JP2008132437A - Microbubble generation apparatus - Google Patents

Microbubble generation apparatus Download PDF

Info

Publication number
JP2008132437A
JP2008132437A JP2006320943A JP2006320943A JP2008132437A JP 2008132437 A JP2008132437 A JP 2008132437A JP 2006320943 A JP2006320943 A JP 2006320943A JP 2006320943 A JP2006320943 A JP 2006320943A JP 2008132437 A JP2008132437 A JP 2008132437A
Authority
JP
Japan
Prior art keywords
bubble
liquid
bubble discharge
porous body
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320943A
Other languages
Japanese (ja)
Inventor
Masafumi Inoue
雅史 井上
Hironori Hara
裕紀 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2006320943A priority Critical patent/JP2008132437A/en
Publication of JP2008132437A publication Critical patent/JP2008132437A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microbubble generation apparatus capable of generating very fine bubbles independently of the pressure of a gas to be supplied or flow rate of a liquid. <P>SOLUTION: The microbubble generation apparatus comprises a porous body 8 having a plurality of bubble releasing holes for releasing bubbles which are arranged regularly or irregularly in a bubble releasing face 8b forming an interface with a liquid, a main body casing 9 for holding the porous body 8 and an impeller part 10, a gas chamber 11 communicating with bubble releasing holes, a gas supply pipeline 7 for supplying a gas to the gas chamber 11, and a submerged motor apparatus 4 for moving the porous body 8 relatively to the liquid generating convection current of the liquid on the bubble releasing face 8b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は微細気泡発生装置に関し、液体中に微細気泡を混気する技術に係るものである。   The present invention relates to a microbubble generator, and relates to a technique for mixing microbubbles in a liquid.

従来、液体中に微細気泡を混気するものとしては、例えば特許文献1に記載するように、セラミック円筒内部にオゾン等の気体を高い圧力で送り込み、セラミックの孔から気泡として、外部の水等の液体に送り出して溶け込ませるものがある。しかし、気泡径を小さくすることを目的としてセラミックの孔径を小さくするほどに、気体圧力を大きくせねばならない問題がある。   Conventionally, as a method of mixing fine bubbles in a liquid, for example, as described in Patent Document 1, a gas such as ozone is sent into a ceramic cylinder at a high pressure, and bubbles are formed from the ceramic holes as external water. There is something that is sent to the liquid and dissolved. However, there is a problem that the gas pressure has to be increased as the pore diameter of the ceramic is reduced for the purpose of reducing the bubble diameter.

このため、特許文献1では、気体圧力に依存せず、液体の渦の力に依存する構成が開示されている。すなわち、セラミック円筒の外側に外側円筒を同心状に配置し、セラミック円筒と外側円筒の間に狭い流路を形成し、この流路に臨界レイノルズ数を超えるように速い速度で液体を流し、液体の乱流により生じる細かい渦で気泡の表面張力を打ち破り、気体の細かい泡を液体に連続的に溶け込ませている。また、液体の渦をさらに強くするための構成として、セラミック円筒の外側に配置する外側円筒の内面に螺旋状の細かい凹凸を形成している。   For this reason, Patent Document 1 discloses a configuration that does not depend on the gas pressure but depends on the force of the liquid vortex. That is, an outer cylinder is concentrically arranged outside the ceramic cylinder, a narrow flow path is formed between the ceramic cylinder and the outer cylinder, and a liquid is allowed to flow through the flow path at a high speed so as to exceed the critical Reynolds number. The surface tension of bubbles is broken by fine vortices generated by the turbulent flow of gas, and fine bubbles of gas are continuously dissolved in the liquid. Further, as a configuration for further strengthening the vortex of the liquid, spiral fine irregularities are formed on the inner surface of the outer cylinder arranged outside the ceramic cylinder.

また、特許文献2には微細気泡発生装置および汚濁水浄化装置並びに汚濁水の浄化方法が記載されている。この気泡発生装置は液中に設けられるものであって、攪拌フィンと空気を供給する供給管を備えており、供給管の一端が供給口として攪拌フィンの中心に開口し、供給管の他端が吸気孔として気体の供給源に開口している。そして、攪拌フィンの回転により周囲の液体を攪拌しつつ攪拌フィンの周囲に負圧を発生させ、この負圧により供給管から気体を吸引して気泡を発生させる。   Patent Document 2 describes a microbubble generator, a polluted water purifier, and a polluted water purifying method. This bubble generating device is provided in a liquid and includes a stirring fin and a supply pipe for supplying air. One end of the supply pipe opens as a supply port at the center of the stirring fin, and the other end of the supply pipe Is opened to the gas supply source as an intake hole. Then, a negative pressure is generated around the stirring fin while the surrounding liquid is stirred by the rotation of the stirring fin, and a gas is sucked from the supply pipe by this negative pressure to generate bubbles.

回転する攪拌フィンの外側には板状体からなる邪魔板が設けてあり、邪魔板は攪拌フィンによる液体の攪拌を邪魔するよう複数立設し、邪魔板の相互を固定板で連結固定して攪拌フィンを内包し、攪拌フィンの放射方向の外側には多孔板を設けており、供給口から吸引した気体を攪拌フィン、多孔板、邪魔板によって微細に分割されて液中に供給される。
WO2002/036252号公報 特開2006−82072号公報
A baffle plate made of a plate-like body is provided on the outside of the rotating stirring fin, and a plurality of baffle plates are erected so as to disturb the stirring of the liquid by the stirring fin, and the baffle plates are connected and fixed with a fixed plate. The stirring fin is included, and a perforated plate is provided outside the stirring fin in the radial direction. The gas sucked from the supply port is finely divided by the stirring fin, the perforated plate, and the baffle plate and supplied to the liquid.
WO2002 / 036252 JP 2006-82072 A

ところで、特許文献1においては、セラミック円筒の外側に外側円筒を同心状に配置し、セラミック円筒と外側円筒の間に狭い流路を形成し、この流路に速い速度で液体を流しているが、セラミック円筒と外側円筒の間が狭い流路である場合には、この流路を通して供給できる液体の流量が限られたものとなる。大量の液体を供給可能なようにセラミック円筒と外側円筒の流路を大きくする場合には、大量の液体を渦の発生に必要な流速で供給するためにポンプ動力を大きくする必要がある。   By the way, in Patent Document 1, an outer cylinder is arranged concentrically outside the ceramic cylinder, a narrow flow path is formed between the ceramic cylinder and the outer cylinder, and a liquid is allowed to flow through the flow path at a high speed. In the case where there is a narrow channel between the ceramic cylinder and the outer cylinder, the flow rate of the liquid that can be supplied through this channel is limited. When the flow paths of the ceramic cylinder and the outer cylinder are enlarged so that a large amount of liquid can be supplied, it is necessary to increase the pump power in order to supply a large amount of liquid at a flow rate necessary for generating vortices.

また、外側円筒の内面に螺旋状の細かい凹凸部を形成した場合でも、凹凸部と気泡を放出するセラミック円筒の距離が離れていると渦作用が気泡を放出する面に及び難くなる。 また、特許文献2に記載するように、供給口から吸引した気体を攪拌フィン、多孔板、邪魔板によって微細に分割して液中に供給する場合には、供給口から吸引した気体の元々の気泡径が大きいので、攪拌フィン、多孔板、邪魔板による一過的な衝突によって達成できる気泡の微細化には限界がある。   Moreover, even when a spiral fine uneven portion is formed on the inner surface of the outer cylinder, if the distance between the uneven portion and the ceramic cylinder that discharges the bubbles is increased, the vortex action hardly reaches the surface from which the bubbles are discharged. In addition, as described in Patent Document 2, when the gas sucked from the supply port is finely divided by the stirring fin, the perforated plate and the baffle plate and supplied into the liquid, the original gas sucked from the supply port is supplied. Since the bubble diameter is large, there is a limit to the refinement of bubbles that can be achieved by transient collisions with stirring fins, perforated plates, and baffle plates.

本発明は上記の課題を解決するものであり、供給する気体の圧力および液体の流速に依拠することなく微細な気泡を発生させることができる微細気泡発生装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a fine bubble generating device that can generate fine bubbles without depending on the pressure of a supplied gas and the flow rate of a liquid.

上記課題を解決するために、本発明の微細気泡発生装置は、液体との界面をなす気泡放出面に、気泡を放出する複数の気泡放出孔を配置した気泡放出体と、気泡放出体を保持する放出体保持手段と、気泡放出孔に連通する気体室と、気体室に気体を供給する気体供給手段と、気泡放出体を液体に対して相対的に移動させ、気泡放出面上に液体の相対流を生じさせる相対駆動手段とを備え、液体の相対流に乱流を生じさせる乱流促進手段を気泡放出面上に配設したことを特徴とする。   In order to solve the above-mentioned problems, a microbubble generator according to the present invention holds a bubble emitter having a plurality of bubble discharge holes for releasing bubbles on a bubble release surface that forms an interface with a liquid, and the bubble emitter. A discharge body holding means, a gas chamber communicating with the bubble discharge hole, a gas supply means for supplying a gas to the gas chamber, a bubble discharge body is moved relative to the liquid, and the liquid is placed on the bubble discharge surface. And a relative driving means for generating a relative flow, and a turbulence promoting means for generating a turbulent flow in the relative flow of the liquid is disposed on the bubble discharge surface.

また、乱流促進手段が気泡放出面上に周囲の平均流体圧力よりも低い圧力をなす低圧領域を形成することを特徴とする。
また、乱流促進手段が放出体保持手段もしくは気泡放出体から液体の相対流中に突出する突起状体からなることを特徴とする。
Further, the turbulent flow promoting means forms a low pressure region on the bubble discharge surface that forms a pressure lower than the surrounding average fluid pressure.
Further, the turbulent flow promoting means comprises a protrusion-like body projecting into the relative flow of liquid from the emitter holding means or the bubble emitter.

また、相対駆動手段が駆動軸の軸心廻りに気泡放出体を回転駆動する回転駆動装置からなることを特徴とする。
また、気泡放出体が筒状もしくは板状をなし、乱流促進手段の突起状体が気泡放出体の回転軸心廻りに放射状に配置した羽根からなることを特徴とする。
Further, the relative drive means is composed of a rotational drive device for rotationally driving the bubble emitter around the axis of the drive shaft.
In addition, the bubble emitter is cylindrical or plate-like, and the protrusions of the turbulence promoting means are composed of blades arranged radially around the rotation axis of the bubble emitter.

また、相対駆動手段が気泡放出面に沿って液体を供給するポンプ装置からなることを特徴とする。
また、気泡放出体が筒状をなし、乱流促進手段が螺旋状の突起状体もしくは複数の環状突起体であることを特徴とする。
Further, the relative drive means is composed of a pump device for supplying a liquid along the bubble discharge surface.
Further, the bubble emitting body is cylindrical, and the turbulent flow promoting means is a spiral protrusion or a plurality of annular protrusions.

また、気泡放出体が炭素材またはセラミックの多孔質体もしくは焼結金属からなることを特徴とする。   Further, the bubble emitting body is made of a carbon material, a ceramic porous body, or a sintered metal.

以上のように本発明によれば、相対駆動手段により気泡放出体を液体に対して移動させて気泡放出面上に液体の相対流を生じさせる。気体供給手段により気体室に供給した気体は気泡放出孔を通って液体との界面をなす気泡放出面から液体中に噴出する。このとき、気泡放出面が液体に対して相対的に移動することで、気泡放出面から液体中に噴出する気体が微細な気泡となって噴出し、気泡放出面上に配設した乱流促進手段により、気泡放出孔から噴出する気体に対して確実に乱流を作用させることができる。   As described above, according to the present invention, the bubble emitter is moved with respect to the liquid by the relative driving means to generate a relative flow of the liquid on the bubble discharge surface. The gas supplied to the gas chamber by the gas supply means is ejected into the liquid from the bubble discharge surface that forms an interface with the liquid through the bubble discharge hole. At this time, the bubble discharge surface moves relative to the liquid, so that the gas ejected from the bubble discharge surface into the liquid is ejected as fine bubbles, and turbulent flow is arranged on the bubble discharge surface. By the means, a turbulent flow can be reliably applied to the gas ejected from the bubble discharge hole.

本発明においては、気泡放出孔から噴出した時点で気泡は既に微細な気泡径をなしており、乱流促進手段は気泡放出面に確実に乱流を作用させ、噴出した微細な気泡を気泡放出孔付近から速やかに離散させ、気泡同士の合体を抑制するものである。よって、供給する気体の圧力および液体の流速に依拠することなく微細な気泡を発生させることができる。   In the present invention, when the bubbles are ejected from the bubble ejection holes, the bubbles already have a fine bubble diameter, and the turbulence promoting means ensures that the turbulent flow acts on the bubble ejection surface and discharges the ejected fine bubbles to the bubbles. It is made to dissipate quickly from the vicinity of the hole and suppress the coalescence of bubbles. Therefore, fine bubbles can be generated without depending on the pressure of the supplied gas and the flow rate of the liquid.

以下、本発明の実施の形態を図面に基づいて説明する。図1に示すように、本実施の形態の微細気泡発生装置1は水槽、水路等の水中に配置する場合のものであり、底壁面2に載置した脚部3に相対駆動手段としての回転駆動装置をなす水中モータ装置4を備えている。なお、回転駆動装置としては水中モータ装置4に限らず、エンジン装置などを適宜に用いることができる。水中モータ装置4の駆動軸5には気泡放出部6を連結しており、気泡放出部6は気体供給手段としての空気供給管路7に回転自在に連結している。空気供給管路7は空気供給源に接続している。本実施の形態では液体を水、気体を空気として説明するが、本発明の適応は水、空気に限るものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the fine bubble generating device 1 of the present embodiment is a case where it is placed in water such as a water tank or a water channel, and rotates as a relative driving means on a leg 3 placed on a bottom wall surface 2. An underwater motor device 4 is provided as a driving device. The rotation drive device is not limited to the submersible motor device 4, and an engine device or the like can be used as appropriate. A bubble discharge unit 6 is connected to the drive shaft 5 of the submersible motor device 4, and the bubble discharge unit 6 is rotatably connected to an air supply line 7 as a gas supply means. The air supply line 7 is connected to an air supply source. In the present embodiment, the liquid is water and the gas is air. However, the present invention is not limited to water and air.

また、微細気泡発生装置1は、図9に示すように、水槽の外へ設置することも可能であるし、図10に示すように、水槽の中へ設置する場合にあって、空気供給管路7が水中モータ装置4を貫通して気泡放出部6に連結される構造も可能である。   Further, the fine bubble generating device 1 can be installed outside the water tank as shown in FIG. 9, and when installed in the water tank as shown in FIG. A structure in which the path 7 penetrates the underwater motor device 4 and is connected to the bubble discharge unit 6 is also possible.

図2〜図6に示すように、気泡放出部6は、気泡放出体をなす多孔質体8と、放出体保持手段をなす本体ケーシング9および羽根部10を備えている。本実施の形態の多孔質体8は炭素材からなるが、気泡放出体にはセラミックや焼結金属を使用することも可能であるし、多孔質膜を用いても良い。   As shown in FIGS. 2-6, the bubble discharge | release part 6 is provided with the main body casing 9 and the blade | wing part 10 which make | form the porous body 8 which makes a bubble discharge body, and discharge body holding means. Although the porous body 8 of the present embodiment is made of a carbon material, ceramic or sintered metal can be used for the bubble emitter, or a porous film may be used.

図5に示すように、多孔質体8は板状であり、ここでは円板状をなして中央に通気孔8aが形成してあり、水との界面をなす気泡放出面8bに、気泡を放出する複数の気泡放出孔を規則的もしくは不規則的に配置してある。この気泡放出孔は水中へ放出する空気の気泡径に応じた微小な所定口径とすることで、微細な気泡を噴出できるように構成している。本実施の形態では、気泡径が数十μm、気泡放出孔の口径が0.4〜5μmであり、多孔質体8は気孔率12〜35%で、その使用最高圧力が0.6MPaである。   As shown in FIG. 5, the porous body 8 has a plate shape, and here, a circular hole is formed in the center, and a vent hole 8 a is formed at the center. Bubbles are formed on the bubble discharge surface 8 b that forms an interface with water. A plurality of bubble discharge holes to be discharged are arranged regularly or irregularly. This bubble discharge hole is configured so that fine bubbles can be ejected by setting it to a minute predetermined diameter corresponding to the bubble diameter of the air discharged into the water. In the present embodiment, the bubble diameter is several tens of μm, the diameter of the bubble discharge hole is 0.4 to 5 μm, the porous body 8 has a porosity of 12 to 35%, and its maximum use pressure is 0.6 MPa. .

本体ケーシング9は、図4に示すように、水中モータ装置4の駆動軸5に連結するための結合孔9aおよびキー溝9bを有し、内側に形成した凹部が気体室11をなし、気体室11の開口側に多孔質体8を羽根部10との間に保持している。本体ケーシング9の内側には多孔質体8との間隙を維持するためのスペーサ12を結合孔9aの周囲に放射状に形成している。気体室11は多孔質体8の気泡放出孔に連通し、かつ空気供給管路7が羽根部10を介して気体室11に連通している。   As shown in FIG. 4, the main body casing 9 has a coupling hole 9 a and a key groove 9 b for connecting to the drive shaft 5 of the submersible motor device 4, and a recess formed inside forms a gas chamber 11. The porous body 8 is held between the blade portion 10 on the opening side of 11. Spacers 12 for maintaining a gap with the porous body 8 are radially formed around the coupling hole 9 a inside the main body casing 9. The gas chamber 11 communicates with the bubble discharge hole of the porous body 8, and the air supply conduit 7 communicates with the gas chamber 11 via the blade portion 10.

羽根部10は、図6に示すように、本体ケーシング9にボルト13で固定するためのフランジ14と、空気供給管路7に接続するためのハブ15と、ハブ15の周囲に放射状に配置した乱流促進手段をなす複数の羽根16とからなる。   As shown in FIG. 6, the blade portion 10 is arranged radially around the hub 15, a flange 14 for fixing to the main body casing 9 with bolts 13, a hub 15 for connection to the air supply pipe 7, and the hub 15. It consists of a plurality of blades 16 that form turbulent flow promoting means.

各羽根16は多孔質体8の気泡放出面8bの面上に位置し、気泡放出面8bから水中の相対流中に突出する突起状体をなし、各羽根16の相互間の開口10aにおいて多孔質体8の気泡放出面8bが露出している。このとき、羽根16と気泡放出面8bとは必ずしも密着している必要はなく、小さな隙間があっても所定の作用効果を得ることができる。   Each blade 16 is located on the surface of the bubble discharge surface 8b of the porous body 8 and forms a protrusion that protrudes from the bubble discharge surface 8b into the relative flow of water, and is porous at the opening 10a between the blades 16. The bubble discharge surface 8b of the material 8 is exposed. At this time, the blade 16 and the bubble discharge surface 8b do not necessarily need to be in close contact with each other, and a predetermined effect can be obtained even if there is a small gap.

ハブ15は連結孔15aが軸封体17を介して空気供給管路7に回転自在に連結している。
この構成により、相対駆動手段をなす水中モータ装置4は駆動軸5の回転により気泡放出部6を駆動軸5の軸心廻りに回転駆動し、多孔質体8を水中で水に対して相対的に移動させ、気泡放出面8bの面上に水の相対流を生じさせる。
The hub 15 has a connection hole 15 a rotatably connected to the air supply pipe line 7 through a shaft seal 17.
With this configuration, the submersible motor device 4 serving as a relative drive means rotates the bubble discharge portion 6 around the axis of the drive shaft 5 by the rotation of the drive shaft 5, and the porous body 8 is relative to the water in water. And a relative flow of water is generated on the surface of the bubble discharge surface 8b.

空気供給管路7から気体室11に流入した空気は、多孔質体8の気泡放出孔を通って水との界面をなす気泡放出面8bの面上に微小気泡として噴出し、気泡放出面8bが水中を移動することで気泡放出面8bの面上を渦流を伴って流れる相対流が微小気泡を連行、離散させ、気泡同士の合体を抑制する。   The air that has flowed into the gas chamber 11 from the air supply pipe 7 passes through the bubble discharge holes of the porous body 8 and is ejected as microbubbles onto the surface of the bubble discharge surface 8b that forms an interface with water, and the bubble discharge surface 8b. As the water moves in the water, the relative flow flowing along with the vortex on the surface of the bubble discharge surface 8b entrains and separates the microbubbles and suppresses the coalescence of the bubbles.

相対駆動手段としては、後述するように、気泡放出面8bに沿って水を供給するポンプ装置を採用することも可能であるが、相対駆動手段としてモータ装置を採用し、気泡放出体をなす多孔質体8を回転駆動する場合には、対象液体が大量である場合にもポンプ装置を採用する場合に比べて少ない動力で微細な気泡を発生させることができる。   As the relative driving means, as will be described later, it is possible to adopt a pump device that supplies water along the bubble discharge surface 8b. However, a motor device is adopted as the relative driving means, and the porous structure forming the bubble emitting body is adopted. When the material 8 is rotationally driven, fine bubbles can be generated with less power than when the pump device is employed even when the amount of target liquid is large.

多孔質体8と一体に回転する羽根部10は羽根16による水理作用により下方の水を吸い上げるとともに、気泡を周囲に拡散させる。そして、図7に示すように、羽根16が気泡放出面8bの面上で相対流の流れを乱し、気泡放出面8bの面上に確実に渦流を伴う乱流を生じさせることにより、気泡放出孔から噴出する空気に対して確実に乱流を作用させることができる。また、羽根部10の回転方向において羽根16の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成される。この低圧作用を受けて気泡放出孔から空気が噴出し易くなり、より細やかな気泡となる。   The blade portion 10 that rotates integrally with the porous body 8 sucks water below by the hydraulic action of the blade 16 and diffuses bubbles to the surroundings. Then, as shown in FIG. 7, the blade 16 disturbs the flow of the relative flow on the surface of the bubble discharge surface 8b, and the turbulent flow with the vortex flow is surely generated on the surface of the bubble discharge surface 8b. A turbulent flow can be reliably applied to the air ejected from the discharge hole. In addition, a low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the surface of the bubble discharge surface 8b on the downstream side of the blade 16 in the rotation direction of the blade portion 10. Under the action of this low pressure, air is easily ejected from the bubble discharge hole, resulting in finer bubbles.

本実施の形態では、多孔質体8を円板状に形成し、羽根16の相互間において多孔質体8の気泡放出面8bを露出させたが、本発明の他の実施の形態としては、図8に示すように、水の相対流の流れ方向において突起状体である羽根16の下流側面に多孔質体8の気泡放出面8bを配設しても良い。この場合に、羽根部10は羽根16の下流側領域に細い開口10aを有し、この開口10aに羽根16と平行に板状の多孔質体8を配置して保持する。   In the present embodiment, the porous body 8 is formed in a disk shape, and the bubble discharge surface 8b of the porous body 8 is exposed between the blades 16. However, as another embodiment of the present invention, As shown in FIG. 8, you may arrange | position the bubble discharge | release surface 8b of the porous body 8 in the downstream side surface of the blade | wing 16 which is a protrusion-like body in the flow direction of the relative flow of water. In this case, the blade portion 10 has a narrow opening 10 a in the downstream region of the blade 16, and the plate-like porous body 8 is arranged and held in parallel with the blade 16 in the opening 10 a.

この構成により、羽根部10の回転方向において羽根16の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成され、気泡放出面8bの面上に確実に渦流を伴う乱流が生じ、気泡放出孔から噴出する空気に対して確実に乱流が作用し、気泡放出孔から空気が微細な気泡として噴出する。   With this configuration, a low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the surface of the bubble discharge surface 8b on the downstream side of the blade 16 in the rotation direction of the blade portion 10, and on the surface of the bubble discharge surface 8b. A turbulent flow with a vortex flow is surely generated, and the turbulent flow surely acts on the air ejected from the bubble discharge hole, and the air is ejected as fine bubbles from the bubble discharge hole.

本発明の他の実施の形態としては、図11に示すように、本体ケーシング9および多孔質体8を円筒状に形成し、多孔質体8を保持する別途の手段(図示省略)を介して両者を同心状に配置し、本体ケーシング9と多孔質体8の間に水路18を形成し、多孔質体8の内部に気体室11を形成することも可能である。多孔質体8はスプライン状をなし、その外周面には水中に突出する突起状体をなす羽根16が多孔質体8の軸心廻りに放射状に形成してあり、各羽根16が多孔質体8の軸心方向に直線状に延びている。   As another embodiment of the present invention, as shown in FIG. 11, the main body casing 9 and the porous body 8 are formed in a cylindrical shape, and through another means (not shown) for holding the porous body 8. It is also possible to arrange both of them concentrically, form a water channel 18 between the main body casing 9 and the porous body 8, and form the gas chamber 11 inside the porous body 8. The porous body 8 has a spline shape, and on the outer peripheral surface thereof, blades 16 forming protrusions protruding into water are formed radially around the axis of the porous body 8, and each blade 16 is a porous body. 8 linearly extends in the axial direction.

この場合には、多孔質体8を軸心廻りに回転駆動する状態で水路18に水を通水し、気体室11に空気を供給する。気体室11の空気は多孔質体8の気泡放出孔を通って水との界面をなす気泡放出面8bの面上に微小気泡として噴出し、気泡放出面8bが水中を移動することで気泡放出面8bの面上を渦流を伴って流れる相対流が微小気泡を連行、離散させる。   In this case, water is supplied to the water channel 18 in a state where the porous body 8 is rotationally driven around the axis, and air is supplied to the gas chamber 11. The air in the gas chamber 11 is ejected as microbubbles through the bubble discharge hole of the porous body 8 onto the surface of the bubble discharge surface 8b that forms an interface with water, and the bubble discharge surface 8b moves through the water to release the bubble. The relative flow flowing along the vortex on the surface 8b entrains and separates the microbubbles.

多孔質体8と一体に回転する羽根16が気泡放出面8bの面上で相対流の流れを乱し、気泡放出面8bの面上に確実に渦流を伴う乱流を生じさせ、気泡放出孔から噴出する空気に対して確実に乱流を作用させる。   The vane 16 rotating integrally with the porous body 8 disturbs the flow of the relative flow on the surface of the bubble discharge surface 8b, and reliably generates a turbulent flow with a vortex on the surface of the bubble discharge surface 8b. A turbulent flow is surely applied to the air ejected from the air.

羽根16の回転方向において羽根16の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成される。この低圧作用を受けて気泡放出孔から噴出する空気がより細やかな気泡となる。   A low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the bubble discharge surface 8 b on the downstream side of the blade 16 in the rotation direction of the blade 16. The air ejected from the bubble discharge hole under this low pressure action becomes finer bubbles.

本発明の他の実施の形態としては、図12に示すように、本体ケーシング9および多孔質体8を円筒状に形成し、多孔質体8を保持する別途の手段(図示省略)を介して両者を同心状に配置し、本体ケーシング9と多孔質体8の間に気体室11を形成し、多孔質体8の内部に水路18を形成することも可能である。多孔質体8はスプライン状をなし、その内周面には水中に突出する突起状体をなす羽根16が多孔質体8の軸心廻りに放射状に形成してあり、各羽根16が多孔質体8の軸心方向に直線状に延びている。   As another embodiment of the present invention, as shown in FIG. 12, the main body casing 9 and the porous body 8 are formed in a cylindrical shape, and through another means (not shown) for holding the porous body 8. Both can be arranged concentrically, the gas chamber 11 can be formed between the main body casing 9 and the porous body 8, and the water channel 18 can be formed inside the porous body 8. The porous body 8 has a spline shape, and on its inner peripheral surface, blades 16 that form protrusions protruding into water are formed radially around the axis of the porous body 8, and each blade 16 is porous. It extends linearly in the axial direction of the body 8.

この場合には、多孔質体8を軸心廻りに回転駆動する状態で水路18に水を通水し、気体室11に空気を供給する。気体室11の空気は多孔質体8の気泡放出孔を通って水との界面をなす気泡放出面8bの面上に微小気泡として噴出し、気泡放出面8bが水中を移動することで気泡放出面8bの面上を渦流を伴って流れる相対流が微小気泡を連行、離散させる。   In this case, water is supplied to the water channel 18 in a state where the porous body 8 is rotationally driven around the axis, and air is supplied to the gas chamber 11. The air in the gas chamber 11 is ejected as microbubbles through the bubble discharge hole of the porous body 8 onto the surface of the bubble discharge surface 8b that forms an interface with water, and the bubble discharge surface 8b moves through the water to release the bubble. The relative flow flowing along the vortex on the surface 8b entrains and separates the microbubbles.

多孔質体8と一体に回転する羽根16が気泡放出面8bの面上で相対流の流れを乱し、気泡放出面8bの面上に確実に渦流を伴う乱流を生じさせ、気泡放出孔から噴出する空気に対して確実に乱流を作用させる。   The vane 16 rotating integrally with the porous body 8 disturbs the flow of the relative flow on the surface of the bubble discharge surface 8b, and reliably generates a turbulent flow with a vortex on the surface of the bubble discharge surface 8b. A turbulent flow is surely applied to the air ejected from the air.

羽根16の回転方向において羽根16の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成される。この低圧作用を受けて気泡放出孔から噴出する空気がより細やかな気泡となる。   A low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the bubble discharge surface 8 b on the downstream side of the blade 16 in the rotation direction of the blade 16. The air ejected from the bubble discharge hole under this low pressure action becomes finer bubbles.

本発明の他の実施の形態としては、図13に示すように、放出体保持手段をなす本体ケーシング9および多孔質体8を円筒状に形成し、両者を同心状に固定的に配置し、本体ケーシング9と多孔質体8の間に水路18を形成し、多孔質体8の内部に気体室11を形成することも可能である。多孔質体8は外周面に水中に突出する複数の突起状体19が多孔質体8の軸心廻りに環状に形成してあり、突起状体19は多孔質体8の軸心方向に沿って所定ピッチで配列してある。突起状体19は螺旋状に形成することも可能である。   As other embodiment of this invention, as shown in FIG. 13, the main body casing 9 and the porous body 8 that form the emitter holding means are formed in a cylindrical shape, and both are fixedly arranged concentrically, It is also possible to form a water channel 18 between the main body casing 9 and the porous body 8 and form the gas chamber 11 inside the porous body 8. In the porous body 8, a plurality of protrusions 19 projecting into water on the outer peripheral surface are formed in an annular shape around the axis of the porous body 8, and the protrusions 19 are along the axial direction of the porous body 8. Are arranged at a predetermined pitch. The protruding body 19 can also be formed in a spiral shape.

この構成においては、多孔質体8の気泡放出面8bの面上に相対流を生じさせる相対駆動手段とポンプ装置を採用する。ポンプ装置により水路18に水を供給し、気泡放出面8bに沿って水が流れる状態において、気体室11に空気を供給する。気体室11の空気は多孔質体8の気泡放出孔を通って水との界面をなす気泡放出面8bの面上に微小気泡として噴出し、気泡放出面8bの面上を渦流を伴って流れる相対流が微小気泡を連行、離散させる。   In this configuration, a relative driving means and a pump device that generate a relative flow on the surface of the bubble discharge surface 8b of the porous body 8 are employed. Water is supplied to the water channel 18 by the pump device, and air is supplied to the gas chamber 11 in a state where the water flows along the bubble discharge surface 8b. The air in the gas chamber 11 is ejected as microbubbles through the bubble discharge hole of the porous body 8 onto the surface of the bubble discharge surface 8b that forms an interface with water, and flows on the surface of the bubble discharge surface 8b with a vortex. The relative flow entrains and separates microbubbles.

多孔質体8の突起状体19が気泡放出面8bの面上で相対流の流れを乱し、気泡放出面8bの面上に確実に渦流を伴う乱流を生じさせ、気泡放出孔から噴出する空気に対して確実に乱流を作用させる。   The protruding body 19 of the porous body 8 disturbs the flow of the relative flow on the surface of the bubble discharge surface 8b, and the turbulent flow with the vortex is surely generated on the surface of the bubble discharge surface 8b. The turbulent flow is surely applied to the air.

突起状体19の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成される。この低圧作用を受けて気泡放出孔から噴出する空気がより細やかな気泡となる。   A low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the bubble discharge surface 8b on the downstream side of the protrusion 19. The air ejected from the bubble discharge hole under this low pressure action becomes finer bubbles.

本発明の他の実施の形態としては、図14に示すように、放出体保持手段をなす本体ケーシング9および多孔質体8を円筒状に形成し、両者を同心状に固定的に配置し、本体ケーシング9と多孔質体8の間に気体室11を形成し、多孔質体8の内部に水路18を形成することも可能である。多孔質体8は内周面に水中に突出する複数の突起状体19が多孔質体8の軸心廻りに環状に形成してあり、突起状体19は多孔質体8の軸心方向に沿って所定ピッチで配列してある。突起状体19は螺旋状に形成することも可能である。また、図15に示すように、環状の突起状体19は棒状部材20で相互に結合したものを本体ケーシング9に取り付けてもよい。このとき、環状の突起状体と気泡放出面とは必ずしも密着する必要はなく、微小な間隙があっても所定の作用効果を得ることができる。   As other embodiment of this invention, as shown in FIG. 14, the main body casing 9 and the porous body 8 which constitute the emitter holding means are formed in a cylindrical shape, and both are fixedly arranged concentrically. It is also possible to form the gas chamber 11 between the main body casing 9 and the porous body 8 and form the water channel 18 inside the porous body 8. In the porous body 8, a plurality of protrusions 19 projecting into water on the inner peripheral surface are formed in an annular shape around the axis of the porous body 8, and the protrusions 19 are arranged in the axial direction of the porous body 8. Are arranged at a predetermined pitch. The protruding body 19 can also be formed in a spiral shape. Further, as shown in FIG. 15, the annular protrusions 19 may be attached to the main casing 9 by being connected to each other by rod-like members 20. At this time, it is not always necessary that the annular protrusion and the bubble discharge surface are in close contact with each other, and a predetermined effect can be obtained even if there is a minute gap.

上述した構成においては、多孔質体8の気泡放出面8bの面上に相対流を生じさせる相対駆動手段とポンプ装置を採用する。ポンプ装置により水路18に水を供給し、気泡放出面8bに沿って水が流れる状態において、気体室11に空気を供給する。気体室11の空気は多孔質体8の気泡放出孔を通って水との界面をなす気泡放出面8bの面上に微小気泡として噴出し、気泡放出面8bの面上を渦流を伴って流れる相対流が微小気泡を連行、離散させる。   In the configuration described above, a relative driving means and a pump device that generate a relative flow on the surface of the bubble discharge surface 8b of the porous body 8 are employed. Water is supplied to the water channel 18 by the pump device, and air is supplied to the gas chamber 11 in a state where the water flows along the bubble discharge surface 8b. The air in the gas chamber 11 is ejected as microbubbles through the bubble discharge hole of the porous body 8 onto the surface of the bubble discharge surface 8b that forms an interface with water, and flows on the surface of the bubble discharge surface 8b with a vortex. The relative flow entrains and separates microbubbles.

多孔質体8の突起状体19が気泡放出面8bの面上で相対流の流れを乱し、気泡放出面8bの面上に確実に渦流を伴う乱流を生じさせ、気泡放出孔から噴出する空気に対して確実に乱流を作用させる。   The protruding body 19 of the porous body 8 disturbs the flow of the relative flow on the surface of the bubble discharge surface 8b, and the turbulent flow with the vortex is surely generated on the surface of the bubble discharge surface 8b. The turbulent flow is surely applied to the air.

突起状体19の下流側の気泡放出面8bの面上には周囲の平均流体圧力よりも低い圧力をなす低圧領域が形成される。この低圧作用を受けて気泡放出孔から噴出する空気がより細やかな気泡となる。   A low pressure region having a pressure lower than the surrounding average fluid pressure is formed on the bubble discharge surface 8b on the downstream side of the protrusion 19. The air ejected from the bubble discharge hole under this low pressure action becomes finer bubbles.

なお、上記の実施の形態では、乱流促進手段として突起状体を用いた例を説明したが突起状体に限定されるものでなく、気泡放出面に溝を設けたものであってもよい。   In the above-described embodiment, the example in which the protruding body is used as the turbulent flow promoting means has been described. However, the embodiment is not limited to the protruding body, and a groove may be provided on the bubble discharge surface. .

本発明の実施の形態における微細気泡発生装置を示す正面図The front view which shows the microbubble generator in embodiment of this invention 同実施の形態における気泡放出部を示す断面図Sectional drawing which shows the bubble discharge | release part in the same embodiment 同実施の形態における気泡放出部を示す平面図The top view which shows the bubble discharge | release part in the same embodiment (a)は同実施の形態における本体ケーシングを示す平面図、(b)は(a)におけるA−B矢視断面図(A) is a top view which shows the main body casing in the embodiment, (b) is AB sectional view taken on the line in (a). (a)は同実施の形態における多孔体質を示す断面図、(b)は同実施の形態における多孔体質を示す平面図(A) is sectional drawing which shows the porous body in the embodiment, (b) is a top view which shows the porous body in the embodiment (a)は同実施の形態における羽根部を示す断面図、(b)は同実施の形態における羽根部を示す平面図(A) is sectional drawing which shows the blade | wing part in the same embodiment, (b) is a top view which shows the blade | wing part in the same embodiment 同実施の形態における作用を示す模式図Schematic diagram showing the operation in the same embodiment 他の実施の形態における作用を示す模式図Schematic diagram showing the operation in another embodiment 他の実施の形態における微細気泡発生装置を示す正面図The front view which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す正面図The front view which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment 他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment

符号の説明Explanation of symbols

1 微細気泡発生装置
2 底壁面
3 脚部
4 水中モータ装置
5 駆動軸
6 気泡放出部
7 空気供給管路
8 多孔質体
8a 通気孔
8b 気泡放出面
9 本体ケーシング
9a 結合孔
9b キー溝
10 羽根部
10a 開口
11 気体室
12 スペーサ
13 ボルト
14 フランジ
15 ハブ
15a 連結孔
16 羽根
17 軸封体
18 水路
19 突起状体
20 棒状部材
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 2 Bottom wall surface 3 Leg part 4 Submersible motor device 5 Drive shaft 6 Bubble discharge part 7 Air supply line 8 Porous body 8a Vent hole 8b Bubble discharge surface 9 Main body casing 9a Bonding hole 9b Key groove 10 Blade part DESCRIPTION OF SYMBOLS 10a Opening 11 Gas chamber 12 Spacer 13 Bolt 14 Flange 15 Hub 15a Connecting hole 16 Blade 17 Shaft seal 18 Water channel 19 Projection body 20 Rod-shaped member

Claims (8)

液体との界面をなす気泡放出面に、気泡を放出する複数の気泡放出孔を配置した気泡放出体と、気泡放出体を保持する放出体保持手段と、気泡放出孔に連通する気体室と、気体室に気体を供給する気体供給手段と、気泡放出体を液体に対して相対的に移動させ、気泡放出面上に液体の相対流を生じさせる相対駆動手段とを備え、液体の相対流に乱流を生じさせる乱流促進手段を気泡放出面上に配設したことを特徴とする微細気泡発生装置。 A bubble emitting body in which a plurality of bubble emitting holes for emitting bubbles are arranged on a bubble emitting surface forming an interface with the liquid, an emitter holding means for holding the bubble emitting body, a gas chamber communicating with the bubble emitting hole, A gas supply means for supplying gas to the gas chamber; and a relative drive means for moving the bubble emitter relative to the liquid to generate a relative flow of the liquid on the bubble discharge surface. A turbulent flow promoting means for generating turbulent flow is disposed on a bubble discharge surface. 乱流促進手段が気泡放出面上に周囲の平均流体圧力よりも低い圧力をなす低圧領域を形成することを特徴とする請求項1に記載の微細気泡発生装置。 2. The fine bubble generating device according to claim 1, wherein the turbulent flow promoting means forms a low-pressure region on the bubble discharge surface that has a pressure lower than the surrounding average fluid pressure. 乱流促進手段が放出体保持手段もしくは気泡放出体から液体の相対流中に突出する突起状体からなることを特徴とする請求項1または2に記載の微細気泡発生装置。 3. The fine bubble generating apparatus according to claim 1, wherein the turbulent flow promoting means comprises a protrusion-like body protruding into the relative flow of liquid from the discharge body holding means or the bubble discharge body. 相対駆動手段が駆動軸の軸心廻りに気泡放出体を回転駆動する回転駆動装置からなることを特徴とする請求項3に記載の微細気泡発生装置。 4. The fine bubble generating device according to claim 3, wherein the relative drive means comprises a rotation drive device that rotationally drives the bubble emitter around the axis of the drive shaft. 気泡放出体が筒状もしくは板状をなし、乱流促進手段の突起状体が気泡放出体の回転軸心廻りに放射状に配置した羽根からなることを特徴とする請求項4に記載の微細気泡発生装置。 5. The fine bubble according to claim 4, wherein the bubble emitting body has a cylindrical shape or a plate shape, and the protrusions of the turbulence promoting means are composed of blades arranged radially around the rotation axis of the bubble emitting body. Generator. 相対駆動手段が気泡放出面に沿って液体を供給するポンプ装置からなることを特徴とする請求項3に記載の微細気泡発生装置。 4. The fine bubble generating apparatus according to claim 3, wherein the relative driving means comprises a pump device for supplying a liquid along the bubble discharge surface. 気泡放出体が筒状をなし、乱流促進手段が螺旋状の突起状体もしくは複数の環状突起体であることを特徴とする請求項6に記載の微細気泡発生装置。 7. The fine bubble generating device according to claim 6, wherein the bubble emitting body has a cylindrical shape, and the turbulence promoting means is a spiral protrusion or a plurality of annular protrusions. 気泡放出体が炭素材またはセラミックの多孔質体もしくは焼結金属からなることを特徴とする請求項1から7の何れか1項に記載の微細気泡発生装置。 The microbubble generator according to any one of claims 1 to 7, wherein the bubble emitter is made of a carbon material, a ceramic porous body, or a sintered metal.
JP2006320943A 2006-11-29 2006-11-29 Microbubble generation apparatus Pending JP2008132437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320943A JP2008132437A (en) 2006-11-29 2006-11-29 Microbubble generation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320943A JP2008132437A (en) 2006-11-29 2006-11-29 Microbubble generation apparatus

Publications (1)

Publication Number Publication Date
JP2008132437A true JP2008132437A (en) 2008-06-12

Family

ID=39557654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320943A Pending JP2008132437A (en) 2006-11-29 2006-11-29 Microbubble generation apparatus

Country Status (1)

Country Link
JP (1) JP2008132437A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122307A (en) * 2008-11-17 2010-06-03 Ricoh Co Ltd Fixing device and image forming apparatus
JP2010167404A (en) * 2008-07-30 2010-08-05 Nishiken Device:Kk Superfine bubble generating apparatus
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
JP2013523444A (en) * 2010-04-07 2013-06-17 カクゾー,マレック Diffuser for saturating water with gas
CN104707497A (en) * 2015-03-13 2015-06-17 上海行恒科技有限公司 Tiny bubble generation device
EP2460582A4 (en) * 2009-07-30 2015-10-28 Nishiken Devise Co Ltd Super-micro bubble generation device
JP5947436B1 (en) * 2015-09-02 2016-07-06 S.P.エンジニアリング株式会社 Porous body assembly and method for manufacturing the same
JP2016140801A (en) * 2015-01-30 2016-08-08 株式会社ノリタケカンパニーリミテド Microbubble generating tool and generator of microbubble-containing liquid
CN107410164A (en) * 2017-07-20 2017-12-01 长江大学 Water oxygenation, sterilizing unit
JP2019509894A (en) * 2016-03-11 2019-04-11 モリアー インコーポレイテッド Composition comprising nanobubbles in a liquid carrier
CN109928526A (en) * 2019-04-30 2019-06-25 河南恒海环保技术有限公司 A kind of multiple jet aerator and method
JPWO2017217402A1 (en) * 2016-06-15 2019-10-17 聡 安斎 Ultra-fine bubble generator for aquaculture or wastewater treatment
JPWO2020136716A1 (en) * 2018-12-25 2021-02-15 株式会社超微細科学研究所 Fine bubble generation method and fine bubble generation device
JP2021118994A (en) * 2020-01-30 2021-08-12 日本タングステン株式会社 Microbubble generator
CN114427952A (en) * 2022-01-24 2022-05-03 中国科学院力学研究所 Bubble generation and fusion experimental device and method based on low-turbulence water tank

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167404A (en) * 2008-07-30 2010-08-05 Nishiken Device:Kk Superfine bubble generating apparatus
US8919747B2 (en) 2008-07-30 2014-12-30 Nishiken Devise Co., Ltd. Super-micro bubble generation device
JP2010122307A (en) * 2008-11-17 2010-06-03 Ricoh Co Ltd Fixing device and image forming apparatus
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution
EP2460582A4 (en) * 2009-07-30 2015-10-28 Nishiken Devise Co Ltd Super-micro bubble generation device
JP2013523444A (en) * 2010-04-07 2013-06-17 カクゾー,マレック Diffuser for saturating water with gas
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
JP2016140801A (en) * 2015-01-30 2016-08-08 株式会社ノリタケカンパニーリミテド Microbubble generating tool and generator of microbubble-containing liquid
CN104707497A (en) * 2015-03-13 2015-06-17 上海行恒科技有限公司 Tiny bubble generation device
JP2017047374A (en) * 2015-09-02 2017-03-09 S.P.エンジニアリング株式会社 Porous body assembly and production method of the same
JP5947436B1 (en) * 2015-09-02 2016-07-06 S.P.エンジニアリング株式会社 Porous body assembly and method for manufacturing the same
JP2019509894A (en) * 2016-03-11 2019-04-11 モリアー インコーポレイテッド Composition comprising nanobubbles in a liquid carrier
JP7088850B2 (en) 2016-03-11 2022-06-21 モリアー インコーポレイテッド Compositions containing nanobubbles in liquid carriers
JPWO2017217402A1 (en) * 2016-06-15 2019-10-17 聡 安斎 Ultra-fine bubble generator for aquaculture or wastewater treatment
EP3485968A4 (en) * 2016-06-15 2020-02-12 Satoshi Anzai Ultrafine bubble generation device for aquaculture or wastewater treatment
US11084003B2 (en) 2016-06-15 2021-08-10 Satoshi ANZAI Ultrafine bubble generation device for aquaculture or wastewater treatment
CN107410164A (en) * 2017-07-20 2017-12-01 长江大学 Water oxygenation, sterilizing unit
JPWO2020136716A1 (en) * 2018-12-25 2021-02-15 株式会社超微細科学研究所 Fine bubble generation method and fine bubble generation device
CN109928526A (en) * 2019-04-30 2019-06-25 河南恒海环保技术有限公司 A kind of multiple jet aerator and method
JP2021118994A (en) * 2020-01-30 2021-08-12 日本タングステン株式会社 Microbubble generator
JP7133575B2 (en) 2020-01-30 2022-09-08 日本タングステン株式会社 microbubble generator
CN114427952A (en) * 2022-01-24 2022-05-03 中国科学院力学研究所 Bubble generation and fusion experimental device and method based on low-turbulence water tank

Similar Documents

Publication Publication Date Title
JP2008132437A (en) Microbubble generation apparatus
JP4884693B2 (en) Micro bubble generator
JP4392540B1 (en) Production equipment for fine bubble dispersed water
JP2009028579A (en) Bubble generating apparatus
JP2007209953A (en) Microbubble generating system
JP2009112964A (en) Fine bubble generator
JP4426612B2 (en) Fine bubble generation nozzle
JP2006194100A (en) Swirl prevention device
JP2008302285A (en) Bubble diffuser
JP2019155210A (en) Aerator
JP5770811B2 (en) Hole with hole and nanobubble generator equipped with the same
JP2010264337A (en) Aeration agitator
JPWO2009063957A1 (en) Microbubble diffusion device and method
JP5501028B2 (en) Rotary blade type bubble generator
JP2008246360A (en) Microbubble generation apparatus
JP2008246375A (en) Control method of microbubble generation apparatus and microbubble generating apparatus
JP2008246361A (en) Microbubble generation apparatus
US10864486B2 (en) Rotary gas bubble ejector
JP2008100225A (en) Air/liquid mixer
JP2012091153A (en) Fine-air-bubble generator
JP5269726B2 (en) Fluid dispersion pump
JP6345546B2 (en) Power-saving aeration stirrer
JP3828061B2 (en) Underwater aerator
JP4943482B2 (en) Underwater aerator
JP2004000897A (en) Apparatus for generating minute bubble

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430