JP2012125690A - Through-flow pump aeration apparatus - Google Patents

Through-flow pump aeration apparatus Download PDF

Info

Publication number
JP2012125690A
JP2012125690A JP2010278939A JP2010278939A JP2012125690A JP 2012125690 A JP2012125690 A JP 2012125690A JP 2010278939 A JP2010278939 A JP 2010278939A JP 2010278939 A JP2010278939 A JP 2010278939A JP 2012125690 A JP2012125690 A JP 2012125690A
Authority
JP
Japan
Prior art keywords
tank
pump
aeration
flow
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010278939A
Other languages
Japanese (ja)
Inventor
Masa Tagome
雅 田篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010278939A priority Critical patent/JP2012125690A/en
Publication of JP2012125690A publication Critical patent/JP2012125690A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aeration apparatus which supplies a large amount of microbubble with water stream to the whole of a tank efficiently and uniformly in an aeration tank, a farming tank, and a culture tank.SOLUTION: The through-flow pump aeration apparatus composed of a through-flow pump (crossflow pump) of a cylindrical multi wing impeller shape that has a microbubble generation mechanism is set up in the aeration tank, the farming tank, and the culture tank, and a pump casing is made to swing centering a rotary shaft by a rotation transmission mechanism, thereby water stream with a microbubble is supplied to the whole of the tank, and effective aeration is done. The generation of the microbubble is obtained from a diffusion hole that is drilled in the hollow rotating shaft of the impeller and a porous material put in addition with the rotation.

Description

本発明は下水処理場における水質浄化、魚介類全般の養殖用の水槽内流れの改善および水耕栽培や藻類栽培などにおけるエアレ−ション技術に関する。 The present invention relates to water quality purification in a sewage treatment plant, improvement of the flow in an aquarium for aquaculture of all seafood, and aeration technology in hydroponics and algae cultivation.

曝気、養殖および植物栽培における従来の技術は以下のようである。
曝気に関する従来技術では、下水処理などで必要な工程の一つであるエアレ−ションによる処理方法として、散気式、気泡噴射式、水中攪拌式などがあるが(例えば特許文献1に開示されたもの)、いずれも気泡径は微小とは言いがたく、浮上速度が速いため短時間に大気に放出される傾向にある。また、エアレ−ションの槽内での一様性や撹拌方法に問題がある。
Conventional techniques in aeration, aquaculture and plant cultivation are as follows.
In the prior art relating to aeration, there are aeration method, bubble injection method, underwater stirring method and the like as a treatment method by aeration, which is one of the necessary steps in sewage treatment (for example, disclosed in Patent Document 1). In all cases, it is difficult to say that the bubble diameter is very small, and since the rising speed is high, it tends to be released to the atmosphere in a short time. There is also a problem in the uniformity of the aeration tank and the stirring method.

曝気に使用されるポンプ型エアレーション装置としては、特許文献2に開示されているように、プロペラタイプの旋回翼の吐出し側の流れに微細気泡を混入させる方法もあるが、曝気槽は、ポンプ回りの流れ方向の特性を考慮して、基本的に四角槽や円形槽に限定され、種々の形状の水槽に対応できないこと、および均一な微細気泡が得られにくいなどの問題がる。 As a pump type aeration apparatus used for aeration, as disclosed in Patent Document 2, there is a method of mixing fine bubbles into the discharge side flow of a propeller-type swirl blade. Considering the characteristics of the surrounding flow direction, it is basically limited to a square tank or a circular tank, and there are problems such as being unable to cope with water tanks of various shapes and difficult to obtain uniform fine bubbles.

養殖に関する従来技術の微小気泡発生装置と水流供給装置は以下のようものがある。
微小気泡発生装置として、例えば特許文献3、特許文献4および特許文献5に開示されているようにセラミックス材料などを利用した多孔質のエア分散発生器を水槽底面に設置した例もあるが、実際には気泡径は微小とは言いがたく、浮上速度が早く、短時間に大気に放出され、効率が悪い。
Prior art microbubble generators and water supply devices for aquaculture include the following.
For example, as disclosed in Patent Document 3, Patent Document 4, and Patent Document 5, there is an example in which a porous air dispersion generator using a ceramic material or the like is installed on the bottom of a water tank as a microbubble generator. However, it is difficult to say that the bubble diameter is very small, the buoyancy rate is fast, and it is released into the atmosphere in a short time, which is inefficient.

また、水流供給装置としては、例えば特許文献6に開示されているように送水ポンプに接続された複数のノズル孔を設けたパイプを水面下に設置し、ノズルからの噴流によって流れを供給するものもあるが、噴流後の拡散、乱れのため、水流が遠くまで達せず、安定した自然な流れが得られない。 In addition, as a water flow supply device, for example, as disclosed in Patent Document 6, a pipe provided with a plurality of nozzle holes connected to a water pump is installed below the surface of the water, and the flow is supplied by a jet from the nozzle However, due to diffusion and turbulence after the jet, the water flow does not reach far, and a stable natural flow cannot be obtained.

植物栽培に関する従来技術の気泡発生装置としては、培養槽内にブロワにより圧力をかけてノズルより噴射するもの(特許文献7)やセラミックスなどを利用したエア分散発生器を使用したもの、空洞にした水中翼の内部に二酸化炭素ガスを供給し、翼後端より二酸化炭素ガスを微細化して噴出する方法(特許文献8)などがあるが、均一な微細気泡は得られ難く、乱れも大きいため、一様な気泡を伴う水流が遠くまで達しないという問題がる。また、撹拌機による流動(特許文献9)では槽内全体に一様に供給するのが難しい。 As a conventional bubble generating device related to plant cultivation, a device in which a pressure is applied by a blower in a culture tank and sprayed from a nozzle (Patent Document 7), a device using an air dispersion generator using ceramics, etc., or a cavity There is a method of supplying carbon dioxide gas to the inside of the hydrofoil, and making the carbon dioxide gas finer and ejecting from the rear end of the blade (Patent Document 8). There is a problem that the water flow with uniform bubbles does not reach far. In addition, it is difficult to uniformly supply the entire tank by flow using a stirrer (Patent Document 9).

上記のように、従来技術では気泡径の微小化の問題や微小気泡を含む流れを槽内全体に一様に供給するのが困難などの問題があり、エアレ−ションの効率が悪い。   As described above, the conventional technology has problems such as a reduction in the bubble diameter and difficulty in uniformly supplying a flow containing the fine bubbles to the entire tank, and the efficiency of aeration is poor.

実開平6−48898号広報Public utility hei 6-48898 public information 特開2005−59002号広報Japanese Laid-Open Patent Publication No. 2005-59002 特開平7−31327号広報JP 7-31327 A 特開平5−168981号公報JP-A-5-168981 特開2003−125671号広報Japanese Laid-Open Patent Publication No. 2003-125671 特開平6‐181657号広報JP-A-6-181657 特公開平8−322553号広報Public information hei 8-322253 public information 特公開平6−78745号広報Public information No. 6-78745 特公開平5−284962号広報Public information No. 5-284962

従来の技術では気泡の微細化が不十分であり、浮上速度が早く効率が悪い。さらに微細化した気泡を槽内全体に一様に供給するエアレ−ション技術が必要である。 In the prior art, the bubbles are not sufficiently refined, and the flying speed is high and the efficiency is low. Further, there is a need for an aeration technique for uniformly supplying fined bubbles throughout the tank.

請求項1に記載の発明は曝気槽や養殖槽および培養槽などの槽内全体に微細気泡を一様な流れとともに供給することにある。図1の(a)は貫流ポンプ(クロスフロ−ポンプ)の基本的構造を示す本体50の断面図、(b)は(a)のY−Y矢視断面図で貫流ポンプエアレ−ション装置55を示す。貫流ポンプ本体50は基本的には円筒状の多翼羽根車7を収容したケ−シング15と流れを制御する舌部8および散気孔5を有する中空回転軸3からなる。基本的な貫流ポンプエアレーション装置55は貫流ポンプ本体50にエアなどを供給するためにホ−ス13により接続されたエアポンプ11と液体ポンプ11bおよび散気孔を有する該中空回転軸3に接続した駆動用モ−タ12からなる。   The invention described in claim 1 is to supply fine bubbles with a uniform flow to the entire inside of a tank such as an aeration tank, a culture tank, and a culture tank. 1A is a cross-sectional view of a main body 50 showing a basic structure of a once-through pump (cross-flow pump), and FIG. 1B is a cross-sectional view taken along line YY of FIG. . The cross-flow pump main body 50 basically comprises a casing 15 accommodating a cylindrical multi-blade impeller 7 and a hollow rotary shaft 3 having a tongue 8 and a diffuser hole 5 for controlling the flow. The basic once-through pump aeration device 55 is connected to the air pump 11 and the liquid pump 11b connected by the hose 13 for supplying air or the like to the once-through pump main body 50, and the drive connected to the hollow rotary shaft 3 having air diffuser holes. It consists of a motor 12.

流れは図1(a)の羽根車断面図に示すように吸込み側9から吐出し側10に向って2回羽根6を通過する。即ち流れは吸込み側9では、羽根車7の外側から内側へ、吐出し側10では内側から外側へ流出して羽根車7を横断する。羽根車7は幅方向に長くとれること、また、流れが羽根車に接線方向に吐出されることから、吐出し流れは従来技術と異なり、幅広のシ−ト状で乱れも少なく、拡散せずに遠くまで達することができるので、水槽内全体に微小気泡の流れが行き渡る。また、吸込み側における羽根6の入口と出口が吐出し側では逆になるため、物が羽根間に詰まりにくい構造であることは運転上、優れた強みである。 The flow passes through the blade 6 twice from the suction side 9 toward the discharge side 10 as shown in the impeller cross-sectional view of FIG. That is, the flow flows from the outside of the impeller 7 to the inside on the suction side 9 and flows out from the inside to the outside on the discharge side 10 to cross the impeller 7. Since the impeller 7 can be long in the width direction, and the flow is discharged tangentially to the impeller, the discharge flow is a wide sheet, less turbulent, and does not diffuse, unlike the prior art. Because it can reach far, the flow of microbubbles spreads throughout the water tank. Further, since the inlet and outlet of the blade 6 on the suction side are reversed on the discharge side, it is an excellent strength in operation that an object is not easily clogged between the blades.

微細気泡を発生させる構造は、図1の(a)、(b)に示すように羽根車7内の中空回転軸3の外周面に多数の散気孔5を窄孔、あるいは追加の多孔質材を貼り付け、中空回転軸3を通して羽根車外部のホ−ス13に接続したエアポンプ11および液体ポンプ11bにより、気体や液体を供給できるようにしている。外部から羽根車内に供給された気体が該中空回転軸3の散気孔5からSで示されるように気泡となって放出されることになるが、気泡は回転を伴って散気孔5から放出されるため、回転を伴う効果により気泡は微小径となって放出され、さらに回転する羽根6の間を通過することにより細分化され、一様な微小気泡となって吐出し水流とともに槽内に吐出される。気泡径は回転数が大きいほど微細化される。このように回転する羽根車7内の中空シャフト3の散気孔5からの微細気泡供給方法は、水中への溶存性を効率よく高める働きを有することから、優れた微細気泡供給装置である。 As shown in FIGS. 1 (a) and 1 (b), the structure for generating fine bubbles is such that a large number of diffused holes 5 are constricted on the outer peripheral surface of the hollow rotary shaft 3 in the impeller 7, or an additional porous material. And an air pump 11 and a liquid pump 11b connected to the hose 13 outside the impeller through the hollow rotary shaft 3 so that gas and liquid can be supplied. The gas supplied from the outside into the impeller is discharged as bubbles from the diffuser holes 5 of the hollow rotary shaft 3 as indicated by S, but the bubbles are discharged from the diffuser holes 5 with rotation. Therefore, bubbles are discharged with a minute diameter due to the effect accompanying rotation, and further subdivided by passing between the rotating blades 6 and discharged as uniform minute bubbles and discharged into the tank together with the water flow. Is done. The bubble diameter becomes finer as the rotation speed is larger. The method of supplying fine bubbles from the diffuser holes 5 of the hollow shaft 3 in the rotating impeller 7 is an excellent fine bubble supply device because it has a function of efficiently increasing the solubility in water.

本発明では、ポンプケ−シング自体が遊星歯車などの回転伝達機構による回転軸を中心にした首振り機構により、所定の角度スイングさせて吐出し方向を変えるので、撹拌機なしで微小気泡を含む流れを広範囲に供給できる。従って、槽内全体にエアレ−ションが行き渡り、効率が良い。   In the present invention, the pump casing itself is swung by a predetermined angle by a swing mechanism centering on a rotation shaft by a rotation transmission mechanism such as a planetary gear, and the discharge direction is changed by a predetermined angle swing. Can be supplied in a wide range. Therefore, aeration is distributed throughout the tank, and the efficiency is good.

本発明の貫流ポンプエアレ−ション装置によれば従来の技術では得られなかった空気やオゾンおよび炭酸ガスなどの微細気泡を含む幅広で良好な一様流れを各用途の使用状況に応じて槽内に供給できる。曝気槽ではエアレ−ション技術による水質改善において、養殖槽では魚類の飼育と水環境の改善に、培養槽では、エアレ−ション技術に加えて、微粒化した培養液も同時に供給できるようにすることによって水耕栽培や藻類栽培の技術改善に貢献できる。 According to the once-through pump aeration apparatus of the present invention, a wide and good uniform flow including fine bubbles such as air, ozone and carbon dioxide, which cannot be obtained by the prior art, is put into the tank according to the usage situation of each application. Can supply. In aeration tanks, water quality should be improved by aeration technology, fish tanks should be able to raise fish and improve the water environment, and culture tanks should be able to supply atomized culture solution at the same time in addition to aeration techniques. Can contribute to the technical improvement of hydroponics and algae cultivation.

図1は本発明の貫流ポンプエアレ−ション装置の基本的構造を示す。(a)は貫流ポンプ本体の構造を示す断面図、(b)は(a)のY−Y矢視の貫流ポンプエアレ−ション装置の断面図である。FIG. 1 shows the basic structure of the once-through pump aeration apparatus of the present invention. (A) is sectional drawing which shows the structure of a cross-flow pump main body, (b) is sectional drawing of the cross-flow pump aeration apparatus of the YY arrow of (a). 図2は矩形型曝気槽の中に吐出し方向を周期的に変えるポンプケ−シング首振り機構を有する貫流ポンプエアレ−ション装置を据付けた状態を示す。(a)は平面図、(b)は槽内の流れの状態を示す側断面図である。(実施例1)FIG. 2 shows a state in which a once-through pump aeration device having a pump casing swing mechanism for periodically changing the discharge direction is installed in a rectangular aeration tank. (A) is a top view, (b) is a sectional side view showing the state of the flow in the tank. Example 1 図3は曝気槽の処理能力増強のために、曝気槽内にポンプケ−シング首振り機構を有する貫流ポンプエアレ−ション装置を2台設置した例を示す。(a)は平面図、(b)は曝気槽内の流れの状態を示す側断面図である。(実施例2)FIG. 3 shows an example in which two once-through pump aeration devices having a pump casing swing mechanism are installed in the aeration tank in order to increase the processing capacity of the aeration tank. (A) is a top view, (b) is a sectional side view showing the state of the flow in the aeration tank. (Example 2) 図4は矩形型水耕栽培用の培養槽の水面下にポンプケ−シング首振り機構を有する貫流ポンプエアレ−ション装置を2台設置した場合の据え付け状態を示す。(a)は平面図、(b)は側断面図である。(実施例3)FIG. 4 shows an installation state in the case where two once-through pump aeration devices having a pump casing swing mechanism are installed below the surface of a culture tank for rectangular hydroponics. (A) is a top view, (b) is a side sectional view. (Example 3) 図5は魚水槽内にポンプケ−シング首振り機構を有する貫流ポンプエアレ−ション装置を据付けたときの流れの状態を示す。(a)は平面図、(b)はY−Y矢視断面図である。(実施例4)FIG. 5 shows a flow state when a once-through pump aeration device having a pump casing swing mechanism is installed in the fish tank. (A) is a top view, (b) is a YY arrow sectional drawing. Example 4 図6はポンプケ−シング首振り機構を有する縦型の貫流のポンプエアレ−ション装置を魚水槽内に据付けたときの流れの状態を示す。(a)は正面図、(b)は(a)のY−Y矢視の断面図である。(実施例5)FIG. 6 shows a flow state when a vertical once-through pump aeration apparatus having a pump casing swing mechanism is installed in a fish tank. (A) is a front view, (b) is sectional drawing of the YY arrow of (a). (Example 5)

以下に本発明の実施の形態を利用分野ごとに図2〜図6を参照して説明する。図2、図3は曝気関連、図4は培養槽関連、図5、図6は養殖関連を示す。 Embodiments of the present invention will be described below with reference to FIGS. 2 and 3 show aeration-related, FIG. 4 shows culture tank-related, and FIGS. 5 and 6 show aquaculture-related.

図2は本発明の第1実施例で、矩形型の曝気槽20内に貫流ポンプエアレ−ション装置55bを設置した場合の形態を示す。(a)は平面図、(b)は側断面図である。矩形型の曝気槽20内に水中モ−タ12b駆動による貫流ポンプエアレ−ション装置55bを曝気槽の底面に設置し、ポンプケ−シング全体を遊星歯車などの回転伝達機構により回転軸を中心にして、所定の角度スイング出来るようにして、吐出し方向を周期的に変えることによりタンク内全体に渡って微細な気泡を水流とともに供給できるようにした装置である。吐出し流れの周期的方向変化の角度θはポンプケ−シングの回転軸を中心にしての首振り機構によって得られる。エアはポンプ羽根車内部において前述の図1に示したようにエアポンプ11からホ−ス13により中空の回転軸3内に供給され、羽根車内部において中空回転軸外周部に穿孔された散気孔5から回転を伴いながら微細気泡となって供給される。 FIG. 2 is a first embodiment of the present invention, and shows a form in which a once-through pump aeration device 55b is installed in a rectangular aeration tank 20. FIG. (A) is a top view, (b) is a side sectional view. In the rectangular aeration tank 20, a once-through pump aeration device 55b driven by the underwater motor 12b is installed on the bottom of the aeration tank, and the entire pump casing is centered on the rotation axis by a rotation transmission mechanism such as a planetary gear. It is a device that allows fine bubbles to be supplied along with the water flow throughout the tank by periodically changing the discharge direction so that it can swing at a predetermined angle. The angle θ of the periodic change of the discharge flow is obtained by a swing mechanism around the rotation axis of the pump casing. Air is supplied into the hollow rotary shaft 3 from the air pump 11 by the hose 13 inside the pump impeller as shown in FIG. 1, and the diffuser holes 5 drilled in the outer peripheral portion of the hollow rotary shaft inside the impeller. Is supplied as fine bubbles with rotation.

この実施の形態によれば、貫流ポンプエアレ−ション装置55bによって供給される流れは、従来技術とは異なり、ポンプケ−シングをスイングさせて吐出し方向を周期的に変えるので、広範囲に渡って一様で微小気泡を含む幅広の水流を処理タンク内全体に渡って供給できることからエアレ−ションの効率が良い。従って処理時間を短縮できる。 According to this embodiment, unlike the prior art, the flow supplied by the once-through pump aeration device 55b swings the pump casing and periodically changes the discharge direction, so that it is uniform over a wide range. Thus, since a wide water flow containing microbubbles can be supplied over the entire processing tank, the efficiency of aeration is good. Accordingly, the processing time can be shortened.

図3は本発明の第2実施例で、矩形型の曝気槽20内に図2の実施例1と同様の貫流ポンプエアレ−ション装置55bを2台設置した場合の形態を示す。(a)は平面図、(b)は側断面図である。曝気槽内に2台設置することによって、タンク内全体に淀みなく微小気泡を含む流れを供給できるため、エアレ−ションの機能アップを図ることができる。ポンプ台数は処理タンクの大きさによって調整する。ポンプケーシングのスイングによる吐出し方向変化などのエアレ−ションの機能構成は図2の第1実施例の形態と同様である。 FIG. 3 is a second embodiment of the present invention, and shows a mode in which two cross-flow pump aeration devices 55b similar to those of the first embodiment of FIG. 2 are installed in a rectangular aeration tank 20. (A) is a top view, (b) is a side sectional view. By installing two units in the aeration tank, a flow containing microbubbles can be supplied to the entire tank without stagnation, so that the function of aeration can be improved. The number of pumps is adjusted according to the size of the processing tank. The functional configuration of the aeration such as the change in the discharge direction due to the swing of the pump casing is the same as that of the first embodiment of FIG.

図4は本発明の第3実施例で、培養槽21の底面に貫流ポンプエアレ−ション装置55bを2台設置した場合の形態を示す。(a)は平面図、(b)は側断面図である。本装置は培養槽21の水面に植物30を育成する水耕栽培用フロ−ト35を浮かせ、水面下の底面に貫流ポンプエアレ−ション装置55bを2台設置した構成になっている。エアは前述の図1に示したようにエアポンプ11からホ−ス13により中空の回転軸3内に供給され、羽根車内部において中空回転軸に穿孔された散気孔5から回転を伴いながら微小気泡となって供給される。培養液は液体ポンプ11bによって同じ散気孔5から供給され、植物栽培に適した環境にすることができる。 FIG. 4 shows a third embodiment of the present invention, and shows a mode in which two once-through pump aeration devices 55b are installed on the bottom surface of the culture tank 21. FIG. (A) is a top view, (b) is a side sectional view. This apparatus has a structure in which a hydroponic cultivation float 35 for growing the plant 30 is floated on the water surface of the culture tank 21, and two once-through pump aeration devices 55b are installed on the bottom surface under the water surface. As shown in FIG. 1, the air is supplied from the air pump 11 to the hollow rotary shaft 3 by the hose 13, and the microbubbles are rotated while rotating from the diffuser holes 5 drilled in the hollow rotary shaft inside the impeller. Supplied. The culture solution is supplied from the same air diffuser 5 by the liquid pump 11b, and an environment suitable for plant cultivation can be obtained.

この実施の形態によれば、貫流ポンプエアレ−ション装置55bのケ−シングの首振り機構によるスイングによって、ポンプの吐出し流れとともに微細気泡や液状微粒化された培養液を培養槽21の水面に浮かべた水耕栽培用フロ−ト35全体に渡って効率よく供給することができる。吐出し流れの周期的方向変化の角度θは前述のようにポンプケ−シングの回転軸を中心にしての首振り機構によって得られる。従来のように撹拌機がなくても槽内全体に安定して供給できる。 According to this embodiment, the microbubbles and the liquid atomized culture solution are floated on the water surface of the culture tank 21 together with the discharge flow of the pump by the swing by the casing swing mechanism of the once-through pump aeration device 55b. In addition, it can be efficiently supplied over the entire hydroponics float 35. As described above, the angle θ of the periodic change in the direction of discharge flow is obtained by a swing mechanism around the rotation axis of the pump casing. Even if there is no stirrer as in the prior art, the entire tank can be stably supplied.

別形態の使用例として、海洋バイオマスとして注目される藻類の増殖培養に本発明の貫流ポンプエアレ−ション装置を利用すれば効果的である。図4において、水耕栽培用フロ−ト35を外すか、替わりに藻類育成用の網状のものを取付け、他は略同様の構成とした藻類培養槽において、二酸化炭素含有ガスをエアポンプ11から前述の図1に示す中空回転軸3を通して散気孔5から放出させることによって、ポンプ吐出口から槽内に二酸化炭素含有ガスの微細気泡を供給する。その二酸化炭素含有ガスの微細気泡を含む流れは前記水耕栽培の時と同様に槽内全体に行き渡り、藻類増殖に適した環境を作る。   As another example of use, it is effective if the once-through pump aeration apparatus of the present invention is used for the growth culture of algae that is attracting attention as marine biomass. In FIG. 4, the hydroponic cultivation float 35 is removed, or a net-like one for algae growth is attached instead, and the carbon dioxide-containing gas is supplied from the air pump 11 in the algae culture tank having the same configuration as the above. The fine bubbles of the carbon dioxide-containing gas are supplied from the pump discharge port into the tank by discharging from the diffuser holes 5 through the hollow rotating shaft 3 shown in FIG. The flow containing the fine bubbles of the carbon dioxide-containing gas spreads throughout the tank in the same manner as in the hydroponics, creating an environment suitable for algae growth.

図5は本発明の第4実施例で、魚水槽22に貫流ポンプエアレ−ション装置55bを設置した場合の形態を示す。(a)は平面図、(b)はY−Y矢視断面図である。貫流ポンプエアレ−ション装置55bを矩形の魚水槽22の一方の壁面側の水面下に設置し、槽内全体に渡って微細な気泡伴う幅広の水流を供給できるようにした装置である。吐出し流れの周期的方向変化の角度θは前述のようにポンプケ−シングの回転軸を中心にしての首振り機構によるスイングによって得られる。エアは前述の図1に示したようにエアポンプ11からホ−ス13により中空回転軸3内に供給され、中空回転軸に穿孔された散気孔5から回転を伴いながら羽根車内部に微細気泡となって供給される。   FIG. 5 is a fourth embodiment of the present invention, and shows a mode in which a once-through pump aeration device 55b is installed in the fish tank 22. (A) is a top view, (b) is a YY arrow sectional drawing. The once-through pump aeration device 55b is installed under the water surface on one wall surface side of the rectangular fish tank 22 so that a wide water flow with fine bubbles can be supplied over the entire tank. The angle θ of the periodic direction change of the discharge flow is obtained by the swing by the swing mechanism about the rotation axis of the pump casing as described above. Air is supplied into the hollow rotary shaft 3 from the air pump 11 by the hose 13 as shown in FIG. 1, and fine bubbles are generated inside the impeller while rotating from the diffuser holes 5 drilled in the hollow rotary shaft. Will be supplied.

この実施の形態によれば貫流ポンプエアレ−ション装置55bによって供給される吐出し流れの方向はポンプケーシングの首振り機構によるスイングによって周期的に首振り角度θの範囲で大きく変えることが出来るので効率良く水槽内全体に微細な気泡伴う幅広の水流を供給できる。魚の育成状況に応じて、スイングを切り替えできるようにした方が良い。 According to this embodiment, the direction of the discharge flow supplied by the once-through pump aeration device 55b can be largely changed periodically in the range of the swing angle θ by the swing by the swing mechanism of the pump casing, so that it is efficient. A wide water flow with fine bubbles can be supplied to the entire tank. It is better to be able to change the swing according to the breeding situation of the fish.

図6は本発明の第5実施例で、魚水槽22に縦型のポンプエアレ−ション装置55cを設置した場合の形態を示す。(a)は正面図、(b)はY−Y矢視断面図である。本実施例では貫流ポンプ本体の据付けが図5の第4実施例とは異なり、図6に示すように縦置きになっているのが特徴である。縦置きでは駆動用のモ−タ−12が水面より上に設置できることから、据付およびメンテナンスが容易である。ポンプケ−シングのスイングによる吐出し方向変化などのエアレ−ションの機能構成は図5の第4実施例の形態と同様である。 FIG. 6 is a fifth embodiment of the present invention and shows a mode in which a vertical pump aeration device 55c is installed in a fish tank 22. (A) is a front view, (b) is a YY arrow cross-sectional view. This embodiment is characterized in that the cross-flow pump main body is installed vertically as shown in FIG. 6, unlike the fourth embodiment of FIG. In the vertical installation, since the driving motor 12 can be installed above the water surface, installation and maintenance are easy. The functional configuration of the aeration, such as the change in the discharge direction due to the pump casing swing, is the same as that of the fourth embodiment of FIG.

以上、全体をまとめると、本発明のポンプエアレ−ション装置は曝気、養殖、培養槽関連など広い分野のエアレ−ション技術として貢献できることが分かる。   In summary, it can be seen that the pump aeration apparatus of the present invention can contribute as aeration technology in a wide range of fields such as aeration, aquaculture, culture tank related and the like.

本発明のエアレ−ション技術は、遊星歯車などの回転伝達機構による回転軸を中心にした首振り機構により、ポンプ吐出しケ−シングをスイングさせて、微細化した大量の気泡を含む吐出し流れを広範囲に渡って供給出来るようにしたことから、曝気、養殖、植物栽培などに関連したエアレ−ション供給装置として、従来技術より効率良い利用が可能である。   The aeration technology of the present invention is a discharge flow including a large amount of fine bubbles by swinging the pump discharge casing by a swing mechanism centering on a rotation shaft by a rotation transmission mechanism such as a planetary gear. Therefore, it can be used more efficiently than the prior art as an aeration supply device related to aeration, aquaculture, plant cultivation and the like.

3 散気孔を有する羽根車中空回転軸
5 散気孔
6 羽根
7 貫流ポンプ羽根車
8 ケ−シング舌部
9 ポンプ吸込側
10 ポンプ吐出側
11 エアポンプ
11b 液体ポンプ
12 駆動用モ−タ
12b 駆動用水中モ−タ
13 ホ−ス
15 ポンプケ−シング
17 水面
20 曝気槽
21 培養槽
22 魚水槽
30 植物
35 水耕栽培用フロ−ト
50 貫流ポンプ本体
55、55b、55c 貫流ポンプエアレ−ション装置
B 微小気泡
S 散気孔5から微細気泡や液状微粒子となって噴出する流れ
θ ポンプケ−シングの首振り角度
3 Impeller hollow rotating shaft 5 having air diffuser holes Air diffuser hole 6 Blades 7 Cross-flow pump impeller 8 Casing tongue 9 Pump suction side 10 Pump discharge side 11 Air pump 11b Liquid pump 12 Driving motor 12b Driving underwater motor -T13 13 Hose 15 Pump casing 17 Water surface 20 Aeration tank 21 Culture tank 22 Fish tank
30 Plant 35 Hydroponics Float 50 Crossflow Pump Body 55, 55b, 55c Crossflow Pump Aeration Device
B Microbubbles S Flow ejected from the diffuser holes 5 as microbubbles or liquid particulates θ Swing angle of pump casing

Claims (1)

羽根車形状が円筒状で多翼の貫流ポンプ(クロスフロ−ポンプ)羽根車の回転軸を散気孔を有する中空にし、羽根車外部より該中空回転軸へ接続したホ−スを通して空気、オゾン、二酸化炭素および培養液等を羽根車内中心部に供給できるようにした構造の貫流ポンプを曝気槽や養殖槽および培養槽などの水面下に設置し、吐出し方向を遊星歯車などの回転伝達機構により、回転軸を中心にポンプケ−シングを周期的にスイングさせて吐出し方向を変えるようにして、槽内全体に微小気泡によるエアレ−ションが出来るようにしたことを特徴とする貫流ポンプエアレ−ション装置 The impeller has a cylindrical shape and a multi-blade once-through pump (cross-flow pump) impeller having a hollow shaft with air diffusion holes, and air, ozone, and carbon dioxide through a hose connected to the hollow shaft from the outside of the impeller. A cross-flow pump with a structure that can supply carbon and culture solution to the center of the impeller is installed under the surface of an aeration tank, a culture tank, a culture tank, etc. A once-through pump airlation device characterized in that the pump casing is periodically swung around the rotation axis to change the discharge direction so that air can be aerated by microbubbles throughout the tank.
JP2010278939A 2010-12-15 2010-12-15 Through-flow pump aeration apparatus Pending JP2012125690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278939A JP2012125690A (en) 2010-12-15 2010-12-15 Through-flow pump aeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278939A JP2012125690A (en) 2010-12-15 2010-12-15 Through-flow pump aeration apparatus

Publications (1)

Publication Number Publication Date
JP2012125690A true JP2012125690A (en) 2012-07-05

Family

ID=46643372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278939A Pending JP2012125690A (en) 2010-12-15 2010-12-15 Through-flow pump aeration apparatus

Country Status (1)

Country Link
JP (1) JP2012125690A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022477A (en) * 2011-07-15 2013-02-04 Masa Tagome Microbubble generation flowing pump
CN103583451A (en) * 2013-10-24 2014-02-19 金华市永力泵业有限公司 Solar aerator
CN103583448A (en) * 2012-08-15 2014-02-19 梁家明 Frame type high efficiency impeller of impeller aerator
JP2014097449A (en) * 2012-11-14 2014-05-29 Masa Tagome Through-flow pump ultrafine bubble flow supply device
CN103918599A (en) * 2014-01-17 2014-07-16 杨迁帆 Water lubrication roller bearing subassembly of waterwheel type aerator
CN106665459A (en) * 2016-12-16 2017-05-17 天峨县全盛蜂业科技有限公司 Oxygen supply device for aquaculture pool
JP2019103971A (en) * 2017-12-12 2019-06-27 Kyb株式会社 Foam including liquid production device, method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022477A (en) * 2011-07-15 2013-02-04 Masa Tagome Microbubble generation flowing pump
CN103583448A (en) * 2012-08-15 2014-02-19 梁家明 Frame type high efficiency impeller of impeller aerator
JP2014097449A (en) * 2012-11-14 2014-05-29 Masa Tagome Through-flow pump ultrafine bubble flow supply device
CN103583451A (en) * 2013-10-24 2014-02-19 金华市永力泵业有限公司 Solar aerator
CN103918599A (en) * 2014-01-17 2014-07-16 杨迁帆 Water lubrication roller bearing subassembly of waterwheel type aerator
CN106665459A (en) * 2016-12-16 2017-05-17 天峨县全盛蜂业科技有限公司 Oxygen supply device for aquaculture pool
JP2019103971A (en) * 2017-12-12 2019-06-27 Kyb株式会社 Foam including liquid production device, method and system

Similar Documents

Publication Publication Date Title
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
JP5800185B2 (en) Microbubble generating once-through pump
JP2012125690A (en) Through-flow pump aeration apparatus
JP2013022477A5 (en)
US5674433A (en) High efficiency microbubble aeration
JP2014097449A5 (en)
JP5652758B2 (en) Pump aeration device
JP4145000B2 (en) Fine bubble feeder
JP2012005947A5 (en)
US4710325A (en) Aspirating aeration and liquid mixing apparatus
JP2013146702A (en) Microbubble generator using through-flow pump
KR100583052B1 (en) Submersible Aerator with the Encreased Capacity of Aeration and Ability of Diffusion
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP6633312B2 (en) Fluid injection stirrer
WO2017094647A1 (en) Swirl-flow gas-liquid mixing device for aquaculture
KR101163971B1 (en) Aeration device for water treatment
CN215480070U (en) High-solubility oxygen generator
JP6345546B2 (en) Power-saving aeration stirrer
CA2919280A1 (en) Rotary gas bubble ejector
JP3127536B2 (en) Aquatic breeding equipment
CN205575766U (en) Octopus is revolved and mixes biological processor
JP2000308897A (en) Water quality purifying device and water stream generation device
JP2024084173A (en) Microbubble generator
KR102302999B1 (en) Water stream apparatus for preventing from algae generation
CN213343974U (en) Liquid bubble increasing device