装置においては、 微細気泡を拡散させる対象水域の 水面上又はその近傍に配置される気泡混合槽と、 該槽から前記対象水域の底 方向へ延びる送水管と、 前記槽への給水手段と、 前記槽内の水に微細気泡 を混合する手段と、 を備え、 前記槽の水位を前記対象水域の水位よりも高く して、 前記槽から前記送水管を通って前記対象水域の底方向へ向う水流を形成 し、 この水流に乗せて気泡混合水を前記水域の底方向へ送って微細気泡を拡散 させる。  In the fine bubble diffusing device of the present invention, a bubble mixing tank disposed on or near the surface of the target water area where fine bubbles are diffused, a water supply pipe extending from the tank toward the bottom of the target water area, and the tank Water supply means, and means for mixing fine bubbles into the water in the tank, the water level of the tank being higher than the water level of the target water area, and the target water area from the tank through the water pipe A water flow toward the bottom of the water is formed, and it is placed on this water flow and the bubble mixed water is sent toward the bottom of the water area to diffuse the fine bubbles.
槽に給水手段により水を給水し槽内の水の水位を対象水域の水位よりも高く して位置エネルギを与えことにより、 槽内の水は送水管を通って対象水域の底 方向 (下方) 流れるようになる。 そして、 槽内で水に混合された微細気泡を この流れに乗せることにより、 微細気泡を対象水域の底付近まで移動させ、 そ こから対象水域内へ拡散させる。 この装置によれば、 比較的小さい動力で対象 水域の上方から下方へ流れる水流を形成することができ、 微細気泡の径を小さ く保ったまま対象水域の底付近に拡散させることができる。 特に、 気泡混合水 をポンプで圧送する場合に比べて、 少ない動力で微細気泡の径を保ったまま対 象水域内を拡散させることができる。 Water is supplied to the tank by means of water supply, and the water level in the tank is made higher than the water level in the target water area to give potential energy, so that the water in the tank passes through the water pipe toward the bottom of the target water area (downward). It begins to flow. Then, by placing the fine bubbles mixed with water in the tank on this flow, the fine bubbles are moved to the vicinity of the bottom of the target water area. Spread from here into the target water area. According to this apparatus, it is possible to form a water flow that flows from the upper side to the lower side of the target water area with relatively small power, and to diffuse near the bottom of the target water area while keeping the diameter of the fine bubbles small. In particular, compared with the case where bubble mixed water is pumped with a pump, the inside of the target water area can be diffused while maintaining the diameter of the fine bubbles with less power.
なお、 ここにいう微細気泡とは、 径が数百もしくは数十 μ mオーダ一以下で 、 水中での上昇速度が遅いものをいう。 また、 当然のことながら、 ここにいう 「対象水域の底付近」 とは、 気泡を拡散させたい水域の底付近 (例えば、 海底 までの深さ 5 O mの海において、 気泡を拡散させたい領域が深さ 2 O m以上の 場合、 2 0 m付近) という意味であって、 その水域の物理的な底 (海底や湖底 などの底土) という意味ではない。 なお、 送水管の下端から出た水は、 慣性で 一定程度下に沈むので、 送水管の長さは、 対象水域の底の深さより短くてもよ い場合もある。  In addition, the microbubble here means a diameter having a diameter of several hundreds or several tens of μm or less and a slow rising speed in water. Of course, the term “near the bottom of the target water area” as used herein means the vicinity of the bottom of the water area where the bubbles are to diffuse (for example, the area where the bubbles are to diffuse in the sea at a depth of 5 Om to the sea floor). If the depth is 2 Om or more, it means 20 m), not the physical bottom of the body of water (bottom soil such as the seabed or lake bottom). In addition, since the water discharged from the lower end of the water pipe sinks down to some extent due to inertia, the length of the water pipe may be shorter than the bottom depth of the target water area.
本発明においては、 前記給水手段が、 前記槽から下方に突出した給水管 と、 該給水管に接続された水中ポンプと、 を有し、 前記給水管から前記対象 水域内の水を前記ポンプで前記槽に汲み上げることとできる。  In the present invention, the water supply means has a water supply pipe projecting downward from the tank, and a submersible pump connected to the water supply pipe, and the pump supplies water in the target water area from the water supply pipe. It can be pumped into the tank.
この場合、 槽と送水管、 給水管とを 1個のュニッ トとして組み立てることが できる。 このユニッ トに移動機能を取り付ければ、 例えば、 川や湖沼などの広 い対象水域內をュ二ッ トを移動させながら自動的に微細気泡を拡散できる。 さらに、 本発明においては、 前記送水管と給水管とが近接して並設されて おり、 前記槽の水平断面形状が、 前記送水管と給水管の水平断面をつないだ形 状であることが好ましい。  In this case, the tank, water pipe, and water pipe can be assembled as a single unit. If a moving function is attached to this unit, for example, fine bubbles can be automatically diffused while moving the unit over a wide target water area such as a river or lake. Furthermore, in the present invention, the water supply pipe and the water supply pipe are arranged close to each other, and the horizontal cross-sectional shape of the tank is a shape connecting the horizontal cross sections of the water supply pipe and the water supply pipe. preferable.
槽に余分な部分があると、 水がそこに滞ったり、 乱流が起きたり して所望の 水流が形成されない場合があるので、 槽の断面に送水管と給水管の断面をつな いだ部分以外の部分が形成されないことが好ましい。 乱流は、 送水管内におい ても生じさせないことが好ましい。 ここで、 乱流とは、 流れの乱れや渦、 ある いは旋回流などであって、 流れのマク口な進行方向に沿う静かな流れ以外の流 れのことである。 乱流があると、 せっかく混合した微細気泡同士がぶっかって 合体し、 合体して大きくなつた気泡が浮きやすくなるからである。 このような 、 微細気泡の合体を起こさせずに、 あたかも微細気泡混合流が送水管内を静か に沈んでいくように水が流れることが好ましい。 この観点から、 送水管におけ る水流の流速は 0 . 1 m/ s e c程度以下であることが好ましい。 If there is an excess part in the tank, the water may stagnate there, or turbulent flow may occur and the desired water flow may not be formed, so connect the cross section of the water supply pipe and the water supply pipe to the cross section of the tank. It is preferable that no part other than the part is formed. It is preferable that turbulent flow is not generated even in the water pipe. Here, a turbulent flow is a flow turbulence, vortex, or swirl flow, etc., which is a flow other than a quiet flow along the direction of travel of the flow. When there is a turbulent flow, mixed fine bubbles collide with each other This is because the bubbles that are combined and become larger are likely to float. It is preferable that the water flow as if the fine bubble mixed flow gently sinks in the water pipe without causing the coalescence of the fine bubbles. From this viewpoint, it is preferable that the flow velocity of the water flow in the water pipe is about 0.1 m / sec or less.
本発明においては、 前記給水管の側面に複数の給水口が開けられており、 前記給水管の下端部に前記水中ポンプが接続されていることとできる。 そし て、 水中ポンプを稼動させると、 給水管の側面の給水口から対象水域の水が同 管内に取り込まれ上昇して気泡混合槽内に汲み上げられる。 つまり、 給水管の 中に形成された水中ポンプの水流により、 ベルヌ^ Tの定理の効果で、 給水管 内の静圧が周りよりも低下し、 そこへ給水管の外から給水口を通って水が流れ 込む (ベンチユリ効果) 。 この場合、 給水管や気泡混合槽、 送水管內に、 乱れ や渦の少ない水流を形成でき、 この水流に乗せて気泡混合水を対象水域の底付 近へ送って拡散させるので、 微細気泡の径を小さく保ったまま対象水域の底付 近に気泡を拡散させることができる。 また、 比較的少ない動力で大量の水を流 すこともできる。 また、 水中ポンプを用いることにより、 水を送る流路を短く して動力を低減できる。  In this invention, the some water supply opening is opened in the side surface of the said water supply pipe | tube, and the said submersible pump can be connected to the lower end part of the said water supply pipe | tube. Then, when the submersible pump is operated, the water in the target water area is taken into the pipe from the water supply port on the side of the water supply pipe and pumped up into the bubble mixing tank. In other words, due to the water flow of the submersible pump formed in the water supply pipe, the static pressure in the water supply pipe is lower than the surroundings due to the effect of Berne T, and it passes through the water supply port from the outside of the water supply pipe. Water flows in (bench lily effect). In this case, a water flow with less turbulence and vortices can be formed in the water supply pipe, bubble mixing tank, and water supply pipe, and the bubble mixed water is sent to the bottom of the target water area and diffused on this water flow. Bubbles can be diffused near the bottom of the target water area while keeping the diameter small. A large amount of water can also flow with relatively little power. In addition, by using a submersible pump, the power flow can be reduced by shortening the flow path for water.
なお、 給水管の給水口の位置は、 上記ベンチユリ効果が生じうるのであれば 、 給水管の側面に限定されるものではない。 また、 給水口の数も複数に限定さ れるものではない。  In addition, the position of the water supply inlet of the water supply pipe is not limited to the side surface of the water supply pipe as long as the above-described bench lily effect can be generated. In addition, the number of water supply ports is not limited to a plurality.
本発明の他の微細気泡拡散装置においては、 微細気泡を拡散させる対象水 域の水面上又はその近傍に配置される気泡混合槽と、 該槽から前記対象水域 の底方向に延びる送水管と、 前記槽への給水手段と、 前記槽内の水に微細 気泡を混合する手段と、 を備え、 前記槽の水位を前記対象水域の水位よりも 高く して、 前記槽から前記送水管を通って前記対象水域の底方向へ向う水流を 形成し、 この水流に乗せて気泡混合水を前記水域の底方向へ送って微細気泡を 拡散させる微細気泡拡散装置であって、 前記給水手段が、 前記槽から下方 に突出し給水口が開けられた給水管と、 該給水管の中心部に上向きの中心水 流を形成する手段と、 を有し、 該中心水流に伴うベンチユリ効果により、 前 記給水管の給水口から対象水域の水が同管内に取り込まれ、 該給水管内を上昇 して前記槽内に汲み上げられる。 In another fine bubble diffusing device of the present invention, a bubble mixing tank disposed on or near the surface of the target water area for diffusing the fine bubbles, a water supply pipe extending from the tank toward the bottom of the target water area, Water supply means to the tank, and means for mixing fine bubbles into the water in the tank, the water level of the tank is made higher than the water level of the target water area, and from the tank through the water pipe A micro-bubble diffusing device that forms a water flow toward the bottom of the target water area and sends the bubble mixed water toward the bottom of the water area by being put on the water flow to diffuse micro-bubbles, wherein the water supply means includes the tank A water supply pipe projecting downward from the water supply opening and means for forming an upward central water flow at the center of the water supply pipe. Water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water in the pipe is raised and pumped into the tank.
本発明によれば、 ベンチユリ効果により、 給水管の給水口から対象水域の水 が同管内に取り込まれるので、 水中ポンプの実質的な流量の何倍もの流量の水 を槽にくみ上げることができる。 また、 給水管中で管内の水全体がそのまま持 ち上げられるような流れが生じる。 給水管内の水の流れによって槽内の水位が 上昇すると、 槽内の水は送水管の方に流れ、 同管を通って下方へ向かう。 この 流れに微細気泡を混入することにより、 微細気泡が混合した水を対象水域の底 付近まで送ることができる。  According to the present invention, water in the target water area is taken into the pipe from the water supply port of the water supply pipe due to the bench-lily effect, so that water having a flow rate that is many times the substantial flow rate of the submersible pump can be pumped into the tank. In addition, there will be a flow in which the entire water in the water pipe is lifted as it is. When the water level in the tank rises due to the flow of water in the water supply pipe, the water in the tank flows toward the water pipe and goes down through the pipe. By mixing microbubbles into this flow, water mixed with microbubbles can be sent to the bottom of the target water area.
本発明の微細気泡拡散方法においては、 微細気泡を拡散させる対象水域の 水面上又はその近傍に気泡混合槽を配置し、 該槽に水を給水して槽内水の水 位を前記対象水域の水位よりも高く して前記槽から前記対象水域の底付近へ向 う水流を形成し、 この水流に乗せて気泡混合水を前記水域の底付近へ送って拡 散させる。  In the method of diffusing fine bubbles according to the present invention, a bubble mixing tank is disposed on or near the surface of the target water area where fine bubbles are diffused, and water is supplied to the tank to control the water level in the tank. A water flow from the tank to the vicinity of the bottom of the target water area is formed at a level higher than the water level, and the mixed water is sent to the bottom of the water area and spreads on the water flow.
本発明の他の微細気泡拡散方法においては、 微細気泡を拡散させる対象水 域の水面上又はその近傍に気泡混合槽を配置し、 該槽内で水中に微細気泡を 混合し、 該槽に水を給水して該槽内の水位を前記対象水域の水位よりも高く して前記槽から前記対象水域の底付近へ向う水流を形成し、 この水流に乗せて 気泡混合水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって 、 前記槽から下方に突出し給水口が開けられた給水管と、 該給水管の中心部 に上向きの中心水流を形成する手段と、 を設けておき、 該中心水流に伴うベ ンチュリ効果により、 前記給水管の給水口から対象水域の水を同管内に取り込 み、 該給水管内を上昇させて前記槽内に汲み上げる。 発明の効果  In another method of diffusing fine bubbles of the present invention, a bubble mixing tank is disposed on or near the surface of the target water area where fine bubbles are diffused, and the fine bubbles are mixed in water in the tank, and water is added to the tank. The water level in the tank is made higher than the water level in the target water area to form a water flow from the tank toward the bottom of the target water area, and the bubble mixed water is placed near the bottom of the water area on the water flow. A method of diffusing fine bubbles, which is sent to and diffused, comprising: a water supply pipe projecting downward from the tank and having a water supply opening; and means for forming an upward central water flow at the center of the water supply pipe. Due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water supply pipe is raised and pumped into the tank. The invention's effect
以上の説明から明らかなように、 本発明によれば、 槽に給水手段により水を 給水し槽内の水位を対象水域の水位よりも高く して位置エネルギを与えること で、 槽から送水管を通って対象水域の下方へ流れる水流を形成している。 槽へ は比較的小さい動力で給水できるので、 小さい動力で微細気泡を対象水域の底 付近から拡散させることができる。 図面の簡単な説明 As is clear from the above description, according to the present invention, water is supplied to the tank by the water supply means, and the water level in the tank is made higher than the water level of the target water area to give the potential energy, so that the water pipe is connected from the tank. It forms a water flow that passes through the target water area. To tank Since water can be supplied with relatively small power, fine bubbles can be diffused from the bottom of the target water area with small power. Brief Description of Drawings
図 1は、 本発明の実施の形態に係る微細気泡発生装置を模式的に説明する図 である。  FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
図 2は、 図 1の微細気泡発生装置の平面図である。  FIG. 2 is a plan view of the microbubble generator of FIG.
図 3は、 微細気泡拡散装置の試作品を示す写真である。  Figure 3 is a photograph showing a prototype of a microbubble diffusion device.
図 4は、 微細気泡拡散状態を説明する写真である。  Fig. 4 is a photograph explaining the state of fine bubble diffusion.
図 5は、 微細気泡拡散状態を説明する写真である。  Figure 5 is a photograph explaining the state of microbubble diffusion.
図 6は、 微細気泡拡散状態を説明する写真である。  Fig. 6 is a photograph explaining the state of microbubble diffusion.
図 7は、 微細気泡拡散状態を説明する写真である。  Figure 7 is a photograph explaining the state of microbubble diffusion.
図 8は、 微細気泡拡散状態を説明する写真である。  Fig. 8 is a photograph explaining the state of fine bubble diffusion.
図 9は、 微細気泡拡散状態を説明する写真である。  Fig. 9 is a photograph explaining the state of fine bubble diffusion.
図 1 0は、 給水管の給水口を塞いだ状態を示す写真である。  Fig. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
図 1 1は、 給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明する写 真である。  Fig. 11 is a photograph explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
図 1 2は、 給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明する写 真である。  Fig. 12 is a photograph explaining the diffusion state of fine bubbles when the water supply port of the water supply pipe is closed.
図 1 3は、 本発明の実施の形態に係る微細気泡拡散装置の他の例を説明する 図である。 発明を実施するための形態  FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図面を参照しながら詳細に説明する。 図 1は、 本発明の実施の形態に係る微細気泡発生装置を模式的に説明する図 である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram schematically illustrating a microbubble generator according to an embodiment of the present invention.
図 2は、 図 1の微細気泡発生装置の平面図である。  FIG. 2 is a plan view of the microbubble generator of FIG.
図 3は、 図 1の微細気泡発生装置の送水管下端付近の構造を説明する図であ る。 FIG. 3 is a diagram for explaining the structure near the lower end of the water supply pipe of the microbubble generator of FIG. The
微細気泡発生装置 1は、 図 1に示すように、 微細気泡を拡散させる対象水域 内の水が貯留される気泡混合槽 2を有する。 この気泡混合槽 2は、 对象水域の 水面上又はその近傍に配置されるもので、 平面形状は、 後述するように図 2に 示す瓢箪型の形状である。  As shown in FIG. 1, the fine bubble generating device 1 has a bubble mixing tank 2 in which water in a target water area where fine bubbles are diffused is stored. The bubble mixing tank 2 is disposed on or near the water surface of the opposite water area, and the planar shape is a bowl-shaped shape as shown in FIG. 2 as described later.
気泡混合槽 2の底面には、 下方へ延びる送水管 3が設けられている。 送水管 3の長さは、 槽 2の底面から対象水域の底面近傍までの長さである。 さらに、 気泡混合槽 2の底面には、 下方に延びる給水管 4が、 送水管 3と並んで設けら れている。 給水管 4の長さは、 送水管 3に比べて短い。 図 2に示すように、 送 水管 3と給水管 4とは近接して並設されており、 槽 2の水平断面形状は、 送水 管 3と給水管 4の水平断面をつないだ瓢箪型の形状である。 なお、 図 1、 2に おいては、 送水管 3と給水管 4との間にややスキマがあいているが、 これらは 接していてもよレ、。  On the bottom surface of the bubble mixing tank 2, a water supply pipe 3 extending downward is provided. The length of the water pipe 3 is the length from the bottom surface of the tank 2 to the vicinity of the bottom surface of the target water area. Further, a water supply pipe 4 extending downward is provided alongside the water supply pipe 3 on the bottom surface of the bubble mixing tank 2. The length of the water supply pipe 4 is shorter than that of the water supply pipe 3. As shown in Fig. 2, the water pipe 3 and the water supply pipe 4 are arranged in close proximity to each other, and the horizontal cross-sectional shape of the tank 2 is a vertical shape connecting the horizontal cross sections of the water supply pipe 3 and the water supply pipe 4 It is. In Figs. 1 and 2, there is a slight gap between the water supply pipe 3 and the water supply pipe 4, but these may be in contact.
給水管 4の側面には、 複数の給水口 5が開けられている。 また、 図 3に示す ように、 給水管 4の下端は底板 4 aで塞がれており、 同底板 4 aの中央に、 開 口 4 bが開けられている。 底板 4 aには、 水中ポンプ 6が取り付けられている (水中ポンプの具体的な仕様については後述の実施例で説明する) 。 水中ボン プ 6は、 モータを収容した箱状のハウジング 6 aを有し、 ハウジング 6 aの側 面には給水口 6 bが形成されており、 上面には上方に突出する吐出口 6 cが形 成されている。 水中ポンプ 6は、 パッキン 7を介して給水管 4の底板 4 aに取 り付けらており、 吐出口 6 cが底板 4 aの開口 4 bから給水管 4内に突き出し ている。  A plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4. As shown in FIG. 3, the lower end of the water supply pipe 4 is closed by a bottom plate 4a, and an opening 4b is opened at the center of the bottom plate 4a. A submersible pump 6 is attached to the bottom plate 4a (specific specifications of the submersible pump will be described in an example described later). The submersible pump 6 has a box-shaped housing 6 a that houses a motor. A water supply port 6 b is formed on the side surface of the housing 6 a, and a discharge port 6 c that protrudes upward is formed on the upper surface. It is formed. The submersible pump 6 is attached to the bottom plate 4 a of the water supply pipe 4 via the packing 7, and the discharge port 6 c projects into the water supply pipe 4 from the opening 4 b of the bottom plate 4 a.
水中ポンプ 6を稼動させると、 図 3に示すように、 給水管 4の中央部に、 給 水管 4の下端から上方に向かう水の流れが生じる。 この水流により、 ベルヌ一 ィの定理の効果で、 給水管 4内の静圧が周りよりも低下し、 そこへ給水管 4の 外から給水口 5を通って水が流れ込む (ベンチユリ効果) 。 このような作用に より、 給水管 4の側面の給水口 5から対象水域の水が同管内に取り込まれ (吸 い込まれ) 、 管 4内を上昇して槽 2内に汲み上げられる。 なお、 水中ポンプ 6 の容量と給水管 4の径及び長さ、 給水口 5の大きさ ·位置などの関係を、 この ような取り込み (吸い込み) が生じるように調整することが必要になるが、 そ の関係の一例については実施例の項で後述する。 When the submersible pump 6 is operated, water flows upward from the lower end of the water supply pipe 4 at the center of the water supply pipe 4 as shown in FIG. Due to this water flow, the static pressure in the water supply pipe 4 is lower than the surroundings due to the effect of Bernoulli's theorem, and water flows from the outside of the water supply pipe 4 through the water supply port 5 (bench lily effect). By such an action, the water in the target water area is taken into (sucked) from the water supply port 5 on the side surface of the water supply pipe 4, and rises in the pipe 4 and is pumped into the tank 2. Submersible pump 6 It is necessary to adjust the relationship between the capacity and the diameter and length of the water supply pipe 4 and the size and position of the water supply port 5 so that such intake (suction) occurs. An example of the relationship Will be described later in the Examples section.
槽 2には、 微細気泡発生装置 1 0が設けられており、 槽 2內の液中に微細気 泡を発生させて気泡混合水を形成する。 なお、 微細気泡発生装置としては、 例 えば、 上述した特許第 3 9 5 8 3 4 6号のものを使用できる。  The tank 2 is provided with a fine bubble generator 10, which generates fine bubbles in the liquid in the tank 2, thereby forming bubble mixed water. For example, the above-mentioned Japanese Patent No. 3 95 8 3 4 6 can be used as the microbubble generator.
以下、 この微細気泡発生装置の具体例を説明する  Hereinafter, a specific example of this microbubble generator will be described.
微細気泡発生装置は、 モータと、 モータによって回転される回転軸と、 回転 軸の先端に取り付けられた回転ディスクと、 回転軸の外周をスペースをおいて 取り囲む、 気体導入口を有する筒体と、 筒体の先端部に取り付けられた、 ディ スクの外周縁をスキマを隔てて取り囲むフランジと、 フランジの周囲から先に 延び出すように設けられた、 筒状のメッシュ部材と、 を具備する。  The fine bubble generating device includes a motor, a rotating shaft rotated by the motor, a rotating disk attached to a tip of the rotating shaft, a cylinder having a gas introduction port surrounding the outer periphery of the rotating shaft with a space, A flange that is attached to the tip of the cylinder and surrounds the outer periphery of the disk with a gap; and a cylindrical mesh member that is provided so as to extend from the periphery of the flange.
ディスクを液中で回転させることにより、 遠心力によりディスク下面の液を 外方向に流し、 この液の流れによってディスクとフランジとのスキマから筒体 内の気体を吸い出しながら液と混合させて気泡混合液流を作り、 この液流をメ ッシュ部材に当てて通しながら気泡を細分化する。  By rotating the disk in the liquid, the liquid on the lower surface of the disk is caused to flow outward by centrifugal force. By this liquid flow, the gas in the cylinder is sucked out from the gap between the disk and the flange, and mixed with the liquid to mix the bubbles. A liquid flow is created, and bubbles are subdivided while passing this liquid flow through a mesh member.
なお、 メッシュ部材は、 メッシュ網であり、 その開口サイズは、 5 0〜 5 0 0メッシュ、 好ましくは、 1 0 0〜4 0 0メッシュである。 また、 メッシュ部 材は、 重ねられた複数のメッシュ網である。  The mesh member is a mesh net, and the opening size thereof is 50 to 500 mesh, preferably 100 to 400 mesh. The mesh member is a plurality of mesh nets stacked.
この微細気泡発生装置の具体的な構造を図面を参照して説明する。  A specific structure of the fine bubble generator will be described with reference to the drawings.
図 4は、 微細気泡発生装置の構成の一例を説明する図であり、 図 4 ( A ) は 断面図、 図 4 ( B ) は一部断面図である。  4A and 4B are diagrams for explaining an example of the configuration of the microbubble generator, in which FIG. 4A is a cross-sectional view and FIG. 4B is a partial cross-sectional view.
微細気泡発生装置 1 0は、 モータ 1 2と、 モータ 1 2によって回転される回 転軸 1 4と、 回転軸 1 4の先端に取り付けられた回転ディスク 1 5を備える。 さらに、 回転軸 1 4の外周をスペースをおいて取り囲む筒体 1 6と、 筒体 1 6 の先に設けられて、 回転ディスク 1 5の外周縁をスキマを隔てて取り囲む筒状 のメッシュ部材 2 0とを備える。  The microbubble generator 10 includes a motor 12, a rotating shaft 14 rotated by the motor 12, and a rotating disk 15 attached to the tip of the rotating shaft 14. Further, a cylindrical body 16 that surrounds the outer periphery of the rotating shaft 14 with a space, and a cylindrical mesh member 2 that is provided at the tip of the cylindrical body 16 and surrounds the outer peripheral edge of the rotating disk 15 with a gap. 0.
モータ 1 2の出力軸 1 2 aには、 カップリング 1 3を介して回転軸 1 4が連 結されている。 回転軸 1 4の先端には、 回転ディスク 1 5が取り付けられてい る。 回転ディスク 1 5は、 先端に向って先細の薄い円錐状の部材である。 同デ イスク 1 5の、 モータ 1 2の側の面は平面となっており、 周縁のエッジは鋭く 尖るように加工されている。 回転ディスク 1 5は、 回転軸 1 4の先端に螺合ゃ 接着剤などにより取り付けられる。 The rotating shaft 1 4 is connected to the output shaft 1 2 a of the motor 1 2 through the coupling 1 3. It is tied. A rotating disk 15 is attached to the tip of the rotating shaft 14. The rotating disk 15 is a thin conical member that tapers toward the tip. The surface of the disk 15 on the side of the motor 12 is a flat surface, and the peripheral edge is machined to be sharp. The rotating disk 15 can be attached to the end of the rotating shaft 14 by an adhesive or the like.
モータ 1 2と回転ディスク 1 5との間には、 回転軸 1 4をスペースを開けて 取り囲む筒体 1 6が取り付けられている。 筒体 1 6は、 モータ回転軸 1 4と同 軸上の軸孔 1 6 aを有する部材で、 モータ 1 2を覆う基部 1 7と、 回転軸 1 4 に沿って延びる中央部 1 8と、 外方向に張り出す先端フランジ部 1 9とからな る。 各部は別々に作製したものを組み立てたものでも、 各部が一体に作製され たものでもよレ、。  Between the motor 12 and the rotating disk 15, a cylindrical body 16 that surrounds the rotating shaft 14 with a space is attached. The cylindrical body 16 is a member having a shaft hole 16 a on the same axis as the motor rotating shaft 14, a base portion 17 covering the motor 12, a central portion 18 extending along the rotating shaft 14, It consists of a flange 19 that projects outward. Each part can be an assembly of parts made separately, or each part can be made in one piece.
中央部 1 8の基部寄り (モータ 1 2寄り) の部分には、 気体導入口 1 8 aが 開けられている。 この気体導入口 1 8 aを介して、 筒体 1 6の外部と軸孔 1 6 aの中とが連通する。 先端フランジ部 1 9は、 短い円柱状の部分であり、 中央 部 1 8の先端に嵌合固定されている。 フランジ部 1 9の先端面 1 9 aは中央が 凹むように錐状に傾斜している。 この先端面 1 9 aと回転ディスク 1 5との間 には、 空間が形成されている。 また、 図 4 ( B ) に示すように、 フランジ部 1 9の先端の外周縁と、 回転ディスク 1 5の外周縁との間にはスキマ dが開いて いる。 スキマ dの幅は、 小型の機械で l m m以下であることが好ましい。 混入 気泡の寸法を小さくするにもスキマ dは小さい方が好ましい。 なお、 大型の機 械では、 5〜 1 O m m程度以下で可能な限り小さいことが好ましい。  A gas inlet 1 8a is opened in the central portion 1 8 near the base (near the motor 1 2). The outside of the cylindrical body 16 communicates with the inside of the shaft hole 16 a through the gas introduction port 18 a. The front flange portion 19 is a short cylindrical portion, and is fitted and fixed to the front end of the central portion 18. The front end surface 19 a of the flange portion 19 is inclined in a conical shape so that the center is recessed. A space is formed between the front end surface 19 a and the rotating disk 15. Further, as shown in FIG. 4 (B), a gap d is opened between the outer peripheral edge of the front end of the flange portion 19 and the outer peripheral edge of the rotating disk 15. The width of the gap d is preferably l mm or less with a small machine. In order to reduce the size of the bubbles, it is preferable that the gap d is small. For large machines, it is preferably about 5 to 1 Om m or less and as small as possible.
なお、 気体導入口 1 8 aには、 様々な種類のガス源を接続することもできる フランジ部 1 9の周囲には、 筒状のメッシュ部材 2 0力 フランジ部 1 9の 先に延び出すように取り付けられている。 筒状メッシュ部材 2 0は、 例えば、 3層に重ねられた筒状のメッシュ網 2 1 a、 2 1 b、 2 2 cで構成される。 各 メッシュ網の好ましい開口サイズは、 5 0〜5 0 0メッシュ、 より好ましくは Various types of gas sources can be connected to the gas inlet port 1 8 a. Around the flange portion 1 9, the cylindrical mesh member 2 0 force extends beyond the flange portion 1 9. Is attached. The cylindrical mesh member 20 is composed of, for example, cylindrical mesh nets 21a, 21b, 22c stacked in three layers. The preferred opening size of each mesh net is 50-500 mesh, more preferably
0 0〜4 0 0メ ッシュである 次に、 この微細気泡発生装置の動作を説明する。 0 0 to 4 0 0 Next, the operation of this fine bubble generator will be described.
図 5は、 微細気泡発生装置の使用状態を説明する図である。  FIG. 5 is a diagram for explaining the usage state of the microbubble generator.
まず、 装置 1 0の回転ディスク 1 5が下となるように保持し、 回転ディスク 1 5を水中に沈める。 このとき、 筒体 1 6の空気導入口 1 8 aは水面上とする 。 回転ディスク 1 5と筒体 1のフランジ部 1 9との間には小さいスキマ dが開 いているので、 同スキマ dから液体が筒体 1 6の軸孔 1 6 a内に入り込む。 そ して、 モータ 1 2を駆動して回転軸 1 4を回転させて、 回転ディスク 1 5を回 転させる。 すると、 回転ディスク 1 5の遠心力により、 同ディスク 1 5の近傍 に存在する液体が高速で外方向に流れる。 これにより、 ディスク 1 5とフラン ジ先端面 1 9 aとの間の空間が負圧になり、 さらに回転させると、 軸孔 1 6 a 內には水がなくなると思われる。 その結果、 筒体 1 6の空気導入口 1 8 aから 筒体軸孔 1 6 aへ空気が連続して引き込まれる。  First, the rotating disk 15 of the apparatus 10 is held so that it is at the bottom, and the rotating disk 15 is submerged in water. At this time, the air introduction port 18 a of the cylindrical body 16 is on the water surface. Since a small gap d is opened between the rotating disk 15 and the flange portion 19 of the cylinder 1, liquid enters the shaft hole 16 a of the cylinder 16 from the gap d. Then, the motor 12 is driven to rotate the rotating shaft 14, and the rotating disk 15 is rotated. Then, due to the centrifugal force of the rotating disk 15, the liquid existing in the vicinity of the disk 15 flows at high speed outward. As a result, the space between the disk 15 and the flange tip surface 19 a becomes negative pressure, and if it is further rotated, the shaft hole 16 a 1 seems to have no water. As a result, air is continuously drawn into the cylindrical shaft hole 16 a from the air inlet port 18 a of the cylindrical body 16.
軸孔 1 6 a内に引き込まれた空気は、 回転ディスク 1 5とフランジ部 1 9と の間のスキマ dから外方向に流される。 このときに、 高速の液流に空気が混合 され、 気泡混合液流が形成される。 この気泡混合液流は、 フランジ部 1 9の周 囲に配置されているメッシュ部材 2 0に当たりながら同部材を通過する。 この とき、 回転ディスク 1 5の高速回転により気泡混合液流はかなりの高速でメッ シュ部材 2 0に当たることになる。 メッシュ部材 2 0は、 前述のように 3層の メッシュ網 2 1で作製されているので、 気泡は内側のメッシュ網 2 1 aから外 側のメッシュ網 2 1 cへ通過するごとに細分化され、 最終的には非常に微細な 気泡となる。 なお、 回転ディスク 1 5は高速回転しているので、 遠心力により 発生する気泡混合液流もかなりの高速で螺旋状に回転するが、 メッシュ部材 2 0に当たる毎に速度が緩和される。 このため、 渦や、 液面が盛り上がるなどの 液の乱れは発生せず、 微細な気泡がメッシュ部材 2 0から全方向へ均等に拡散 していく。  The air drawn into the shaft hole 16 a flows outward from a gap d between the rotating disk 15 and the flange portion 19. At this time, air is mixed with the high-speed liquid flow, and a bubble mixed liquid flow is formed. This bubble mixed liquid flow passes through the member while hitting the mesh member 20 arranged around the flange portion 19. At this time, the bubble mixed liquid flow hits the mesh member 20 at a considerably high speed due to the high-speed rotation of the rotating disk 15. Since the mesh member 20 is made of the three-layer mesh net 21 as described above, bubbles are subdivided each time they pass from the inner mesh net 21a to the outer mesh net 21c. Ultimately, it becomes very fine bubbles. Since the rotating disk 15 rotates at a high speed, the bubble mixed liquid flow generated by the centrifugal force also rotates in a spiral at a considerably high speed, but the speed is alleviated each time it hits the mesh member 20. For this reason, turbulence and turbulence of the liquid such as the liquid surface rising do not occur, and fine bubbles are diffused uniformly from the mesh member 20 in all directions.
次に、 図 1を参照してこの微細気泡拡散装置 1の作用を説明する。  Next, the operation of the fine bubble diffusing apparatus 1 will be described with reference to FIG.
ここでは、 槽 2を対象水域中に浮揚させて使用する例を説明する。 槽 2を対 象水域中に浮揚させると、 送水管 3の下端や給水管 4の給水口 5から同管内に 対象水域中の水が入り、 槽 2内にも水が貯留される。 そして、 送水管 4に取り 付けた水中ポンプ 6を稼動させると、 前述のように、 給水管 4の側面の給水口 5から対象水域の水が同管内に取り込まれ、 管内を上昇して槽 2内に汲み上げ られる。 この結果、 槽 2内の水の水位 H 1は上昇し、 対象水域の水位 H 2より も高くなる。 水中ポンプ 6を稼動し続けると、 槽 2にはさらに水が汲み上げら れるが、 水は槽 2にさらに蓄積されることはなく、 槽 2内の水の位置エネルギ により、 同水は槽内を送水管 3の方へ流れ、 同管 3を通って下方へ向うように なる。 この際、 槽 2の平面形状には、 送水管 3と給水管 4の以外のスペースが ほとんどないため、 槽内の水が滞ったり、 乱流が起きることがない。 そして、 図 1の矢印で示すような、 給水管 4から、 槽 2、 送水管 3への水流が形成され る。 Here, an example in which tank 2 is levitated and used in the target water area will be described. When tank 2 is levitated into the target water area, it enters the pipe from the lower end of water pipe 3 or water inlet 5 of water pipe 4. Water in the target water area enters and water is stored in tank 2 as well. Then, when the submersible pump 6 attached to the water supply pipe 4 is operated, the water in the target water area is taken into the pipe from the water supply port 5 on the side surface of the water supply pipe 4 as described above, and rises in the pipe to raise the tank 2 Pumped inside. As a result, the water level H 1 in the tank 2 rises and becomes higher than the water level H 2 in the target water area. If the submersible pump 6 continues to operate, more water will be pumped into the tank 2, but the water will not accumulate further in the tank 2, and the water will flow through the tank due to the potential energy of the water in the tank 2. It flows toward the water pipe 3 and goes downward through the pipe 3. At this time, there is almost no space other than the water supply pipe 3 and the water supply pipe 4 in the plane shape of the tank 2, so that the water in the tank does not stagnate and turbulence does not occur. Then, a water flow from the water supply pipe 4 to the tank 2 and the water supply pipe 3 is formed as shown by the arrow in FIG.
この水中ポンプと給水口からの水取り込みの技術的意義は次のとおりである その第一は、 給水される水の流れに乱流や渦などがほとんど生じないため ( あたかも、 給水管内の水が、 乱れることなくそのまま持ち上がつていく感じ) 、 気泡混合槽内でも水の乱れがほとんど生じず、 微細気泡混合手段によって微 細気泡の混合された水が、 微細気泡の径を小さく保ったまま送水管を通って水 底方向に運ばれることである。  The technical significance of water intake from this submersible pump and water supply port is as follows. First, because there is almost no turbulence or vortex in the flow of the supplied water (as if the water in the water supply pipe It feels as if it is lifted up without being disturbed) Water is hardly disturbed even in the bubble mixing tank, and the water in which the fine bubbles are mixed by the fine bubble mixing means keeps the diameter of the fine bubbles small. It is carried through the water pipe toward the bottom of the water.
その第 2は、 水中ポンプの送水量の何倍もの水を給水できるので、 小動力 · 小設備費で比較的大量の水を処理できることである (実施例及びそのデータは 後述する) 。  Second, it can supply many times the amount of water delivered by the submersible pump, so it can process a relatively large amount of water with low power and small equipment costs (examples and data will be described later).
そして、 槽 2内の水中に微細気泡発生装置 1 0で微細気泡を発生させると、 微細気泡が混合した水は、 この水流に乗って送水管 3を通って下方まで送られ 、 同管 3の下開口から対象水域の底面付近に拡散される。  Then, when microbubbles are generated in the water in the tank 2 by the microbubble generator 10, the water in which the microbubbles are mixed is sent to the lower side through the water pipe 3 along this water flow, It diffuses from the bottom opening to the bottom of the target water area.
また、 槽 2に浮揚手段を設けて槽 2を対象水域に浮揚させるようにすること もできる。 らに、 そのような槽 2に移動手段を設けて対象水域内を移動できる ようにすれば、 広い対象水域内に自動的に微細気泡を拡散させることができる 。 また、 送水管 3の先に、 水底に沿って延びる付属の送水管を取り付けてもよ レ、。 この送水管の側面に送水口を設ければ、 この送水口から微細気泡を発生さ せることができる。 In addition, tank 2 can be provided with a levitation means so that tank 2 is levitated into the target water area. Furthermore, if a moving means is provided in such a tank 2 so that it can move within the target water area, the fine bubbles can be automatically diffused into the wide target water area. In addition, an attached water pipe that extends along the bottom of the water may be attached to the end of the water pipe 3. Les. If a water supply port is provided on the side surface of the water supply tube, fine bubbles can be generated from the water supply port.
槽 2の容積や送水管 3や給水管 4の寸法、 ポンプ 6の性能は、 対象水域の規 模に応じて適宜選択する。 実施例  The volume of tank 2, the dimensions of water supply pipe 3 and water supply pipe 4, and the performance of pump 6 are appropriately selected according to the size of the target water area. Example
次に、 図 1の微細気泡拡散装置の試作品を用いて実際に微細気泡を拡散させ た実験を説明する。  Next, we will describe an experiment in which microbubbles were actually diffused using the prototype of the microbubble diffusion device shown in Fig. 1.
図 6は、 微細気泡拡散装置の試作品を示す写真である。  Figure 6 is a photograph showing a prototype of a microbubble diffusion device.
この微細気泡拡散装置の各部の寸法や仕様を以下に示す。  The dimensions and specifications of each part of this fine bubble diffusing device are shown below.
気泡混合槽 2 (写真の上部のステンレス製の部分) :長さ 3 5 Omm、 深さ 2 30 mm、 容積 2 0リ ツ トル、  Bubble mixing tank 2 (Stainless steel part at the top of the photo): Length 3 5 Omm, depth 2 30 mm, volume 20 liters,
送水管 3 (写真の右側の赤いテープが卷かれた透明なアクリル製の筒) :径 200 mm、 長さ 8 70 mm、  Water pipe 3 (transparent acrylic tube with red tape on the right side of the photo): diameter 200 mm, length 8 70 mm,
給水管 4 (写真の左側の灰色の塩ビ製の筒) :径 1 2 0mm、 長さ 5 0 Om m:  Water supply pipe 4 (gray PVC tube on the left side of the photo): Diameter 120 mm, length 50 mm:
この給水管 4の側面に複数の給水口 5が開けられている、  A plurality of water supply ports 5 are opened on the side surface of the water supply pipe 4,
水中ポンプ 6 (給水管 4の下端に取付けられた黒色のポンプ) (リオ ·パヮ 一ヘッド R i o 3 1 00 (商品名、 神畑養魚株式会社製) :仕様は、 最大流出 量: 5 5リツトル Zm i n ( 5 0 Hz) 、 5 7リツ トル/ m i n ( 6 0 Hz) 、 最大揚程: 2 9 0 c m ( 5 0 H z ) 、 2 9 0 c m ( 6 0 H z ) 、 電圧: 1 00 Submersible pump 6 (black pump attached to the lower end of the water supply pipe 4) (Rio Pa ヮ ichi head R io 3 1 00 (trade name, manufactured by Kamihata Fish Co., Ltd.): Specifications, maximum outflow amount: 5 5 liters Zm in (50 Hz), 5 7 liters / min (60 Hz), maximum lift: 29 cm (50 Hz), 29 cm (60 Hz), voltage: 100
V、 消費電力 : 5 5W(5 0 H z)、 6 4 W (6 0 H z ) 。 吐出口の径は 2 2 m m、 長さは 2 2 mmである。 V, power consumption: 5 5W (5 0 Hz), 6 4 W (6 0 Hz). The diameter of the discharge port is 22 mm and the length is 22 mm.
微細気泡発生装置 1 0としては、 上述のものを使用した。  As the fine bubble generator 10, the above-mentioned one was used.
この例の装置を使用して微細気泡を拡散させた状態を説明する。  A state where fine bubbles are diffused using the apparatus of this example will be described.
図 7〜図 9は、 微細気泡拡散状態を説明する写真である。  7 to 9 are photographs for explaining the state of fine bubble diffusion.
微細気泡を拡散させる対象水域として、 径 4 0 O mm、 高さ 1 0 0 Omm、 容量 1 1 5 リツ トルの水槽 (各写真において、 外側の透明なァクリル製の槽) を準備した。 Water tank with a diameter of 40 O mm, a height of 100 O O, and a capacity of 1 15 liters as the target water area for diffusing fine bubbles (in each photo, a transparent acrylic tank on the outside) Prepared.
まず、 水槽内に 1 1 5リツトルの水を貯留し、 微細気泡拡散装置 1をホイス トで吊り上げて水槽の上方から水槽に入れた。 このとき、 前述のように、 送水 管 3の開口端部や給水管 4の給水口 5から水が入り込み、 槽 2内に水が貯留さ れた。 次に、 水中ポンプ 6を稼動させた。 すると、 前述のように給水管 4の給 水口 5から水が取り込まれて槽 2内に汲み上げられ、 図 7 ( A) に示すように 、 槽 2內の水位は水槽の水位より約 1 O mm程度 (図 1の d ) 高くなつた。 そして、 微細気泡発生装置 1 0を槽 2内に設置し、 微細気泡を発生させた。 発生させた直後は、 図 7 ( B ) に示すように、 微細気泡はまだ槽 2内に留まつ ている。 その後、 水中ポンプ 6を稼動させながら微細気泡を発生させ続けると 、 図 8 ( A) に示すように、 微細気泡は、 送水管 3內を下降し始めた。 そして 、 図 8 ( B ) に示すように、 微細気泡は送水管 3の下端に達し、 図 9 ( A) に 示すように、 送水管 3の下端部付近が白く濁った。 その後、 図 9 ( B ) に示す ように、 送水管 3の下端部から水槽内へ出て、 水槽内を上昇しながら拡散され た。  First, 115 liters of water was stored in the aquarium, and the microbubble diffuser 1 was lifted with a hoist and placed in the aquarium from above the aquarium. At this time, as described above, water entered from the opening end of the water supply pipe 3 and the water supply port 5 of the water supply pipe 4, and water was stored in the tank 2. Next, the submersible pump 6 was operated. Then, as described above, water is taken in from the water supply port 5 of the water supply pipe 4 and pumped into the tank 2, and as shown in Fig. 7 (A), the water level of the tank 2 內 is about 1 O mm from the water level of the water tank. Degree (d in Figure 1) became high. A fine bubble generator 10 was installed in the tank 2 to generate fine bubbles. Immediately after the generation, the fine bubbles still remain in the tank 2 as shown in FIG. 7 (B). After that, when the submerged pump 6 was operated and microbubbles were continuously generated, the microbubbles started to move down the water pipe 3 內 as shown in Fig. 8 (A). Then, as shown in FIG. 8 (B), the fine bubbles reached the lower end of the water supply pipe 3, and as shown in FIG. 9 (A), the vicinity of the lower end of the water supply pipe 3 became cloudy white. Thereafter, as shown in FIG. 9 (B), the water was discharged from the lower end of the water pipe 3 into the water tank and was diffused while rising in the water tank.
微細気泡拡散装置の各部の寸法や性能の他の例を以下に示す。  Other examples of dimensions and performance of each part of the fine bubble diffusing device are shown below.
送水管 3 :径 2 0 O mm、 長さ 1 . 8 m、  Water pipe 3: diameter 20 O mm, length 1.8 m,
給水管 4 :径 1 2 O mm、 長さ 0 . 5 m、  Water supply pipe 4: diameter 12 O mm, length 0.5 m,
給水口 5 :径 1 5 m m、  Water inlet 5: Diameter 15 mm,
給水口 5の位置及び個数:給水管の上端から 0 . 3 m近辺の位置に 2 2個設 置、  Position and number of water supply ports 5: 2 2 units installed at a position near 0.3 m from the upper end of the water supply pipe.
送水管 3内の気泡混合水の沈降速度:約 7 c mZ s e c;。  Settling speed of the bubble mixed water in the water pipe 3: about 7 c mZ sec;
比較として、 この例の微細気泡拡散装置の給水口 5を塞いで、 前述と同様の 実験を行った。  As a comparison, the same experiment as described above was performed by closing the water supply port 5 of the fine bubble diffusing apparatus of this example.
図 1 0は、 給水管の給水口を塞いだ状態を示す写真である。  Fig. 10 is a photograph showing a state where the water supply port of the water supply pipe is closed.
図 1 1、 1 2は、.給水管の給水口を塞いだ場合の微細気泡の拡散状態を説明 する写真である。  Figures 11 and 12 are photographs that explain the diffusion of fine bubbles when the water supply port of the water supply pipe is closed.
図 1 0の写真に示すように、 給水管 4 (図の右側の灰色の塩ビ製の筒) の給 水口 5をガムテープで塞いだ。 そして、 図 1 と同様に、 装置 1を対象水域中に 入れて、 槽 2や送水管 3、 給水管 4內に水を貯留させた。 その後、 給水管 4に 取り付けた水中ポンプ 6を稼動させた。 そして、 図 1 1 Aに示すように、 微細 気泡発生装置 1 0を槽 2内に設置し、 同装置 1 0を数秒間稼働させて微細気泡 を発生ざせた。 図 1 1 Aにおいて、 槽 2 (写真上部のステンレス製の部分) の 下方に白く濁って見えるものが発生した微細気泡である。 As shown in the picture in Fig. 10, the supply of water pipe 4 (gray PVC tube on the right side of the figure) Water mouth 5 was closed with gummed tape. Then, as in Fig. 1, the device 1 was placed in the target water area, and water was stored in the tank 2, the water supply pipe 3, and the water supply pipe 4 內. Thereafter, the submersible pump 6 attached to the water supply pipe 4 was operated. Then, as shown in FIG. 11A, the fine bubble generating device 10 was installed in the tank 2, and the device 10 was operated for several seconds to generate fine bubbles. In Fig. 1 1 A, fine bubbles are generated that appear white and cloudy below tank 2 (the stainless steel part at the top of the photo).
図 1 Βは、 微細気泡発生から約 3 0秒後の状態を撮影したものである。 写 真に示すように、 発生した微細気泡は、 送水管 3内をほとんど下降せず留まつ ている。 さらに、 図 1 2は、 図 1 1 Bの状態から約 1 0秒経過した状態を撮影 したものである。 発生した微細気泡は、 図 1 1 Aの状態からやや下降している 。 気泡で白く濁った水の移動を目視とコンベックスで測定した結果、 移動速度 は約 0 . 7 c m/ s e cであった。 なお、 気泡の上昇速度は遅いので無視した 。 この値は、 給水管 4の給水口 5を塞いだ場合の 1 / 1 0程度の値である。 つ まり、 給水管 4に給水口 5を設けることにより、 設けない場合に比べて約 1 0 倍程度の流量を得ることができる。  Figure 1 1 shows a picture taken about 30 seconds after the generation of fine bubbles. As shown in the photograph, the generated microbubbles stay in the water pipe 3 almost without descending. Furthermore, Fig. 12 is a photograph of a state in which approximately 10 seconds have elapsed from the state of Fig. 11B. The generated microbubbles are slightly lowered from the state shown in Fig. 11A. As a result of measuring the movement of white turbid water with bubbles by visual observation and convex, the moving speed was about 0.7 cm / sec. In addition, since the rising speed of the bubble was slow, it was ignored. This value is about 1/10 when the water supply port 5 of the water supply pipe 4 is closed. In other words, by providing the water supply pipe 5 with the water supply port 5, a flow rate of about 10 times that obtained without the water supply port 5 can be obtained.
ただし、 給水管 4の給水口 5を塞いだ場合、 送水管 3を流れる水の流量は、 実質的には、 ポンプ 6のみの能力によるものである。 この場合、 送水管 3内の 気泡の沈降速度は約 0 . 7 c mZ s e cであることから、 流量に換算すると約 1 3 . 2リッ トル m i nとなる。 この値は、 前述のポンプ 6の最大流量の力 タログ値 (5 . 5リッ トル Z m i n ) の約 1 Z 4程度となる。 このような差の 出る理由は不明である。 ただし、 たとえカタログ値の最大流量と比較したとし ても、 ベンチユリ効果のある場合の流量は 2 . 5倍はあるといえ、 本発明の効 果は確認できた。  However, when the water supply port 5 of the water supply pipe 4 is blocked, the flow rate of the water flowing through the water supply pipe 3 is substantially due to the capacity of the pump 6 alone. In this case, since the settling speed of the bubbles in the water supply pipe 3 is about 0.7 cmZsec, when converted to a flow rate, it becomes about 13.2 liters min. This value is about 1 Z 4 of the power tag value (5.5 liters Z m i n) of the maximum flow rate of the pump 6 described above. The reason for this difference is unknown. However, even if compared with the maximum flow rate of the catalog value, the flow rate in the case of the bench lily effect is 2.5 times, and the effect of the present invention was confirmed.
図 1 3は、 本発明の実施の形態に係る微細気泡拡散装置の他の例を説明する 図である。  FIG. 13 is a diagram for explaining another example of the fine bubble diffusing apparatus according to the embodiment of the present invention.
この微細気泡拡散装置は、 ポンプ 6 Aを水面上の、 槽 2に取り付けている。 この例ではポンプ 6 Aの吸込管 6 bは、 ポンプ 6 Aのハウジング 6 aから水中 に延びている。 また、 吐出管 6 cは、 ハウジング 6 aから給水管 4の底板 4 a に開けられた孔 4 bに延びており、 同孔 4 bから給水管 4內に突き出している 。 孔 4 bの周囲はシール 8で塞がれている。 この例においても、 ポンプ 6 Aを 稼働させることにより、 給水管 4の中心に沿った水流が生じ、 この水流に伴つ て給水口 5から水が同管 4内に取り込まれ、 給水管 4内を上昇して槽 3内に汲 み上げられる。 ただし、 吸込管 6 bと吐出管 6 cの流路抵抗の分だけ消費動力 は多くなる。 In this fine bubble diffusing device, a pump 6 A is attached to a tank 2 on the water surface. In this example, the suction pipe 6b of the pump 6A extends from the housing 6a of the pump 6A into the water. Also, the discharge pipe 6c is connected to the bottom plate 4a of the water supply pipe 4 from the housing 6a. It extends to the hole 4b opened in the hole and protrudes from the hole 4b to the water supply pipe 4 內. The periphery of the hole 4 b is closed with a seal 8. Also in this example, by operating the pump 6 A, a water flow along the center of the water supply pipe 4 is generated, and water is taken into the same pipe 4 from the water supply port 5 along with this water flow, and inside the water supply pipe 4 Is raised and pumped into tank 3. However, the power consumption increases by the flow path resistance of the suction pipe 6b and the discharge pipe 6c.

Claims

請 求 の 範 囲 The scope of the claims
1 . 微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混 合槽と、  1. a bubble mixing tank placed on or near the surface of the target water area where fine bubbles are diffused;
該槽から前記対象水域の底方向に延びる送水管と、  A water pipe extending from the tank toward the bottom of the target water area;
前記槽への給水手段と、  Water supply means to the tank;
前記槽内の水に微細気泡を混合する手段と、  Means for mixing fine bubbles into the water in the tank;
を備え、 With
前記槽の水位を前記対象水域の水位よりも高く して、 前記槽から前記送水管 を通って前記対象水域の底方向へ向う水流を形成し、 この水流に乗せて気泡混 合水を前記水域の底方向へ送って微細気泡を拡散させる微細気泡拡散装置であ つて、  The water level of the tank is set higher than the water level of the target water area, and a water flow is formed from the tank through the water pipe toward the bottom of the target water area. A fine bubble diffusing device that diffuses fine bubbles by sending them toward the bottom of
前記給水手段が、  The water supply means
前記槽から下方に突出し給水口が開けられた給水管と、  A water supply pipe protruding downward from the tank and having a water supply opening opened;
該給水管の中心部に上向きの中心水流を形成する手段と、 を有し、 該中心水流に伴うベンチユリ効果により、 前記給水管の給水口から対象水域 の水が同管内に取り込まれ、 該給水管内を上昇して前記槽内に汲み上げられる ことを特徴とする微細気泡拡散装置。  Means for forming an upward central water flow at the center of the water supply pipe, and water in the target water area is taken into the pipe from the water supply port of the water supply pipe due to a bench-lily effect associated with the central water flow. A fine bubble diffusing device characterized by being raised in a pipe and pumped into the tank.
2 . 前記中心水流を形成する手段が、 前記給水管の下部に設置された水中ボン プであることを特徴とする請求項 1に記載の微細気泡拡散装置。 2. The fine bubble diffusing apparatus according to claim 1, wherein the means for forming the central water flow is an underwater pump installed at a lower portion of the water supply pipe.
3 . 微細気泡を拡散させる対象水域の水面上又はその近傍に配置される気泡混 合槽と、 3. A bubble mixing tank placed on or near the surface of the target water area where fine bubbles are diffused;
該槽から前記対象水域の底付近まで延びる送水管と、  A water pipe extending from the tank to near the bottom of the target water area;
前記槽への給水手段と、  Water supply means to the tank;
前記槽内の水に微細気泡を混合する手段と、  Means for mixing fine bubbles into the water in the tank;
を備え、 With
前記槽の水位を前記対象水域の水位よりも高く して、 前記槽から前記送水管 を通って前記対象水域の底付近へ向う水流を形成し、 この水流に乗せて気泡混 合水を前記水域の底付近へ送って微細気泡を拡散させる微細気泡拡散装置であ つて、 The water level of the tank is set higher than the water level of the target water area, and the water pipe from the tank A micro-bubble diffusing device that forms a water stream passing through the bottom of the target water area through the water stream and sends the bubble-mixed water near the bottom of the water area to diffuse the micro-bubbles.
前記給水手段が、  The water supply means
前記槽から下方に突出し、 側面に複数の給水口が開けられた給水管と、 該給水管の下端部に取り付けられた水中ポンプと、 を有し、  A water supply pipe projecting downward from the tank and having a plurality of water supply ports opened on a side surface; and a submersible pump attached to a lower end portion of the water supply pipe,
該水中ポンプを稼動させると、 前記給水管の側面の給水口から対象水域の水 が同管内に取り込まれ、 該給水管内を上昇して前記槽內に汲み上げられること を特徴とする微細気泡拡散装置。  When the submersible pump is operated, the water in the target water area is taken into the pipe from the water supply port on the side surface of the water supply pipe, and the fine bubble diffusing device is raised in the water supply pipe and pumped up to the tank trough .
4 . 前記水中ポンプが、 給水口と吐出口とを有し、 4. The submersible pump has a water supply port and a discharge port,
前記吐出口が、 前記給水管の底の中央に位置し、  The discharge port is located at the center of the bottom of the water supply pipe,
前記水中ポンプを稼働して前記給水管の中心部に上向きの中心水流を形成し 該中心水流に伴うベンチユリ効果により、 前記給水管の給水口から対象水域 の水が同管内に取り込まれることを特徵とする請求項 2又は 3に記載の微細気 泡拡散装置。  The submersible pump is operated to form an upward central water flow at the center of the water supply pipe, and water in the target water area is taken into the pipe from the water supply port of the water supply pipe due to a bench-lily effect associated with the central water flow. The fine bubble diffusing device according to claim 2 or 3.
5 . 前記送水管と給水管とが近接して並設されており、 前記槽の水平断面形状 、 前記送水管と給水管の水平断面をつないだ形状であることを特徴とする請 求項 1〜 4のいずれか 1項に記載の微細気泡拡散装置。 5. The water supply pipe and the water supply pipe are juxtaposed in parallel, and the horizontal cross-sectional shape of the tank and the horizontal cross-section of the water supply pipe and the water supply pipe are connected to each other. The fine bubble diffusing apparatus according to any one of to 4.
6 . 前記気泡混合槽内の前記給水管から前記送水管へ向かう水流中で、 乱流が 実質的に生じないことを特徴とする請求項 1〜 5のいずれか 1項に記載の微細 気泡拡散装置。 6. The microbubble diffusion according to any one of claims 1 to 5, wherein turbulent flow does not substantially occur in the water flow from the water supply pipe to the water supply pipe in the bubble mixing tank. apparatus.
7 . 前記槽内の水に微細気泡を混合する手段が、 該槽内の水中で回転ディスク を高速回転させて高速水流と負圧状態を生じさせ、 この負圧を利用して気体を 液中に取り込んで気泡混合水流を作り、 さらにこの気泡混合水流をメッシュ部 材に当てて気泡を細分化して前記槽內の水中に放出することを特徴とする請求 項 1〜 6のいずれか 1項に記載の微細気泡拡散装置。 7. The means for mixing the fine bubbles into the water in the tank causes the rotating disk to rotate at high speed in the water in the tank to generate a high-speed water flow and a negative pressure state, and gas is generated using this negative pressure. 7. A bubble mixed water stream is formed by being taken into the liquid, and the bubble mixed water stream is applied to a mesh member to subdivide the bubbles and discharge them into the water in the tank tank. The fine bubble diffusing apparatus according to the item.
8 . 微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置 し、 8. Place a bubble mixing tank on or near the surface of the target water area where fine bubbles diffuse,
該槽内で水中に微細気泡を混合し、  Mixing fine bubbles in water in the tank,
該槽に水を給水して該槽内の水位を前記対象水域の水位よりも高く して前記 槽から前記対象水域の底付近へ向う水流を形成し、 この水流に乗せて気泡混合 水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって、 前記槽から下方に突出し給水口が開けられた給水管と、 該給水管の中心部に 上向きの中心水流を形成する手段と、 を設けておき、  Water is supplied to the tank, and the water level in the tank is made higher than the water level of the target water area to form a water flow from the tank to the vicinity of the bottom of the target water area. A method of diffusing fine bubbles that are sent near the bottom of a water body and diffused, wherein the water supply pipe projects downward from the tank and has a water supply opening, and means for forming an upward central water flow at the center of the water supply pipe; Set up
該中心水流に伴うベンチュリ効果により、 前記給水管の給水口から対象水域 の水を同管内に取り込み、 該給水管内を上昇させて前記槽內に汲み上げること を特徵とする微細気泡拡散方法。  A method of diffusing fine bubbles, characterized in that due to the venturi effect associated with the central water flow, water in the target water area is taken into the pipe from the water supply port of the water supply pipe, and the water supply pipe is raised and pumped to the tank tank.
9 . 微細気泡を拡散させる対象水域の水面上又はその近傍に気泡混合槽を配置 し、 9. Place a bubble mixing tank on or near the surface of the target water area where fine bubbles diffuse,
該槽に水を給水して槽内水の水位を前記対象水域の水位よりも高く して前記 槽から前記対象水域の底付近へ向う水流を形成し、 この水流に乗せて気泡混合 水を前記水域の底付近へ送って拡散させる微細気泡拡散方法であって、 前記槽から下方に突出し側面に複数の給水口が開けられた給水管と、 該給水 管の下端部に取り付けられた水中ポンプと、 を設けておき、  Water is supplied to the tank, and the water level in the tank is made higher than the water level of the target water area to form a water flow from the tank to the vicinity of the bottom of the target water area. A method of diffusing fine bubbles that is sent to the vicinity of the bottom of a water area and diffuses, wherein a water supply pipe that protrudes downward from the tank and has a plurality of water supply ports open on a side surface, , And
該水中ポンプを稼動させて、 前記給水管の側面の給水口から対象水域の水を 同管内に取り込み、 該給水管内を上昇させて前記槽内に汲み上げることを特徴 とする微細気泡拡散方法。  A method of diffusing fine bubbles, comprising operating the submersible pump, taking water in a target water area from a water supply port on a side surface of the water supply pipe, raising the water supply pipe, and pumping the water into the tank.
0 . 前記気泡混合槽内の前記給水管から前記送水管へ向かう水流中で、 乱流 を実質的に生じさせないことを特徴とする請求項 8又は 9に記載の微細気泡拡 散方法。 In the water flow from the water supply pipe to the water supply pipe in the bubble mixing tank, turbulent flow 10. The method for diffusing fine bubbles according to claim 8 or 9, wherein substantially no generation occurs.
PCT/JP2008/070727 2007-11-12 2008-11-07 Fine bubble diffusing apparatus and method WO2009063957A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801156170A CN101918328A (en) 2007-11-12 2008-11-07 Fine bubble diffusing apparatus and method
JP2008555340A JP4374069B2 (en) 2007-11-12 2008-11-07 Microbubble diffusion device and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007293141 2007-11-12
JP2007-293141 2007-11-12
JP2008-148275 2008-06-05
JP2008148275 2008-06-05

Publications (1)

Publication Number Publication Date
WO2009063957A1 true WO2009063957A1 (en) 2009-05-22

Family

ID=40638805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070727 WO2009063957A1 (en) 2007-11-12 2008-11-07 Fine bubble diffusing apparatus and method

Country Status (3)

Country Link
JP (1) JP4374069B2 (en)
CN (1) CN101918328A (en)
WO (1) WO2009063957A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
JP2012135731A (en) * 2010-12-27 2012-07-19 Miike Iron Works Co Ltd Water quality improvement device and method
NL2007305C2 (en) * 2011-08-26 2013-02-27 Id4Tech B V AERATOR AND METHOD FOR AERATING A LIQUID.
JP7458729B2 (en) 2019-09-26 2024-04-01 大和ハウス工業株式会社 bubble generator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417740B (en) * 2014-09-17 2018-08-17 郑伟 A kind of device of surface water layering oxygenation
CN109851042A (en) * 2019-04-12 2019-06-07 广州易能克科技有限公司 Water oxygenation equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108799U (en) * 1989-02-16 1990-08-29
JPH03238096A (en) * 1990-02-15 1991-10-23 Nkk Corp Device for supplying oxygen to deep layer water
JPH08299982A (en) * 1995-05-10 1996-11-19 Mitsuo Okamoto Aeration device for bottom water layer
JPH10151486A (en) * 1996-11-21 1998-06-09 Zeniya Kaiyo Service Kk Stretchable single pipe type deep water aeration and circulation apparatus
JP2003088886A (en) * 2001-09-19 2003-03-25 Yokogawa Electric Corp Method and device for increasing dissolved oxygen
JP2005152734A (en) * 2003-11-21 2005-06-16 Ebara Corp Minute air bubble-supplying apparatus
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP3958346B1 (en) * 2006-07-11 2007-08-15 南舘 誠 Microbubble generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108799U (en) * 1989-02-16 1990-08-29
JPH03238096A (en) * 1990-02-15 1991-10-23 Nkk Corp Device for supplying oxygen to deep layer water
JPH08299982A (en) * 1995-05-10 1996-11-19 Mitsuo Okamoto Aeration device for bottom water layer
JPH10151486A (en) * 1996-11-21 1998-06-09 Zeniya Kaiyo Service Kk Stretchable single pipe type deep water aeration and circulation apparatus
JP2003088886A (en) * 2001-09-19 2003-03-25 Yokogawa Electric Corp Method and device for increasing dissolved oxygen
JP2005152734A (en) * 2003-11-21 2005-06-16 Ebara Corp Minute air bubble-supplying apparatus
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP3958346B1 (en) * 2006-07-11 2007-08-15 南舘 誠 Microbubble generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194354A (en) * 2010-03-23 2011-10-06 Satoru Takamori Apparatus for improving quality of water in dam lake, river or lake
JP2012135731A (en) * 2010-12-27 2012-07-19 Miike Iron Works Co Ltd Water quality improvement device and method
NL2007305C2 (en) * 2011-08-26 2013-02-27 Id4Tech B V AERATOR AND METHOD FOR AERATING A LIQUID.
JP7458729B2 (en) 2019-09-26 2024-04-01 大和ハウス工業株式会社 bubble generator

Also Published As

Publication number Publication date
CN101918328A (en) 2010-12-15
JP4374069B2 (en) 2009-12-02
JPWO2009063957A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2009063957A1 (en) Fine bubble diffusing apparatus and method
JP5800185B2 (en) Microbubble generating once-through pump
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP2003145190A (en) Aerator
JP2014097449A5 (en)
JP2013022477A5 (en)
JP2007268376A (en) Apparatus for generating minute gas bubble
JP2015092080A (en) Floating matter recovery pump device and recovery ship
JP5342156B2 (en) Hydrogen water and hydrogen water generator
KR102038132B1 (en) Aerator using eddy flow
JP2012125690A (en) Through-flow pump aeration apparatus
US20150008191A1 (en) Low-turbulent aerator and aeration method
ES2345048T3 (en) PROCEDURE AND APPLIANCE TO MIX TWO FLUIDS.
CN108503052A (en) A kind of underwater microbubble aerator of differential dual-impeller and its method
JP2013146702A (en) Microbubble generator using through-flow pump
JP2020065996A (en) Rotary type water purification system
JP2008168293A (en) Microbubble generator
JPS63171699A (en) Aeration system for pond or the like
JP2008168178A (en) Dental gargle water feed device
US20110156290A1 (en) Medium Orbital Flow Oxygenator
JP2006181565A (en) Water cleaning system and agitated mixer for generating water current
JP2003520119A (en) Counterbalanced dual submersible liquid mixer pair
JP3020975B2 (en) Bubble generator
CN208762251U (en) A kind of underwater microbubble aerator of differential dual-impeller
JP5774848B2 (en) Water quality improvement device and water quality improvement method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880115617.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008555340

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08850900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08850900

Country of ref document: EP

Kind code of ref document: A1