JP5396587B2 - Nano-columnar structure, manufacturing method thereof and applied device - Google Patents
Nano-columnar structure, manufacturing method thereof and applied device Download PDFInfo
- Publication number
- JP5396587B2 JP5396587B2 JP2008061875A JP2008061875A JP5396587B2 JP 5396587 B2 JP5396587 B2 JP 5396587B2 JP 2008061875 A JP2008061875 A JP 2008061875A JP 2008061875 A JP2008061875 A JP 2008061875A JP 5396587 B2 JP5396587 B2 JP 5396587B2
- Authority
- JP
- Japan
- Prior art keywords
- pore
- aluminum
- columnar
- nano
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
本発明は、マイクロ化学分析システム(μTAS)用のデバイス等として応用可能なナノ構造体に関し、特にナノレベルの柱状構造体及びその製造方法並びに応用デバイスに係る。 The present invention relates to a nanostructure that can be applied as a device for a microchemical analysis system (μTAS), and more particularly to a nano-level columnar structure, a manufacturing method thereof, and an applied device.
マイクロ化学分析システム(Micro Total Analysis:μTAS)の分野においては、集積型マイクロチップの開発が盛んに進められている。
例えば、DNAのような生体系試料を塩基対の数に応じて分離したり、分子レベルのオーダーにて分離、精製したりするための、ゲル電気泳動法や、マイクロ流路を用いた電気泳動法によるデバイスが提案されている。
従来の一般的なデバイスの製作は、半導体製造プロセスを用いるものであり、レジストプリントやエッチング工程等、複雑な工程が必要であるうえに高額な設備を必要であり、安価なナノ柱状構造のデバイス作製は困難であった。
In the field of micro chemical analysis system (Micro Total Analysis: μTAS), development of integrated microchips is actively promoted.
For example, a gel electrophoresis method or electrophoresis using a microchannel for separating a biological sample such as DNA according to the number of base pairs, or separating and purifying on a molecular level order. Legal devices have been proposed.
Conventional manufacturing of general devices uses semiconductor manufacturing processes, requires complicated processes such as resist printing and etching processes, requires expensive equipment, and is an inexpensive nano-columnar structure device. The production was difficult.
特開2006−62049号公報には、ナノ柱状構造体(ナノピラー構造体)の製造方法として、陽極酸化皮膜のポーラス構造を鋳型として用いる技術を開示する。
しかし、同公報に開示する技術は、アルミニウムを陽極酸化するとアルミ表面から垂直に伸びたポアとその底部にバリアー層からなる皮膜が生成するが、まず、この陽極酸化皮膜を残したまま、アルミニウム基材を溶解し、次いでバリアー層をウェットエッチングや研磨にて除去し、ポアを貫通させ、この貫通化した陽極酸化皮膜を鋳型として、貫通孔の上下から樹脂で鋳ぐるむものである。
従って、安定なナノ構造体を得るには樹脂で、貫通化陽極酸化皮膜を鋳ぐるんだ後に、この陽極酸化皮膜を溶解除去することが必要であり、このためには、ポアを上下に鋳ぐるんだ側部から溶解しなければならず、すなわち、ナノ柱状構造を横方向に流路を形成するように溶解することになり、溶解に時間を要する問題がある。
特に流路が長い場合には非常に長時間の溶解時間が必要である。
Japanese Unexamined Patent Application Publication No. 2006-62049 discloses a technique for using a porous structure of an anodized film as a template as a method for producing a nanocolumnar structure (nanopillar structure).
However, in the technique disclosed in the publication, when aluminum is anodized, a pore extending vertically from the surface of the aluminum and a barrier layer are formed on the bottom of the pore. The material is dissolved, the barrier layer is then removed by wet etching or polishing, the pores are penetrated, and the penetrated anodic oxide film is used as a mold to cast the resin from above and below the through holes.
Therefore, in order to obtain a stable nanostructure, it is necessary to dissolve and remove the anodic oxide film after casting the penetration anodic oxide film with a resin. For this purpose, the pores are cast up and down. It has to be dissolved from the rounded sides, that is, the nanocolumnar structure is dissolved so as to form a channel in the lateral direction, and there is a problem that it takes time to dissolve.
In particular, when the flow path is long, a very long dissolution time is required.
そこで本発明者らは、ポーラス型陽極酸化皮膜をアルミ基材に残したまま、鋳型として用いて皮膜の上から樹脂組成物を注入し、その後にアルミ及び皮膜を除去することを試みた。
その結果を図15の写真に示す。
写真で明らかなように柱状部が横に倒れ込み、安定なナノ柱状部からなる構造体が得られなかった。
本発明は陽極酸化皮膜を鋳型として用い、この皮膜の上から樹脂組成物を注入、充填した後にアルミ及び皮膜を除去した後も柱状部が横に倒れることなく、垂直方向に安定し柱状部からなるナノ柱状構造体が得られる方法を誠意検討した結果、本発明に至ったものである。
Therefore, the present inventors tried to inject the resin composition from the top of the film by using it as a mold while leaving the porous anodic oxide film on the aluminum substrate, and then remove the aluminum and the film.
The result is shown in the photograph of FIG.
As is apparent from the photograph, the columnar part fell sideways, and a structure composed of a stable nanocolumnar part could not be obtained.
The present invention uses an anodized film as a mold, and after injecting and filling the resin composition from above the film, the columnar part does not fall sideways after the aluminum and the film are removed, and is stabilized in the vertical direction from the columnar part. As a result of sincerely examining the method for obtaining the nanocolumnar structure, the present invention has been achieved.
本発明は、上記背景技術に内在する技術課題に鑑みて、ナノ構造体を形成する柱状部の傾倒を抑えることができ、安定した構造からなるナノ柱状構造体及び量産化が容易なナノ柱状構造体の製造方法の提供を目的とする。
さらには、このナノ柱状構造体を流路に応用したデバイスの提供も目的とする。
In view of the technical problems inherent in the above-mentioned background art, the present invention can suppress the tilting of the columnar portion forming the nanostructure, and the nanocolumnar structure having a stable structure and the nanocolumnar structure that is easily mass-produced It aims at providing the manufacturing method of a body.
A further object is to provide a device in which this nanocolumnar structure is applied to a flow path.
本発明に係るナノ柱状構造体の製造方法は、アルミニウム又はアルミニウム合金の基材表面にポーラス型陽極酸化皮膜を電解形成後に、陽極酸化皮膜のポア径の拡大処理及び当該ポアの孔壁に窪みを生じさせ、当該ポアの孔壁に窪みを生じさせた陽極酸化処理アルミ基材を鋳型として、樹脂組成物を注入及び転写成形し、アルミ基材及び陽極酸化皮膜を溶解処理することで、側部に突起を有する柱状部を数多く形成し、当該突起の高さが隣接する柱状部の間隔の1/4以上であることを特徴とする。
また、本発明に係るナノ柱状構造体は、上記の製造方法にて得られたものである。
本発明でナノ柱状構造体とは、1nm〜数百nmオーダーレベルの径の柱状部を無数に立設し、隣設する柱状部間に1nm〜数百nmオーダーレベルの流路空間を有している構造体を意味する。
In the method for producing a nanocolumnar structure according to the present invention, after the porous anodic oxide film is electrolytically formed on the surface of the aluminum or aluminum alloy substrate , the pore diameter of the anodic oxide film is enlarged and the pits are formed in the pore walls. occurs allowed, the anodized aluminum substrate that caused a depression in the pore walls of the pores as a template, was injected and transferred molding the resin composition, to dissolve processed aluminum substrate and the anodized film, the side A large number of columnar portions having protrusions are formed on the surface, and the height of the protrusions is ¼ or more of the interval between adjacent columnar portions .
Moreover, the nanocolumnar structure according to the present invention is obtained by the above-described production method.
In the present invention, the nano-columnar structure has an infinite number of columnar portions having a diameter of the order of 1 nm to several hundreds nm, and has a channel space of the order of 1 nm to several hundreds nm between adjacent columnar portions. Means a structure.
ここで、アルミニウム又はアルミニウム合金としたのは、アルミニウムのみならず各種アルミニウム合金が適するという趣旨である(以下単にアルミと称する)。
ポーラス型陽極酸化皮膜とは、硫酸、シュウ酸、リン酸、有機酸等の水溶液にてアルミを陽極にして電解するとアルミ基材表面に形成される酸化皮膜であって、アルミ基材側に極く薄いバリアー層と、その上に無数のポアを有しながら成長した皮膜をいう。
図1に模式的に示すように、ポアの径aは電解液の種類、濃度、電圧等によっても異なるが、皮膜断面の顕微鏡写真を図2に示すように一般的に小さい。
Here, the term “aluminum or aluminum alloy” means that not only aluminum but also various aluminum alloys are suitable (hereinafter simply referred to as aluminum).
A porous anodic oxide film is an oxide film formed on the surface of an aluminum substrate when aluminum is used as an anode in an aqueous solution of sulfuric acid, oxalic acid, phosphoric acid, organic acid, etc. A thin film that grows with a thin barrier layer and countless pores on it.
As schematically shown in FIG. 1, the pore diameter a varies depending on the type, concentration, voltage, etc. of the electrolytic solution, but the micrograph of the film cross section is generally small as shown in FIG.
本発明にて特徴的なのは、この陽極酸化皮膜を酸やアルカリの水溶液に浸漬し、ポア径を大きくした点にある(以下ポアワイドニングと称する)。
このポアワイドニング処理すると、ポアの側壁(孔壁)が均一に溶解するのではなく、ポア壁に横方向の窪み13を無数に形成しながらポア径の拡径化が進行することが明らかになった。
この窪みは隣接するポアに貫通しているものもある。
ポアワイドニング処理した皮膜断面の写真を図3に示し、図1(b)に模式化した断面構造例を示す。
The characteristic feature of the present invention is that this anodized film is immersed in an aqueous solution of acid or alkali to increase the pore diameter (hereinafter referred to as pore widening).
Clearly, the pore widening process does not cause the pore side walls (hole walls) to melt uniformly, but increases the pore diameter while forming innumerable lateral depressions 13 in the pore walls. became.
Some of these depressions penetrate through adjacent pores.
FIG. 3 shows a photograph of a cross-section of the film subjected to pore widening treatment, and FIG. 1B shows a schematic cross-sectional structure example.
次に、このポアワイドニング処理したアルミ基材上の陽極酸化皮膜を鋳型にして樹脂組成物を注入し転写成形する。
転写成形する方法としては、熱硬化性樹脂であっては陽極酸化皮膜の上から注入し硬化させる方法があり(図1(c)参照)、熱可塑性樹脂であっては、樹脂シート材を陽極酸化アルミ基材の上に重ねて熱プレス成形する方法(図1(d)参照)が例として挙げられる。
Next, the resin composition is injected and transfer-molded using the anodized film on the pore widened aluminum base as a mold.
As a method of transfer molding, there is a method in which a thermosetting resin is injected and cured from above an anodized film (see FIG. 1C), and in a thermoplastic resin, a resin sheet material is an anode. An example is a method (see FIG. 1 (d)) in which hot pressing is performed on an aluminum oxide base material.
次いで、アルカリ溶液を用いて、アルミ基材及び陽極酸化皮膜を溶解除去すると、ナノ柱状構造体が得られる。
断面写真を図4に示し、模式化したのが図1(e)である。
このようにして得られたナノ柱状構造体は、直立した無数の柱状部21と、この柱状部の側面に突起22が形成された微細構造になっている。
この柱状部の側部表面に形成された突起が隣接した柱状部同士の支えになり、傾倒することなく安定した直立柱状構造を維持しているものと推定される。
なお、一連の製造の流れを図1にまとめた。
Subsequently, when an aluminum base material and an anodized film are dissolved and removed using an alkaline solution, a nanocolumnar structure is obtained.
A cross-sectional photograph is shown in FIG. 4 and is schematically shown in FIG.
The nano-columnar structure thus obtained has a fine structure in which an infinite number of columnar portions 21 and protrusions 22 are formed on the side surfaces of the columnar portions.
It is presumed that the protrusions formed on the side surfaces of the columnar portions support adjacent columnar portions and maintain a stable upright columnar structure without tilting.
A series of manufacturing flow is summarized in FIG.
このようにして得られるナノ柱状構造体は、陽極酸化する電解液の種類、濃度の選定及び、電圧や電解時間等の電解条件を選定することで、単位面積当たりの柱状部の本数や、柱状部のアスペクト比を制御することが可能であり、ポアワイドニングの条件を変えることで隣接する柱同士の間隔を制御することができる。
従って、本発明に係るナノ柱状構造体は、ポーラス型陽極酸化処理後に陽極酸化皮膜のポア径の拡大処理することにより、孔壁に窪みを生じさせた、或いは、孔壁の窪みを成長させたアルミ基材を鋳型として用い、樹脂組成物を注入及び転写成形することにより、柱状部の側面に突起を形成し、当該柱状部の間隔を安定に保持できるものである。
ポアワイドニング処理した陽極酸化皮膜の孔壁にできる窪みが、ナノ柱状構造体の柱状部の突起になることから、窪みの深さは、深い方がよく、孔壁を貫通していてもよい。
突起は、隣の柱状部に干渉して相互に倒れ込むのを防止するように作用する。
従って、突起の高さは、隣接する柱状部との間隔にもよるが、その間隔の1/4以上で間隔以下が好ましい。
The nano-columnar structure thus obtained can be obtained by selecting the type and concentration of the electrolytic solution to be anodized and the electrolysis conditions such as voltage and electrolysis time, and the number of columnar portions per unit area, It is possible to control the aspect ratio of the portion, and it is possible to control the interval between adjacent columns by changing the pore widening conditions.
Therefore, in the nanocolumnar structure according to the present invention, the pore diameter of the pore wall of the anodized film was increased after the porous anodization treatment, or the pore wall was caused to grow, or the pore wall recess was grown. By using an aluminum base material as a mold and injecting and transfer molding the resin composition, protrusions are formed on the side surfaces of the columnar portions, and the interval between the columnar portions can be stably maintained.
Since the depression formed in the pore wall of the pore widening anodized film becomes a protrusion of the columnar portion of the nano-columnar structure, the depth of the depression should be deeper and may penetrate the pore wall .
The protrusions act to prevent the adjacent columnar portions from colliding with each other and falling down.
Therefore, although the height of the protrusion depends on the interval between the adjacent columnar portions, it is preferably not less than 1/4 and not more than the interval.
本発明に係るナノ柱状構造体の柱状頂部をプレートや框体で覆うと、無数の柱を横切る方向の流路を形成することができ、生体系試料の分離用マイクロデバイスの流路としての応用も可能である。 When the columnar top portion of the nanocolumnar structure according to the present invention is covered with a plate or a casing, a flow path can be formed in a direction crossing a myriad of pillars, and the application as a flow path of a microdevice for separating a biological sample. Is also possible.
本発明に係るナノ柱状構造体にあっては、陽極酸化皮膜のポア径の拡大処理をし、ポアの側壁(孔壁)に窪みや貫通孔を形成したアルミ基材を鋳型にして樹脂組成物を転写成形したものであるから、柱状部同士が支え合う構造のナノ柱状構造体になり、柱状部の傾倒を防止した安定した構造体になる。
また、陽極酸化皮膜の上から樹脂組成物を注入、転写成形するのでアルミ基材は外部に露出した状態になり、そのまま、アルミ基材を溶解し、さらに柱の直立方向に陽極酸化皮膜を溶解することができるために製造工程が簡単で大きい面積、長い流路、複雑な流路も短時間に作製でき、又、量産化も容易である。
In the nano-columnar structure according to the present invention, the resin composition is formed by using as an mold an aluminum base material that has been subjected to an enlargement treatment of the pore diameter of the anodized film and in which a recess or a through hole is formed in the side wall (hole wall) of the pore. Is a nano-columnar structure having a structure in which the columnar portions support each other, and a stable structure in which the columnar portions are prevented from being tilted.
Also, since the resin composition is injected from above the anodized film and transfer molded, the aluminum base material is exposed to the outside, and the aluminum base material is dissolved as it is, and the anodized film is further dissolved in the upright direction of the column. Therefore, the manufacturing process is simple, a large area, a long channel, a complicated channel can be produced in a short time, and mass production is easy.
以下実施例について説明するが、本発明はこれに限定されるものではない。
図13は、A1050材に燐酸浴で陽極酸化処理した材料を、40℃1N−硫酸水溶液中に浸漬処理した時の膜厚変化を示す。
膜厚がゆっくりと薄くなる範囲は、ポアワイドが進む領域である。
ポアワイドニング処理により孔壁が薄くなると膜厚変化が顕在化し、膜厚が急激に薄くなる。
この段階では、皮膜は強く浸食されるため、脆くなっている。
すなわち、ポアワイドニング処理時間は、膜厚の急激に薄くなり始めるまでの時間(本系では、400分)が上限であるものと考えられる。
また、型となる陽極酸化皮膜の強さを考慮すると、処理時間が短いほど良好である。
そこでポアワイドニング処理時間とナノ柱状構造体の関係を調査すべく、ポアワイドニング処理した後に、熱硬化性樹脂を注入し、樹脂が硬化した後に、アルミ基材と陽極酸化皮膜を除去した。
その結果、ポアワイドニング処理時間が短すぎる場合には、例えば、1時間のポアワイドニング処理した皮膜を用いてナノ柱状構造体を作製した場合、図14(a)に示すように側壁の突起の効果は殆ど見受けられず、柱状部が傾倒した構造になった。
2時間ポアワイドニング処理した皮膜を用いてナノ柱状構造体を作製した場合は、図14(b)に示すように側面の突起の効果が現れ始め、柱状部は少し傾いたが直立傾向が見られた。
また、4時間ポアワイドニング処理をしたものは図4に示したような柱状部は直立構造となった。
すなわち、195Vの燐酸陽極酸化皮膜では、ポアワイドニング処理時間は2時間から7時間であればよいが、3時間から6時間が適する。
ポアワイドニング処理時間を長くすると、ナノ柱状構造体の柱状部の間隔が狭くなるため、分離できるDNAサイズの調整も可能である。
Examples will be described below, but the present invention is not limited thereto.
FIG. 13 shows a change in film thickness when a material anodized on a A1050 material in a phosphoric acid bath is immersed in a 1N sulfuric acid aqueous solution at 40 ° C.
The range in which the film thickness decreases slowly is the area where pore widening proceeds.
When the pore wall is thinned by the pore widening process, the change in the film thickness becomes obvious, and the film thickness rapidly decreases.
At this stage, the film is strongly eroded and therefore brittle.
That is, it is considered that the upper limit of the pore widening processing time is the time until the film thickness starts to decrease rapidly (400 minutes in the present system).
In consideration of the strength of the anodic oxide film serving as a mold, the shorter the treatment time, the better.
Therefore, in order to investigate the relationship between the pore widening treatment time and the nano-columnar structure, after the pore widening treatment, a thermosetting resin was injected, and after the resin was cured, the aluminum substrate and the anodized film were removed.
As a result, when the pore widening treatment time is too short, for example, when a nano-columnar structure is produced using a film that has been subjected to pore widening treatment for 1 hour, as shown in FIG. No effect was seen, and the columnar part was tilted.
When a nano-columnar structure is produced using a film that has been subjected to pore widening treatment for 2 hours, as shown in FIG. 14 (b), the effect of the protrusions on the side surface starts to appear, and the columnar portion is slightly inclined but tends to stand upright. It was.
In addition, the column-shaped portion as shown in FIG.
That is, in the 195 V phosphoric acid anodized film, the pore widening treatment time may be 2 to 7 hours, but 3 to 6 hours is suitable.
When the pore widening treatment time is lengthened, the interval between the columnar portions of the nanocolumnar structure is narrowed, so that the size of DNA that can be separated can be adjusted.
次に、本発明に係るナノ柱状構造体の製造プロセスの例を図5に示す。
材質JISA1050のアルミ・リボン材1を陽極にして、5℃,4%燐酸水溶液中で195V×1〜5時間電解処理し、陽極酸化処理アルミ基材10aを得た。
次に、40℃,1N−H2SO4水溶液に4時間浸漬し、ポアワイドニング処理をし、ポアワイドニング処理アルミ基材10bを得た。
これを鋳型にし、熱可塑性の樹脂2を熱プレスした。
次いでアルミ基材及び陽極酸化皮膜を溶解し、ナノ柱状構造体20を得た。
このナノ構造体20に、図6に示すようにアクリル樹脂プレート2aを熱圧着するとマイクロデバイス30が得られた。
Next, an example of the manufacturing process of the nano-columnar structure according to the present invention is shown in FIG.
The aluminum ribbon material 1 of the material JISA1050 was used as an anode and subjected to electrolytic treatment in a 4% phosphoric acid aqueous solution at 5 ° C. for 195 V × 1 to 5 hours to obtain an anodized aluminum base material 10a.
Next, it was immersed in a 40 ° C., 1N—H 2 SO 4 aqueous solution for 4 hours and subjected to pore widening treatment to obtain a pore widening treated aluminum substrate 10b.
Using this as a mold, the thermoplastic resin 2 was hot-pressed.
Next, the aluminum base material and the anodized film were dissolved to obtain a nanocolumnar structure 20.
When the acrylic resin plate 2a was thermocompression bonded to the nanostructure 20 as shown in FIG. 6, a microdevice 30 was obtained.
図7に基づいて第2の実施例について説明する。
材質A1050の板材1を陽極にして、4%燐酸水溶液,195V×5分電解し、一段目皮膜10dを形成した。
次に、ナノ柱状にする部分を除いてマスキング3aし、2段目の陽極酸化皮膜10cを形成した。
硫酸水溶液にてポアワイドニング処理した後に、マスキングレジスト10aを溶解剥離した。
これを鋳型として、樹脂組成物を注入、転写成形し、アルミ基材及び皮膜を溶解するとナノ柱状構造体20aが得られた。
このナノ柱状構造体20aに図8に示すように樹脂プレート2bを圧着すると流路デバイス30aが得られた。
A second embodiment will be described with reference to FIG.
Using the plate material 1 of the material A1050 as an anode, electrolysis was performed with a 4% phosphoric acid aqueous solution in 195 V × 5 minutes to form a first-stage film 10d.
Next, masking 3a was performed except for the portion to be nano-columnar, and a second-stage anodic oxide film 10c was formed.
After pore widening with an aqueous sulfuric acid solution, the masking resist 10a was dissolved and peeled off.
Using this as a mold, the resin composition was injected, transferred and molded, and the aluminum base material and the film were dissolved to obtain the nano-columnar structure 20a.
When the resin plate 2b was pressure-bonded to the nanocolumnar structure 20a as shown in FIG. 8, a flow path device 30a was obtained.
本発明に係るナノ柱状構造体を用いた電気泳動デバイスの例を図9に示す。
図5に示すプロセスに従って、材質JIS A1N30のアルミ・リボン材1を陽極にして、5℃,4%燐酸水溶液中で195V×1〜5時間電解処理し、陽極酸化処理アルミ基材10aを得た。
次に、40℃,1N−H2SO4水溶液に4時間浸漬し、ポアワイドニング処理をし、ポアワイドニング処理アルミ基材10bを得た。
これを鋳型にし、熱可塑性のアクリル樹脂を熱プレスした。
次いでアルミ基材及び陽極酸化皮膜を水酸化ナトリウム水溶液中で溶解し、ナノ柱状構造体からなる溝を得た。
このナノ構造体溝20cに、シリコンゴムシートをかぶせ、TBEバッファーを注入し、DNAのような生体系試料を塩基対の数に応じて分離する時に使用される色素マーカーの電気泳動分離試験を行った。その結果を、図10に示す。
なお、電気泳動条件は、電極間距離:80mm,印加電圧:100Vで実施した。
色素は、色素マーカー注入口から正極側へと移動し、移動距離は泳動時間に伴い直線的に増加した。
また、用いた色素は移動速度が異なるため、次第に色素間の距離が開き分離されることが確認できた。
An example of an electrophoresis device using the nano-columnar structure according to the present invention is shown in FIG.
In accordance with the process shown in FIG. 5, the aluminum ribbon material 1 of the material JIS A1N30 was used as an anode and subjected to electrolytic treatment at 5 ° C. in a 4% phosphoric acid aqueous solution for 195 V × 1 to 5 hours to obtain an anodized aluminum base material 10a. .
Next, it was immersed in a 40 ° C., 1N—H 2 SO 4 aqueous solution for 4 hours and subjected to pore widening treatment to obtain a pore widening treated aluminum substrate 10b.
Using this as a mold, a thermoplastic acrylic resin was hot-pressed.
Next, the aluminum substrate and the anodized film were dissolved in an aqueous sodium hydroxide solution to obtain a groove made of a nanocolumnar structure.
The nanostructure groove 20c is covered with a silicon rubber sheet, TBE buffer is injected, and an electrophoretic separation test of a dye marker used when a biological sample such as DNA is separated according to the number of base pairs is performed. It was. The result is shown in FIG.
In addition, electrophoresis conditions were implemented with the distance between electrodes: 80 mm and the applied voltage: 100V.
The dye moved from the dye marker inlet to the positive electrode side, and the moving distance increased linearly with the migration time.
Moreover, since the used pigment | dye has a different moving speed, it has confirmed that the distance between pigment | dyes gradually opened and isolate | separated.
本発明に係るナノ柱状構造体を用いた電気泳動デバイスの例を図11に示す。
図5に示すプロセスに従って、材質JIS A1N30のアルミ・リボン材1を陽極にして、5℃,4%燐酸水溶液中で195V×1〜5時間電解処理し、陽極酸化処理アルミ基材10aを得た。
次に、40℃,1N−H2SO4水溶液に4時間浸漬し、ポアワイドニング処理をし、ポアワイドニング処理アルミ基材10bを得た。
これを鋳型にし、熱可塑性のアクリル樹脂を熱プレスした。
次いでアルミ基材及び陽極酸化皮膜を水酸化ナトリウム水溶液中で溶解し、ナノ柱状構造体がからなる直線的な溝を得た。
このナノ柱状構造体溝20dに、シリコンゴムシートをかぶせ、TBEバッファーを注入し、DNAの電気泳動分離試験を行った。
一定時間の電気泳動試験を行った後、蛍光写真を撮り、蛍光強度と試料注入口からの位置関係を調べた。
その結果を図12に示す。
試料注入口からの距離に対して、蛍光強度にいくつかのピークが確認され、それぞれが各DNAサイズに対応したものと考えられることから、DNAの分離が確認された。
An example of an electrophoresis device using the nano-columnar structure according to the present invention is shown in FIG.
In accordance with the process shown in FIG. 5, the aluminum ribbon material 1 of the material JIS A1N30 was used as an anode and subjected to electrolytic treatment at 5 ° C. in a 4% phosphoric acid aqueous solution for 195 V × 1 to 5 hours to obtain an anodized aluminum base material 10a. .
Next, it was immersed in a 40 ° C., 1N—H 2 SO 4 aqueous solution for 4 hours and subjected to pore widening treatment to obtain a pore widening treated aluminum substrate 10b.
Using this as a mold, a thermoplastic acrylic resin was hot-pressed.
Next, the aluminum base material and the anodized film were dissolved in an aqueous sodium hydroxide solution to obtain a linear groove comprising nanocolumnar structures.
The nano-columnar structure groove 20d was covered with a silicon rubber sheet, TBE buffer was injected, and an electrophoresis separation test of DNA was performed.
After performing an electrophoresis test for a certain period of time, a fluorescent photograph was taken, and the positional relationship from the fluorescence intensity and the sample inlet was examined.
The result is shown in FIG.
Several peaks were confirmed in the fluorescence intensity with respect to the distance from the sample injection port, and each was considered to correspond to each DNA size. Thus, DNA separation was confirmed.
1 アルミ
3a レジスト
10 陽極酸化皮膜
11 バリア層
12 ポア
13 窪み
20 ナノ柱状構造体
DESCRIPTION OF SYMBOLS 1 Aluminum 3a Resist 10 Anodized film 11 Barrier layer 12 Pore 13 Indentation 20 Nano columnar structure
Claims (3)
アルミ基材及び陽極酸化皮膜を溶解処理することで、側部に突起を有する柱状部を数多く形成し、
当該突起の高さが隣接する柱状部の間隔の1/4以上であることを特徴とするナノ柱状構造体の製造方法。 After electrolytic formation of a porous anodic oxide film on the surface of an aluminum or aluminum alloy substrate , the pore diameter of the anodic oxide film is increased, and a hole is formed in the pore wall, and a hole is formed in the pore wall of the pore. Using the anodized aluminum base as a mold, the resin composition was injected and transferred,
By dissolving the aluminum substrate and the anodized film , many columnar parts having protrusions on the side parts are formed,
The method for producing a nanocolumnar structure, wherein the height of the protrusion is ¼ or more of the interval between adjacent columnar portions .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008061875A JP5396587B2 (en) | 2008-03-11 | 2008-03-11 | Nano-columnar structure, manufacturing method thereof and applied device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008061875A JP5396587B2 (en) | 2008-03-11 | 2008-03-11 | Nano-columnar structure, manufacturing method thereof and applied device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009214247A JP2009214247A (en) | 2009-09-24 |
JP2009214247A5 JP2009214247A5 (en) | 2009-11-05 |
JP5396587B2 true JP5396587B2 (en) | 2014-01-22 |
Family
ID=41186672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008061875A Active JP5396587B2 (en) | 2008-03-11 | 2008-03-11 | Nano-columnar structure, manufacturing method thereof and applied device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5396587B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3695431B2 (en) * | 2001-08-03 | 2005-09-14 | 日本電気株式会社 | Separation apparatus and method of manufacturing separation apparatus |
JP4606775B2 (en) * | 2004-05-25 | 2011-01-05 | 電源開発株式会社 | Concave oxide film structure |
KR20080038385A (en) * | 2005-08-26 | 2008-05-06 | 카나가와 아카데미 오브 사이언스 앤드 테크놀로지 | Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same |
JP4848161B2 (en) * | 2005-09-21 | 2011-12-28 | 財団法人神奈川科学技術アカデミー | Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method |
JP2008012426A (en) * | 2006-07-05 | 2008-01-24 | Fujifilm Corp | Catalytic body |
JP5173165B2 (en) * | 2006-08-14 | 2013-03-27 | 東京エレクトロン株式会社 | Chromatography column and method for producing the same |
-
2008
- 2008-03-11 JP JP2008061875A patent/JP5396587B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009214247A (en) | 2009-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5361130B2 (en) | Porous polymer membrane and method for producing the same | |
JP5851165B2 (en) | Method for forming microstructure and method for producing porous alumina composite | |
CN101248219A (en) | Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same | |
JP4608331B2 (en) | Anodized porous alumina and method for producing the same | |
CN101382555A (en) | Method for producing glass microflow control chip | |
JP4838201B2 (en) | Method for producing anodized porous alumina | |
JP5396587B2 (en) | Nano-columnar structure, manufacturing method thereof and applied device | |
JP5344850B2 (en) | Anodized porous alumina and method for producing the same | |
US20120062082A1 (en) | Housing structure of electronic device and manufacturing method thereof | |
JP2012162769A (en) | Method for manufacturing anodized porous alumina and anodized porous alumina manufactured by the method | |
CN1494453A (en) | Separation apparatus and process for fabricating separation apparatus | |
JP4423077B2 (en) | Anodized porous alumina and method for producing the same | |
CN100529196C (en) | Preparation process of metal aluminium template for assembling nano-micron array material | |
JP2006062049A (en) | Nanopillar structure and its manufacturing method, and device for separation and its manufacturing method | |
JP2008045170A (en) | Porous alumina having through-pore and production method therefor | |
KR101316082B1 (en) | Asymmetric alumina membrane having monosized pores and manufacturing method thereof | |
JP2009299188A (en) | Anodized porous alumina and method for producing the same | |
CN112080772A (en) | Embedded injection molding connection process for metal and plastic | |
Bru et al. | Macroporous Silicon: Technology and Applications | |
KR20020050137A (en) | Structure, method of manufacturing the same and dna separation device using the same | |
Gujela et al. | Anodic aluminum oxide (AAO) nano membrane fabrication under different conditions | |
Zhang et al. | A kind of double-sided porous anodic alumina membrane fabricated with the three-step anodic oxidation method | |
JP5642585B2 (en) | Method for producing anodized porous alumina and anodized porous alumina produced by the method | |
TWI289874B (en) | Manufacturing method of nano metal wire | |
JP2005200677A (en) | Method of producing metal particulate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090916 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5396587 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |