JPWO2007023960A1 - Porous polymer membrane, method for producing the same, and method for producing a stamper used for the production - Google Patents

Porous polymer membrane, method for producing the same, and method for producing a stamper used for the production Download PDF

Info

Publication number
JPWO2007023960A1
JPWO2007023960A1 JP2006554396A JP2006554396A JPWO2007023960A1 JP WO2007023960 A1 JPWO2007023960 A1 JP WO2007023960A1 JP 2006554396 A JP2006554396 A JP 2006554396A JP 2006554396 A JP2006554396 A JP 2006554396A JP WO2007023960 A1 JPWO2007023960 A1 JP WO2007023960A1
Authority
JP
Japan
Prior art keywords
producing
polymer film
porous
stamper
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006554396A
Other languages
Japanese (ja)
Other versions
JP5361130B2 (en
Inventor
秀樹 益田
秀樹 益田
崇 柳下
崇 柳下
和之 西尾
和之 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006554396A priority Critical patent/JP5361130B2/en
Publication of JPWO2007023960A1 publication Critical patent/JPWO2007023960A1/en
Application granted granted Critical
Publication of JP5361130B2 publication Critical patent/JP5361130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0075Manufacture of substrate-free structures
    • B81C99/0085Manufacture of substrate-free structures using moulds and master templates, e.g. for hot-embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0065Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by anodic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/045Anodisation of aluminium or alloys based thereon for forming AAO templates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

多孔性の表面構造を有する陽極酸化ポーラスアルミナの細孔内に物質を充填し、前記陽極酸化ポーラスアルミナを溶解除去することにより、前記物質からなりかつ前記表面構造の反転構造を有するスタンパを作製し、前記スタンパの前記反転構造を高分子に転写することにより、前記表面構造を有する多孔性高分子膜を製造する。サイズの均一な細孔が膜面に対して直交した表面構造を有する多孔性高分子膜を煩雑な工程を経ることなく大面積で製造可能とする。A material is filled in the pores of anodized porous alumina having a porous surface structure, and the anodized porous alumina is dissolved and removed to produce a stamper made of the material and having an inverted structure of the surface structure. The porous polymer film having the surface structure is manufactured by transferring the inverted structure of the stamper to a polymer. A porous polymer membrane having a surface structure in which pores of uniform size are orthogonal to the membrane surface can be produced in a large area without going through complicated steps.

Description

本発明は、多孔性高分子膜およびその製造方法に関し、とくに、スタンパを用いて微細な凹凸構造、例えば多孔性構造又はホールアレー構造を表面に転写するようにした多孔性高分子膜の製造方法、およびその方法により製造された表面に凹凸構造、例えば多孔性構造又はホールアレー構造を有する多孔性高分子膜、さらには多孔性高分子膜の製造に用いるスタンパの製造方法に関する。
本願は、2005年8月26日に日本国特許庁に出願された特願2005−245702号及び2006年3月6日に日本国特許庁に出願された特願2006−059103号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a porous polymer film and a method for producing the same, and in particular, a method for producing a porous polymer film in which a fine uneven structure such as a porous structure or a hole array structure is transferred to a surface using a stamper. And a method for producing a stamper used for producing a porous polymer film having a concavo-convex structure, for example, a porous structure or a hole array structure, on the surface produced by the method.
This application is based on Japanese Patent Application No. 2005-245702 filed with the Japan Patent Office on August 26, 2005 and Japanese Patent Application No. 2006-059103 filed with the Japan Patent Office on March 6, 2006. Is incorporated herein by reference.

サブミクロンからナノメータースケールの微細な凹凸構造を表面に有する高分子膜は、撥水・撥油性膜や反射防止膜等、様々な分野への応用が期待されている。これまでにも、高分子膜表面に微細な凹凸パターンを形成する手法について様々なものが検討されてきているが、その中でも、表面に微細な凹凸パターンをもつモールドをポリマーに機械的に押し付けることにより、モールドの幾何学構造に対応した凹凸パターンを試料表面に形成することが可能であるナノインプリンティング法が関心を集めている(例えば、非特許文献1)。この手法によれば、大面積の規則構造を高スループットで形成することが可能であることから、種々のナノデバイスを作製するための手法として期待できる。しかしながら、通常、ナノインプリントに用いるモールドの作製には電子ビームリソグラフィーが用いられているため、これらの手法では100nm以下の微細な凹凸パターンを大面積で作製することが困難であるという問題点があった。
S.Y.Chou, P.R.Krauss,andJ. Renstrom, Science, 272, 85(1996)
Polymer films having fine concavo-convex structures of submicron to nanometer scale on the surface are expected to be applied to various fields such as water / oil repellency films and antireflection films. Various methods for forming a fine uneven pattern on the surface of a polymer film have been studied so far. Among them, a mold having a fine uneven pattern on the surface is mechanically pressed against a polymer. Therefore, a nanoimprinting method that can form a concavo-convex pattern corresponding to the geometric structure of the mold on the surface of the sample has attracted attention (for example, Non-Patent Document 1). According to this method, a regular structure having a large area can be formed with high throughput, and therefore, it can be expected as a method for manufacturing various nanodevices. However, since electron beam lithography is usually used for producing a mold used for nanoimprinting, it is difficult to produce a fine uneven pattern of 100 nm or less in a large area by these methods. .
S. Y. Chou, P.A. R. Krauss, and J.M. Renstrom, Science, 272, 85 (1996)

本発明は、様々な用途が期待される凹凸構造、例えば多孔性構造又はホールアレー構造を表面に有する高分子膜を作製する際の上記問題点を解消するために、自己組織的に細孔が配列した多孔性の材料、例えば陽極酸化ポーラスアルミナが有するホールアレー構造を鋳型として作製された、前記ホールアレー構造の反転構造を有するスタンパを用いることで多孔性高分子膜を容易に得る手段について鋭意検討を行った結果なされたものである。   In order to solve the above-described problems in producing a polymer film having a concavo-convex structure, for example, a porous structure or a hole array structure, which is expected to be used in various applications, the present invention has a self-organized pore structure. We have earnestly devised means for easily obtaining a porous polymer film by using a stamper having an inverted structure of the hole array structure prepared using a hole array structure of an arrayed porous material such as anodized porous alumina as a template. It was made as a result of examination.

本発明の目的は、サイズの均一な細孔が膜面に対して直交した多孔性構造、すなわちホールアレー構造を表面に有する多孔性高分子膜を煩雑な工程を経ることなく大面積で製造することが可能な方法、およびその方法により製造された多孔性高分子膜を提供することにある。また、その製造に用いて好適なスタンパの製造方法、とくに高アスペクト比の凹凸構造(凹凸パターン)を有する金属製スタンパの製造方法、さらには、各細孔が貫通化したホールアレー構造を有する高分子膜(いわゆる、スルーホールメンブレン)の製造方法を提供することにある。   An object of the present invention is to produce a porous polymer film having pores of uniform size perpendicular to the film surface, that is, a hole polymer structure on the surface, without a complicated process, in a large area. And a porous polymer membrane produced by the method. Also, a stamper manufacturing method suitable for use in the manufacture thereof, particularly a metal stamper manufacturing method having a high aspect ratio concavo-convex structure (concave concavo-convex pattern), and a high array having a hole array structure in which each pore penetrates. The object is to provide a method for producing a molecular film (so-called through-hole membrane).

上記目的を達成するために、本発明に係る多孔性高分子膜の製造方法は、多孔性の表面構造を有する陽極酸化ポーラスアルミナの細孔内に物質を充填し、前記陽極酸化ポーラスアルミナを溶解除去することにより、前記物質からなり、前記表面構造の反転構造を有するスタンパを作製し、前記スタンパの前記反転構造を高分子に転写することにより、前記表面構造を有する高分子膜を製造することを特徴とする。つまり、陽極酸化ポーラスアルミナを鋳型として作製したスタンパを利用し、前記スタンパの表面の凹凸を高分子膜に転写することにより、陽極酸化ポーラスアルミナの前記表面構造を有する多孔性高分子膜を得る。   In order to achieve the above object, a method for producing a porous polymer film according to the present invention includes filling a substance into pores of an anodized porous alumina having a porous surface structure and dissolving the anodized porous alumina. Producing a polymer film having the surface structure by forming a stamper made of the material by removing the stamper and having an inverted structure of the surface structure, and transferring the inverted structure of the stamper to a polymer; It is characterized by. That is, a porous polymer film having the surface structure of anodized porous alumina is obtained by using a stamper produced using anodized porous alumina as a mold and transferring the irregularities on the surface of the stamper to the polymer film.

本発明で用いるスタンパを得るためには、陽極酸化ポーラスアルミナの細孔内及びその表面に金属、金属酸化物、半導体などの物質を充填した後、その鋳型、つまりアルミナの溶解除去を行う。このようにして作製されたスタンパの材質、すなわち陽極酸化ポーラスアルミナの細孔内及びその表面に充填する物質としては、金属が好ましく、ニッケル、金、及び白金がさらに好ましい。   In order to obtain the stamper used in the present invention, the inside of the pores of the anodized porous alumina and the surface thereof are filled with a substance such as a metal, metal oxide, or semiconductor, and then the mold, that is, the alumina is removed by dissolution. The material of the stamper thus prepared, that is, the substance filled in the pores of the anodized porous alumina and the surface thereof is preferably a metal, and more preferably nickel, gold, and platinum.

また、上記本発明に係る方法では、陽極酸化と孔径拡大処理を繰り返し行うことにより孔径を連続的に変化させた細孔を有する陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いてもよい。このように、陽極酸化と孔径拡大処理を組み合わせることで作製される孔径が連続的に変化した細孔を有するポーラスアルミナを鋳型として用いれば、突起径が連続的に変化したスタンパの作製が可能であることから、孔深さ方向において直線的または曲線的に細孔径が変化した多孔性の表面構造、すなわちホールアレー構造を高分子膜表面に作製することが可能となる。このとき形成される高分子膜表面のホールアレー構造は、スタンパ作製の際の鋳型となる陽極酸化ポーラスアルミナの作製条件を変化させることにより制御することが可能である。   Further, in the method according to the present invention, a stamper produced by using anodized porous alumina having a pore whose pore diameter is continuously changed by repeatedly performing anodization and pore diameter enlargement processing as a template may be used. As described above, if porous alumina having pores with continuously changing pore diameters, which are produced by combining anodization and pore diameter expansion treatment, is used as a mold, a stamper with continuously changing projection diameters can be produced. For this reason, it is possible to produce a porous surface structure in which the pore diameter changes linearly or curvedly in the pore depth direction, that is, a hole array structure on the polymer membrane surface. The hole array structure on the surface of the polymer film formed at this time can be controlled by changing the production conditions of the anodized porous alumina that serves as a template for producing the stamper.

また、スタンパの作製条件、とくに、スタンパ作製のための鋳型としての陽極酸化ポーラスアルミナの作製条件としては、種々の条件を採り得る。例えば、シュウ酸を電解液として用い、化成電圧30V〜40Vにおいて作製した陽極酸化ポーラスアルミナを鋳型として作製したスタンパ、あるいは、硫酸を電解液として用い、化成電圧10V〜30Vにおいて作製した陽極酸化ポーラスアルミナを鋳型として作製したスタンパ、あるいは、リン酸を電解液として用い、化成電圧180V〜200Vにおいて作製した陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いてもよい。   Moreover, various conditions can be taken as the production conditions of the stamper, particularly as the production conditions of the anodized porous alumina as a mold for producing the stamper. For example, a stamper produced using oxalic acid as an electrolyte and anodized porous alumina produced at an conversion voltage of 30 to 40 V as a mold, or an anodized porous alumina produced at an formation voltage of 10 to 30 V using sulfuric acid as an electrolyte. Alternatively, a stamper manufactured using as a template, or a stamper manufactured using phosphoric acid as an electrolyte and anodized porous alumina prepared at a conversion voltage of 180 to 200 V as a template may be used.

また、スタンパの作製において、適切な条件下において定電圧で長時間陽極酸化を施し、試料の地金部分及び皮膜底部を溶解除去することで得られるポーラスアルミナ細孔底部の規則的な細孔配列を利用すれば、突起が規則配列したスタンパを得ることができる。このようにして作製したスタンパを用いれば、均一なサイズの細孔が規則配列したホールアレー構造を高分子膜表面に形成することが可能である。   In addition, in the production of stampers, regular pore arrangement at the bottom of porous alumina pores obtained by anodizing for a long time at a constant voltage under appropriate conditions and dissolving and removing the base metal part and the bottom of the film of the sample. Can be used to obtain a stamper in which protrusions are regularly arranged. By using the stamper thus produced, it is possible to form a hole array structure in which pores of uniform size are regularly arranged on the surface of the polymer film.

さらには、定電圧で長時間陽極酸化を施したのち、一旦酸化皮膜を除去し、再び同一条件で陽極酸化を施すことで作製した陽極酸化ポーラスアルミナを鋳型として用いることでも、高い突起配列規則性を有するスタンパを得ることができる。このようなスタンパを用いれば、細孔が規則的に配列したホールアレー構造を表面に有する多孔性高分子膜を得ることもできる。   Furthermore, even if anodization is performed for a long time at a constant voltage, the oxide film is once removed, and anodized porous alumina prepared by anodizing again under the same conditions is used as a template, so that a high protrusion arrangement regularity can be obtained. Can be obtained. By using such a stamper, it is possible to obtain a porous polymer film having a hole array structure with regularly arranged pores on the surface.

また、陽極酸化に先立ち、アルミニウム表面に微細な窪みを形成し、これを陽極酸化時の細孔発生の開始点として作製した陽極酸化ポーラスアルミナを鋳型としてスタンパを作製してもよい。この方法によると、任意の配列を有する陽極酸化ポーラスアルミナの作製が可能である。これを鋳型として作製したスタンパを用いることで、任意の細孔配列を有するホールアレー構造を表面に有する多孔性高分子膜を得ることができる。   Prior to the anodic oxidation, a stamper may be produced using anodized porous alumina formed as a starting point for generating fine pores during anodic oxidation by forming a fine depression on the aluminum surface. According to this method, anodized porous alumina having an arbitrary arrangement can be produced. By using a stamper produced using this as a template, a porous polymer film having a hole array structure having an arbitrary pore arrangement on the surface can be obtained.

また、孔径拡大処理時間を制御し、細孔壁部分の割合を調節した陽極酸化ポーラスアルミナを鋳型として作製されたスタンパを利用すれば、表面側における細孔壁部分の割合が小さいホールアレー構造を有する高分子膜を得ることもできる。例えば、高分子膜の表面に形成されるホールアレー構造の表面側における細孔壁部分の割合(すなわち、高分子膜の外縁に囲まれる領域の面積に対する細孔壁の上面の面積の合計)が30%以下、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である多孔性高分子膜を製造することが可能である。そして、細孔径を限界まで拡大化することにより、高分子膜の表面に形成されるホールアレー構造の表面側における細孔横断面形状は、例えば三角形、四角形または六角形であってもよい。このような多孔性高分子膜は、試料表面においてポロシティー(空隙率)が高くなることから、平坦な細孔壁部分が占める割合が少なくなり、反射防止特性や撥水・撥油特性を向上させるために有効である。   In addition, if a stamper made using anodized porous alumina with a controlled pore size expansion time and a controlled proportion of pore wall portions as a mold is used, a hole array structure with a small proportion of pore wall portions on the surface side can be obtained. It is also possible to obtain a polymer film having the same. For example, the ratio of the pore wall portion on the surface side of the hole array structure formed on the surface of the polymer membrane (that is, the total area of the upper surface of the pore wall relative to the area of the region surrounded by the outer edge of the polymer membrane) It is possible to produce a porous polymer membrane of 30% or less, preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less. The pore cross-sectional shape on the surface side of the hole array structure formed on the surface of the polymer film by enlarging the pore diameter to the limit may be, for example, a triangle, a quadrangle, or a hexagon. Such a porous polymer film has a high porosity on the surface of the sample, so the proportion of flat pore walls is reduced, improving antireflection properties and water / oil repellency. It is effective to make it.

このような手法で作製されたスタンパを用い、各種のスタンパの有する前記反転構造を転写する方法により、表面にホールアレー構造を有する多孔性高分子膜を製造することができる。例えば、スタンパの有する前記反転構造を転写する高分子材料として熱可塑性樹脂を用いる熱インプリント法や、スタンパの前記反転構造を転写する高分子材料として光硬化樹脂(とくに、紫外線硬化樹脂)を用いる光インプリント法に加え、高分子を溶解した溶液をスタンパ上にキャストし、溶媒を乾燥させた後スタンパを剥離し、スタンパの前記反転構造を高分子に転写するようにした、高分子溶液のキャスト法などの手法により、出発構造として用いた陽極酸化ポーラスアルミナと同様のホールアレー構造を高分子膜表面に作製することが可能である。   A porous polymer film having a hole array structure on its surface can be produced by a method of transferring the inversion structure of various stampers using a stamper produced by such a method. For example, a thermal imprint method using a thermoplastic resin as a polymer material for transferring the inverted structure of the stamper, or a photocurable resin (particularly, an ultraviolet curable resin) as the polymer material for transferring the inverted structure of the stamper. In addition to the optical imprint method, a solution in which a polymer is dissolved is cast on a stamper, the solvent is dried, the stamper is peeled off, and the inverted structure of the stamper is transferred to the polymer. A hole array structure similar to the anodized porous alumina used as the starting structure can be formed on the polymer film surface by a technique such as a casting method.

また本発明は、上記のような多孔性高分子膜の製造に用いて好適な、とくに高アスペクト比の金属製スタンパの製造方法も提供する。すなわち、本発明に係るスタンパの製造方法は、材質が金属であるスタンパの製造方法であって、鋳型となる陽極酸化ポーラスアルミナの細孔内へ電析法により金属の充填を行うに際し、鋳型表面にイオンビームスパッタ装置を用いて金属をコートし導通層を付与する。この方法により、とくに、高アスペクト比の金属製スタンパを容易に製造できるようになる。   The present invention also provides a method for producing a metal stamper having a particularly high aspect ratio, which is suitable for the production of the porous polymer film as described above. That is, the stamper manufacturing method according to the present invention is a stamper manufacturing method in which the material is a metal, and when the metal is filled into the pores of the anodized porous alumina serving as the mold by the electrodeposition method, An ion beam sputtering apparatus is used to coat the metal and provide a conductive layer. In particular, this method makes it possible to easily manufacture a metal stamper having a high aspect ratio.

このスタンパの製造方法においては、鋳型表面へ導通層を付与する際に、イオンビームスパッタ装置の試料室の真空度が3×10−4Pa〜1×10−5Paの条件下においてイオンビームスパッタを行うことが好ましい。このようにスパッタ条件を最適化することにより、望ましい導通層が確実に付与される。In this stamper manufacturing method, when the conductive layer is applied to the mold surface, the ion beam sputtering is performed under the condition that the degree of vacuum in the sample chamber of the ion beam sputtering apparatus is 3 × 10 −4 Pa to 1 × 10 −5 Pa. It is preferable to carry out. By optimizing the sputtering conditions in this way, a desirable conductive layer is surely provided.

このような方法により製造されたスタンパの前記反転構造を高分子に転写することにより、高アスペクト比のスタンパに対応した形状の各細孔を有する多孔性高分子膜を容易に製造できるようになる。   By transferring the inverted structure of the stamper manufactured by such a method to a polymer, it becomes possible to easily manufacture a porous polymer film having pores having a shape corresponding to a stamper having a high aspect ratio. .

さらに本発明は、多孔性高分子膜、とくにスルーホールメンブレンの製造方法も提供する。すなわち、本発明に係る多孔性高分子膜の製造方法は、多孔性の表面構造を有する陽極酸化ポーラスアルミナの細孔内に物質を充填し、前記陽極酸化ポーラスアルミナを溶解除去することにより前記物質からなりかつ前記表面構造の反転構造を有するスタンパを作製し、前記スタンパを高分子と下地基板との層に設置し、前記反転構造の凸部先端が前記高分子を介して前記下地基板の表面に接触または内部に到達するまで前記スタンパに荷重を加えて前記反転構造を前記高分子に転写することにより前記表面構造を有する高分子膜を作製し、前記高分子膜を前記下地基板から剥離する(下地基板を溶解除去する場合を含む)ことにより各細孔が貫通化した表面構造(ホールアレー構造)を有する高分子膜を製造する。この方法により、とくに、スルーホールメンブレンを容易に製造できるようになる。   The present invention further provides a method for producing a porous polymer membrane, particularly a through-hole membrane. That is, in the method for producing a porous polymer film according to the present invention, the material is filled in the pores of the anodized porous alumina having a porous surface structure, and the anodized porous alumina is dissolved and removed. And a stamper having an inverted structure of the surface structure is prepared, the stamper is placed in a layer of a polymer and a base substrate, and a tip of the convex portion of the reverse structure is placed on the surface of the base substrate via the polymer. A polymer film having the surface structure is produced by applying a load to the stamper until it contacts or reaches the inside to transfer the inverted structure to the polymer, and the polymer film is peeled off from the base substrate (Including the case of dissolving and removing the base substrate), a polymer film having a surface structure (hole array structure) in which each pore penetrates is manufactured. In particular, this method makes it possible to easily manufacture a through-hole membrane.

この各細孔が貫通化したホールアレー構造を有する多孔性高分子膜の製造方法においては、下地基板として少なくとも表面が高分子からなる基板、例えば、高分子基板または高分子を溶解した溶液をキャストした基板や、ガラス等の基板上でモノマーを重合させて表面に高分子膜を形成した下地基板、さらには最表面が高分子膜からなる多層の下地基板などを用いてもよい。また、少なくとも表面が熱可塑性樹脂からなる下地基板を用い、加温条件下でスタンパに荷重を加えるようにしてもよい。   In the method for producing a porous polymer film having a hole array structure in which each pore penetrates, a substrate having at least a surface made of a polymer, for example, a polymer substrate or a solution in which a polymer is dissolved is cast as a base substrate. Alternatively, a base substrate obtained by polymerizing monomers on a substrate such as glass to form a polymer film on the surface, or a multilayer base substrate having a polymer film on the outermost surface may be used. Also, a load may be applied to the stamper under heating conditions using at least a base substrate whose surface is made of a thermoplastic resin.

そして本発明は、上記のような方法を用いて製造された多孔性高分子膜も提供する。   The present invention also provides a porous polymer membrane produced using the above method.

本発明に係る多孔性高分子膜およびその製造方法によれば、サイズが均一で微細なサイズで膜面に対して直交した細孔が、多数均一に、かつ大面積で配列されたホールアレー構造を表面に有する多孔性高分子膜を、煩雑な工程を経ることなく簡単に効率よく製造することが可能になる。   According to the porous polymer membrane and the method for producing the same according to the present invention, a hole array structure in which a large number of pores having a uniform size and a fine size and perpendicular to the membrane surface are uniformly arranged in a large area It is possible to easily and efficiently produce a porous polymer film having a surface on the surface without going through complicated steps.

また、本発明によれば、各細孔が貫通化したホールアレー構造を有する多孔性高分子膜についても、容易に製造できるようになる。   Further, according to the present invention, a porous polymer film having a hole array structure in which each pore is penetrated can be easily manufactured.

さらに、本発明によれば、これらの多孔性高分子膜の製造に用いて好適な、高アスペクト比のスタンパを提供することもできる。   Furthermore, according to the present invention, it is also possible to provide a high aspect ratio stamper suitable for use in the production of these porous polymer films.

スタンパの作製工程の一例を示す工程フロー図である。It is a process flowchart which shows an example of the manufacturing process of a stamper. 連続的に孔径が変化した細孔を有する陽極酸化ポーラスアルミナを鋳型としたスタンパの作製工程の一例を示す工程フロー図である。FIG. 5 is a process flow diagram showing an example of a stamper manufacturing process using anodized porous alumina having a pore whose pore diameter is continuously changed as a mold. 熱インプリントによる多孔性高分子膜の作製工程の一例を示す工程フロー図である。It is a process flowchart which shows an example of the production process of the porous polymer film by a thermal imprint. 光インプリントによる多孔性高分子膜の作製工程の一例を示す工程フロー図である。It is a process flowchart which shows an example of the production process of the porous polymer film by optical imprint. スタンパ上への溶液キャストによる多孔性高分子膜の作製工程の一例を示す工程フロー図である。It is a process flowchart which shows an example of the preparation process of the porous polymer film by the solution cast on a stamper. スルーホールメンブレン作製工程の一例を示す工程フロー図である。It is a process flow figure showing an example of a through hole membrane preparation process. 熱インプリントにより作製されたポリメタクリル酸メチル多孔性膜の表面の電子顕微鏡による観察結果を示す図である(細孔周期200nm)。It is a figure which shows the observation result by the electron microscope of the surface of the polymethyl methacrylate porous membrane produced by the thermal imprint (pore period 200nm). 光インプリントにより作製されたアクリル樹脂多孔性膜の表面の電子顕微鏡による観察結果を示す図である(細孔周期200nm)。It is a figure which shows the observation result by the electron microscope of the surface of the acrylic resin porous membrane produced by the photoimprint (pore period 200nm). 光インプリントにより作製されたアクリル樹脂多孔性膜の断面の電子顕微鏡による観察結果を示す図である(細孔周期200nm)。It is a figure which shows the observation result by the electron microscope of the cross section of the acrylic resin porous membrane produced by the photoimprint (pore period 200nm). キャスト法により作製されたフッ素樹脂多孔性膜の表面の電子顕微鏡による観察結果を示す図である(細孔周期500nm)。It is a figure which shows the observation result by the electron microscope of the surface of the fluororesin porous membrane produced by the casting method (pore period 500nm). 実施例5で作製された高アスペクト比の金属製スタンパの電子顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the electron microscope of the metal stamper of the high aspect ratio produced in Example 5. FIG. 実施例6で作製されたスルーホールメンブレンの電子顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the electron microscope of the through-hole membrane produced in Example 6. FIG.

符号の説明Explanation of symbols

1 アルミニウム
2 陽極酸化ポーラスアルミナ
3 充填物質層
4 スタンパ
5 連続的に孔径が変化した細孔を有する陽極酸化ポーラスアルミナ
6 熱可塑性樹脂
7 基板
8 多孔性高分子膜
9 光硬化性モノマー
10 重合後の高分子膜
11 溶解した高分子溶液
12 溶媒乾燥後の高分子膜
21 基板
22 高分子層
23 下地基板
24 光硬化性樹脂層
25 スタンパ
26 スルーホールメンブレン
31 スタンパ
32 スルーホールメンブレン
DESCRIPTION OF SYMBOLS 1 Aluminum 2 Anodized porous alumina 3 Filling substance layer 4 Stamper 5 Anodized porous alumina having pores whose pore diameter is continuously changed 6 Thermoplastic resin 7 Substrate 8 Porous polymer film 9 Photocurable monomer 10 After polymerization Polymer film 11 Dissolved polymer solution 12 Polymer film after solvent drying 21 Substrate 22 Polymer layer 23 Base substrate 24 Photocurable resin layer 25 Stamper 26 Through-hole membrane 31 Stamper 32 Through-hole membrane

以下に、本発明に係る多孔性高分子膜およびその製造方法、さらにはその製造に用いるスタンパの製造方法について、望ましい実施の形態を、図面を参照しながら詳細に説明する。
図1は、本発明において用いられる陽極酸化ポーラスアルミナを鋳型とするスタンパの作製法の一例を示したものである。アルミニウム1を酸性浴中で陽極酸化して陽極酸化ポーラスアルミナ2を作製後、これを鋳型としてその細孔内及びその表面に物質の充填を行う(物質充填層3)。その後、アルミニウム及びアルミナ部分のみ選択的に溶解除去する。充填する物質としては、金属、金属酸化物、半導体などを用いることができる。たとえば、陽極酸化ポーラスアルミナ2の表面にスパッタ法や、蒸着法により導電性薄膜を形成した後、これを電極として金属の電析を行うことで、金属製のスタンパ4を作製することができる。
Hereinafter, preferred embodiments of a porous polymer film according to the present invention, a method for producing the same, and a method for producing a stamper used for the production will be described in detail with reference to the drawings.
FIG. 1 shows an example of a stamper manufacturing method using anodized porous alumina used as a mold in the present invention. Anodized porous alumina 2 is produced by anodizing aluminum 1 in an acidic bath, and the material is filled in the pores and on the surface using this as a template (material-filled layer 3). Thereafter, only the aluminum and alumina portions are selectively dissolved and removed. As a substance to be filled, a metal, a metal oxide, a semiconductor, or the like can be used. For example, a metal stamper 4 can be manufactured by forming a conductive thin film on the surface of the anodized porous alumina 2 by sputtering or vapor deposition, and then performing metal electrodeposition using this as an electrode.

本発明においては、更に、図2に示すように、陽極酸化とエッチングによる細孔の拡大化処理を組み合わせることにより、直線的あるいは曲線的に連続的に孔径が変化した細孔を有する陽極酸化ポーラスアルミナ5を作製し、これを鋳型として用いることで、所望の突起形状を有したスタンパ4を得ることができる。   Further, in the present invention, as shown in FIG. 2, anodized porous having pores whose pore diameters are changed linearly or in a curved line by combining anodization and pore enlargement processing by etching. A stamper 4 having a desired projection shape can be obtained by producing alumina 5 and using it as a mold.

均一な孔径の細孔が配列したホールアレー構造を表面に有する多孔性高分子膜の作製には、各種インプリント法を用いることができる。図3には熱インプリント法による多孔性高分子膜8の作製法を示す。スタンパ4の構造を転写する高分子材料として熱可塑性樹脂6を基板7上に設け、この熱可塑性樹脂6に対しガラス転移点以上の温度条件下でスタンパ4を押し付け、その後、ガラス転移点以下の温度まで冷却しスタンパ4を剥離することで、スタンパ表面の微細な凹凸構造が転写された多孔性高分子膜8を得ることが可能である。   Various imprinting methods can be used for producing a porous polymer film having a hole array structure with pores of uniform pore size arranged on the surface. FIG. 3 shows a method for producing the porous polymer film 8 by the thermal imprint method. A thermoplastic resin 6 is provided on the substrate 7 as a polymer material for transferring the structure of the stamper 4, and the stamper 4 is pressed against the thermoplastic resin 6 under a temperature condition equal to or higher than the glass transition point. By cooling to a temperature and peeling off the stamper 4, it is possible to obtain a porous polymer film 8 to which a fine uneven structure on the stamper surface is transferred.

また、図4に示すように、スタンパ4の構造を転写する高分子材料としての紫外線硬化樹脂として、紫外線硬化性(光硬化性)モノマー9を基板7上に滴下した後、スタンパ4を押し付けて紫外線照射を行い、硬化後スタンパ4を剥離して重合後の高分子膜10を得ることで、スタンパ4の構造転写を行う光インプリント法も用いることができる。   Further, as shown in FIG. 4, after an ultraviolet curable (photo curable) monomer 9 is dropped on the substrate 7 as an ultraviolet curable resin as a polymer material for transferring the structure of the stamper 4, the stamper 4 is pressed. An optical imprint method for transferring the structure of the stamper 4 can also be used by irradiating with ultraviolet rays and peeling off the stamper 4 after curing to obtain a polymer film 10 after polymerization.

さらに、これらインプリント法のほかに、図5に示すような、適当な溶媒に溶解した高分子溶液11をスタンパ4上にキャストし、溶媒が乾燥した後に(溶媒乾燥後の高分子膜12)、高分子膜を剥離して多孔性高分子膜8を作製する方法も用いることができる。   In addition to these imprint methods, a polymer solution 11 dissolved in a suitable solvent as shown in FIG. 5 is cast on the stamper 4 and the solvent is dried (polymer film 12 after solvent drying). Alternatively, a method of producing the porous polymer film 8 by peeling off the polymer film can be used.

本発明によれば、サブミクロンからナノメータースケールの均一なサイズの細孔が規則的に配列したホールアレー構造を膜表面に有する多孔性高分子膜の作製が可能である。また、膜厚の薄い高分子膜に本発明方法を実施すれば、細孔が貫通化したスルーホールメンブレンを得ることも可能である。   According to the present invention, it is possible to produce a porous polymer film having a hole array structure on the film surface in which pores having a uniform size of submicron to nanometer scale are regularly arranged. Further, if the method of the present invention is applied to a thin polymer film, it is possible to obtain a through-hole membrane having pores penetrating.

図6に、スルーホールメンブレンの製造方法の一例を示す。基板21と高分子層22からなる下地基板23上に、例えば光硬化性樹脂層24を付与し、その上からスタンパ25の凸部先端が光硬化性樹脂層24を介し下地基板23の表面の位置を少し越えて下地基板23の内部に到達するまでスタンパ25に荷重を加えてスタンパ25の表面構造転写を行い、スタンパ25を剥離した後、下地基板23から剥離する、あるいはそれと同等の操作を行うことにより、例えば、下地基板23を溶解除去(この場合、高分子層22を溶解除去)することにより、スルーホールメンブレン26を得ることができる。   FIG. 6 shows an example of a method for producing a through-hole membrane. For example, a photocurable resin layer 24 is provided on a base substrate 23 composed of the substrate 21 and the polymer layer 22, and the tip of the convex portion of the stamper 25 is formed on the surface of the base substrate 23 via the photocurable resin layer 24. The surface structure of the stamper 25 is transferred by applying a load to the stamper 25 until it reaches the inside of the base substrate 23 slightly beyond the position. After the stamper 25 is peeled off, it is peeled off from the base substrate 23 or an equivalent operation. For example, the through-hole membrane 26 can be obtained by dissolving and removing the base substrate 23 (in this case, dissolving and removing the polymer layer 22).

以下、実施例により更に本発明を詳細に説明するが、本発明はかかる実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by this Example.

実施例1〔陽極酸化ポーラスアルミナを鋳型として作製したスタンパを利用した多孔性高分子膜の作製〕
純度99.99%のアルミニウム板を、過塩素酸、エタノール混合溶液中(体積比1:4)で電解研磨処理を施した。鏡面化を行ったアルミニウム板を、0.3Mの濃度に調整したシュウ酸水溶液中で、浴温17℃において直流40Vの条件下で15時間陽極酸化を行った後、一旦、酸化物層を溶解除去し、再び同一条件下において90秒間陽極酸化を行うことで孔深さ150nmの陽極酸化ポーラスアルミナを形成した。その後、試料を5重量%リン酸水溶液に30分間浸漬し、孔径拡大処理を施し細孔サイズを70nmに調節した。この表面に、スパッタリング装置を用いてPt−Pdを50nmコートした後、Ni電析を行った。この後、鋳型を水酸化ナトリウム水溶液により溶解除去することで表面に規則的な突起配列を有するスタンパを得た。得られたNi製スタンパを用い、Si基板上に形成したポリメタクリル酸メチル樹脂表面に、180℃の加温条件下でインプリント処理を行うことで、細孔が規則的に配列したホールアレー構造を表面に有する高分子膜が得られた。
Example 1 [Preparation of a porous polymer film using a stamper prepared using anodized porous alumina as a template]
An aluminum plate having a purity of 99.99% was subjected to an electropolishing treatment in a mixed solution of perchloric acid and ethanol (volume ratio 1: 4). The mirror-finished aluminum plate was anodized in an aqueous oxalic acid solution adjusted to a concentration of 0.3 M at a bath temperature of 17 ° C. under a direct current of 40 V for 15 hours, and the oxide layer was once dissolved. After removing and anodizing again for 90 seconds under the same conditions, anodized porous alumina having a hole depth of 150 nm was formed. Thereafter, the sample was immersed in a 5% by weight phosphoric acid aqueous solution for 30 minutes, subjected to a pore size expansion treatment, and the pore size was adjusted to 70 nm. This surface was coated with 50 nm of Pt—Pd using a sputtering apparatus, and Ni electrodeposition was performed. Thereafter, the template was dissolved and removed with an aqueous sodium hydroxide solution to obtain a stamper having a regular protrusion arrangement on the surface. A hole array structure in which pores are regularly arranged by imprinting the polymethyl methacrylate resin surface formed on the Si substrate under a heating condition of 180 ° C. using the obtained Ni stamper. As a result, a polymer film having a surface on the surface was obtained.

実施例2〔突起形状を制御したスタンパを用いた熱インプリント法によるポリメタクリル酸メチル(PMMA)多孔性膜の作製〕
純度99.99%のアルミニウム板表面に、200nm周期で突起が規則的に配列した構造を持つSiC製モールドを押し付け、表面に微細な凹凸パターンを形成した。テクスチャリング処理を施したアルミニウム板を、0.05Mの濃度に調整したシュウ酸水溶液中で、浴温17℃において直流80Vの条件下で2秒間陽極酸化を行った。その後、10重量%リン酸水溶液に25分間浸漬し、孔径拡大処理を施した。この操作を5回繰り返すことで、細孔周期200nm、細孔開口部200nm、底部50nm、孔深さ300nmのテーパー状細孔を有するポーラスアルミナを得た。この表面に、スパッタリング装置を用いてPt−Pdを50nmコートした後、Ni電析を行った。この後、鋳型を溶解除去することで表面に規則的な突起配列を有するスタンパを得た。得られたNi製スタンパを用い、Si基板上に形成したポリメタクリル酸メチル樹脂表面に、180℃の加温条件下でインプリント処理を行うことで、細孔が規則的に配列したホールアレー構造を表面に有する高分子膜が得られた。図7に、熱インプリントにより作製されたポリメタクリル酸メチル多孔性膜(多孔性高分子膜8)の表面の電子顕微鏡写真(電子顕微鏡で観察した図)を示す。
Example 2 [Production of Polymethyl Methacrylate (PMMA) Porous Membrane by Thermal Imprinting Method Using Stamper Controlling Projection Shape]
A SiC mold having a structure in which protrusions are regularly arranged with a period of 200 nm was pressed against the surface of an aluminum plate having a purity of 99.99% to form a fine uneven pattern on the surface. The textured aluminum plate was anodized in an aqueous oxalic acid solution adjusted to a concentration of 0.05 M at a bath temperature of 17 ° C. under a direct current of 80 V for 2 seconds. Then, it was immersed in a 10% by weight phosphoric acid aqueous solution for 25 minutes, and subjected to a pore size expansion treatment. By repeating this operation five times, porous alumina having tapered pores having a pore period of 200 nm, a pore opening of 200 nm, a bottom of 50 nm, and a pore depth of 300 nm was obtained. This surface was coated with 50 nm of Pt—Pd using a sputtering apparatus, and Ni electrodeposition was performed. Then, the stamper which has a regular protrusion arrangement | sequence on the surface was obtained by melt | dissolving and removing a casting_mold | template. A hole array structure in which pores are regularly arranged by imprinting a polymethyl methacrylate resin surface formed on a Si substrate under a heating condition of 180 ° C. using the obtained Ni stamper. As a result, a polymer film having a surface on the surface was obtained. FIG. 7 shows an electron micrograph (a diagram observed with an electron microscope) of the surface of a polymethyl methacrylate porous membrane (porous polymer membrane 8) produced by thermal imprinting.

実施例3〔突起形状を制御したスタンパを用いた光インプリント法によるアクリル多孔性膜の作製〕
実施例2と同様の方法で作製したNi製スタンパを、ガラス基板上に滴下したアクリルモノマーに押し付けた状態で紫外線照射を行った。モノマーが硬化した後、スタンパを剥離することにより、基板上に多孔性アクリル樹脂膜を作製した。作製されたアクリル樹脂多孔性膜(多孔性高分子膜8)の表面の電子顕微鏡写真(電子顕微鏡で観察した図)を図8に、断面電子顕微鏡写真(電子顕微鏡で観察した図)を図9に示す。
Example 3 [Production of Acrylic Porous Membrane by Photoimprinting Method Using Stamper Controlling Projection Shape]
The Ni stamper produced by the same method as in Example 2 was irradiated with ultraviolet rays while being pressed against the acrylic monomer dropped on the glass substrate. After the monomer was cured, the stamper was peeled off to produce a porous acrylic resin film on the substrate. FIG. 8 shows an electron micrograph (a diagram observed with an electron microscope) of the surface of the prepared acrylic resin porous membrane (porous polymer membrane 8), and FIG. 9 shows a cross-sectional electron micrograph (a diagram observed with an electron microscope). Shown in

実施例4〔突起形状を制御したスタンパを用いたキャスト法によるフッ素樹脂多孔性膜の作製〕
純度99.99%のアルミニウム板表面に、500nm周期で突起が規則的に配列した構造を持つSiC製モールドを押し付け、表面に微細な凹凸パターンを形成した。テクスチャリング処理を施したアルミニウム板を、0.1Mの濃度に調整したリン酸水溶液中で、浴温0℃において直流200Vの条件下で10秒間陽極酸化を行った。その後、10重量%リン酸水溶液に25分間浸漬し、孔径拡大処理を施した。この操作を5回繰り返すことで、細孔周期500nm、細孔開口部400nm、底部150nm 、孔深さ800nmのテーパー状細孔を有するポーラスアルミナを得た。この表面に、スパッタリング装置を用いてPt−Pdを50nmコートした後、Ni電析を行った。この後、鋳型を溶解除去することで表面に規則的な突起配列を有するスタンパを得た。作製したスタンパ上にフッ素樹脂を溶解したフッ素溶液を滴下乾燥した後、スタンパを剥離することにより、多孔性フッ素樹脂膜を作製した。作製されたフッ素樹脂多孔性膜(多孔性高分子膜8)の表面の電子顕微鏡写真(電子顕微鏡で観察した図)を図10に示す。
Example 4 [Production of Fluororesin Porous Membrane by Casting Method Using Stamper Controlling Projection Shape]
A SiC mold having a structure in which protrusions were regularly arranged with a period of 500 nm was pressed against the surface of an aluminum plate having a purity of 99.99% to form a fine uneven pattern on the surface. The textured aluminum plate was anodized for 10 seconds in a phosphoric acid aqueous solution adjusted to a concentration of 0.1 M at a bath temperature of 0 ° C. and a direct current of 200 V. Then, it was immersed in a 10% by weight phosphoric acid aqueous solution for 25 minutes, and subjected to a pore size expansion treatment. By repeating this operation five times, porous alumina having tapered pores having a pore period of 500 nm, a pore opening portion of 400 nm, a bottom portion of 150 nm, and a pore depth of 800 nm was obtained. This surface was coated with 50 nm of Pt—Pd using a sputtering apparatus, and Ni electrodeposition was performed. Then, the stamper which has a regular protrusion arrangement | sequence on the surface was obtained by melt | dissolving and removing a casting_mold | template. A fluorine solution in which a fluororesin was dissolved was dropped on the produced stamper and dried, and then the stamper was peeled off to produce a porous fluororesin film. FIG. 10 shows an electron micrograph (a diagram observed with an electron microscope) of the surface of the produced fluororesin porous membrane (porous polymer membrane 8).

実施例5〔高アスペクト比の金属製スタンパの作製〕
純度99.99%のサイズのアルミニウム板を、過塩素酸、エタノール混合溶液中(体積比1:4)で電解研磨処理を施した。鏡面化を行ったアルミニウム板に、500nm周期で突起が規則的に配列した構造を持つSiC製モールドを押し付け、表面に微細な凹凸パターンを形成した。0.1Mの濃度に調整したリン酸水溶液中で、浴温0℃において直流200Vの条件下で14分間陽極酸化を行った。その後、試料を10重量%リン酸水溶液に30分間浸漬し、孔径拡大処理を施し細孔サイズを300nmに調節した。この表面に、イオンビームスパッタリング装置を用いてPtを50nmコートした後、 Ni電析を行った。この後、鋳型を溶解除去することで表面に規則的な突起配列を有するスタンパを得た。作製されたNiスタンパ31を図11に示す。
Example 5 [Production of Metal Stamper with High Aspect Ratio]
An aluminum plate having a purity of 99.99% was subjected to electropolishing treatment in a mixed solution of perchloric acid and ethanol (volume ratio 1: 4). A SiC mold having a structure in which protrusions were regularly arranged at a cycle of 500 nm was pressed against a mirror-finished aluminum plate to form a fine uneven pattern on the surface. Anodization was carried out for 14 minutes in a phosphoric acid aqueous solution adjusted to a concentration of 0.1 M at a bath temperature of 0 ° C. and a direct current of 200 V. Thereafter, the sample was immersed in a 10% by weight phosphoric acid aqueous solution for 30 minutes, subjected to pore diameter enlargement treatment, and the pore size was adjusted to 300 nm. This surface was coated with 50 nm of Pt using an ion beam sputtering apparatus, and then Ni electrodeposition was performed. Then, the stamper which has a regular protrusion arrangement | sequence on the surface was obtained by melt | dissolving and removing a casting_mold | template. The manufactured Ni stamper 31 is shown in FIG.

実施例6〔スルーホールメンブレンの作製〕
実施例5と同様の方法で作製したNiスタンパ上に光硬化性樹脂を滴下し、減圧条件下で脱泡した。PMMAをキャストした硝子基板上にスタンパを押し付け、荷重を加えながら紫外線照射を行った。光照射により樹脂が完全に硬化した後、Niスタンパを剥離した。試料をアセトン中に浸漬し、PMMA層のみを選択的に溶解除去することにより、高分子スルーホールメンブレンを得た。作製されたスルーホールメンブレン32を図12A及び図12Bに示す。
Example 6 [Production of Through-Hole Membrane]
A photocurable resin was dropped onto a Ni stamper produced in the same manner as in Example 5, and defoamed under reduced pressure. A stamper was pressed onto the glass substrate on which PMMA was cast, and ultraviolet irradiation was performed while applying a load. After the resin was completely cured by light irradiation, the Ni stamper was peeled off. The sample was immersed in acetone, and only the PMMA layer was selectively dissolved and removed to obtain a polymer through-hole membrane. The produced through-hole membrane 32 is shown in FIGS. 12A and 12B.

Claims (24)

多孔性の表面構造を有する陽極酸化ポーラスアルミナの細孔内に物質を充填し、前記陽極酸化ポーラスアルミナを溶解除去することにより、前記物質からなりかつ前記表面構造の反転構造を有するスタンパを作製し、
前記スタンパの前記反転構造を高分子に転写することにより、前記表面構造を有する高分子膜を製造する多孔性高分子膜の製造方法。
A material is filled in the pores of anodized porous alumina having a porous surface structure, and the anodized porous alumina is dissolved and removed to produce a stamper made of the material and having an inverted structure of the surface structure. ,
A method for producing a porous polymer film, wherein the polymer film having the surface structure is produced by transferring the inverted structure of the stamper to a polymer.
前記物質が金属である、請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the substance is a metal. 前記金属が、ニッケル、金、白金の何れかである、請求項2記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 2, wherein the metal is any one of nickel, gold, and platinum. 前記陽極酸化ポーラスアルミナが、陽極酸化と孔径拡大処理を繰り返し行うことにより孔径を連続的に変化させた細孔を有する請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the anodized porous alumina has pores whose pore diameter is continuously changed by repeatedly performing anodization and pore diameter expansion treatment. 前記陽極酸化ポーラスアルミナが、シュウ酸を電解液として用い、化成電圧30V〜40Vにおいて作製された請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the anodized porous alumina is produced using oxalic acid as an electrolytic solution at a conversion voltage of 30 V to 40 V. 前記陽極酸化ポーラスアルミナが、硫酸を電解液として用い、化成電圧10V〜30Vにおいて作製された請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the anodized porous alumina is produced using sulfuric acid as an electrolytic solution and at a conversion voltage of 10V to 30V. 前記陽極酸化ポーラスアルミナが、リン酸を電解液として用い、化成電圧180V〜200Vにおいて作製された請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the anodized porous alumina is produced using phosphoric acid as an electrolytic solution at a conversion voltage of 180 V to 200 V. 前記陽極酸化ポーラスアルミナが、定電圧で陽極酸化を施した後、一旦酸化皮膜を溶解除去し、再び同一条件下で陽極酸化を施すことにより作製された請求項1記載の多孔性高分子膜の製造方法。   The porous polymer film according to claim 1, wherein the anodized porous alumina is prepared by anodizing at a constant voltage, once dissolving and removing the oxide film, and again anodizing under the same conditions. Production method. 前記陽極酸化ポーラスアルミナが、陽極酸化の前に、アルミニウムの表面に微細な窪みを形成し、前記窪みを細孔発生の開始点として陽極酸化を施すことにより作製された請求項1記載の多孔性高分子膜の製造方法。   The porosity according to claim 1, wherein the anodized porous alumina is produced by forming a fine depression on the surface of aluminum before anodization and anodizing the depression as a starting point of pore generation. A method for producing a polymer membrane. 前記高分子膜の表面構造の表面側における細孔壁部分の割合が30%以下である請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer membrane according to claim 1, wherein the ratio of the pore wall portion on the surface side of the surface structure of the polymer membrane is 30% or less. 前記高分子膜の表面構造の表面側における細孔壁部分の割合が20%以下である請求項10記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 10, wherein the ratio of the pore wall portion on the surface side of the surface structure of the polymer film is 20% or less. 前記高分子膜の表面構造の表面側における細孔壁部分の割合が10%以下である請求項11記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 11, wherein the ratio of the pore wall portion on the surface side of the surface structure of the polymer film is 10% or less. 前記高分子膜の表面構造の表面側における細孔壁部分の割合が5%以下である請求項12記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer membrane according to claim 12, wherein the ratio of the pore wall portion on the surface side of the surface structure of the polymer membrane is 5% or less. 前記高分子膜の前記表面構造の表面側における細孔横断面形状が三角形、四角形または六角形である請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the cross-sectional shape of the pores on the surface side of the surface structure of the polymer film is a triangle, a quadrangle, or a hexagon. 前記高分子は熱可塑性樹脂である請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the polymer is a thermoplastic resin. 前記高分子は光硬化樹脂である請求項1記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 1, wherein the polymer is a photocurable resin. 前記高分子を溶解した溶液を前記スタンパ上にキャストし、前記溶媒を乾燥させ、前記スタンパを剥離することにより前記スタンパの表面構造を前記高分子に転写する請求項1に記載の多孔性高分子膜の製造方法。   2. The porous polymer according to claim 1, wherein a solution in which the polymer is dissolved is cast on the stamper, the solvent is dried, and the stamper is peeled off to transfer the surface structure of the stamper to the polymer. A method for producing a membrane. 陽極酸化ポーラスアルミナの細孔内に電析法により金属を充填する際に、前記陽極酸化ポーラスアルミナ表面にイオンビームスパッタ装置を用いて金属をコートし導通層を付与するスタンパの製造方法。   A stamper manufacturing method in which a metal is coated on the surface of an anodized porous alumina using an ion beam sputtering device when a metal is filled in the pores of the anodized porous alumina by an electrodeposition method. 前記陽極酸化ポーラスアルミナ表面に前記導通層を付与する際に、真空度が3×10−4Pa〜1×10−5Paの条件下においてイオンビームスパッタを行う請求項18記載のスタンパの製造方法。19. The method for manufacturing a stamper according to claim 18, wherein the ion beam sputtering is performed under a condition of a vacuum degree of 3 × 10 −4 Pa to 1 × 10 −5 Pa when the conductive layer is applied to the surface of the anodized porous alumina. . 請求項18記載のスタンパの製造方法により製造されたスタンパの表面構造を高分子に転写する多孔性高分子膜の製造方法。   A method for producing a porous polymer film, wherein the surface structure of a stamper produced by the method for producing a stamper according to claim 18 is transferred to a polymer. 多孔性の表面構造を有する陽極酸化ポーラスアルミナの細孔内に物質を充填し、前記陽極酸化ポーラスアルミナを溶解除去することにより前記物質からなりかつ前記表面構造の反転構造を有するスタンパを作製し、
前記スタンパを高分子と下地基板との層に設置し、前記反転構造の凸部先端が前記高分子を介して前記下地基板の表面に接触または内部に到達するまで前記スタンパに荷重を加えて前記反転構造を前記高分子に転写することにより前記表面構造を有する高分子膜を作製し、
前記高分子膜を前記下地基板から剥離することにより各細孔が貫通化した表面構造を有する高分子膜を製造する多孔性高分子膜の製造方法。
Filling the pores of anodized porous alumina having a porous surface structure with a substance, and dissolving and removing the anodized porous alumina to produce a stamper made of the substance and having an inverted structure of the surface structure;
The stamper is installed in a layer of a polymer and a base substrate, and a load is applied to the stamper until the tip of the convex portion of the inverted structure contacts or reaches the surface of the base substrate through the polymer. A polymer film having the surface structure is produced by transferring an inverted structure to the polymer,
A method for producing a porous polymer film, comprising producing a polymer film having a surface structure in which each pore penetrates by peeling the polymer film from the base substrate.
前記下地基板は、少なくとも表面が高分子である請求項21記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 21, wherein at least a surface of the base substrate is a polymer. 前記高分子が熱可塑性樹脂であり、加温条件下で前記スタンパに荷重を加える請求項22記載の多孔性高分子膜の製造方法。   The method for producing a porous polymer film according to claim 22, wherein the polymer is a thermoplastic resin, and a load is applied to the stamper under heating conditions. 請求項1〜17及び20〜23のいずれかに記載の方法を用いて製造された多孔性高分子膜。   A porous polymer membrane produced by using the method according to any one of claims 1 to 17 and 20 to 23.
JP2006554396A 2005-08-26 2006-08-25 Porous polymer membrane and method for producing the same Expired - Fee Related JP5361130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006554396A JP5361130B2 (en) 2005-08-26 2006-08-25 Porous polymer membrane and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005245702 2005-08-26
JP2005245702 2005-08-26
JP2006059103 2006-03-06
JP2006059103 2006-03-06
JP2006554396A JP5361130B2 (en) 2005-08-26 2006-08-25 Porous polymer membrane and method for producing the same
PCT/JP2006/316767 WO2007023960A1 (en) 2005-08-26 2006-08-25 Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013151540A Division JP5642850B2 (en) 2005-08-26 2013-07-22 Method for producing porous polymer membrane

Publications (2)

Publication Number Publication Date
JPWO2007023960A1 true JPWO2007023960A1 (en) 2009-03-05
JP5361130B2 JP5361130B2 (en) 2013-12-04

Family

ID=37771698

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006554396A Expired - Fee Related JP5361130B2 (en) 2005-08-26 2006-08-25 Porous polymer membrane and method for producing the same
JP2013151540A Expired - Fee Related JP5642850B2 (en) 2005-08-26 2013-07-22 Method for producing porous polymer membrane

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013151540A Expired - Fee Related JP5642850B2 (en) 2005-08-26 2013-07-22 Method for producing porous polymer membrane

Country Status (3)

Country Link
JP (2) JP5361130B2 (en)
KR (1) KR20080038385A (en)
WO (1) WO2007023960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399254B2 (en) 2008-01-25 2019-09-03 Asahi Kasei Kabushiki Kaisha Seamless mold manufacturing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082421A1 (en) * 2007-01-05 2008-07-10 Sabic Innovative Plastics Ip B.V. Antireflective surfaces, methods of manufacture thereof and articles comprising the same
JP5288716B2 (en) * 2007-03-16 2013-09-11 公益財団法人神奈川科学技術アカデミー Method for producing imprint roll mold
KR100904644B1 (en) 2007-07-24 2009-06-25 제이엠아이 주식회사 Manufactory method of nano-master with hybrid nano-pattern
EP2210970B1 (en) * 2007-10-25 2017-03-29 Mitsubishi Rayon Co., Ltd. Stamper, process for producing the same, process for producing molding, and aluminum base die for stamper
JP5079452B2 (en) * 2007-10-30 2012-11-21 財団法人神奈川科学技術アカデミー Method for producing glass material having concavo-convex pattern on surface
JP5276830B2 (en) * 2007-11-13 2013-08-28 公益財団法人神奈川科学技術アカデミー Method for producing imprint mold
JP5396587B2 (en) * 2008-03-11 2014-01-22 富山県 Nano-columnar structure, manufacturing method thereof and applied device
JP2010047454A (en) * 2008-08-22 2010-03-04 Kanagawa Acad Of Sci & Technol Carbon material having regular unevenness pattern on its surface, and manufacturing method thereof
KR101093364B1 (en) * 2008-12-31 2011-12-14 고려대학교 산학협력단 Method For Fabricating Multi-component Nanowires
JP5271790B2 (en) * 2009-04-24 2013-08-21 公益財団法人神奈川科学技術アカデミー Aluminum base material for stamper manufacture, and method for manufacturing stamper
JP5626636B2 (en) * 2009-09-28 2014-11-19 公益財団法人神奈川科学技術アカデミー Method and apparatus for producing anodized porous alumina, anodized porous alumina produced by the method, molded article produced using anodized porous alumina as a mold, antireflection article and water-repellent article
JP5851165B2 (en) * 2011-09-08 2016-02-03 公益財団法人神奈川科学技術アカデミー Method for forming microstructure and method for producing porous alumina composite
JP5612741B2 (en) * 2013-08-13 2014-10-22 公益財団法人神奈川科学技術アカデミー Method for producing anodized porous alumina
WO2016024803A1 (en) * 2014-08-14 2016-02-18 한국전기연구원 Relief mould production method, membrane produced by using relief mould and production method therefor
TWI570430B (en) * 2015-01-23 2017-02-11 國立虎尾科技大學 Producing method of anti-reflection sub-wavelength optic film and dye-sensitized solar cell thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254192A (en) * 1989-03-27 1990-10-12 Hideki Masuda Production of porous material
JPH09155972A (en) * 1995-12-12 1997-06-17 Ykk Corp Water repellant film and its manufacture
JPH11254396A (en) * 1998-03-06 1999-09-21 Dainippon Printing Co Ltd Manufacturing device for porous sheet and manufacture of porous sheet therewith
JP4591053B2 (en) * 2004-11-22 2010-12-01 住友電気工業株式会社 Processing method and processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10399254B2 (en) 2008-01-25 2019-09-03 Asahi Kasei Kabushiki Kaisha Seamless mold manufacturing method

Also Published As

Publication number Publication date
JP5361130B2 (en) 2013-12-04
JP5642850B2 (en) 2014-12-17
KR20080038385A (en) 2008-05-06
WO2007023960A1 (en) 2007-03-01
JP2013256124A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5361130B2 (en) Porous polymer membrane and method for producing the same
Lee et al. Wafer‐scale Ni imprint stamps for porous alumina membranes based on interference lithography
CN101248219A (en) Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same
JP5079452B2 (en) Method for producing glass material having concavo-convex pattern on surface
JP5276830B2 (en) Method for producing imprint mold
JP5032239B2 (en) Imprint mold and manufacturing method thereof
Kikuchi et al. Fabrication of a meniscus microlens array made of anodic alumina by laser irradiation and electrochemical techniques
KR20150078976A (en) Molds fabricated using lithography and anodizing and superhydrophobic materials fabricated using the mold
JP2011194594A (en) Resin material having surface-uneven pattern and method for producing the same
JP2013057102A (en) Method for forming fine structure and mold for nanoimprint having fine structure, and method of producing porus alumina composite
KR20030084279A (en) A method for preparing large-area materials with well-defined nanostructure using nanoporous alumina or nano-textured aluminum
JP2010047454A (en) Carbon material having regular unevenness pattern on its surface, and manufacturing method thereof
JP4641442B2 (en) Method for producing porous body
JP2009287123A (en) Casting mold comprising anodized porous alumina and method for manufacturing thereof
JP5288716B2 (en) Method for producing imprint roll mold
JP2012195600A (en) Roll-like mold for imprint and method of manufacturing the same
JP2011206938A (en) Mold for thermal imprint, method of manufacturing the mold and method of manufacturing resin material using the mold
Zaraska et al. Effect of Al polishing conditions on the growth and morphology of porous anodic alumina films
Chahrour et al. Influence of the Voltage on Pore Diameter and Growth Rate of Thin Anodic Aluminium Oxide (AAO) Pattern on Silicon Substrate
CN110241450B (en) Porous anodic alumina template and preparation method and application thereof
JP5739107B2 (en) Method for producing porous structural material
JP2009299190A (en) Casting mold comprising anodized porous alumina and method for producing the same
KR101457185B1 (en) Inserting method of polymer precusor into nano scale holes using vacuum effect and the precise replication method of nano pattern using thereof
JP2010100941A (en) Casting mold made of anodized porous alumina and method of manufacturing the same
JP2006068827A (en) Nanohole array, manufacturing method thereof, composite material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees