JPWO2007122752A1 - Method and apparatus for removing conductive metal oxide thin film - Google Patents

Method and apparatus for removing conductive metal oxide thin film Download PDF

Info

Publication number
JPWO2007122752A1
JPWO2007122752A1 JP2008511938A JP2008511938A JPWO2007122752A1 JP WO2007122752 A1 JPWO2007122752 A1 JP WO2007122752A1 JP 2008511938 A JP2008511938 A JP 2008511938A JP 2008511938 A JP2008511938 A JP 2008511938A JP WO2007122752 A1 JPWO2007122752 A1 JP WO2007122752A1
Authority
JP
Japan
Prior art keywords
thin film
metal oxide
conductive metal
oxide thin
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008511938A
Other languages
Japanese (ja)
Other versions
JP5055269B2 (en
Inventor
博之 大工
博之 大工
井上 鉄也
鉄也 井上
孝信 椙本
孝信 椙本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008511938A priority Critical patent/JP5055269B2/en
Publication of JPWO2007122752A1 publication Critical patent/JPWO2007122752A1/en
Application granted granted Critical
Publication of JP5055269B2 publication Critical patent/JP5055269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Weting (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

基材(11)表面の導電性金属酸化物薄膜(12)に対向して正電極(13)と第1の負電極(14)を非接触状態で並列に配置し、さらに、正電極(13)と第1の負電極(14)の間に第2の負電極(17)を、導電性金属酸化物薄膜(12)の幅方向に複数、接触状態で配置する。そして、導電性金属酸化物薄膜(12)と電極(13),(14),(17)の間に電解液(15)を介在させた状態で、導電性金属酸化物薄膜(12)が、負電極(14),(17)を通過後に正電極(13)を通過するように、基材(11)を相対移動させることにより、導電性金属酸化物薄膜(12)を還元反応により除去する。The positive electrode (13) and the first negative electrode (14) are arranged in parallel in a non-contact state so as to face the conductive metal oxide thin film (12) on the surface of the substrate (11), and further, the positive electrode (13 ) And the first negative electrode (14), a plurality of second negative electrodes (17) are arranged in contact with each other in the width direction of the conductive metal oxide thin film (12). And in a state where the electrolytic solution (15) is interposed between the conductive metal oxide thin film (12) and the electrodes (13), (14), (17), the conductive metal oxide thin film (12) The conductive metal oxide thin film (12) is removed by a reduction reaction by relatively moving the substrate (11) so as to pass through the positive electrode (13) after passing through the negative electrodes (14), (17). .

Description

本発明は、例えばスパッタ蒸着などにより基材に形成された導電性金属酸化物薄膜を、再利用が可能なように除去する方法及びその方法を実施する装置に関するものである。   The present invention relates to a method for removing a conductive metal oxide thin film formed on a substrate by, for example, sputter deposition so that it can be reused, and an apparatus for carrying out the method.

例えばITO(インジウムとスズの酸化物で、透明導電性を有する膜)を形成した高機能ガラス基板は、光学的性能(透過率等)や機械的性能(平坦度等)に優れており、例えばフラットパネルディスプレイに用いられる。しかしながら、この高機能ガラス基板は高価であるため、その表面に形成するITOが品質管理基準を満足しない場合には、そのITOを除去して再利用することで、コストの低減を図っている。   For example, a high-performance glass substrate on which ITO (a film having transparent conductivity with an oxide of indium and tin) is excellent in optical performance (such as transmittance) and mechanical performance (such as flatness). Used for flat panel displays. However, since this high-performance glass substrate is expensive, when the ITO formed on the surface does not satisfy the quality control standard, the ITO is removed and reused to reduce the cost.

このITOなどの導電性金属酸化物薄膜を除去する方法として、機械的擦過により除去する方法や、化学エッチングにより除去する方法がある。このうち前者の方法は、図11に示すように、被加工物1の表面に形成した導電性金属酸化物薄膜1aを研摩ブラシ2により擦過することで除去するものである。   As a method of removing the conductive metal oxide thin film such as ITO, there are a method of removing by mechanical abrasion and a method of removing by chemical etching. The former method is to remove the conductive metal oxide thin film 1 a formed on the surface of the workpiece 1 by rubbing with a polishing brush 2 as shown in FIG. 11.

また、後者の方法は、図12に示すように、導電性金属酸化物薄膜1aを化学反応的に溶解させる化学液3に被加工物1を浸漬することで、その表面に形成した導電性金属酸化物薄膜1aを除去するものである(例えば特許文献1,2)。
日本特開平6−321581号公報 日本特開平9−86968号公報
In the latter method, as shown in FIG. 12, the conductive metal formed on the surface of the workpiece 1 is immersed in a chemical solution 3 that chemically dissolves the conductive metal oxide thin film 1a. The oxide thin film 1a is removed (for example, Patent Documents 1 and 2).
Japanese Unexamined Patent Publication No. 6-321581 Japanese Unexamined Patent Publication No. 9-86968

しかしながら、機械的擦過によって除去する方法は、研摩ブラシを擦りつけることから、被加工物の表面に擦過痕(疵)や応力変形を生じさせる場合がある。擦過痕が生じた場合、再利用ができなくなる。また、対象とする被加工物がフラットパネルディスプレイの場合、ガラス基板のガラス厚みが0.5mm程度であるため、接触方式の機械的擦過では破損する可能性がある。従って、微妙なブラシの圧力調整が必要で、完全に剥離するためには長時間を要する。   However, since the method of removing by mechanical rubbing rubs the polishing brush, there are cases where rubbing marks (wrinkles) and stress deformation occur on the surface of the workpiece. When scratch marks are generated, it cannot be reused. Moreover, when the object to be processed is a flat panel display, the glass thickness of the glass substrate is about 0.5 mm. Therefore, delicate pressure adjustment of the brush is necessary, and it takes a long time to completely peel off.

一方、化学エッチングによって除去する方法は、強酸や強アルカリの化学液を使用するので、基板表面に化学的応力が発生し、基板表面に変質層を生じさせる場合がある。また、取扱いに十分な注意を払う必要があり、作業性が悪くなるばかりでなく、使用後の電解液を廃液処理する必要がある。また、希少金属の回収には、別途抽出作業を必要とするために非常に不経済である。   On the other hand, the method of removing by chemical etching uses a strong acid or strong alkali chemical solution, so that chemical stress is generated on the surface of the substrate and an altered layer may be formed on the surface of the substrate. In addition, it is necessary to pay sufficient attention to handling, not only the workability is deteriorated, but also the electrolytic solution after use needs to be treated as a waste solution. Also, the collection of rare metals is very uneconomical because it requires a separate extraction operation.

本発明が解決しようとする問題点は、機械的擦過による方法では、擦過痕や応力変形が生じて基材を再利用できなくなり、また、ブラシの微妙な圧力調整が必要で完全剥離に長時間を要するという点、化学エッチングによる方法では、基板表面に変質層を生じさせる場合があり、また作業性が悪くなるばかりか、使用後の電解液を廃液処理する必要があり、しかも、希少金属の回収に別途抽出作業が必要で、不経済であるという点である。   The problems to be solved by the present invention are that mechanical scratching causes scratch marks and stress deformation, making it impossible to reuse the substrate, and delicate pressure adjustment of the brush is necessary, and complete peeling takes a long time. In the method using chemical etching, a deteriorated layer may be formed on the surface of the substrate, and workability is deteriorated. In addition, it is necessary to dispose the used electrolytic solution as a waste liquid. This requires that a separate extraction operation is required for collection, which is uneconomical.

本発明の導電性金属酸化物薄膜の除去方法は、
できるだけ基材に擦過痕や応力変形などを残さず、かつ、強酸や強アルカリの化学液を使用しないで、基材の導電性金属酸化物薄膜を基材の端部まで、僅かな残留膜もなく、効率良く除去するために、
基材の表面に形成された導電性金属酸化物薄膜に対向すべく、
正電極と第1の負電極を非接触状態で並列に配置すると共に、前記第1の負電極の前段又は後段、或いは、前段及び後段に、第2の負電極を前記導電性金属酸化物薄膜の幅方向に複数、接触状態で配置した後、
これらの正電極、第1,第2の負電極と前記導電性金属酸化物薄膜間に電解液を介在させた状態で、
前記正電極、第1,第2の負電極に電圧を印加して、
前記正電極、第1,第2の負電極と基材の表面に形成された導電性金属酸化物薄膜とを、導電性金属酸化物薄膜が第1の負電極、第2の負電極を通過後に正電極を通過するように相対移動させることで、前記基材表面の導電性金属酸化物薄膜を還元反応により除去することを最も主要な特徴としている。
The method for removing the conductive metal oxide thin film of the present invention comprises:
Keep the conductive metal oxide thin film of the base material to the edge of the base material and leave a slight residual film without leaving scratch marks or stress deformation on the base material as much as possible, and without using strong acid or strong alkali chemicals. To remove it efficiently,
To face the conductive metal oxide thin film formed on the surface of the substrate,
The positive electrode and the first negative electrode are arranged in parallel in a non-contact state, and the second negative electrode is placed on the conductive metal oxide thin film before or after the first negative electrode, or before and after the first negative electrode. After arranging a plurality of contacts in the width direction,
In a state where an electrolyte is interposed between the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film,
Apply voltage to the positive electrode, the first and second negative electrodes,
The conductive metal oxide thin film passes through the first negative electrode and the second negative electrode through the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate. The main feature is that the conductive metal oxide thin film on the surface of the base material is removed by a reduction reaction by relative movement so as to pass through the positive electrode later.

この本発明の導電性金属酸化物薄膜の除去方法では、正電極と第1の負電極の間に、第2の負電極を前記導電性金属酸化物薄膜の幅方向に接触状態で複数配置することにより、基材の表面に形成された導電性金属酸化物薄膜を端部まで除去することができる。   In the method for removing a conductive metal oxide thin film of the present invention, a plurality of second negative electrodes are arranged in contact with each other in the width direction of the conductive metal oxide thin film between the positive electrode and the first negative electrode. Thus, the conductive metal oxide thin film formed on the surface of the substrate can be removed to the end.

前記本発明の導電性金属酸化物薄膜の除去方法は、前記正電極と第1の負電極として、導電性金属酸化物薄膜の幅よりも狭幅のものを千鳥状に配置したものを使用しても良い。   In the method for removing a conductive metal oxide thin film according to the present invention, the positive electrode and the first negative electrode are arranged in a staggered manner with a width narrower than the width of the conductive metal oxide thin film. May be.

前記本発明の導電性金属酸化物薄膜の除去方法においては、抵抗率が102Ω・cmから106Ω・cmの電解液を使用することで、基材表面に形成された導電性金属酸化物薄膜を効率良く除去することが可能になる。In the method for removing a conductive metal oxide thin film of the present invention, the conductive metal oxide formed on the surface of the substrate is used by using an electrolyte having a resistivity of 10 2 Ω · cm to 10 6 Ω · cm. It is possible to efficiently remove the physical thin film.

本発明の導電性金属酸化物薄膜の除去方法は、
基材の表面に形成された導電性金属酸化物薄膜に対向すべく非接触状態で並列に配置された正電極及び第1の負電極と、
前記第1の負電極の前段又は後段、或いは、前段及び後段に、前記導電性金属酸化物薄膜に対向すべく導電性金属酸化物薄膜の幅方向に接触状態で複数配置された第2の負電極と、
これら正電極、第1,第2の負電極と前記基材の表面に形成された導電性金属酸化物薄膜間に電解液を供給する手段、或いは、前記の正電極、第1,第2の負電極と基材を電解液内に浸漬すべく電解液を貯留する電解液槽と、
これらの正電極と第1,第2の負電極に電圧を印加する電源と、
前記正電極、第1,第2の負電極と基材の表面に形成された導電性金属酸化物薄膜とを、導電性金属酸化物薄膜が第1の負電極、第2の負電極を通過後に正電極を通過するように相対移動させる移動機構を備えた本発明装置を使用することによって実施できる。
The method for removing the conductive metal oxide thin film of the present invention comprises:
A positive electrode and a first negative electrode arranged in parallel in a non-contact state to face the conductive metal oxide thin film formed on the surface of the substrate;
A plurality of second negative electrodes arranged in contact with each other in the width direction of the conductive metal oxide thin film so as to face the conductive metal oxide thin film before or after the first negative electrode, or before and after the first negative electrode. Electrodes,
Means for supplying an electrolytic solution between the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate, or the positive electrode, the first and second electrodes An electrolytic bath for storing the electrolytic solution so as to immerse the negative electrode and the substrate in the electrolytic solution;
A power source for applying a voltage to the positive electrode and the first and second negative electrodes;
The conductive metal oxide thin film passes through the first negative electrode and the second negative electrode through the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate. It can be implemented by using the device of the present invention provided with a moving mechanism that moves relative to pass through the positive electrode later.

前記本発明の導電性金属酸化物薄膜の除去装置は、前記正電極と第1の負電極を、導電性金属酸化物薄膜の幅よりも狭幅のものを千鳥状に、或いは、導電性金属酸化物薄膜の幅よりも狭幅の湾曲状のものを連続して配置したものとしても良い。   The apparatus for removing a conductive metal oxide thin film according to the present invention is characterized in that the positive electrode and the first negative electrode are staggered or narrower than the width of the conductive metal oxide thin film. A curved shape narrower than the width of the oxide thin film may be continuously arranged.

本発明では、
1) 正電極と、第1の負電極の前段又は後段、或いは、前段及び後段に第2の負電極を、前記導電性金属酸化物薄膜の幅方向に接触状態で複数配置することで、基材に擦過痕や応力変形を残さずに、効率良く、導電性金属酸化物薄膜のみを除去することができる。
2) 前記正電極と第1の負電極を、導電性金属酸化物薄膜の幅方向に、導電性金属酸化物薄膜の幅よりも狭幅のものを千鳥状、或いは、導電性金属酸化物薄膜の幅よりも狭幅の湾曲状のものを連続して配置することで、基材の表面に形成された導電性金属酸化物薄膜を端部まで効率良く除去することができる。
In the present invention,
1) By arranging a plurality of second negative electrodes in contact with each other in the width direction of the conductive metal oxide thin film, a positive electrode and a first negative electrode before or after the first negative electrode, or before and after the first negative electrode, Only the conductive metal oxide thin film can be efficiently removed without leaving scratch marks or stress deformation on the material.
2) The positive electrode and the first negative electrode are staggered in the width direction of the conductive metal oxide thin film or narrower than the width of the conductive metal oxide thin film, or the conductive metal oxide thin film By continuously disposing the curved shape narrower than the width, the conductive metal oxide thin film formed on the surface of the base material can be efficiently removed to the end.

また、強酸や強アルカリの化学液を使用しないので、環境負荷も低減でき、基材を始めとする希少金属などの資源サイクルも可能になって、経済的にも有利である。   Further, since no strong acid or strong alkali chemical solution is used, the environmental load can be reduced, and resource cycles such as rare metals such as base materials can be realized, which is economically advantageous.

(a)は本発明の基本原理を説明する図、(b)は問題点を説明する図である。(A) is a figure explaining the basic principle of this invention, (b) is a figure explaining a problem. 本発明の第1の例を説明する概略図で、(a)は側面から見た図、(b)は平面から見た図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic explaining the 1st example of this invention, (a) is the figure seen from the side surface, (b) is the figure seen from the plane. 本発明の第1の例における移動速度と電解還元電流の関係を示した図である。It is the figure which showed the relationship between the moving speed and the electrolytic reduction current in the 1st example of this invention. 移動速度に対して電解還元電流が大きすぎた場合の還元状態を説明する図である。It is a figure explaining the reduction state when the electrolytic reduction current is too large with respect to the moving speed. 本発明の第2の例を説明する平面方向から見た概略図である。It is the schematic seen from the plane direction explaining the 2nd example of the present invention. 図5に示した本発明の第2の例において、導電性酸化物薄膜の最終端部が還元できることを説明する図である。In the 2nd example of this invention shown in FIG. 5, it is a figure explaining that the last edge part of a conductive oxide thin film can be reduce | restored. 本発明の第3の例を説明する平面方向から見た概略図である。It is the schematic seen from the plane direction explaining the 3rd example of the present invention. 図7に示した本発明の第3の例において、導電性酸化物薄膜の最終端部が還元できることを説明する図である。FIG. 8 is a diagram illustrating that the final end portion of the conductive oxide thin film can be reduced in the third example of the present invention shown in FIG. 7. 本発明の第4の例を説明する側面方向から見た概略図である。It is the schematic seen from the side surface explaining the 4th example of the present invention. 本発明により導電性金属酸化物薄膜を電解還元処理した後の回収装置の一例を示した図である。It is the figure which showed an example of the collection | recovery apparatus after carrying out the electrolytic reduction process of the electroconductive metal oxide thin film by this invention. 機械的擦過により金属薄膜を除去する方法について説明する図である。It is a figure explaining the method of removing a metal thin film by mechanical abrasion. 化学エッチングにより金属薄膜を除去する方法について説明する図である。It is a figure explaining the method of removing a metal thin film by chemical etching.

符号の説明Explanation of symbols

11 基材
12 導電性金属酸化物薄膜
12a 導電性金属
13 正電極
14 第1の負電極
15 電解液
16 電源
17 第2の負電極
DESCRIPTION OF SYMBOLS 11 Base material 12 Conductive metal oxide thin film 12a Conductive metal 13 Positive electrode 14 1st negative electrode 15 Electrolytic solution 16 Power supply 17 2nd negative electrode

本発明は、基材の導電性金属酸化物薄膜を、基材の端部まで僅かな残留膜もなく効率良く除去するという目的を、非接触による電解溶出で付着力を弱めた後に、基材に形成された導電性金属を除去するに際し、正電極と第1の負電極の間に、第2の負電極を前記導電性金属酸化物薄膜の幅方向に接触状態で複数配置することによって実現した。   The purpose of the present invention is to remove the conductive metal oxide thin film of the base material efficiently without a slight residual film up to the end of the base material, after weakening the adhesive force by non-contact electrolytic elution. When removing the conductive metal formed on the substrate, a plurality of second negative electrodes are arranged in contact with each other in the width direction of the conductive metal oxide thin film between the positive electrode and the first negative electrode. did.

以下、本発明の基本原理を、図1を用いて説明した後、本発明を実施するための最良の形態と共に各種の形態を図2〜図10を用いて詳細に説明する。   Hereinafter, the basic principle of the present invention will be described with reference to FIG. 1, and various embodiments will be described in detail with reference to FIGS. 2 to 10 together with the best mode for carrying out the present invention.

本発明は、できるだけ基材への疵や応力変形などを残さない加工法で、かつ、強酸や強アルカリを使用しない導電性金属酸化物薄膜の除去方法である。
つまり、本発明では、図1(a)のように、表面に導電性金属酸化物薄膜12を形成した絶縁物や導電物などの基材11の上方に、たとえば前記導電性金属酸化物薄膜12の幅よりも広幅の正電極13と負電極(以下、第1の負電極という)14を非接触状態で並列に配置する。
The present invention is a processing method that leaves as little wrinkles and stress deformation on a substrate as possible, and a method for removing a conductive metal oxide thin film that does not use strong acid or strong alkali.
That is, in the present invention, as shown in FIG. 1A, for example, the conductive metal oxide thin film 12 is formed above the base material 11 such as an insulator or a conductive material on which the conductive metal oxide thin film 12 is formed. A positive electrode 13 and a negative electrode (hereinafter referred to as a first negative electrode) 14 having a width wider than that of the first electrode 14 are arranged in parallel in a non-contact state.

そして、たとえば電解液槽内の電解液15に、前記の正電極13と第1の負電極14を浸漬配置し、電源16から直流電圧或いはパルス電圧を印加して、導電性金属酸化物薄膜12が第1の負電極14を通過した後に正電極13を通過するように、基材11を移動させるのである。   Then, for example, the positive electrode 13 and the first negative electrode 14 are immersed in the electrolytic solution 15 in the electrolytic bath, and a DC voltage or a pulse voltage is applied from the power source 16 to thereby form the conductive metal oxide thin film 12. Then, the base material 11 is moved so as to pass through the positive electrode 13 after passing through the first negative electrode 14.

このようにすることで、電源16(+)−正電極13−電解液15−導電性金属酸化物薄膜12−電解液15−第1の負電極14−電源16(−)の閉回路が形成され、正電極13近傍の導電性金属酸化物薄膜12の表面からH2の微細気泡が発生する。By doing in this way, the closed circuit of power supply 16 (+)-positive electrode 13-electrolytic solution 15-conductive metal oxide thin film 12-electrolytic solution 15-first negative electrode 14-power supply 16 (-) is formed. Then, H 2 microbubbles are generated from the surface of the conductive metal oxide thin film 12 in the vicinity of the positive electrode 13.

このとき、正電極13近傍の導電性金属酸化物薄膜12の表面に発生するH2が還元剤となり、導電性金属酸化物薄膜12中のO2を取り除く作用が生じる。さらに、このH2の発生は導電性金属酸化物薄膜12の界面で生じることから効率の良い還元反応が生じる。At this time, H 2 generated on the surface of the conductive metal oxide thin film 12 in the vicinity of the positive electrode 13 serves as a reducing agent, and an action of removing O 2 in the conductive metal oxide thin film 12 occurs. Furthermore, since the generation of H 2 occurs at the interface of the conductive metal oxide thin film 12, an efficient reduction reaction occurs.

2による結合が無くなった導電性金属酸化物薄膜12は金属元素だけとなり、基材11の表面に結合力が弱まった状態で存在するようになる。基材11との結合が弱まった導電性金属12aは、弱い応力で擦過する例えば回転スポンジ体などの柔軟性体によって基材11から確実に除去される。The conductive metal oxide thin film 12 that is no longer bonded by O 2 contains only a metal element, and exists on the surface of the base material 11 in a state where the bonding force is weakened. The conductive metal 12a whose bond with the base material 11 has been weakened is reliably removed from the base material 11 by a flexible material such as a rotating sponge body that is rubbed with a weak stress.

しかしながら、図1(a)のように、正電極13及び第1の負電極14が、導電性金属酸化物薄膜12と非接触の状態であると、前記正電極13及び第1の負電極14と導電性金属酸化物薄膜12間に介在する電解液15が抵抗となって、効率良く導電性金属酸化物薄膜12を除去できない。逆に、正電極13及び第1の負電極14が導電性金属酸化物薄膜12と接触の状態であると、両電極13,14に大量の気泡(水素及び酸素)が付着し、電極13,14の電流密度が低下することで導電性金属酸化物薄膜12の除去効果が低下し、完全に除去することができない。   However, as shown in FIG. 1A, when the positive electrode 13 and the first negative electrode 14 are not in contact with the conductive metal oxide thin film 12, the positive electrode 13 and the first negative electrode 14 are provided. The electrolytic solution 15 interposed between the conductive metal oxide thin film 12 becomes a resistance, and the conductive metal oxide thin film 12 cannot be removed efficiently. On the contrary, when the positive electrode 13 and the first negative electrode 14 are in contact with the conductive metal oxide thin film 12, a large amount of bubbles (hydrogen and oxygen) adhere to both the electrodes 13, 14, and the electrodes 13, When the current density of 14 is lowered, the removal effect of the conductive metal oxide thin film 12 is lowered and cannot be completely removed.

また、図1(a)のような電極配置では、第1の負電極14が導電性金属酸化物薄膜12の最終端部を通過すると、導電性金属酸化物薄膜12と第1の負電極14との間隔が離れていくので、導電性金属酸化物薄膜12に流れる電流量が急激に低下して、還元に必要な電流が流れなくなる。   Further, in the electrode arrangement as shown in FIG. 1A, when the first negative electrode 14 passes the final end of the conductive metal oxide thin film 12, the conductive metal oxide thin film 12 and the first negative electrode 14. , The amount of current flowing through the conductive metal oxide thin film 12 is abruptly reduced, and the current necessary for reduction does not flow.

つまり、図1(a)のような電極配置では、導電性金属酸化物薄膜12の後端部は、図1(b)に示すように、正電極13と第1の負電極14間の間隔Xだけ還元されないことになる。また、図1(a)のような電極配置では、第1の負電極14と導電性金属酸化物薄膜12間に介在する電解液15の抵抗が存在するため、還元に必要な電流を流す電圧が大きくなる。   That is, in the electrode arrangement as shown in FIG. 1A, the rear end portion of the conductive metal oxide thin film 12 has a gap between the positive electrode 13 and the first negative electrode 14 as shown in FIG. Only X will not be reduced. Further, in the electrode arrangement as shown in FIG. 1A, since there is a resistance of the electrolytic solution 15 interposed between the first negative electrode 14 and the conductive metal oxide thin film 12, a voltage for passing a current necessary for reduction is provided. Becomes larger.

そこで、本発明では、例えば電解液槽内の電解液15に浸漬する正電極13と第1の負電極14の間に、図2に示すように、第2の負電極17を導電性金属酸化物薄膜12の幅方向に複数個、接触状態で配置するのである。なお、図2中の18は第2の負電極17を導電性金属酸化物薄膜12に押し付けるばね等の押し付け機構である。   Therefore, in the present invention, for example, between the positive electrode 13 immersed in the electrolytic solution 15 in the electrolytic solution tank and the first negative electrode 14, the second negative electrode 17 is electrically conductive metal oxidized as shown in FIG. A plurality of physical thin films 12 are arranged in contact with each other in the width direction. 2 denotes a pressing mechanism such as a spring that presses the second negative electrode 17 against the conductive metal oxide thin film 12.

本発明では、前記第2の負電極17同士の間隔Lは、正電極13と第1の負電極14間の間隔X(mm)以上で、正電極13と第1の負電極14間の間隔X(mm)の10倍以下とすることが望ましい(図2(b)参照)。   In the present invention, the interval L between the second negative electrodes 17 is not less than the interval X (mm) between the positive electrode 13 and the first negative electrode 14 and the interval between the positive electrode 13 and the first negative electrode 14. It is desirable to make it 10 times or less of X (mm) (see FIG. 2B).

第2の負電極17同士の間隔Lが、正電極13と第1の負電極14間の間隔X(mm)未満であると、第2の負電極14に大量の気泡(水素)が付着して電極の電流密度が低下する(導電性金属酸化物薄膜12の除去漏れ(むら)ができる)からである。反対に正電極13と第1の負電極14間の間隔X(mm)の10倍を超えると、還元電流の効率が低下し、接触電極を付加することによる効果が低下するからである。   When the interval L between the second negative electrodes 17 is less than the interval X (mm) between the positive electrode 13 and the first negative electrode 14, a large amount of bubbles (hydrogen) adhere to the second negative electrode 14. This is because the current density of the electrode decreases (the removal leakage (unevenness) of the conductive metal oxide thin film 12 can occur). Conversely, if the distance X (mm) between the positive electrode 13 and the first negative electrode 14 exceeds 10 times, the efficiency of the reduction current is reduced, and the effect of adding the contact electrode is reduced.

また、本発明では、還元に必要な電流値I(A)は、正電極13、第1,第2の負電極14,17と基材11との相対移動速度(cm/分)と正電極13の電極幅Y(cm)を乗算した値の0.003倍以上で、0.01倍以下とすることが望ましい(図3参照)。   In the present invention, the current value I (A) required for reduction is determined by the relative movement speed (cm / min) between the positive electrode 13, the first and second negative electrodes 14, 17 and the substrate 11, and the positive electrode. It is desirable that the value be 0.003 times or more and 0.01 times or less the value obtained by multiplying the electrode width Y (cm) of 13 (see FIG. 3).

前記0.003倍未満では、還元が不足して導電性金属酸化物薄膜12の表面部しか還元除去できないからである。   This is because if it is less than 0.003 times, the reduction is insufficient and only the surface portion of the conductive metal oxide thin film 12 can be reduced and removed.

また、0.01倍を超えると、導電性金属酸化物薄膜12が過剰に還元されて導電性金属酸化物薄膜12が還元と同時に基材11から剥離し、正電極13と導電性金属酸化物薄膜12の間隔が離れて導電性金属酸化物薄膜12に流れる電流が急激に低下し、還元に必要な電流が流れにくくなるためである。   On the other hand, if it exceeds 0.01 times, the conductive metal oxide thin film 12 is excessively reduced and the conductive metal oxide thin film 12 is peeled off from the substrate 11 simultaneously with the reduction, and the positive electrode 13 and the conductive metal oxide are removed. This is because the current flowing through the conductive metal oxide thin film 12 decreases rapidly due to the separation of the thin film 12, and it becomes difficult for the current necessary for reduction to flow.

そして、剥離部分を正電極13が通過すると、再び還元できるようになり、これが繰り返されて、図4に示したように、縞状に還元されない部分が残るのである。   Then, when the positive electrode 13 passes through the peeled portion, it can be reduced again, and this is repeated, and as shown in FIG. 4, a portion that is not reduced in a striped shape remains.

このような構成の本発明によれば、第1の負電極14の前段又は後段、或いは、前段及び後段に設けられた第2の負電極17により、前記第1の負電極14と導電性金属酸化物薄膜12間に介在する電解液15との抵抗がなくなり、導電性金属酸化物薄膜12の除去効率が良くなるとともに、還元に必要な電流を低くすることができる。また、第2の負電極17同士を間隔Lで複数配置することで、電極13,14,17に大量の気泡が付着することによる電極の電流密度の低下を低減することができる。   According to the present invention having such a configuration, the first negative electrode 14 and the conductive metal are formed by the second negative electrode 17 provided at the front stage or the rear stage of the first negative electrode 14 or at the front stage and the rear stage. The resistance with the electrolyte solution 15 interposed between the oxide thin films 12 is eliminated, the removal efficiency of the conductive metal oxide thin film 12 is improved, and the current required for reduction can be reduced. In addition, by arranging a plurality of second negative electrodes 17 at intervals L, it is possible to reduce a decrease in electrode current density due to a large amount of bubbles adhering to the electrodes 13, 14, and 17.

また、図2に示した本発明に代えて、図5に示した構成としても良い。
図5に示した例は、図2に示した正電極13と第1の負電極14を、導電性金属酸化物薄膜12の幅方向に、導電性金属酸化物薄膜12の幅よりも狭幅のものを千鳥状に並列に配置したものである。
Further, the configuration shown in FIG. 5 may be used instead of the present invention shown in FIG.
In the example shown in FIG. 5, the positive electrode 13 and the first negative electrode 14 shown in FIG. 2 are narrower than the width of the conductive metal oxide thin film 12 in the width direction of the conductive metal oxide thin film 12. Are arranged in a staggered pattern in parallel.

正電極13と第1の負電極14を千鳥状に配置することで、図6に示すように、隣り合う正電極13と第1の負電極14間(図6にハッチングで示す部分)で電解還元が生じ、導電性金属酸化物薄膜12の最終端部でも還元できるようになる。   By arranging the positive electrode 13 and the first negative electrode 14 in a staggered manner, as shown in FIG. 6, electrolysis is performed between the adjacent positive electrode 13 and the first negative electrode 14 (the portion indicated by hatching in FIG. 6). Reduction occurs and the final end portion of the conductive metal oxide thin film 12 can be reduced.

また、図5に示した例に代えて、図7のように、正電極13と第1の負電極14を、導電性金属酸化物薄膜12の幅方向に、導電性金属酸化物薄膜12の幅よりも狭幅の湾曲状のものを連続して配置したものとしても、図8にハッチングで示す部分で電解還元が生じ、同様の作用効果を得ることができる。   Further, instead of the example shown in FIG. 5, the positive electrode 13 and the first negative electrode 14 are arranged in the width direction of the conductive metal oxide thin film 12 as shown in FIG. 7. Even if the curved shape narrower than the width is continuously arranged, electrolytic reduction occurs in the portion indicated by hatching in FIG. 8, and the same effect can be obtained.

さらに、図9に示したように、前記第2の負電極17を、導電性金属酸化物薄膜12の最終端部に接触状態で配置し、たとえば基材11(導電性金属酸化物薄膜12)の移動時、第2の負電極17を基材11と同調移動させて導電性金属酸化物薄膜12の最終端部との相対位置関係を維持するようにしても良い。   Further, as shown in FIG. 9, the second negative electrode 17 is disposed in contact with the final end of the conductive metal oxide thin film 12, for example, the base material 11 (conductive metal oxide thin film 12). During the movement, the second negative electrode 17 may be moved in synchronization with the base material 11 to maintain the relative positional relationship with the final end portion of the conductive metal oxide thin film 12.

以上の本発明では、導電性金属酸化物薄膜12は電解還元処理した後は、金属固体として微粒子化(0.1μm以下)しているので、たとえば図10に示すように、水流ジェット20により還元金属を剥離すれば良い。なお、図10では、補助として柔軟性材21による機械的剥離を併用するものを示している。   In the present invention described above, since the conductive metal oxide thin film 12 is finely divided (0.1 μm or less) as a metal solid after the electrolytic reduction treatment, for example, as shown in FIG. What is necessary is just to peel a metal. In addition, in FIG. 10, what uses together mechanical peeling by the flexible material 21 as assistance is shown.

そして、その後は、電解液とともに除去した還元金属を、電解液捕集パン22を介して回収タンク23に溜め、マイクロバブル発生器24によってマイクロバブルを混入する。これにより、マイクロバブルが核となって金属微粒子がクラスタ化し、フィルタで回収できるようになるので、フィルタ25を通して還元金属を回収する。なお、図10中の26はポンプを示す。   After that, the reduced metal removed together with the electrolytic solution is accumulated in the recovery tank 23 via the electrolytic solution collecting pan 22, and microbubbles are mixed by the microbubble generator 24. As a result, the metal bubbles are clustered using the microbubbles as a nucleus and can be collected by the filter. In addition, 26 in FIG. 10 shows a pump.

以上の説明のように、本発明は、一般に行われている、被加工物に正電圧を印加する電解溶出除去反応ではなく、被加工物に負の電圧を印加する特徴的な加工法である。
なお、ここでの電解反応は導電性金属酸化物薄膜界面のごく微量な領域にH2の発生を生じさせるもので良いため、電流はほとんど必要としない。
As described above, the present invention is a characteristic processing method for applying a negative voltage to a workpiece, not a general electrolytic elution removal reaction for applying a positive voltage to the workpiece, as described above. .
The electrolytic reaction here may generate H2 in a very small region at the interface of the conductive metal oxide thin film, so that almost no current is required.

従って、使用する電解液15は、一般に用いられる中性塩溶液、または水道水や河川水や、水道水や河川水等に中性塩溶液を混合したものが利用可能であるが、正電極13、負電極14ともに基材11とは非接触の場合は、好ましくは、前述のように抵抗率が102Ω・cmから106Ω・cm、より好ましくは103Ω・cmから104Ω・cmに調整されたものが良い。Therefore, as the electrolyte 15 to be used, a neutral salt solution that is generally used, or a mixture of a neutral salt solution in tap water, river water, tap water, river water, or the like can be used. When the negative electrode 14 is not in contact with the substrate 11, the resistivity is preferably 10 2 Ω · cm to 10 6 Ω · cm, more preferably 10 3 Ω · cm to 10 4 Ω, as described above.・ Adjusted to cm.

本発明では、正電極13、第1の負電極14が基材11とは非接触の場合、抵抗率が102Ω・cm未満の導電性の高い電解液15では、両電極13,14間に印加された電圧が、導電性金属酸化物薄膜12を通さず、前記両電極13,14間で電解液15を通して導通状態となるため、導電性金属酸化物薄膜12の除去効率が低下するからである。また、抵抗率が106Ω・cmを超えると高電圧を印加する必要があり、経済上好ましくないからである。In the present invention, when the positive electrode 13 and the first negative electrode 14 are not in contact with the base material 11, in the highly conductive electrolyte 15 having a resistivity of less than 10 2 Ω · cm, between the electrodes 13 and 14. Since the voltage applied to the conductive metal oxide thin film 12 does not pass through the electrolyte solution 15 between the electrodes 13 and 14, the removal efficiency of the conductive metal oxide thin film 12 decreases. It is. Further, if the resistivity exceeds 10 6 Ω · cm, it is necessary to apply a high voltage, which is economically undesirable.

このように本発明では、抵抗率の比較的高い電解液15が適していることから、従来、電解液15としては好ましくなかった、水道水や河川水等を用いることができ、経済性および安全性の面においても優れている。   Thus, in the present invention, since the electrolytic solution 15 having a relatively high resistivity is suitable, tap water, river water, and the like, which are not preferable as the electrolytic solution 15 conventionally, can be used. Also excellent in terms of sex.

ちなみに、電解液として水道水を使用し、ガラス基板上に膜厚が1500×10−10mのITOを形成した100mm×100mmの被加工物を、図2に示したように、前記電解液中に浸漬した。Incidentally, as shown in FIG. 2, a work piece of 100 mm × 100 mm in which tap water is used as an electrolytic solution and ITO having a film thickness of 1500 × 10 −10 m is formed on a glass substrate is formed in the electrolytic solution as shown in FIG. Soaked in.

同じく電解液中にCu製の正電極と第1,第2の負電極(正電極と第1の負電極の幅は共に120mmで、両電極間の間隔Xは10mm。また、第2の負電極は2個。)を浸漬した。   Similarly, a positive electrode made of Cu and first and second negative electrodes in the electrolytic solution (the width of the positive electrode and the first negative electrode are both 120 mm, and the distance X between the two electrodes is 10 mm. The second negative electrode 2 electrodes) were immersed.

これら正電極と第1,第2の負電極間に150Vの直流電圧を印加し(電流:6A)、被加工材を1m/分で移動させた。そして、第1の負電極が導電性金属酸化物薄膜を通過した後は、前記移動を60秒間停止して導電性金属酸化物薄膜の最終端部を還元した。   A DC voltage of 150 V was applied between the positive electrode and the first and second negative electrodes (current: 6 A), and the workpiece was moved at 1 m / min. Then, after the first negative electrode passed through the conductive metal oxide thin film, the movement was stopped for 60 seconds to reduce the final end of the conductive metal oxide thin film.

以上の本発明を実施したところ、導電性金属酸化物薄膜の最終端部までITOが除去でき、ガラス基板の再生が可能になった。   As a result of carrying out the present invention as described above, the ITO can be removed up to the final end of the conductive metal oxide thin film, and the glass substrate can be regenerated.

また、上記実験例の正電極と第1の負電極を被加工物の幅方向に12分割して千鳥状に配置し、分割した第1の負電極に1個ずつ第2の負電極を設置したほかは、全て上記実験例と同じ条件で実験を行なったところ、導電性金属酸化物薄膜の最終端部までITOが除去でき、ガラス基板の再生が可能になった。   Further, the positive electrode and the first negative electrode of the above experimental example are divided into 12 in the width direction of the workpiece and arranged in a staggered manner, and the second negative electrode is installed one by one on the divided first negative electrode. In all other cases, the experiment was performed under the same conditions as in the above experimental example. As a result, ITO was removed to the final end of the conductive metal oxide thin film, and the glass substrate could be regenerated.

さらに、上記実験例により除去したITOを、図10で説明した回収装置(フィルタのメッシュ:1μm、回収タンク容量:50リットル、マイクロバブル発生量:2リットル/分、フィルタへの吐出量:10リットル/分)で回収したところ、InとSnを金属固体として回収できた。なお、フィルタへはマイクロバブルを混入して1分後に吐出を開始した。   Furthermore, the ITO removed in the above experimental example was recovered using the recovery device described in FIG. 10 (filter mesh: 1 μm, recovery tank capacity: 50 liters, microbubble generation amount: 2 liters / minute, discharge amount to the filter: 10 liters). / Min), In and Sn could be recovered as metal solids. In addition, microbubbles were mixed into the filter, and discharge was started 1 minute later.

前記回収金属をX線マイクロアナライザーで成分分析したところ、ITOの成分であるInとSnがIn:Sn=9:1の割合で検出され、ITOがそのままの成分比率で回収できたことを確認した。   As a result of component analysis of the recovered metal with an X-ray microanalyzer, In and Sn, which are ITO components, were detected at a ratio of In: Sn = 9: 1, and it was confirmed that ITO was recovered at the same component ratio. .

本発明は、前述の例に限るものではなく、例えば基材や電極を電解液に浸漬させるものに代えて、基材や電極の必要部位に電解液を供給するようにしても良いなど、各請求項に記載の技術的思想の範囲内において、適宜実施の形態を変更しても良いことは言うまでもない。また、電解液17中に混入する還元金属の回収も図10に示した方法に限らない。   The present invention is not limited to the above-described example. For example, instead of immersing the base material or the electrode in the electrolytic solution, the electrolytic solution may be supplied to a necessary part of the base material or the electrode. Needless to say, the embodiments may be appropriately changed within the scope of the technical idea described in the claims. Moreover, the collection | recovery of the reduced metal mixed in the electrolyte solution 17 is not restricted to the method shown in FIG.

Claims (7)

基材の表面に形成された導電性金属酸化物薄膜に対向すべく、
正電極と第1の負電極を非接触状態で並列に配置すると共に、前記第1の負電極の前段又は後段、或いは、前段及び後段に、第2の負電極を前記導電性金属酸化物薄膜の幅方向に複数、接触状態で配置した後、
これらの正電極、第1,第2の負電極と前記導電性金属酸化物薄膜間に電解液を介在させた状態で、
前記正電極、第1,第2の負電極に電圧を印加して、
前記正電極、第1,第2の負電極と基材の表面に形成された導電性金属酸化物薄膜とを、導電性金属酸化物薄膜が第1の負電極、第2の負電極を通過後に正電極を通過するように相対移動させることで、前記基材表面の導電性金属酸化物薄膜を還元反応により除去することを特徴とする導電性金属酸化物薄膜の除去方法。
To face the conductive metal oxide thin film formed on the surface of the substrate,
The positive electrode and the first negative electrode are arranged in parallel in a non-contact state, and the second negative electrode is placed on the conductive metal oxide thin film before or after the first negative electrode, or before and after the first negative electrode. After arranging a plurality of contacts in the width direction,
In a state where an electrolyte is interposed between the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film,
Apply voltage to the positive electrode, the first and second negative electrodes,
The conductive metal oxide thin film passes through the first negative electrode and the second negative electrode through the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate. A method for removing a conductive metal oxide thin film, wherein the conductive metal oxide thin film on the surface of the base material is removed by a reduction reaction by relative movement so as to pass through a positive electrode later.
前記複数配置した第2の負電極間の間隔は、前記正電極と第1の負電極間の間隔以上で、前記正電極と第1の負電極間の間隔の10倍以下であることを特徴とする請求項1に記載の導電性金属酸化物薄膜の除去方法。   The interval between the plurality of second negative electrodes arranged is not less than the interval between the positive electrode and the first negative electrode and not more than 10 times the interval between the positive electrode and the first negative electrode. The method for removing a conductive metal oxide thin film according to claim 1. 前記の正電極と第1の負電極が、
導電性金属酸化物薄膜の幅よりも狭幅の正電極と第1の負電極を千鳥状に配置したものであることを特徴とする請求項1又は2に記載の導電性金属酸化物薄膜の除去方法。
The positive electrode and the first negative electrode are
The conductive metal oxide thin film according to claim 1 or 2, wherein a positive electrode and a first negative electrode narrower than the width of the conductive metal oxide thin film are arranged in a staggered manner. Removal method.
前記電解液は、抵抗率が102Ω・cmから106Ω・cmのものを使用することを特徴とする請求項1又は2に記載の導電性金属酸化物薄膜の除去方法。The method for removing a conductive metal oxide thin film according to claim 1 or 2, wherein the electrolyte has a resistivity of 10 2 Ω · cm to 10 6 Ω · cm. 前記電解液は、抵抗率が102Ω・cmから106Ω・cmのものを使用することを特徴とする請求項3に記載の導電性金属酸化物薄膜の除去方法。The method for removing a conductive metal oxide thin film according to claim 3, wherein the electrolytic solution has a resistivity of 10 2 Ω · cm to 10 6 Ω · cm. 請求項1に記載の導電性金属酸化物薄膜の除去方法を実施する装置であって、
基材の表面に形成された導電性金属酸化物薄膜に対向すべく非接触状態で並列に配置された正電極及び第1の負電極と、
前記第1の負電極の前段又は後段、或いは、前段及び後段に、前記導電性金属酸化物薄膜に対向すべく導電性金属酸化物薄膜の幅方向に接触状態で複数配置された第2の負電極と、
これら正電極、第1,第2の負電極と前記基材の表面に形成された導電性金属酸化物薄膜間に電解液を供給する手段、或いは、前記の正電極、第1,第2の負電極と基材を電解液内に浸漬すべく電解液を貯留する電解液槽と、
これらの正電極と第1,第2の負電極に電圧を印加する電源と、
前記正電極、第1,第2の負電極と基材の表面に形成された導電性金属酸化物薄膜とを、導電性金属酸化物薄膜が第1の負電極、第2の負電極を通過後に正電極を通過するように相対移動させる移動機構を備えたことを特徴とする導電性金属酸化物薄膜の除去装置。
An apparatus for performing the method for removing a conductive metal oxide thin film according to claim 1,
A positive electrode and a first negative electrode arranged in parallel in a non-contact state to face the conductive metal oxide thin film formed on the surface of the substrate;
A plurality of second negative electrodes arranged in contact with each other in the width direction of the conductive metal oxide thin film so as to face the conductive metal oxide thin film before or after the first negative electrode, or before and after the first negative electrode. Electrodes,
Means for supplying an electrolytic solution between the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate, or the positive electrode, the first and second electrodes An electrolytic bath for storing the electrolytic solution so as to immerse the negative electrode and the substrate in the electrolytic solution;
A power source for applying a voltage to the positive electrode and the first and second negative electrodes;
The conductive metal oxide thin film passes through the first negative electrode and the second negative electrode through the positive electrode, the first and second negative electrodes, and the conductive metal oxide thin film formed on the surface of the substrate. An apparatus for removing a conductive metal oxide thin film, comprising a moving mechanism for moving the electrode so as to pass through a positive electrode later.
前記正電極と第1の負電極が、
導電性金属酸化物薄膜の幅よりも狭幅のものを千鳥状に、或いは、導電性金属酸化物薄膜の幅よりも狭幅の湾曲状のものを連続して配置したものであることを特徴とする請求項6に記載の導電性金属酸化物薄膜の除去装置。
The positive electrode and the first negative electrode are
One having a narrower width than the width of the conductive metal oxide thin film is arranged in a staggered manner, or one having a curved shape narrower than the width of the conductive metal oxide thin film is continuously arranged. The apparatus for removing a conductive metal oxide thin film according to claim 6.
JP2008511938A 2006-04-12 2006-09-25 Method and apparatus for removing conductive metal oxide thin film Expired - Fee Related JP5055269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008511938A JP5055269B2 (en) 2006-04-12 2006-09-25 Method and apparatus for removing conductive metal oxide thin film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006110170 2006-04-12
JP2006110170 2006-04-12
PCT/JP2006/318968 WO2007122752A1 (en) 2006-04-12 2006-09-25 Method of removing conductive metal oxide thin-film and apparatus therefor
JP2008511938A JP5055269B2 (en) 2006-04-12 2006-09-25 Method and apparatus for removing conductive metal oxide thin film

Publications (2)

Publication Number Publication Date
JPWO2007122752A1 true JPWO2007122752A1 (en) 2009-08-27
JP5055269B2 JP5055269B2 (en) 2012-10-24

Family

ID=38624676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008511938A Expired - Fee Related JP5055269B2 (en) 2006-04-12 2006-09-25 Method and apparatus for removing conductive metal oxide thin film

Country Status (5)

Country Link
JP (1) JP5055269B2 (en)
KR (1) KR20090010980A (en)
CN (1) CN101416283B (en)
TW (1) TW200738917A (en)
WO (1) WO2007122752A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046108B (en) * 2012-12-24 2017-03-29 上海申和热磁电子有限公司 Application of the electrolysis process in ito film is cleaned
KR101864368B1 (en) * 2016-08-19 2018-06-29 나노하 Apparatus for converting image to sound
KR102344878B1 (en) * 2017-07-10 2021-12-30 삼성디스플레이 주식회사 Cleaning apparatus for removing oxide and method of cleaning using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353075B2 (en) * 1994-01-18 2002-12-03 西山ステンレスケミカル株式会社 Glass plate recycling method and apparatus
JP3659597B2 (en) * 1994-11-28 2005-06-15 旭電化工業株式会社 Method and apparatus for etching tin oxide film
FR2821862B1 (en) * 2001-03-07 2003-11-14 Saint Gobain METHOD OF ENGRAVING LAYERS DEPOSITED ON TRANSPARENT SUBSTRATES OF THE GLASS SUBSTRATE TYPE

Also Published As

Publication number Publication date
TWI316098B (en) 2009-10-21
CN101416283B (en) 2010-05-19
WO2007122752A1 (en) 2007-11-01
KR20090010980A (en) 2009-01-30
JP5055269B2 (en) 2012-10-24
CN101416283A (en) 2009-04-22
TW200738917A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JP4884128B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP5055269B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP5129569B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP4828910B2 (en) Conductive metal oxide thin film removal device
JP4966751B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP4144797B2 (en) System for peeling metal thin films from glass substrates
JP4781774B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP4792324B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP4157753B2 (en) Method and apparatus for removing metal thin film
JP4824365B2 (en) Conductive metal oxide removal method and apparatus
JPS6388895A (en) Manufacture of conductor circuit plate
JP5174622B2 (en) Recovery of reduced metal from conductive metal oxide, method and equipment for regenerating substrate for liquid crystal
JP4701072B2 (en) Method and apparatus for removing conductive metal oxide thin film
JP4884080B2 (en) Conductive metal oxide thin film removal device
JP2010104923A (en) Method and apparatus of removing minute conductive metal oxide
JPH07207500A (en) Method for regenerating glass plate and device therefor
JP4001202B2 (en) Electrolytic peeling method by high-speed polarity reversal
JP2010104924A (en) Method and apparatus of removing minute conductive metal oxide
JP2005264193A (en) Electroplating equipment and electroplating method
CN101130881A (en) Recycling regeneration system for organic and inorganic compound film and method for making the same
JP2014105366A (en) Method and apparatus for recovering metal component
JP2010236028A (en) Electrolytic degreasing apparatus and electrolytic degreasing method
JPS62214691A (en) Surface cleaning of copper clad laminated board
Pa Design of a Twins-Oval Tool in a Precise Nanostructure Reclamation of Digital Paper Displays
JP2014118596A (en) Recovering method and recovering device of metal component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees