JPWO2009060561A1 - Single crystal growth equipment - Google Patents

Single crystal growth equipment Download PDF

Info

Publication number
JPWO2009060561A1
JPWO2009060561A1 JP2009539937A JP2009539937A JPWO2009060561A1 JP WO2009060561 A1 JPWO2009060561 A1 JP WO2009060561A1 JP 2009539937 A JP2009539937 A JP 2009539937A JP 2009539937 A JP2009539937 A JP 2009539937A JP WO2009060561 A1 JPWO2009060561 A1 JP WO2009060561A1
Authority
JP
Japan
Prior art keywords
single crystal
crystal growth
cylindrical member
silicon carbide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009539937A
Other languages
Japanese (ja)
Other versions
JP5143139B2 (en
Inventor
鳥取 悟
悟 鳥取
星河 浩介
浩介 星河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009539937A priority Critical patent/JP5143139B2/en
Publication of JPWO2009060561A1 publication Critical patent/JPWO2009060561A1/en
Application granted granted Critical
Publication of JP5143139B2 publication Critical patent/JP5143139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated

Abstract

原料(3)の側から種結晶(5)の側に向かって内部通路が細くなる筒状のガイド部材(6)を配設すると共に、ガイド部材(6)を、第1の筒状部材(7)の内側に第2の筒状部材(8)を断熱層(23)を介して配置したことを特徴とし、結晶成長時の第2の筒状部材(8)の内壁温度Tg2を、炭化珪素単結晶(9)の表面温度Tcよりも高温に保つことによって、長時間の結晶成長を行っても、高品質な炭化珪素単結晶を成長できる。A cylindrical guide member (6) whose internal passage becomes narrower from the raw material (3) side toward the seed crystal (5) side is disposed, and the guide member (6) is replaced with the first cylindrical member ( 7), the second cylindrical member (8) is disposed through the heat insulating layer (23) inside, and the inner wall temperature Tg2 of the second cylindrical member (8) during crystal growth is carbonized. By keeping the surface temperature Tc higher than the surface temperature Tc of the silicon single crystal (9), a high-quality silicon carbide single crystal can be grown even if crystal growth is performed for a long time.

Description

本発明は、昇華法を用いて結晶を成長させる単結晶成長装置に関するものである。   The present invention relates to a single crystal growth apparatus for growing a crystal using a sublimation method.

炭化珪素(SiC)は、大きな熱伝導率、低い誘電率、広いバンドギャップを有し、熱的、機械的に安定した特性を持っている。従って、炭化珪素を用いた半導体素子は、従来のシリコン(Si)を用いた半導体素子よりも高い性能を持つ。その利用範囲は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などが期待されている。   Silicon carbide (SiC) has a large thermal conductivity, a low dielectric constant, a wide band gap, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using silicon carbide has higher performance than a semiconductor element using conventional silicon (Si). The range of use is expected to be environment-resistant device materials, radiation-resistant device materials, power device materials for power control, high-frequency device materials, etc. used in high-temperature environments.

この炭化珪素単結晶の製造方法として、昇華法(「改良レーリー法」とも呼ばれる)が主に採用されている。   As a method for producing this silicon carbide single crystal, a sublimation method (also referred to as “improved Rayleigh method”) is mainly employed.

図5は、この昇華法を用いた特許文献1(特開平1−305898号公報)に記載されている単結晶成長装置の断面図である。   FIG. 5 is a cross-sectional view of a single crystal growth apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 1-305898) using this sublimation method.

原料3である炭化珪素粉末が収容してある坩堝1と、種結晶支持部4を備えた坩堝蓋部2より構成されており、種結晶支持部4に種結晶5が原料3に対向するように配置されている。種結晶5としては炭化珪素単結晶が用いられる。この状態で、原料3の側が高温に、種結晶5の側が低温になるように加熱され、原料3の昇華ガスが低温の種結晶5の上で再結晶化することにより炭化珪素単結晶9が成長する。   It is composed of a crucible 1 containing silicon carbide powder as a raw material 3 and a crucible lid portion 2 provided with a seed crystal support portion 4 so that the seed crystal 5 faces the raw material 3 on the seed crystal support portion 4. Is arranged. As seed crystal 5, a silicon carbide single crystal is used. In this state, the raw material 3 side is heated to a high temperature and the seed crystal 5 side is heated to a low temperature, and the sublimation gas of the raw material 3 is recrystallized on the low temperature seed crystal 5, whereby the silicon carbide single crystal 9 is formed. grow up.

この単結晶成長装置では、坩堝蓋部2から突出させた種結晶支持部4に種結晶5を固定させているため、種結晶5から成長する炭化珪素単結晶9と、種結晶支持部4の周辺に析出する炭化珪素多結晶19が接触するのを遅らせることができる。   In this single crystal growth apparatus, since the seed crystal 5 is fixed to the seed crystal support portion 4 protruding from the crucible lid portion 2, the silicon carbide single crystal 9 grown from the seed crystal 5 and the seed crystal support portion 4 It is possible to delay contact of silicon carbide polycrystal 19 deposited around.

しかし、成長が進むと図6に示すように最終的には種結晶支持部4の周辺から析出する炭化珪素多結晶19が炭化珪素単結晶9に接触してしまう。炭化珪素単結晶9に炭化珪素多結晶19が接触すると、炭化珪素単結晶9にクラックやマイクロパイプ、転位などの欠陥が発生して結晶品質が著しく悪化することが知られている。これらの欠陥が発生するのは、結晶成長終了後の冷却時に、炭化珪素多結晶19と炭化珪素単結晶9との熱膨張係数差によって炭化珪素単結晶9に応力が発生するためであると考えられる。   However, as the growth proceeds, as shown in FIG. 6, finally, silicon carbide polycrystal 19 precipitated from the periphery of seed crystal support portion 4 comes into contact with silicon carbide single crystal 9. It is known that when the silicon carbide polycrystal 19 comes into contact with the silicon carbide single crystal 9, defects such as cracks, micropipes, and dislocations are generated in the silicon carbide single crystal 9 and the crystal quality is significantly deteriorated. It is considered that these defects occur because stress is generated in silicon carbide single crystal 9 due to a difference in thermal expansion coefficient between silicon carbide polycrystal 19 and silicon carbide single crystal 9 during cooling after the completion of crystal growth. It is done.

この課題を解決するために、特許文献2(特開2005−225710号公報)には、図7と図8の構造が記載されている。   In order to solve this problem, Patent Document 2 (Japanese Patent Laid-Open No. 2005-225710) describes the structure of FIGS.

図7の単結晶成長装置では、原料3と種結晶5間に、原料3から種結晶5に向かって内径が次第に小さくなる筒状のガイド部材6を配置することで、昇華ガスを種結晶5に導いて効率良く炭化珪素単結晶9を成長させる方法が知られている。   In the single crystal growth apparatus of FIG. 7, a cylindrical guide member 6 whose inner diameter gradually decreases from the raw material 3 toward the seed crystal 5 between the raw material 3 and the seed crystal 5, thereby sublimating gas from the seed crystal 5. There is known a method of efficiently growing the silicon carbide single crystal 9 by guiding to the above.

さらに、ガイド部材6は、その種結晶5の側端と種結晶支持部4との間に隙間が設けられており、昇華ガスの一部を坩堝蓋部2側へ流して炭化珪素単結晶9がガイド部材6に接触せずに成長するように工夫されている。   Further, the guide member 6 is provided with a gap between the side end of the seed crystal 5 and the seed crystal support portion 4, and a part of the sublimation gas is caused to flow toward the crucible lid portion 2 so that the silicon carbide single crystal 9. Is devised to grow without contacting the guide member 6.

しかしながら、ガスガイド部9内壁に炭化珪素多結晶19が析出し、この炭化珪素多結晶19と炭化珪素単結晶9が接触してしまう場合があって、ガイド部材の多結晶と炭化珪素素単結晶が接触した場合、前述のように炭化珪素単結晶に結晶欠陥が発生し、高品質な炭化珪素単結晶が得られないため、この特許文献2では図8に示すようにガイド部材6の外壁に断熱材11を設置することにより、ガイド部材6外壁からの放熱を抑制し、炭化珪素単結晶9の表面よりもガイド部材6の内壁の方が高温になるようにして、ガイド部材6に炭化珪素多結晶19を析出させないよう構成されている。
特開平1−305898号公報 特開2005−225710号公報
However, there is a case where the silicon carbide polycrystal 19 is deposited on the inner wall of the gas guide portion 9 and the silicon carbide polycrystal 19 and the silicon carbide single crystal 9 come into contact with each other. As described above, since a crystal defect occurs in the silicon carbide single crystal and a high-quality silicon carbide single crystal cannot be obtained as described above, in Patent Document 2, as shown in FIG. By installing the heat insulating material 11, heat radiation from the outer wall of the guide member 6 is suppressed, and the inner wall of the guide member 6 is heated to a higher temperature than the surface of the silicon carbide single crystal 9. The polycrystal 19 is configured not to precipitate.
JP-A-1-305898 JP 2005-225710 A

しかしながら、前記従来の構成では、断熱材11を設置しているガイド部材6の外壁と、その外側の坩堝1の側面との間に大きな温度差があるために断熱材11が昇華(劣化)しやすく、成長時間の経過とともに断熱効果が小さくなる。   However, in the conventional configuration, since there is a large temperature difference between the outer wall of the guide member 6 on which the heat insulating material 11 is installed and the side surface of the crucible 1 on the outer side, the heat insulating material 11 is sublimated (deteriorated). It is easy and the heat insulation effect becomes smaller as the growth time elapses.

そのため、長時間の結晶成長を行うとガイド部材6の内壁温度を成長中の炭化珪素単結晶9の表面温度よりも高温に保てなくなる。その結果、図9に示すように、ガイド部材6の内壁に炭化珪素多結晶19が析出し、この炭化珪素多結晶19が成長を続ける炭化珪素単結晶9と接触するため、高品質な炭化珪素単結晶が得られないという課題を有している。   Therefore, if the crystal growth is performed for a long time, the inner wall temperature of the guide member 6 cannot be kept higher than the surface temperature of the growing silicon carbide single crystal 9. As a result, as shown in FIG. 9, silicon carbide polycrystal 19 is deposited on the inner wall of guide member 6, and this silicon carbide polycrystal 19 comes into contact with growing silicon carbide single crystal 9. There is a problem that a single crystal cannot be obtained.

本発明は、長時間の結晶成長を行っても、結晶欠陥の発生を抑制した高品質な炭化珪素単結晶を成長できる単結晶成長装置を提供することを目的とする。   An object of the present invention is to provide a single crystal growth apparatus capable of growing a high-quality silicon carbide single crystal in which generation of crystal defects is suppressed even when crystal growth is performed for a long time.

本発明の単結晶成長装置は、結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を断熱層を介して配置したことを特徴とする。   In the single crystal growth apparatus of the present invention, a raw material for growing a single crystal is placed in a crystal growth vessel, a seed crystal is placed on top of the raw material, and the crystal growth vessel is heated to sublimate. In a single crystal growth apparatus for growing a single crystal by supplying a gas of the raw material onto the seed crystal, the gas from the raw material side is directed toward the seed crystal so that a gas sublimated from the raw material reaches the seed crystal. In addition, a cylindrical guide member whose internal passage is narrowed is disposed, and the second cylindrical member is disposed inside the first cylindrical member via a heat insulating layer. .

また、本発明の単結晶成長装置は、結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を間隔を空けて配置したことを特徴とする。   In addition, the single crystal growth apparatus of the present invention arranges a raw material for growing a single crystal in a crystal growth vessel, arranges a seed crystal above the raw material, and heats the crystal growth vessel. In a single crystal growth apparatus for growing a single crystal by supplying a gas of the raw material to be sublimated onto the seed crystal, the seed crystal side from the raw material side so that the gas sublimated from the raw material reaches the seed crystal A cylindrical guide member whose inner passage becomes narrower toward the inside is disposed, and the guide member is disposed inside the first cylindrical member with a second cylindrical member spaced from each other. To do.

前記ガイド部材は、前記第1の筒状部材の内側と前記第2の筒状部材の外側の間に部分的にスペーサー10を挟んで、このスペーサーを介して前記第1の筒状部材と前記第2の筒状部材とを結合していることを特徴とする。   The guide member partially sandwiches a spacer 10 between the inside of the first tubular member and the outside of the second tubular member, and the first tubular member and the The second cylindrical member is combined.

前記スペーサー部材は、黒鉛製シート材からなり、その熱伝導率は前記スペーサー部材の厚さ方向で10W/m・K以下であることを特徴とする。   The spacer member is made of a graphite sheet material, and the thermal conductivity thereof is 10 W / m · K or less in the thickness direction of the spacer member.

前記第2の筒状部材は、前記単結晶を成長させるための温度以上の融点を有することを特徴とする。   The second cylindrical member has a melting point equal to or higher than a temperature for growing the single crystal.

前記第1の筒状部材の材質が黒鉛であり、前記第2の筒状部材の材質がニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)のいずれかの金属であることを特徴とする。   The material of the first tubular member is graphite, and the material of the second tubular member is any one of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W). It is characterized by that.

前記第1の筒状部材の材質は黒鉛であり、前記第2の筒状部材の材質は炭化タンタル(TaC)であることを特徴とする。   The material of the first cylindrical member is graphite, and the material of the second cylindrical member is tantalum carbide (TaC).

本発明の単結晶成長装置によれば、長時間にわたり、結晶成長中のガイド部材の第2の筒状部材を炭化珪素単結晶表面よりも高温にすることが出来るので、成長する結晶中の欠陥の発生を抑え高品質な炭化珪素単結晶を製造することができる。   According to the single crystal growth apparatus of the present invention, since the second cylindrical member of the guide member during crystal growth can be set to a temperature higher than the surface of the silicon carbide single crystal for a long time, defects in the growing crystal can be obtained. Generation of high quality silicon carbide single crystal can be produced.

本発明の実施の形態1の単結晶成長装置の断面図Sectional drawing of the single-crystal growth apparatus of Embodiment 1 of this invention 同実施の形態の単結晶成長装置を用いた全体の断面図Whole sectional view using the single crystal growth apparatus of the embodiment 図2Aにおける単結晶成長中の単結晶成長装置の拡大図Enlarged view of single crystal growth apparatus during single crystal growth in FIG. 2A 同実施の形態のガイド部材の平面図とA−AA断面図The top view and A-AA sectional view of the guide member of the embodiment 本発明の実施の形態2の単結晶成長装置に使用するTaC製の第2の筒状部材の作製工程図Production process diagram of second cylindrical member made of TaC used for single crystal growth apparatus of embodiment 2 of the present invention 従来の単結晶成長装置の断面図Sectional view of conventional single crystal growth equipment 図5の単結晶成長装置において結晶成長が進んだ状態における断面図FIG. 5 is a cross-sectional view of the single crystal growth apparatus of FIG. 別の従来例の単結晶成長装置の断面図Sectional view of another conventional single crystal growth apparatus さらに別の従来例の単結晶成長装置の断面図Sectional view of yet another conventional single crystal growth apparatus 図8の単結晶成長装置における結晶成長が進んだ状態における断面図FIG. 8 is a cross-sectional view of the single crystal growth apparatus in FIG.

以下に、本発明を用いた単結晶成長装置実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of a single crystal growth apparatus using the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1〜図3は本発明の実施の形態1の単結晶成長装置を示す。
(Embodiment 1)
1 to 3 show a single crystal growth apparatus according to a first embodiment of the present invention.

図1は結晶成長前の状態を表す。この単結晶成長装置は、結晶成長容器としての坩堝1と坩堝1の上部の開口に着脱自在の坩堝蓋部2とから構成されている。坩堝1と坩堝蓋部2は何れも黒鉛製のものを使用した。   FIG. 1 shows a state before crystal growth. This single crystal growth apparatus is composed of a crucible 1 as a crystal growth vessel and a crucible lid 2 detachably attached to an upper opening of the crucible 1. Both the crucible 1 and the crucible lid 2 were made of graphite.

坩堝1の内側の底面には原料3である炭化珪素粉末を入れ、坩堝蓋部2に凸状に形成さている種結晶支持部4には原料3に対向する位置に種結晶5を固定した。種結晶5は4H型の炭化珪素単結晶を用い、その結晶成長面は(000−1)面とした。この種結晶支持部4の種結晶貼付け面は、直径50mmの円形をしており、種結晶5も同じ直径の50mmの円形のものを用いた。   The silicon carbide powder as the raw material 3 was put on the bottom surface inside the crucible 1, and the seed crystal 5 was fixed at a position facing the raw material 3 on the seed crystal support portion 4 formed in a convex shape on the crucible lid portion 2. The seed crystal 5 was a 4H type silicon carbide single crystal, and its crystal growth plane was a (000-1) plane. The seed crystal affixing surface of the seed crystal support portion 4 has a circular shape with a diameter of 50 mm, and the seed crystal 5 has a circular shape with the same diameter of 50 mm.

原料3と種結晶5の間には、原料3から昇華したガスを種結晶5に効率良く導くために、原料3の側から種結晶5の側に向かって内部通路が細くなる筒状のガイド部材6を配置した。このガイド部材6は、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置した構造となっている。   Between the raw material 3 and the seed crystal 5, a cylindrical guide whose internal passage narrows from the raw material 3 side toward the seed crystal 5 in order to efficiently guide the gas sublimated from the raw material 3 to the seed crystal 5. Member 6 was placed. The guide member 6 has a structure in which the second cylindrical member 8 is disposed inside the first cylindrical member 7 via the heat insulating layer 23.

第2の筒状部材8としては、高融点材料を用いるのが重要である。昇華法による炭化珪素単結晶の成長を行う単結晶成長装置では、成長温度が2000℃以上になるため、第2の筒状部材8にはこの温度でも固体を保つことのできる高融点材料でなければならない。ここでは、第1の筒状部材7には黒鉛を使用し、第2の筒状部材8には融点が3017℃のタンタル(Ta)を用いた。   As the second tubular member 8, it is important to use a high melting point material. In a single crystal growth apparatus that grows a silicon carbide single crystal by a sublimation method, the growth temperature is 2000 ° C. or higher. Therefore, the second cylindrical member 8 must be a high melting point material that can maintain a solid even at this temperature. I must. Here, graphite was used for the first cylindrical member 7, and tantalum (Ta) having a melting point of 3017 ° C. was used for the second cylindrical member 8.

このような高温下では、黒鉛製の坩堝1や第1の筒状部材7の表面からカーボン粒子が飛散する。このカーボン粒子が種結晶5の表面や成長する炭化珪素単結晶9の表面に付着すると、マイクロパイプ等の結晶欠陥の原因となる。そのために、第2の筒状部材8を第1の筒状部材7の内側に配置することで、炭化珪素単結晶9の表面にカーボン粒子が付着するのを第2の筒状部材8で防ぐことができる。   Under such a high temperature, carbon particles are scattered from the surfaces of the graphite crucible 1 and the first cylindrical member 7. If the carbon particles adhere to the surface of the seed crystal 5 or the surface of the growing silicon carbide single crystal 9, it causes crystal defects such as micropipes. For this purpose, the second cylindrical member 8 prevents the carbon particles from adhering to the surface of the silicon carbide single crystal 9 by arranging the second cylindrical member 8 inside the first cylindrical member 7. be able to.

図1のように種結晶と原料とを単結晶成長装置に配置した後、結晶成長を行う。図2は、結晶成長をおこなうときの状態を示す。   After the seed crystal and the raw material are arranged in the single crystal growth apparatus as shown in FIG. 1, crystal growth is performed. FIG. 2 shows a state when crystal growth is performed.

図2Aは図1の単結晶成長装置を用いた成結晶長を説明するための全体の断面図であり、図2Bは図2Aの点線で囲んだ領域Aを拡大した図である。   2A is an overall cross-sectional view for explaining the length of a formed crystal using the single crystal growth apparatus of FIG. 1, and FIG. 2B is an enlarged view of a region A surrounded by a dotted line in FIG. 2A.

図2Aに示したように単結晶成長装置を構成する坩堝1と坩堝蓋部2とを断熱材11で覆った。これは、上述したように、昇華法を用いると、炭化珪素の原料3を昇華させるために2000℃以上の高温が必要であるが、2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、それを防ぐ目的である。この断熱材11で覆った坩堝1及び坩堝蓋部2を、石英製の反応管12の内側に配置した。この反応管12は、二重管構造になっており、結晶成長中には、冷却水13を流して冷却している。また反応管12の上部にガス導入口14が、下部にはガス排気口15が設けられている。   As shown in FIG. 2A, the crucible 1 and the crucible lid 2 constituting the single crystal growth apparatus were covered with a heat insulating material 11. As described above, when the sublimation method is used, a high temperature of 2000 ° C. or higher is required to sublimate the silicon carbide raw material 3, but at a high temperature of 2000 ° C. or higher, the temperature is proportional to the fourth power of the temperature. This is to prevent radiant heat from being lost. The crucible 1 and the crucible lid portion 2 covered with the heat insulating material 11 were arranged inside the reaction tube 12 made of quartz. The reaction tube 12 has a double tube structure, and is cooled by flowing cooling water 13 during crystal growth. A gas inlet 14 is provided at the upper part of the reaction tube 12 and a gas outlet 15 is provided at the lower part.

次に、反応管12内部を不活性ガスで置換した。不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口15から反応管12内を高真空排気し、その後、ガス導入口14から不活性ガスを常圧まで充填した。その後、反応管12の周囲に螺旋状に巻かれたコイル16に高周波電流を流すことにより、坩堝1および坩堝蓋部2を誘導加熱して昇温した。   Next, the inside of the reaction tube 12 was replaced with an inert gas. As the inert gas, argon (Ar) is suitable in terms of cost, purity, and the like. In this inert gas replacement, the inside of the reaction tube 12 was first evacuated to a high vacuum from the gas exhaust port 15 and then filled with an inert gas from the gas introduction port 14 to normal pressure. Thereafter, the crucible 1 and the crucible lid 2 were heated by induction heating by passing a high-frequency current through a coil 16 spirally wound around the reaction tube 12.

加熱時は、反応管12の上下部に設けられている石英製の温度測定用窓17、及び断熱材11の上下部に設けられた温度測定用の穴11aを通して、放射温度計18で、坩堝1下部、および坩堝蓋部2の上部の温度を測定している。   At the time of heating, the crucible is heated by the radiation thermometer 18 through the quartz temperature measuring window 17 provided at the upper and lower portions of the reaction tube 12 and the temperature measuring hole 11 a provided at the upper and lower portions of the heat insulating material 11. The temperature of 1 lower part and the upper part of the crucible lid part 2 is measured.

加熱時の坩堝1の下部温度と坩堝蓋部2の上部温度は、坩堝1および坩堝蓋部2とコイル16の相対位置により決まる。昇華法の場合、前述のように原料3からの昇華ガスを種結晶5の上で再結晶化させるため、種結晶5よりも原料3の温度を高くする必要がある。本実施の形態では、坩堝1の下部温度が2300℃、坩堝蓋部2の上部温度が2200℃となるように坩堝1および坩堝蓋部2とコイル16の相対位置を調整した。   The lower temperature of the crucible 1 and the upper temperature of the crucible lid 2 during heating are determined by the relative positions of the crucible 1 and the crucible lid 2 and the coil 16. In the case of the sublimation method, the temperature of the raw material 3 needs to be higher than that of the seed crystal 5 in order to recrystallize the sublimation gas from the raw material 3 on the seed crystal 5 as described above. In the present embodiment, the relative positions of the crucible 1 and the crucible lid 2 and the coil 16 were adjusted so that the lower temperature of the crucible 1 was 2300 ° C. and the upper temperature of the crucible lid 2 was 2200 ° C.

このように加熱することで、結晶成長時には、坩堝1内の原料3の表面温度Tsが、坩堝蓋部2の種結晶支持部4に配置した種結晶5から成長する炭化珪素単結晶9の表面温度Tcよりも高温となる温度分布が形成される。また、この温度分布により、原料3の表面温度Tsが、原料3と種結晶5の間に配置されたガイド部材6の温度よりも高温になる。   By heating in this way, at the time of crystal growth, the surface temperature Ts of the raw material 3 in the crucible 1 is the surface of the silicon carbide single crystal 9 grown from the seed crystal 5 disposed on the seed crystal support 4 of the crucible lid 2. A temperature distribution that is higher than the temperature Tc is formed. Further, due to this temperature distribution, the surface temperature Ts of the raw material 3 becomes higher than the temperature of the guide member 6 disposed between the raw material 3 and the seed crystal 5.

ここで、ガイド部材6は図1と図2Bに示すように、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置した構造になっている。具体的には、第1の筒状部材7の内側と第2の筒状部材8の間に部分的にスペーサー10を挟んで、このスペーサー10を介して第1の筒状部材7と第2の筒状部材8とを結合して、第1の筒状部材7の内側と第2の筒状部材8の間に断熱層23を形成しているので、以下のような効果がある。   Here, as shown in FIGS. 1 and 2B, the guide member 6 has a structure in which the second tubular member 8 is disposed inside the first tubular member 7 with a heat insulating layer 23 interposed therebetween. Specifically, a spacer 10 is partially sandwiched between the inside of the first tubular member 7 and the second tubular member 8, and the first tubular member 7 and the second tubular member are interposed via the spacer 10. Since the heat insulating layer 23 is formed between the inner side of the first cylindrical member 7 and the second cylindrical member 8 by joining the cylindrical members 8 to each other, the following effects are obtained.

結晶成長時には、第1の筒状部材7の内側にある第2の筒状部材8の内壁が、原料3の輻射熱によって温められるが、第1の筒状部材7と第2の筒状部材8が直接に接触しないようにスペーサー10を挟んで結合されているため、第2の筒状部材8から第1の筒状部材7への熱伝導が断熱層23によって抑制される。このため、第2の筒状部材8の内壁温度Tg2が高温に保たれる。   During crystal growth, the inner wall of the second cylindrical member 8 inside the first cylindrical member 7 is warmed by the radiant heat of the raw material 3, but the first cylindrical member 7 and the second cylindrical member 8 are heated. Are coupled with the spacer 10 interposed therebetween so that the heat conduction from the second tubular member 8 to the first tubular member 7 is suppressed by the heat insulating layer 23. For this reason, the inner wall temperature Tg2 of the second cylindrical member 8 is maintained at a high temperature.

一方、種結晶5から成長する炭化珪素単結晶9の表面も、結晶成長時には原料3の輻射熱で温められるが、種結晶支持部4を通じて坩堝蓋部2の上部から放熱されるため炭化珪素単結晶9の表面温度Tcが低下する。このため、ガイド部材6の第2の筒状部材8の内壁温度Tg2を、隣接する炭化珪素単結晶9の表面温度Tcよりも高温に保つことができ、結晶成長時にTs>Tg2>Tcの関係が常に保たれている。   On the other hand, the surface of silicon carbide single crystal 9 grown from seed crystal 5 is also warmed by the radiant heat of raw material 3 during crystal growth, but is dissipated from the upper part of crucible lid portion 2 through seed crystal support portion 4. 9 surface temperature Tc decreases. Therefore, the inner wall temperature Tg2 of the second cylindrical member 8 of the guide member 6 can be kept higher than the surface temperature Tc of the adjacent silicon carbide single crystal 9, and the relationship of Ts> Tg2> Tc during crystal growth. Is always kept.

従って、原料3から昇華した昇華ガスは、ガイド部材6の高温の第2の筒状部材8の内壁ではなく、低温の炭化珪素単結晶9の表面に付着し、炭化珪素単結晶9のみが成長するという効果がある。   Accordingly, the sublimation gas sublimated from the raw material 3 adheres to the surface of the low temperature silicon carbide single crystal 9 instead of the inner wall of the high temperature second cylindrical member 8 of the guide member 6, and only the silicon carbide single crystal 9 grows. There is an effect of doing.

もし第1の筒状部材7と第2の筒状部材8が直接に接触していると、原料3からの輻射熱で加熱された第2の筒状部材8は、第1の筒状部材7を通じて坩堝1の外壁から放熱され、Tg2とTcとは、ほぼ等しい温度になる。そのため、原料3から昇華した昇華ガスは、炭化珪素単結晶9の表面と第2の筒状部材8の内壁表面とでほぼ同じ過飽和度となり、両方の表面で再結晶化する。この第2の筒状部材8の内壁で再結晶化した炭化珪素は多結晶(炭化珪素多結晶19)であり、結晶成長が進むに連れてこの炭化珪素多結晶19と炭化珪素単結晶9とが接触する。両者が接触すると、炭化珪素単結晶9にクラックやマイクロパイプ、転位などの欠陥が発生して結晶品質が著しく悪化する。これらの欠陥が発生するのは、結晶成長終了後の冷却時に、炭化珪素多結晶19と炭化珪素単結晶9との熱膨張係数差によって炭化珪素単結晶9に応力が発生するためであると考えられる。   If the first cylindrical member 7 and the second cylindrical member 8 are in direct contact with each other, the second cylindrical member 8 heated by the radiant heat from the raw material 3 is the first cylindrical member 7. The heat is dissipated from the outer wall of the crucible 1 through Tg2 and Tc, and the temperatures become substantially equal. Therefore, the sublimation gas sublimated from the raw material 3 has substantially the same degree of supersaturation on the surface of the silicon carbide single crystal 9 and the inner wall surface of the second cylindrical member 8 and is recrystallized on both surfaces. The silicon carbide recrystallized on the inner wall of the second cylindrical member 8 is polycrystalline (silicon carbide polycrystal 19). As the crystal growth proceeds, the silicon carbide polycrystal 19 and the silicon carbide single crystal 9 Touch. When both come into contact, defects such as cracks, micropipes, and dislocations are generated in the silicon carbide single crystal 9 and the crystal quality is significantly deteriorated. It is considered that these defects occur because stress is generated in silicon carbide single crystal 9 due to a difference in thermal expansion coefficient between silicon carbide polycrystal 19 and silicon carbide single crystal 9 during cooling after the completion of crystal growth. It is done.

炭化珪素単結晶9の表面温度Tcと、第1の筒状部材7の内側と第2の筒状部材8の間に部分的にスペーサー10を挟んで、このスペーサー10を介して第1の筒状部材7と第2の筒状部材8とを結合したガイド部材6の結晶成長時の第2の筒状部材8の内壁温度Tg2との好ましい温度差についてシミュレーションした結果では、Tg2をTcよりも少なくとも4℃程度高温にするだけで炭化珪素単結晶9のみが成長する良好な結果が得られた。   A spacer 10 is partially sandwiched between the surface temperature Tc of the silicon carbide single crystal 9 and the inside of the first cylindrical member 7 and the second cylindrical member 8, and the first cylinder is interposed via the spacer 10. As a result of simulating a preferable temperature difference with the inner wall temperature Tg2 of the second cylindrical member 8 at the time of crystal growth of the guide member 6 in which the cylindrical member 7 and the second cylindrical member 8 are coupled, Tg2 is more than Tc. Good results were obtained in which only the silicon carbide single crystal 9 grew only by raising the temperature to at least about 4 ° C.

ただし、第2の筒状部材8から第1の筒状部材7への熱伝導を抑制して上記の効果を得るためには、上記スペーサー10として熱伝導率が小さい材料を用いる必要がある。具体的には、熱伝導率が厚さ方向で1〜10W/m・Kである黒鉛製シートを用いれば、上記のように第2の筒状部材8を高温に保つことができる。熱伝導率が厚さ方向で10W/m・Kより大きければ第2の筒状部材8から第1の筒状部材7への熱伝導が大きくなるため、第2の筒状部材8の内壁温度Tg2を隣接する炭化珪素単結晶9の表面温度Tcよりも高温に保つことができない。   However, in order to suppress the heat conduction from the second tubular member 8 to the first tubular member 7 and obtain the above effect, it is necessary to use a material having a low thermal conductivity as the spacer 10. Specifically, if a graphite sheet having a thermal conductivity of 1 to 10 W / m · K in the thickness direction is used, the second cylindrical member 8 can be kept at a high temperature as described above. If the thermal conductivity is greater than 10 W / m · K in the thickness direction, the heat conduction from the second cylindrical member 8 to the first cylindrical member 7 increases, so the inner wall temperature of the second cylindrical member 8 is increased. Tg2 cannot be kept higher than the surface temperature Tc of the adjacent silicon carbide single crystal 9.

図3(a)は種結晶5の側からガイド部材6を見た平面図であり、図3(b)は図3(a)のA−AA断面図である。本実施の形態では、スペーサー10として、厚さ方向の熱伝導率が5W/m・Kである東洋炭素(株)(TOYO TANSO CO., LTD.)製の黒鉛シート「PERMA−FOIL」を採用し、その厚さは1.0mmで2mm角のものを用いた。スペーサー10の位置は、平面的には図3(a)に示すように略120°おきに3箇所に、図3(b)に示すように上下2箇所の、合計6箇所に設けた。   FIG. 3A is a plan view of the guide member 6 viewed from the seed crystal 5 side, and FIG. 3B is a cross-sectional view taken along the line A-AA in FIG. In this embodiment, a graphite sheet “PERMA-FOIL” manufactured by TOYO TANSO CO., LTD. Having a thermal conductivity of 5 W / m · K in the thickness direction is used as the spacer 10. The thickness was 1.0 mm and 2 mm square. As shown in FIG. 3 (a), the spacers 10 were provided at three locations approximately every 120 ° in plan view, and at two locations in the top and bottom as shown in FIG. 3 (b).

以上のようなガイド部材6を単結晶成長装置に設置して所望の温度まで昇温した後、徐々に圧力を下げて原料3を昇華させて結晶成長を開始させた。反応管12の内部の圧力を0.665kPaまで1時間かけて減圧して原料3を昇華させて50時間保持して結晶成長を行った。   After the guide member 6 as described above was installed in the single crystal growth apparatus and the temperature was raised to a desired temperature, the pressure was gradually lowered to sublimate the raw material 3 to start crystal growth. The pressure inside the reaction tube 12 was reduced to 0.665 kPa over 1 hour to sublimate the raw material 3 and maintained for 50 hours to perform crystal growth.

結晶成長終了時は、成長開始時とは逆に、反応管12の内部の圧力を80kPaまで1時間かけて昇圧して原料3の昇華を止め、その後、常温までゆっくりと冷却した。   At the end of the crystal growth, contrary to the start of the growth, the pressure inside the reaction tube 12 was increased to 80 kPa over 1 hour to stop sublimation of the raw material 3 and then slowly cooled to room temperature.

このようにして成長を行った結果、ガイド部材6の第2の筒状部材8の内壁には炭化珪素多結晶19は付着しておらず、種結晶5から成長した炭化珪素単結晶9は、ガイド部材6の第2の筒状部材8内壁にほぼ沿って口径拡大しながら成長しており、その成長量は12mm、最大口径は56mmであった。得られた炭化珪素単結晶9を成長方向に垂直にスライスした後に研磨を行ってウエハを作製した。このウエハを500℃に加熱した水酸化カリウム(KOH)溶液でエッチングした後に光学顕微鏡で観察した結果、マイクロパイプ密度が8cm−2、エッチピット密度が2.6×10cm−2の高品質な単結晶であった。As a result of the growth, the silicon carbide polycrystal 19 is not attached to the inner wall of the second cylindrical member 8 of the guide member 6, and the silicon carbide single crystal 9 grown from the seed crystal 5 is The guide member 6 grew while expanding its diameter substantially along the inner wall of the second cylindrical member 8. The growth amount was 12 mm and the maximum diameter was 56 mm. The obtained silicon carbide single crystal 9 was sliced perpendicular to the growth direction and then polished to produce a wafer. The wafer was etched with a potassium hydroxide (KOH) solution heated to 500 ° C. and then observed with an optical microscope. As a result, the micropipe density was 8 cm −2 and the etch pit density was 2.6 × 10 4 cm −2 . Single crystal.

以上のように、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置したガイド部材6を用いることにより、成長中の第2の筒状部材8の内壁温度を成長する炭化珪素単結晶9の表面温度よりも常に高温にできるため、第2の筒状部材8の内壁に炭化珪素多結晶19が付着するのを抑制でき、その結果、結晶欠陥の発生を抑制して高品質な炭化珪素単結晶9を得ることができる。   As described above, by using the guide member 6 in which the second cylindrical member 8 is disposed inside the first cylindrical member 7 via the heat insulating layer 23, the second cylindrical member 8 that is growing is used. Since the inner wall temperature can always be higher than the surface temperature of the silicon carbide single crystal 9 that grows, it is possible to suppress the silicon carbide polycrystal 19 from adhering to the inner wall of the second cylindrical member 8, and as a result, Generation | occurrence | production can be suppressed and the high quality silicon carbide single crystal 9 can be obtained.

本実施の形態では、第2の筒状部材8の材質としてTaを用いたが、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)など他の高融点金属を用いても同様の効果がある。   In the present embodiment, Ta is used as the material of the second cylindrical member 8, but the same effect can be obtained by using other refractory metals such as niobium (Nb), molybdenum (Mo), and tungsten (W). is there.

(実施の形態2)
図4は実施の形態2におけるガイド部材6に使用する第2の筒状部材8の製造工程を示している。第1の実施の形態との相違点は、ガイド部材6の第2の筒状部材8の材質にはタンタルの化合物である炭化タンタル(TaC)を用いたことである。TaCはTaよりも高い熱的安定性を持っているため、長尺の炭化珪素単結晶9を得るために更に長時間の結晶成長を行うことができる。
(Embodiment 2)
FIG. 4 shows a manufacturing process of the second cylindrical member 8 used for the guide member 6 in the second embodiment. The difference from the first embodiment is that tantalum carbide (TaC), which is a compound of tantalum, is used for the material of the second cylindrical member 8 of the guide member 6. Since TaC has higher thermal stability than Ta, crystal growth can be performed for a longer time in order to obtain a long silicon carbide single crystal 9.

図4を用いて、TaC製の第2の筒状部材8の作製工程を説明する。   With reference to FIG. 4, a process for producing the second cylindrical member 8 made of TaC will be described.

まず図4(a)に示すように、辺B−BBと辺C−CCが重なるように丸めたときに、第2の筒状部材8の形状になるように50μm厚のTa箔20を切出した。   First, as shown in FIG. 4A, when the side B-BB and the side C-CC are rounded so as to overlap, a 50 μm thick Ta foil 20 is cut out so as to have the shape of the second cylindrical member 8. It was.

その後、図4(b)に示すように内壁形状が第2の筒状部材8の形状である第1の黒鉛部材21の内壁に、上記のTa箔20を密着させてはめ込んだ。然る後、図4(c)に示すように、外壁形状が第2の筒状部材8の形状の第2の黒鉛部材22で、Ta箔20を挟み込んだ。この状態のままAr雰囲気中で2200℃、100Torrで5時間の熱処理を行ってTa箔20を炭化し、TaC製の第2の筒状部材8を得た。   Thereafter, as shown in FIG. 4B, the Ta foil 20 was fitted into the inner wall of the first graphite member 21 whose inner wall shape was the shape of the second cylindrical member 8. Thereafter, as shown in FIG. 4C, the Ta foil 20 was sandwiched between the second graphite members 22 whose outer wall shape was the shape of the second cylindrical member 8. In this state, heat treatment was performed for 5 hours at 2200 ° C. and 100 Torr in an Ar atmosphere to carbonize the Ta foil 20 to obtain a second cylindrical member 8 made of TaC.

第2の筒状部材8の材質としてTaCを用いた以外は、実施の形態1と同じ条件で100時間の結晶成長を行った。この結果、ガイド部材の第2の筒状部材8内壁には炭化珪素多結晶19は付着しておらず、成長した炭化珪素単結晶9は、ガイド部材6の第2の筒状部材8の内壁にほぼ沿って口径拡大しながら長尺に成長しており、成長量は30mm、最大口径は72mmであった。得られた炭化珪素単結晶9を成長方向に垂直にスライスした後に研磨を行ってウエハを作製した。このウエハを500℃に加熱したKOH溶液でエッチングした後に光学顕微鏡で観察した結果、マイクロパイプ密度が5cm−2、エッチピット密度が2.2×10cm−2の高品質な単結晶であった。Crystal growth was performed for 100 hours under the same conditions as in Embodiment 1 except that TaC was used as the material of the second cylindrical member 8. As a result, the silicon carbide polycrystal 19 is not attached to the inner wall of the second cylindrical member 8 of the guide member, and the grown silicon carbide single crystal 9 is not removed from the inner wall of the second cylindrical member 8 of the guide member 6. As shown in FIG. 2, the length of the sample was increased while the diameter of the tube was enlarged. The growth amount was 30 mm, and the maximum diameter was 72 mm. The obtained silicon carbide single crystal 9 was sliced perpendicular to the growth direction and then polished to produce a wafer. This wafer was etched with a KOH solution heated to 500 ° C. and then observed with an optical microscope. As a result, it was a high-quality single crystal having a micropipe density of 5 cm −2 and an etch pit density of 2.2 × 10 4 cm −2. It was.

以上のように、第2の筒状部材8の材質としてTaCを用いることにより、長尺且つ高品質な炭化珪素単結晶9を得ることができる。   As described above, by using TaC as the material of the second cylindrical member 8, a long and high-quality silicon carbide single crystal 9 can be obtained.

また、本実施の形態1及び2では、単結晶として炭化珪素を例に取り説明したが、昇華法を用いて成長させる単結晶であれば、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、窒化アルミニウム(AlN)、窒化ホウ素(BN)などにも適用できる。   In the first and second embodiments, silicon carbide is described as an example of a single crystal. However, in the case of a single crystal grown using a sublimation method, cadmium sulfide (CdS), cadmium selenide (CdSe), It can also be applied to zinc sulfide (ZnS), aluminum nitride (AlN), boron nitride (BN), and the like.

本発明は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などの各種の品質の向上に寄与することができる。   INDUSTRIAL APPLICABILITY The present invention can contribute to improvement of various qualities such as environmental resistant device materials, radiation resistant device materials, power control power device materials, and high frequency device materials used in high temperature environments.

本発明は、昇華法を用いて結晶を成長させる単結晶成長装置に関するものである。   The present invention relates to a single crystal growth apparatus for growing a crystal using a sublimation method.

炭化珪素(SiC)は、大きな熱伝導率、低い誘電率、広いバンドギャップを有し、熱的、機械的に安定した特性を持っている。従って、炭化珪素を用いた半導体素子は、従来のシリコン(Si)を用いた半導体素子よりも高い性能を持つ。その利用範囲は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などが期待されている。   Silicon carbide (SiC) has a large thermal conductivity, a low dielectric constant, a wide band gap, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using silicon carbide has higher performance than a semiconductor element using conventional silicon (Si). The range of use is expected to be environment-resistant device materials, radiation-resistant device materials, power device materials for power control, high-frequency device materials, etc. used in high-temperature environments.

この炭化珪素単結晶の製造方法として、昇華法(「改良レーリー法」とも呼ばれる)が主に採用されている。   As a method for producing this silicon carbide single crystal, a sublimation method (also referred to as “improved Rayleigh method”) is mainly employed.

図5は、この昇華法を用いた特許文献1(特開平1−305898号公報)に記載されている単結晶成長装置の断面図である。   FIG. 5 is a cross-sectional view of a single crystal growth apparatus described in Patent Document 1 (Japanese Patent Laid-Open No. 1-305898) using this sublimation method.

原料3である炭化珪素粉末が収容してある坩堝1と、種結晶支持部4を備えた坩堝蓋部2より構成されており、種結晶支持部4に種結晶5が原料3に対向するように配置されている。種結晶5としては炭化珪素単結晶が用いられる。この状態で、原料3の側が高温に、種結晶5の側が低温になるように加熱され、原料3の昇華ガスが低温の種結晶5の上で再結晶化することにより炭化珪素単結晶9が成長する。   It is composed of a crucible 1 containing silicon carbide powder as a raw material 3 and a crucible lid portion 2 provided with a seed crystal support portion 4 so that the seed crystal 5 faces the raw material 3 on the seed crystal support portion 4. Is arranged. As seed crystal 5, a silicon carbide single crystal is used. In this state, the raw material 3 side is heated to a high temperature and the seed crystal 5 side is heated to a low temperature, and the sublimation gas of the raw material 3 is recrystallized on the low temperature seed crystal 5, whereby the silicon carbide single crystal 9 is formed. grow up.

この単結晶成長装置では、坩堝蓋部2から突出させた種結晶支持部4に種結晶5を固定させているため、種結晶5から成長する炭化珪素単結晶9と、種結晶支持部4の周辺に析出する炭化珪素多結晶19が接触するのを遅らせることができる。   In this single crystal growth apparatus, since the seed crystal 5 is fixed to the seed crystal support portion 4 protruding from the crucible lid portion 2, the silicon carbide single crystal 9 grown from the seed crystal 5 and the seed crystal support portion 4 It is possible to delay contact of silicon carbide polycrystal 19 deposited around.

しかし、成長が進むと図6に示すように最終的には種結晶支持部4の周辺から析出する炭化珪素多結晶19が炭化珪素単結晶9に接触してしまう。炭化珪素単結晶9に炭化珪素多結晶19が接触すると、炭化珪素単結晶9にクラックやマイクロパイプ、転位などの欠陥が発生して結晶品質が著しく悪化することが知られている。これらの欠陥が発生するのは、結晶成長終了後の冷却時に、炭化珪素多結晶19と炭化珪素単結晶9との熱膨張係数差によって炭化珪素単結晶9に応力が発生するためであると考えられる。   However, as the growth proceeds, as shown in FIG. 6, finally, silicon carbide polycrystal 19 precipitated from the periphery of seed crystal support portion 4 comes into contact with silicon carbide single crystal 9. It is known that when the silicon carbide polycrystal 19 comes into contact with the silicon carbide single crystal 9, defects such as cracks, micropipes, and dislocations are generated in the silicon carbide single crystal 9 and the crystal quality is significantly deteriorated. It is considered that these defects occur because stress is generated in silicon carbide single crystal 9 due to a difference in thermal expansion coefficient between silicon carbide polycrystal 19 and silicon carbide single crystal 9 during cooling after the completion of crystal growth. It is done.

この課題を解決するために、特許文献2(特開2005−225710号公報)には、図7と図8の構造が記載されている。   In order to solve this problem, Patent Document 2 (Japanese Patent Laid-Open No. 2005-225710) describes the structure of FIGS.

図7の単結晶成長装置では、原料3と種結晶5間に、原料3から種結晶5に向かって内径が次第に小さくなる筒状のガイド部材6を配置することで、昇華ガスを種結晶5に導いて効率良く炭化珪素単結晶9を成長させる方法が知られている。   In the single crystal growth apparatus of FIG. 7, a cylindrical guide member 6 whose inner diameter gradually decreases from the raw material 3 toward the seed crystal 5 between the raw material 3 and the seed crystal 5, thereby sublimating gas from the seed crystal 5. There is known a method of efficiently growing the silicon carbide single crystal 9 by guiding to the above.

さらに、ガイド部材6は、その種結晶5の側端と種結晶支持部4との間に隙間が設けられており、昇華ガスの一部を坩堝蓋部2側へ流して炭化珪素単結晶9がガイド部材6に接触せずに成長するように工夫されている。   Further, the guide member 6 is provided with a gap between the side end of the seed crystal 5 and the seed crystal support portion 4, and a part of the sublimation gas is caused to flow toward the crucible lid portion 2 so that the silicon carbide single crystal 9. Is devised to grow without contacting the guide member 6.

しかしながら、ガスガイド部9内壁に炭化珪素多結晶19が析出し、この炭化珪素多結晶19と炭化珪素単結晶9が接触してしまう場合があって、ガイド部材の多結晶と炭化珪素素単結晶が接触した場合、前述のように炭化珪素単結晶に結晶欠陥が発生し、高品質な炭化珪素単結晶が得られないため、この特許文献2では図8に示すようにガイド部材6の外壁に断熱材11を設置することにより、ガイド部材6外壁からの放熱を抑制し、炭化珪素単結晶9の表面よりもガイド部材6の内壁の方が高温になるようにして、ガイド部材6に炭化珪素多結晶19を析出させないよう構成されている。   However, there are cases where silicon carbide polycrystal 19 is deposited on the inner wall of gas guide portion 9 and silicon carbide polycrystal 19 and silicon carbide single crystal 9 come into contact with each other. As described above, since a crystal defect occurs in the silicon carbide single crystal and a high-quality silicon carbide single crystal cannot be obtained as described above, in Patent Document 2, the outer wall of the guide member 6 is formed as shown in FIG. By installing the heat insulating material 11, heat radiation from the outer wall of the guide member 6 is suppressed, and the inner wall of the guide member 6 is heated to a higher temperature than the surface of the silicon carbide single crystal 9. The polycrystal 19 is configured not to precipitate.

特開平1−305898号公報JP-A-1-305898 特開2005−225710号公報JP 2005-225710 A

しかしながら、前記従来の構成では、断熱材11を設置しているガイド部材6の外壁と、その外側の坩堝1の側面との間に大きな温度差があるために断熱材11が昇華(劣化)しやすく、成長時間の経過とともに断熱効果が小さくなる。   However, in the conventional configuration, since there is a large temperature difference between the outer wall of the guide member 6 on which the heat insulating material 11 is installed and the side surface of the crucible 1 on the outer side, the heat insulating material 11 is sublimated (deteriorated). It is easy and the heat insulation effect becomes smaller as the growth time passes.

そのため、長時間の結晶成長を行うとガイド部材6の内壁温度を成長中の炭化珪素単結晶9の表面温度よりも高温に保てなくなる。その結果、図9に示すように、ガイド部材6の内壁に炭化珪素多結晶19が析出し、この炭化珪素多結晶19が成長を続ける炭化珪素単結晶9と接触するため、高品質な炭化珪素単結晶が得られないという課題を有している。   Therefore, if the crystal growth is performed for a long time, the inner wall temperature of the guide member 6 cannot be kept higher than the surface temperature of the growing silicon carbide single crystal 9. As a result, as shown in FIG. 9, silicon carbide polycrystal 19 is deposited on the inner wall of guide member 6, and this silicon carbide polycrystal 19 comes into contact with growing silicon carbide single crystal 9. There is a problem that a single crystal cannot be obtained.

本発明は、長時間の結晶成長を行っても、結晶欠陥の発生を抑制した高品質な炭化珪素単結晶を成長できる単結晶成長装置を提供することを目的とする。   An object of the present invention is to provide a single crystal growth apparatus capable of growing a high-quality silicon carbide single crystal in which generation of crystal defects is suppressed even when crystal growth is performed for a long time.

本発明の単結晶成長装置は、結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を断熱層を介して配置したことを特徴とする。   In the single crystal growth apparatus of the present invention, a raw material for growing a single crystal is placed in a crystal growth vessel, a seed crystal is placed on top of the raw material, and the crystal growth vessel is heated to sublimate. In a single crystal growth apparatus for growing a single crystal by supplying a gas of the raw material onto the seed crystal, the gas from the raw material side is directed toward the seed crystal so that a gas sublimated from the raw material reaches the seed crystal. In addition, a cylindrical guide member whose internal passage is narrowed is disposed, and the second cylindrical member is disposed inside the first cylindrical member via a heat insulating layer. .

また、本発明の単結晶成長装置は、結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を間隔を空けて配置したことを特徴とする。   In addition, the single crystal growth apparatus of the present invention arranges a raw material for growing a single crystal in a crystal growth vessel, arranges a seed crystal above the raw material, and heats the crystal growth vessel. In a single crystal growth apparatus for growing a single crystal by supplying a gas of the raw material to be sublimated onto the seed crystal, the seed crystal side from the raw material side so that the gas sublimated from the raw material reaches the seed crystal A cylindrical guide member whose inner passage becomes narrower toward the inside is disposed, and the guide member is disposed inside the first cylindrical member with a second cylindrical member spaced from each other. To do.

前記ガイド部材は、前記第1の筒状部材の内側と前記第2の筒状部材の外側の間に部分的にスペーサーを挟んで、このスペーサーを介して前記第1の筒状部材と前記第2の筒状部材とを結合していることを特徴とする。   The guide member partially sandwiches a spacer between the inside of the first tubular member and the outside of the second tubular member, and the first tubular member and the first through the spacer. Two cylindrical members are connected to each other.

前記スペーサー部材は、黒鉛製シート材からなり、その熱伝導率は前記スペーサー部材の厚さ方向で10W/m・K以下であることを特徴とする。   The spacer member is made of a graphite sheet material, and the thermal conductivity thereof is 10 W / m · K or less in the thickness direction of the spacer member.

前記第2の筒状部材は、前記単結晶を成長させるための温度以上の融点を有することを特徴とする。   The second cylindrical member has a melting point equal to or higher than a temperature for growing the single crystal.

前記第1の筒状部材の材質が黒鉛であり、前記第2の筒状部材の材質がニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)のいずれかの金属であることを特徴とする。   The material of the first tubular member is graphite, and the material of the second tubular member is any one of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W). It is characterized by that.

前記第1の筒状部材の材質は黒鉛であり、前記第2の筒状部材の材質は炭化タンタル(TaC)であることを特徴とする。   The material of the first cylindrical member is graphite, and the material of the second cylindrical member is tantalum carbide (TaC).

本発明の単結晶成長装置によれば、長時間にわたり、結晶成長中のガイド部材の第2の筒状部材を炭化珪素単結晶表面よりも高温にすることが出来るので、成長する結晶中の欠陥の発生を抑え高品質な炭化珪素単結晶を製造することができる。   According to the single crystal growth apparatus of the present invention, since the second cylindrical member of the guide member during crystal growth can be set to a temperature higher than the surface of the silicon carbide single crystal for a long time, defects in the growing crystal can be obtained. Generation of high quality silicon carbide single crystal can be produced.

本発明の実施の形態1の単結晶成長装置の断面図Sectional drawing of the single-crystal growth apparatus of Embodiment 1 of this invention 同実施の形態の単結晶成長装置を用いた全体の断面図Whole sectional view using the single crystal growth apparatus of the embodiment 図2Aにおける単結晶成長中の単結晶成長装置の拡大図Enlarged view of single crystal growth apparatus during single crystal growth in FIG. 2A 同実施の形態のガイド部材の平面図とA−AA断面図The top view and A-AA sectional view of the guide member of the embodiment 本発明の実施の形態2の単結晶成長装置に使用するTaC製の第2の筒状部材の作製工程図Production process diagram of second cylindrical member made of TaC used for single crystal growth apparatus of embodiment 2 of the present invention 従来の単結晶成長装置の断面図Sectional view of conventional single crystal growth equipment 図5の単結晶成長装置において結晶成長が進んだ状態における断面図FIG. 5 is a cross-sectional view of the single crystal growth apparatus of FIG. 別の従来例の単結晶成長装置の断面図Sectional view of another conventional single crystal growth apparatus さらに別の従来例の単結晶成長装置の断面図Sectional view of yet another conventional single crystal growth apparatus 図8の単結晶成長装置における結晶成長が進んだ状態における断面図FIG. 8 is a cross-sectional view of the single crystal growth apparatus in FIG.

以下に、本発明を用いた単結晶成長装置の実施の形態を図面とともに詳細に説明する。   Hereinafter, embodiments of a single crystal growth apparatus using the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1〜図3は本発明の実施の形態1の単結晶成長装置を示す。
(Embodiment 1)
1 to 3 show a single crystal growth apparatus according to a first embodiment of the present invention.

図1は結晶成長前の状態を表す。この単結晶成長装置は、結晶成長容器としての坩堝1と坩堝1の上部の開口に着脱自在の坩堝蓋部2とから構成されている。坩堝1と坩堝蓋部2は何れも黒鉛製のものを使用した。   FIG. 1 shows a state before crystal growth. This single crystal growth apparatus is composed of a crucible 1 as a crystal growth vessel and a crucible lid 2 detachably attached to an upper opening of the crucible 1. Both the crucible 1 and the crucible lid 2 were made of graphite.

坩堝1の内側の底面には原料3である炭化珪素粉末を入れ、坩堝蓋部2に凸状に形成さている種結晶支持部4には原料3に対向する位置に種結晶5を固定した。種結晶5は4H型の炭化珪素単結晶を用い、その結晶成長面は(000−1)面とした。この種結晶支持部4の種結晶貼付け面は、直径50mmの円形をしており、種結晶5も同じ直径の50mmの円形のものを用いた。   The silicon carbide powder as the raw material 3 was put on the bottom surface inside the crucible 1, and the seed crystal 5 was fixed at a position facing the raw material 3 on the seed crystal support portion 4 formed in a convex shape on the crucible lid portion 2. The seed crystal 5 was a 4H type silicon carbide single crystal, and its crystal growth plane was a (000-1) plane. The seed crystal affixing surface of the seed crystal support portion 4 has a circular shape with a diameter of 50 mm, and the seed crystal 5 has a circular shape with the same diameter of 50 mm.

原料3と種結晶5の間には、原料3から昇華したガスを種結晶5に効率良く導くために、原料3の側から種結晶5の側に向かって内部通路が細くなる筒状のガイド部材6を配置した。このガイド部材6は、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置した構造となっている。   Between the raw material 3 and the seed crystal 5, a cylindrical guide whose internal passage narrows from the raw material 3 side toward the seed crystal 5 in order to efficiently guide the gas sublimated from the raw material 3 to the seed crystal 5. Member 6 was placed. The guide member 6 has a structure in which the second cylindrical member 8 is disposed inside the first cylindrical member 7 via the heat insulating layer 23.

第2の筒状部材8としては、高融点材料を用いるのが重要である。昇華法による炭化珪素単結晶の成長を行う単結晶成長装置では、成長温度が2000℃以上になるため、第2の筒状部材8にはこの温度でも固体を保つことのできる高融点材料でなければならない。ここでは、第1の筒状部材7には黒鉛を使用し、第2の筒状部材8には融点が3017℃のタンタル(Ta)を用いた。   As the second tubular member 8, it is important to use a high melting point material. In a single crystal growth apparatus that grows a silicon carbide single crystal by a sublimation method, the growth temperature is 2000 ° C. or higher. Therefore, the second cylindrical member 8 must be a high melting point material that can maintain a solid even at this temperature. I must. Here, graphite was used for the first cylindrical member 7, and tantalum (Ta) having a melting point of 3017 ° C. was used for the second cylindrical member 8.

このような高温下では、黒鉛製の坩堝1や第1の筒状部材7の表面からカーボン粒子が飛散する。このカーボン粒子が種結晶5の表面や成長する炭化珪素単結晶9の表面に付着すると、マイクロパイプ等の結晶欠陥の原因となる。そのために、第2の筒状部材8を第1の筒状部材7の内側に配置することで、炭化珪素単結晶9の表面にカーボン粒子が付着するのを第2の筒状部材8で防ぐことができる。   Under such a high temperature, carbon particles are scattered from the surfaces of the graphite crucible 1 and the first cylindrical member 7. If the carbon particles adhere to the surface of the seed crystal 5 or the surface of the growing silicon carbide single crystal 9, it causes crystal defects such as micropipes. For this purpose, the second cylindrical member 8 prevents the carbon particles from adhering to the surface of the silicon carbide single crystal 9 by arranging the second cylindrical member 8 inside the first cylindrical member 7. be able to.

図1のように種結晶と原料とを単結晶成長装置に配置した後、結晶成長を行う。図2は、結晶成長をおこなうときの状態を示す。   After the seed crystal and the raw material are arranged in the single crystal growth apparatus as shown in FIG. 1, crystal growth is performed. FIG. 2 shows a state when crystal growth is performed.

図2Aは図1の単結晶成長装置を用いた成結晶長を説明するための全体の断面図であり、図2Bは図2Aの点線で囲んだ領域Aを拡大した図である。   2A is an overall cross-sectional view for explaining the length of a formed crystal using the single crystal growth apparatus of FIG. 1, and FIG. 2B is an enlarged view of a region A surrounded by a dotted line in FIG. 2A.

図2Aに示したように単結晶成長装置を構成する坩堝1と坩堝蓋部2とを断熱材11で覆った。これは、上述したように、昇華法を用いると、炭化珪素の原料3を昇華させるために2000℃以上の高温が必要であるが、2000℃以上の高温では、温度の4乗に比例して輻射熱が失われるため、それを防ぐ目的である。この断熱材11で覆った坩堝1及び坩堝蓋部2を、石英製の反応管12の内側に配置した。この反応管12は、二重管構造になっており、結晶成長中には、冷却水13を流して冷却している。また反応管12の上部にガス導入口14が、下部にはガス排気口15が設けられている。   As shown in FIG. 2A, the crucible 1 and the crucible lid 2 constituting the single crystal growth apparatus were covered with a heat insulating material 11. As described above, when the sublimation method is used, a high temperature of 2000 ° C. or higher is required to sublimate the silicon carbide raw material 3, but at a high temperature of 2000 ° C. or higher, the temperature is proportional to the fourth power of the temperature. This is to prevent radiant heat from being lost. The crucible 1 and the crucible lid portion 2 covered with the heat insulating material 11 were arranged inside the reaction tube 12 made of quartz. The reaction tube 12 has a double tube structure, and is cooled by flowing cooling water 13 during crystal growth. A gas inlet 14 is provided at the upper part of the reaction tube 12 and a gas outlet 15 is provided at the lower part.

次に、反応管12内部を不活性ガスで置換した。不活性ガスは、コスト、純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口15から反応管12内を高真空排気し、その後、ガス導入口14から不活性ガスを常圧まで充填した。その後、反応管12の周囲に螺旋状に巻かれたコイル16に高周波電流を流すことにより、坩堝1および坩堝蓋部2を誘導加熱して昇温した。   Next, the inside of the reaction tube 12 was replaced with an inert gas. As the inert gas, argon (Ar) is suitable in terms of cost, purity, and the like. In this inert gas replacement, the inside of the reaction tube 12 was first evacuated to a high vacuum from the gas exhaust port 15 and then filled with an inert gas from the gas introduction port 14 to normal pressure. Thereafter, the crucible 1 and the crucible lid 2 were heated by induction heating by passing a high-frequency current through a coil 16 spirally wound around the reaction tube 12.

加熱時は、反応管12の上下部に設けられている石英製の温度測定用窓17、及び断熱材11の上下部に設けられた温度測定用の穴11aを通して、放射温度計18で、坩堝1下部、および坩堝蓋部2の上部の温度を測定している。   At the time of heating, the crucible is heated by the radiation thermometer 18 through the quartz temperature measuring window 17 provided at the upper and lower portions of the reaction tube 12 and the temperature measuring hole 11 a provided at the upper and lower portions of the heat insulating material 11. The temperature of 1 lower part and the upper part of the crucible lid part 2 is measured.

加熱時の坩堝1の下部温度と坩堝蓋部2の上部温度は、坩堝1および坩堝蓋部2とコイル16の相対位置により決まる。昇華法の場合、前述のように原料3からの昇華ガスを種結晶5の上で再結晶化させるため、種結晶5よりも原料3の温度を高くする必要がある。本実施の形態では、坩堝1の下部温度が2300℃、坩堝蓋部2の上部温度が2200℃となるように坩堝1および坩堝蓋部2とコイル16の相対位置を調整した。   The lower temperature of the crucible 1 and the upper temperature of the crucible lid 2 during heating are determined by the relative positions of the crucible 1 and the crucible lid 2 and the coil 16. In the case of the sublimation method, the temperature of the raw material 3 needs to be higher than that of the seed crystal 5 in order to recrystallize the sublimation gas from the raw material 3 on the seed crystal 5 as described above. In the present embodiment, the relative positions of the crucible 1 and the crucible lid 2 and the coil 16 were adjusted so that the lower temperature of the crucible 1 was 2300 ° C. and the upper temperature of the crucible lid 2 was 2200 ° C.

このように加熱することで、結晶成長時には、坩堝1内の原料3の表面温度Tsが、坩堝蓋部2の種結晶支持部4に配置した種結晶5から成長する炭化珪素単結晶9の表面温度Tcよりも高温となる温度分布が形成される。また、この温度分布により、原料3の表面温度Tsが、原料3と種結晶5の間に配置されたガイド部材6の温度よりも高温になる。   By heating in this way, at the time of crystal growth, the surface temperature Ts of the raw material 3 in the crucible 1 is the surface of the silicon carbide single crystal 9 grown from the seed crystal 5 disposed on the seed crystal support 4 of the crucible lid 2. A temperature distribution that is higher than the temperature Tc is formed. Further, due to this temperature distribution, the surface temperature Ts of the raw material 3 becomes higher than the temperature of the guide member 6 disposed between the raw material 3 and the seed crystal 5.

ここで、ガイド部材6は図1と図2Bに示すように、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置した構造になっている。具体的には、第1の筒状部材7の内側と第2の筒状部材8の間に部分的にスペーサー10を挟んで、このスペーサー10を介して第1の筒状部材7と第2の筒状部材8とを結合して、第1の筒状部材7の内側と第2の筒状部材8の間に断熱層23を形成しているので、以下のような効果がある。   Here, as shown in FIGS. 1 and 2B, the guide member 6 has a structure in which the second tubular member 8 is disposed inside the first tubular member 7 with a heat insulating layer 23 interposed therebetween. Specifically, a spacer 10 is partially sandwiched between the inside of the first tubular member 7 and the second tubular member 8, and the first tubular member 7 and the second tubular member are interposed via the spacer 10. Since the heat insulating layer 23 is formed between the inner side of the first cylindrical member 7 and the second cylindrical member 8 by joining the cylindrical members 8 to each other, the following effects are obtained.

結晶成長時には、第1の筒状部材7の内側にある第2の筒状部材8の内壁が、原料3の輻射熱によって温められるが、第1の筒状部材7と第2の筒状部材8が直接に接触しないようにスペーサー10を挟んで結合されているため、第2の筒状部材8から第1の筒状部材7への熱伝導が断熱層23によって抑制される。このため、第2の筒状部材8の内壁温度Tg2が高温に保たれる。   During crystal growth, the inner wall of the second cylindrical member 8 inside the first cylindrical member 7 is warmed by the radiant heat of the raw material 3, but the first cylindrical member 7 and the second cylindrical member 8 are heated. Are coupled with the spacer 10 interposed therebetween so that the heat conduction from the second tubular member 8 to the first tubular member 7 is suppressed by the heat insulating layer 23. For this reason, the inner wall temperature Tg2 of the second cylindrical member 8 is maintained at a high temperature.

一方、種結晶5から成長する炭化珪素単結晶9の表面も、結晶成長時には原料3の輻射熱で温められるが、種結晶支持部4を通じて坩堝蓋部2の上部から放熱されるため炭化珪素単結晶9の表面温度Tcが低下する。このため、ガイド部材6の第2の筒状部材8の内壁温度Tg2を、隣接する炭化珪素単結晶9の表面温度Tcよりも高温に保つことができ、結晶成長時にTs>Tg2>Tcの関係が常に保たれている。   On the other hand, the surface of silicon carbide single crystal 9 grown from seed crystal 5 is also warmed by the radiant heat of raw material 3 during crystal growth, but is dissipated from the upper part of crucible lid portion 2 through seed crystal support portion 4. 9 surface temperature Tc decreases. Therefore, the inner wall temperature Tg2 of the second cylindrical member 8 of the guide member 6 can be kept higher than the surface temperature Tc of the adjacent silicon carbide single crystal 9, and the relationship of Ts> Tg2> Tc during crystal growth. Is always kept.

従って、原料3から昇華した昇華ガスは、ガイド部材6の高温の第2の筒状部材8の内壁ではなく、低温の炭化珪素単結晶9の表面に付着し、炭化珪素単結晶9のみが成長するという効果がある。   Accordingly, the sublimation gas sublimated from the raw material 3 adheres to the surface of the low temperature silicon carbide single crystal 9 instead of the inner wall of the high temperature second cylindrical member 8 of the guide member 6, and only the silicon carbide single crystal 9 grows. There is an effect of doing.

もし第1の筒状部材7と第2の筒状部材8が直接に接触していると、原料3からの輻射熱で加熱された第2の筒状部材8は、第1の筒状部材7を通じて坩堝1の外壁から放熱され、Tg2とTcとは、ほぼ等しい温度になる。そのため、原料3から昇華した昇華ガスは、炭化珪素単結晶9の表面と第2の筒状部材8の内壁表面とでほぼ同じ過飽和度となり、両方の表面で再結晶化する。この第2の筒状部材8の内壁で再結晶化した炭化珪素は多結晶(炭化珪素多結晶19)であり、結晶成長が進むに連れてこの炭化珪素多結晶19と炭化珪素単結晶9とが接触する。両者が接触すると、炭化珪素単結晶9にクラックやマイクロパイプ、転位などの欠陥が発生して結晶品質が著しく悪化する。これらの欠陥が発生するのは、結晶成長終了後の冷却時に、炭化珪素多結晶19と炭化珪素単結晶9との熱膨張係数差によって炭化珪素単結晶9に応力が発生するためであると考えられる。   If the first cylindrical member 7 and the second cylindrical member 8 are in direct contact with each other, the second cylindrical member 8 heated by the radiant heat from the raw material 3 is the first cylindrical member 7. The heat is dissipated from the outer wall of the crucible 1 through Tg2 and Tc, and the temperatures become substantially equal. Therefore, the sublimation gas sublimated from the raw material 3 has substantially the same degree of supersaturation on the surface of the silicon carbide single crystal 9 and the inner wall surface of the second cylindrical member 8 and is recrystallized on both surfaces. The silicon carbide recrystallized on the inner wall of the second cylindrical member 8 is polycrystalline (silicon carbide polycrystal 19). As the crystal growth proceeds, the silicon carbide polycrystal 19 and the silicon carbide single crystal 9 Touch. When both come into contact, defects such as cracks, micropipes, and dislocations are generated in the silicon carbide single crystal 9 and the crystal quality is significantly deteriorated. It is considered that these defects occur because stress is generated in silicon carbide single crystal 9 due to a difference in thermal expansion coefficient between silicon carbide polycrystal 19 and silicon carbide single crystal 9 during cooling after the completion of crystal growth. It is done.

炭化珪素単結晶9の表面温度Tcと、第1の筒状部材7の内側と第2の筒状部材8の間に部分的にスペーサー10を挟んで、このスペーサー10を介して第1の筒状部材7と第2の筒状部材8とを結合したガイド部材6の結晶成長時の第2の筒状部材8の内壁温度Tg2との好ましい温度差についてシミュレーションした結果では、Tg2をTcよりも少なくとも4℃程度高温にするだけで炭化珪素単結晶9のみが成長する良好な結果が得られた。   A spacer 10 is partially sandwiched between the surface temperature Tc of the silicon carbide single crystal 9 and the inside of the first cylindrical member 7 and the second cylindrical member 8, and the first cylinder is interposed via the spacer 10. As a result of simulating a preferable temperature difference with the inner wall temperature Tg2 of the second cylindrical member 8 at the time of crystal growth of the guide member 6 in which the cylindrical member 7 and the second cylindrical member 8 are coupled, Tg2 is more than Tc. Good results were obtained in which only the silicon carbide single crystal 9 grew only by raising the temperature to at least about 4 ° C.

ただし、第2の筒状部材8から第1の筒状部材7への熱伝導を抑制して上記の効果を得るためには、上記スペーサー10として熱伝導率が小さい材料を用いる必要がある。具体的には、熱伝導率が厚さ方向で1〜10W/m・Kである黒鉛製シートを用いれば、上記のように第2の筒状部材8を高温に保つことができる。熱伝導率が厚さ方向で10W/m・Kより大きければ第2の筒状部材8から第1の筒状部材7への熱伝導が大きくなるため、第2の筒状部材8の内壁温度Tg2を隣接する炭化珪素単結晶9の表面温度Tcよりも高温に保つことができない。   However, in order to suppress the heat conduction from the second tubular member 8 to the first tubular member 7 and obtain the above effect, it is necessary to use a material having a low thermal conductivity as the spacer 10. Specifically, if a graphite sheet having a thermal conductivity of 1 to 10 W / m · K in the thickness direction is used, the second cylindrical member 8 can be kept at a high temperature as described above. If the thermal conductivity is greater than 10 W / m · K in the thickness direction, the heat conduction from the second cylindrical member 8 to the first cylindrical member 7 increases, so the inner wall temperature of the second cylindrical member 8 is increased. Tg2 cannot be kept higher than the surface temperature Tc of the adjacent silicon carbide single crystal 9.

図3(a)は種結晶5の側からガイド部材6を見た平面図であり、図3(b)は図3(a)のA−AA断面図である。本実施の形態では、スペーサー10として、厚さ方向の熱伝導率が5W/m・Kである東洋炭素(株)(TOYO TANSO CO., LTD.)製の黒鉛シート「PERMA−FOIL」を採用し、その厚さは1.0mmで2mm角のものを用いた。スペーサー10の位置は、平面的には図3(a)に示すように略120度おきに3箇所に、図3(b)に示すように上下2箇所の、合計6箇所に設けた。   FIG. 3A is a plan view of the guide member 6 viewed from the seed crystal 5 side, and FIG. 3B is a cross-sectional view taken along the line A-AA in FIG. In this embodiment, a graphite sheet “PERMA-FOIL” manufactured by TOYO TANSO CO., LTD. Having a thermal conductivity of 5 W / m · K in the thickness direction is used as the spacer 10. The thickness was 1.0 mm and 2 mm square. As shown in FIG. 3 (a), the spacers 10 were provided at three positions approximately every 120 degrees in plan view, and at two positions in the upper and lower positions as shown in FIG. 3 (b).

以上のようなガイド部材6を単結晶成長装置に設置して所望の温度まで昇温した後、徐々に圧力を下げて原料3を昇華させて結晶成長を開始させた。反応管12の内部の圧力を0.665kPaまで1時間かけて減圧して原料3を昇華させて50時間保持して結晶成長を行った。   After the guide member 6 as described above was installed in the single crystal growth apparatus and the temperature was raised to a desired temperature, the pressure was gradually lowered to sublimate the raw material 3 to start crystal growth. The pressure inside the reaction tube 12 was reduced to 0.665 kPa over 1 hour to sublimate the raw material 3 and maintained for 50 hours to perform crystal growth.

結晶成長終了時は、成長開始時とは逆に、反応管12の内部の圧力を80kPaまで1時間かけて昇圧して原料3の昇華を止め、その後、常温までゆっくりと冷却した。   At the end of the crystal growth, contrary to the start of the growth, the pressure inside the reaction tube 12 was increased to 80 kPa over 1 hour to stop sublimation of the raw material 3 and then slowly cooled to room temperature.

このようにして成長を行った結果、ガイド部材6の第2の筒状部材8の内壁には炭化珪素多結晶19は付着しておらず、種結晶5から成長した炭化珪素単結晶9は、ガイド部材6の第2の筒状部材8内壁にほぼ沿って口径拡大しながら成長しており、その成長量は12mm、最大口径は56mmであった。得られた炭化珪素単結晶9を成長方向に垂直にスライスした後に研磨を行ってウエハを作製した。このウエハを500℃に加熱した水酸化カリウム(KOH)溶液でエッチングした後に光学顕微鏡で観察した結果、マイクロパイプ密度が8cm−2、エッチピット密度が2.6×10cm−2の高品質な単結晶であった。 As a result of the growth, the silicon carbide polycrystal 19 is not attached to the inner wall of the second cylindrical member 8 of the guide member 6, and the silicon carbide single crystal 9 grown from the seed crystal 5 is The guide member 6 grew while expanding its diameter substantially along the inner wall of the second cylindrical member 8. The growth amount was 12 mm and the maximum diameter was 56 mm. The obtained silicon carbide single crystal 9 was sliced perpendicular to the growth direction and then polished to produce a wafer. The wafer was etched with a potassium hydroxide (KOH) solution heated to 500 ° C. and then observed with an optical microscope. As a result, the micropipe density was 8 cm −2 and the etch pit density was 2.6 × 10 4 cm −2 . Single crystal.

以上のように、第1の筒状部材7の内側に第2の筒状部材8を断熱層23を介して配置したガイド部材6を用いることにより、成長中の第2の筒状部材8の内壁温度を成長する炭化珪素単結晶9の表面温度よりも常に高温にできるため、第2の筒状部材8の内壁に炭化珪素多結晶19が付着するのを抑制でき、その結果、結晶欠陥の発生を抑制して高品質な炭化珪素単結晶9を得ることができる。   As described above, by using the guide member 6 in which the second cylindrical member 8 is disposed inside the first cylindrical member 7 via the heat insulating layer 23, the second cylindrical member 8 that is growing is used. Since the inner wall temperature can always be higher than the surface temperature of the silicon carbide single crystal 9 that grows, it is possible to suppress the silicon carbide polycrystal 19 from adhering to the inner wall of the second cylindrical member 8, and as a result, Generation | occurrence | production can be suppressed and the high quality silicon carbide single crystal 9 can be obtained.

本実施の形態では、第2の筒状部材8の材質としてTaを用いたが、ニオブ(Nb)、モリブデン(Mo)、タングステン(W)など他の高融点金属を用いても同様の効果がある。   In the present embodiment, Ta is used as the material of the second cylindrical member 8, but the same effect can be obtained by using other refractory metals such as niobium (Nb), molybdenum (Mo), and tungsten (W). is there.

(実施の形態2)
図4は実施の形態2におけるガイド部材6に使用する第2の筒状部材8の製造工程を示している。第1の実施の形態との相違点は、ガイド部材6の第2の筒状部材8の材質にはタンタルの化合物である炭化タンタル(TaC)を用いたことである。TaCはTaよりも高い熱的安定性を持っているため、長尺の炭化珪素単結晶9を得るために更に長時間の結晶成長を行うことができる。
(Embodiment 2)
FIG. 4 shows a manufacturing process of the second cylindrical member 8 used for the guide member 6 in the second embodiment. The difference from the first embodiment is that tantalum carbide (TaC), which is a compound of tantalum, is used for the material of the second cylindrical member 8 of the guide member 6. Since TaC has higher thermal stability than Ta, crystal growth can be performed for a longer time in order to obtain a long silicon carbide single crystal 9.

図4を用いて、TaC製の第2の筒状部材8の作製工程を説明する。   With reference to FIG. 4, a process for producing the second cylindrical member 8 made of TaC will be described.

まず図4(a)に示すように、辺B−BBと辺C−CCが重なるように丸めたときに、第2の筒状部材8の形状になるように50μm厚のTa箔20を切出した。   First, as shown in FIG. 4A, when the side B-BB and the side C-CC are rounded so as to overlap, a 50 μm thick Ta foil 20 is cut out so as to have the shape of the second cylindrical member 8. It was.

その後、図4(b)に示すように内壁形状が第2の筒状部材8の形状である第1の黒鉛部材21の内壁に、上記のTa箔20を密着させてはめ込んだ。然る後、図4(c)に示すように、外壁形状が第2の筒状部材8の形状の第2の黒鉛部材22で、Ta箔20を挟み込んだ。この状態のままAr雰囲気中で2200℃、100Torrで5時間の熱処理を行ってTa箔20を炭化し、TaC製の第2の筒状部材8を得た。   Thereafter, as shown in FIG. 4B, the Ta foil 20 was fitted into the inner wall of the first graphite member 21 whose inner wall shape was the shape of the second cylindrical member 8. Thereafter, as shown in FIG. 4C, the Ta foil 20 was sandwiched between the second graphite members 22 whose outer wall shape was the shape of the second cylindrical member 8. In this state, heat treatment was performed for 5 hours at 2200 ° C. and 100 Torr in an Ar atmosphere to carbonize the Ta foil 20 to obtain a second cylindrical member 8 made of TaC.

第2の筒状部材8の材質としてTaCを用いた以外は、実施の形態1と同じ条件で100時間の結晶成長を行った。この結果、ガイド部材の第2の筒状部材8内壁には炭化珪素多結晶19は付着しておらず、成長した炭化珪素単結晶9は、ガイド部材6の第2の筒状部材8の内壁にほぼ沿って口径拡大しながら長尺に成長しており、成長量は30mm、最大口径は72mmであった。得られた炭化珪素単結晶9を成長方向に垂直にスライスした後に研磨を行ってウエハを作製した。このウエハを500℃に加熱したKOH溶液でエッチングした後に光学顕微鏡で観察した結果、マイクロパイプ密度が5cm−2、エッチピット密度が2.2×10cm−2の高品質な単結晶であった。 Crystal growth was performed for 100 hours under the same conditions as in Embodiment 1 except that TaC was used as the material of the second cylindrical member 8. As a result, the silicon carbide polycrystal 19 is not attached to the inner wall of the second cylindrical member 8 of the guide member, and the grown silicon carbide single crystal 9 is not removed from the inner wall of the second cylindrical member 8 of the guide member 6. As shown in FIG. 2, the length of the sample was increased while the diameter of the tube was enlarged. The growth amount was 30 mm, and the maximum diameter was 72 mm. The obtained silicon carbide single crystal 9 was sliced perpendicular to the growth direction and then polished to produce a wafer. This wafer was etched with a KOH solution heated to 500 ° C. and then observed with an optical microscope. As a result, it was a high-quality single crystal having a micropipe density of 5 cm −2 and an etch pit density of 2.2 × 10 4 cm −2. It was.

以上のように、第2の筒状部材8の材質としてTaCを用いることにより、長尺且つ高品質な炭化珪素単結晶9を得ることができる。   As described above, by using TaC as the material of the second cylindrical member 8, a long and high-quality silicon carbide single crystal 9 can be obtained.

また、本実施の形態1及び2では、単結晶として炭化珪素を例に取り説明したが、昇華法を用いて成長させる単結晶であれば、硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、窒化アルミニウム(AlN)、窒化ホウ素(BN)などにも適用できる。   In the first and second embodiments, silicon carbide is described as an example of a single crystal. However, in the case of a single crystal grown using a sublimation method, cadmium sulfide (CdS), cadmium selenide (CdSe), It can also be applied to zinc sulfide (ZnS), aluminum nitride (AlN), boron nitride (BN), and the like.

本発明は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などの各種の品質の向上に寄与することができる。   INDUSTRIAL APPLICABILITY The present invention can contribute to improvement of various qualities such as environmental resistant device materials, radiation resistant device materials, power control power device materials, and high frequency device materials used in high temperature environments.

Claims (7)

結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、
前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、
前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を断熱層を介して配置した
単結晶成長装置。
A raw material for growing a single crystal is arranged in a crystal growth vessel, a seed crystal is arranged on the upper portion of the raw material, and the gas of the raw material sublimated by heating the crystal growth vessel is placed on the seed crystal. In a single crystal growth apparatus for supplying single crystal to grow a single crystal,
While arranging a cylindrical guide member whose internal passage narrows from the raw material side toward the seed crystal so that the gas sublimated from the raw material reaches the seed crystal,
The single crystal growth apparatus which has arrange | positioned the said 2nd cylindrical member through the heat insulation layer inside the 1st cylindrical member.
結晶成長容器の中に単結晶を成長させるための原料を配置し、前記原料の上部に種結晶を配置して、前記結晶成長容器を加熱することで昇華する前記原料のガスを前記種結晶上に供給して単結晶を成長させる単結晶成長装置において、
前記原料から昇華するガスが前記種結晶に届くように前記原料の側から前記種結晶の側に向かって内部通路が細くなる筒状のガイド部材を配設すると共に、
前記ガイド部材を、第1の筒状部材の内側に第2の筒状部材を間隔を空けて配置した
単結晶成長装置。
A raw material for growing a single crystal is arranged in a crystal growth vessel, a seed crystal is arranged on the upper portion of the raw material, and the gas of the raw material sublimated by heating the crystal growth vessel is placed on the seed crystal. In a single crystal growth apparatus for supplying single crystal to grow a single crystal,
A cylindrical guide member whose inner passage narrows from the raw material side toward the seed crystal side so that gas sublimated from the raw material reaches the seed crystal,
A single crystal growth apparatus in which the guide member is arranged such that a second cylindrical member is arranged at an interval inside the first cylindrical member.
前記ガイド部材は、前記第1の筒状部材の内側と前記第2の筒状部材の外側の間に部分的にスペーサー10を挟んで、このスペーサーを介して前記第1の筒状部材と前記第2の筒状部材とを結合している
請求項2に記載の単結晶成長装置。
The guide member partially sandwiches a spacer 10 between the inside of the first tubular member and the outside of the second tubular member, and the first tubular member and the The single crystal growth apparatus according to claim 2, wherein the single crystal growth apparatus is coupled to the second cylindrical member.
前記ガイド部材は、前記第1の筒状部材の内側と前記第2の筒状部材の外側の間に部分的にスペーサー10を挟んで、このスペーサーを介して前記第1の筒状部材と前記第2の筒状部材とが結合されており、かつ前記スペーサー部材は、黒鉛製シート材からなり、その熱伝導率は前記スペーサー部材の厚さ方向で10W/m・K以下である
請求項2に記載の単結晶成長装置。
The guide member partially sandwiches a spacer 10 between the inside of the first tubular member and the outside of the second tubular member, and the first tubular member and the The second cylindrical member is coupled, and the spacer member is made of a graphite sheet material, and the thermal conductivity thereof is 10 W / m · K or less in the thickness direction of the spacer member. A single crystal growth apparatus as described in 1. above.
前記第2の筒状部材は、前記単結晶を成長させるための温度以上の融点を有する
請求項2に記載の単結晶成長装置。
The single crystal growth apparatus according to claim 2, wherein the second cylindrical member has a melting point equal to or higher than a temperature for growing the single crystal.
前記第1の筒状部材の材質が黒鉛であり、前記第2の筒状部材の材質がニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)のいずれかの金属である
請求項2に記載の単結晶成長装置。
The material of the first tubular member is graphite, and the material of the second tubular member is any one of niobium (Nb), molybdenum (Mo), tantalum (Ta), and tungsten (W). The single crystal growth apparatus according to claim 2.
前記第1の筒状部材の材質は黒鉛であり、
前記第2の筒状部材の材質は炭化タンタル(TaC)である
請求項2に記載の単結晶成長装置。
The material of the first cylindrical member is graphite,
The single crystal growth apparatus according to claim 2, wherein a material of the second cylindrical member is tantalum carbide (TaC).
JP2009539937A 2007-11-08 2008-10-15 Single crystal growth equipment Expired - Fee Related JP5143139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009539937A JP5143139B2 (en) 2007-11-08 2008-10-15 Single crystal growth equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007290325 2007-11-08
JP2007290325 2007-11-08
JP2009539937A JP5143139B2 (en) 2007-11-08 2008-10-15 Single crystal growth equipment
PCT/JP2008/002910 WO2009060561A1 (en) 2007-11-08 2008-10-15 Single crystal growing apparatus

Publications (2)

Publication Number Publication Date
JPWO2009060561A1 true JPWO2009060561A1 (en) 2011-03-17
JP5143139B2 JP5143139B2 (en) 2013-02-13

Family

ID=40625472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009539937A Expired - Fee Related JP5143139B2 (en) 2007-11-08 2008-10-15 Single crystal growth equipment

Country Status (2)

Country Link
JP (1) JP5143139B2 (en)
WO (1) WO2009060561A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432573B2 (en) * 2009-04-16 2014-03-05 株式会社ブリヂストン Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP5403671B2 (en) * 2009-06-10 2014-01-29 昭和電工株式会社 Silicon carbide single crystal manufacturing equipment
JP5602093B2 (en) * 2011-06-08 2014-10-08 三菱電機株式会社 Single crystal manufacturing method and manufacturing apparatus
JP5603990B2 (en) * 2013-10-21 2014-10-08 昭和電工株式会社 Silicon carbide single crystal manufacturing equipment
JP7057014B2 (en) 2020-08-31 2022-04-19 セニック・インコーポレイテッド A method for manufacturing a silicon carbide ingot and a silicon carbide ingot manufactured by the method.
EP4269667A1 (en) * 2021-03-31 2023-11-01 Sec Carbon, Ltd. Sic monocrystal growth device and sic crystal growth method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725268B2 (en) * 1996-11-14 2005-12-07 株式会社豊田中央研究所 Single crystal manufacturing method
JP3961750B2 (en) * 2000-08-21 2007-08-22 独立行政法人産業技術総合研究所 Single crystal growth apparatus and growth method
JP3792699B2 (en) * 2004-02-12 2006-07-05 株式会社デンソー SiC single crystal manufacturing method and SiC single crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP5143139B2 (en) 2013-02-13
WO2009060561A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4388538B2 (en) Silicon carbide single crystal manufacturing equipment
JP2007204309A (en) Single crystal growth device and single crystal growth method
JP4499698B2 (en) Method for producing silicon carbide single crystal
JP3792699B2 (en) SiC single crystal manufacturing method and SiC single crystal manufacturing apparatus
JP5143139B2 (en) Single crystal growth equipment
JP2013529175A (en) Method for growing silicon carbide in physical vapor transport method and method for annealing silicon carbide at the original position
JP2010515661A (en) Induced diameter SiC sublimation growth using multilayer growth guide
JPH11278985A (en) Production of single crystal
JP5012655B2 (en) Single crystal growth equipment
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4238450B2 (en) Method and apparatus for producing silicon carbide single crystal
CN116446046A (en) Device and method for growing silicon carbide crystal by heat exchange physical vapor transport method
TWI772866B (en) Wafer and manufacturing method of the same
JP2015040146A (en) Single crystal production device and single crystal production method using the same
JP2005532697A (en) Large-diameter SiC wafer and manufacturing method thereof
JP5397503B2 (en) Single crystal growth equipment
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP5418236B2 (en) Nitride semiconductor crystal manufacturing apparatus, nitride semiconductor crystal manufacturing method, and aluminum nitride crystal
JP4374986B2 (en) Method for manufacturing silicon carbide substrate
JP6223290B2 (en) Single crystal manufacturing equipment
KR20130083653A (en) Growing apparatus for single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2008280206A (en) Single crystal growing apparatus
JP5793816B2 (en) Seed material for liquid crystal epitaxial growth of single crystal silicon carbide and liquid crystal epitaxial growth method of single crystal silicon carbide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees