JP4848161B2 - Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method - Google Patents

Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method Download PDF

Info

Publication number
JP4848161B2
JP4848161B2 JP2005273561A JP2005273561A JP4848161B2 JP 4848161 B2 JP4848161 B2 JP 4848161B2 JP 2005273561 A JP2005273561 A JP 2005273561A JP 2005273561 A JP2005273561 A JP 2005273561A JP 4848161 B2 JP4848161 B2 JP 4848161B2
Authority
JP
Japan
Prior art keywords
pore
porous alumina
pores
anodized porous
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005273561A
Other languages
Japanese (ja)
Other versions
JP2007086283A (en
Inventor
秀樹 益田
賢志 安井
崇 柳下
和之 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2005273561A priority Critical patent/JP4848161B2/en
Publication of JP2007086283A publication Critical patent/JP2007086283A/en
Application granted granted Critical
Publication of JP4848161B2 publication Critical patent/JP4848161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、高分子膜の表面に形成され、可視光域における反射を低減させる反射防止膜製造方法、並びにその反射防止膜を形成するためのスタンパ製造方法に関する。 The present invention is formed on the surface of the polymer film, a method of manufacturing a reflection preventing film for reducing the reflection in the visible light region, and a method of manufacturing a stamper for forming the anti-reflection film.

様々な情報機器用表示装置において、高分子フィルム(高分子膜)が広く用いられているが、良好な視認性を確保するためには、反射光を抑制するための反射防止層の形成が必要とされる。通常、反射防止層としては、異なる屈折率からなる誘電体から構成される多層膜が用いられているが、誘電体層の形成には、真空蒸着法、あるいはスパッタ法が用いられており、反射層形成には、高価な装置と多大な作製時間を必要とするという問題点があった。   In various display devices for information equipment, polymer films (polymer films) are widely used, but in order to ensure good visibility, it is necessary to form an antireflection layer to suppress reflected light It is said. Normally, a multilayer film composed of dielectric materials having different refractive indexes is used as the antireflection layer. However, a vacuum deposition method or a sputtering method is used to form the dielectric layer. The layer formation has a problem of requiring an expensive apparatus and a great production time.

一方、高分子フィルムの表面に突起状の形状を付与し、屈折率が連続的に変化する層を形成することにより反射率を低減する方式が知られている。高分子フィルムに突起形状を付与するためには、通常、突起形状に対応した窪み配列を有するスタンパを用意し、これをもとに高分子フィルムを加工する方法が用いられている。   On the other hand, a method is known in which the reflectance is reduced by providing a protrusion-like shape on the surface of the polymer film and forming a layer whose refractive index continuously changes. In order to impart a protrusion shape to the polymer film, a method is generally used in which a stamper having a depression array corresponding to the protrusion shape is prepared and the polymer film is processed based on the stamper.

高分子フィルムの表面に突起形状を形成するためのスタンパに形成する窪みは、光の波長に比較して微細な周期を有し、可視光域で反射率を十分減衰させるためには、波長の1/4程度の深さを有することが必要とされる(たとえば、特許文献1)。このとき、窪みは、屈折率を連続的に変化させる必要があることから、テーパー形状を有することが必要とされる。   The depression formed in the stamper for forming the protrusion shape on the surface of the polymer film has a fine period compared to the wavelength of light, and in order to sufficiently attenuate the reflectance in the visible light region, It is necessary to have a depth of about 1/4 (for example, Patent Document 1). At this time, the recess needs to have a tapered shape because it is necessary to continuously change the refractive index.

このような条件をみたす窪み配列の形成を行うためには、電子ビームリソグラフィーやフォトリソグラフィー技術とドライエッチング技術を組み合わせた手法が一般に用いられている。しかしながら、これらの手法では、加工に多大な時間がかかるため大面積化が困難であることに加え、加工には高価な装置が必要となるという問題点があった。   In order to perform the formation of the depression array satisfying such conditions, a technique combining electron beam lithography, photolithography technique, and dry etching technique is generally used. However, these methods have a problem that it takes a lot of time to process, so that it is difficult to increase the area, and an expensive apparatus is required for processing.

安価に大面積で、高分子フィルム表面にテーパー形状の突起を形成する手法として、細孔径が連続的に変化したテーパー状細孔を有する陽極酸化ポーラスアルミナを用いた手法が先に本出願人により提案されている(特許文献2)。しかしながら、この提案の段階では、鋳型として用いる陽極酸化ポーラスアルミナの細孔形状について、膜厚方向に細孔径が必ずしも最適化されていなかったために、高分子膜表面での屈折率変化を最適化することが困難であり、得られる反射防止特性に限界があるという問題が残されていた。
特開2003―43203号公報 特開2005―156695号公報
As a method for forming a taper-shaped protrusion on the surface of a polymer film with a large area at a low cost, a method using anodized porous alumina having tapered pores whose pore diameters are continuously changed was previously applied by the present applicant. It has been proposed (Patent Document 2). However, at the stage of this proposal, the pore diameter of the anodized porous alumina used as a template was not necessarily optimized in the film thickness direction, so the refractive index change on the polymer film surface was optimized. However, there is a problem that the antireflection characteristics obtained are limited.
JP 2003-43203 A Japanese Patent Laid-Open No. 2005-156695

上記のように、リソグラフィーを用いる方法では、大面積を加工可能なスタンパを安価に製造することは困難であり、また、テーパー状の細孔を有する陽極酸化ポーラスアルミナを用いる手法においても、最適化された無反射特性を付与することが困難であるという問題点を有していた。   As described above, it is difficult to produce a stamper capable of processing a large area at a low cost by the method using lithography, and the method using an anodized porous alumina having tapered pores is also optimized. Therefore, it has been difficult to provide the antireflection characteristics.

そこで本発明の課題は、上記従来技術における問題点を解決するために、陽極酸化ポーラスアルミナを鋳型として、高分子フィルム面により最適な反射防止構造を効率的に形成可能な反射防止膜の製造方法並びに、その反射防止膜を効率的に形成可能なスタンパ製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing an antireflection film capable of efficiently forming an optimal antireflection structure on the surface of a polymer film using anodized porous alumina as a mold in order to solve the above-described problems in the prior art. , and to provide a manufacturing method of efficiently formable stamper its antireflection film.

上記課題を解決するために、本発明は、陽極酸化と細孔の孔径拡大処理を組み合わせ、それぞれの処理条件を調節することにより、細孔の縦断面形状でみて細孔の孔径がより最適に連続的に変化した細孔をもつ陽極酸化ポーラスアルミナを鋳型として用いることで無反射高分子フィルムの作製を可能にするものである。すなわち、本発明に係る反射防止膜の製造方法は、陽極酸化と孔径拡大化処理とを、それぞれの処理条件を調節して複数回繰り返し、最後の処理を孔径拡大化処理とするとともに、該最後の処理としての孔径拡大化処理の時間をその前の前記繰り返し処理における孔径拡大化処理の時間とは異なる処理時間とすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の孔径減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることにより、あるいは該陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いることにより、高分子材料の表面に前記細孔の形状に対応した形状の突起または窪みの配列を形成することを特徴とする方法からなる。代表的には、後述の実施例にも示すように、陽極酸化を行った後孔径拡大化処理を行う工程をn回繰り返し、n回目の孔径拡大化処理を1回目〜(n−1)回目の孔径拡大化処理よりも処理時間を長くすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の底部側の孔径がそれよりも細孔の開口部側の細孔の孔径に比べ相対的に急激に減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることにより、あるいは該陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いることにより、高分子材料の表面に前記細孔の形状に対応した形状の突起または窪みの配列を形成することを特徴とする反射防止膜の製造方法を挙げることができる。 In order to solve the above-mentioned problems, the present invention combines the anodic oxidation and the pore diameter expansion treatment, and adjusts the respective treatment conditions, so that the pore diameter of the pore is more optimal in terms of the longitudinal cross-sectional shape of the pore. By using anodized porous alumina having continuously changed pores as a template, it is possible to produce an antireflective polymer film. That is, the manufacturing method of the antireflection film according to the present invention, the anodic oxidation and pore diameter-Daehwa process, repeated several times to adjust the respective processing conditions, the final processing with a hole diameter-Daehwa treatment, said last By setting the time of the pore diameter enlargement treatment as the treatment of the treatment time to be different from the time of the pore diameter enlargement treatment in the previous repeated treatment, it is possible to see from the opening of the pore as viewed in the longitudinal sectional shape of the pore. template in the pore depth direction toward the bottom, to produce an anodized porous alumina having pores of bell-shaped inner surface of the pores varies curvedly with pore diameter of the pores decreases, the anodic-oxide porous alumina Or by using a stamper produced by using the anodized porous alumina as a mold, a protrusion having a shape corresponding to the shape of the pores on the surface of the polymer material Other consists method characterized by forming an array of indentations. Typically, as shown in the examples described later, the step of performing the pore size enlargement process after anodizing is repeated n times, and the nth pore size enlargement process is performed for the first to (n-1) th times. By making the treatment time longer than the pore diameter enlargement treatment of the pores, the pore diameter on the bottom side of the pores in the pore depth direction from the opening to the bottom of the pores in the longitudinal cross-sectional shape of the pores An anodized porous alumina having a bell-shaped pore in which the inner diameter of the pore changes in a curvilinear manner and the inner diameter of the pore changes relatively sharply as compared with the pore diameter of the pore on the opening side of the pore. By using oxidized alumina as a template, or by using a stamper made using the anodized porous alumina as a template, an array of protrusions or depressions having a shape corresponding to the shape of the pores is formed on the surface of the polymer material. To do Method for producing an antireflection film according to symptoms can be mentioned.

この反射防止膜の製造方法においては、上記高分子材料の表面に形成される突起に対応する上記細孔の縦断面形状としては、例えば、細孔の開口部から底部に向かう細孔深さ方向に沿って見た孔径の変化に関して、細孔の開口部側の孔径の方が細孔の底部側の孔径に比べ相対的に緩やかに減少している形状に形成することができる。また、上記高分子材料の表面に形成される窪みに対応する上記細孔の縦断面形状としては、例えば、細孔の開口部から底部に向かう細孔深さ方向に沿って見た孔径の変化に関して、細孔の開口部側の孔径の方が細孔の底部側の孔径に比べ相対的に急激に減少している形状に形成することもできる。 In this antireflection film manufacturing method, the vertical cross-sectional shape of the pores corresponding to the protrusions formed on the surface of the polymer material is, for example, the pore depth direction from the opening to the bottom of the pores The pore diameter on the opening side of the pores can be formed in a shape that decreases relatively gently as compared with the pore diameter on the bottom side of the pores . In addition, as the vertical cross-sectional shape of the pore corresponding to the depression formed on the surface of the polymer material, for example, the change in pore diameter as viewed along the pore depth direction from the opening to the bottom of the pore With respect to the above, it is also possible to form a shape in which the pore diameter on the opening side of the pore is relatively abruptly reduced as compared with the pore diameter on the bottom side of the pore .

また、上記反射防止膜の製造方法においては、細孔周期50nm〜300nm,細孔深さ100nm以上の陽極酸化ポーラスアルミナを鋳型として用いることで、より最適な無反射膜の作製を実現できる。   Moreover, in the manufacturing method of the antireflection film, a more optimal antireflection film can be produced by using anodized porous alumina having a pore period of 50 nm to 300 nm and a pore depth of 100 nm or more as a template.

また、定電圧で長時間陽極酸化を施したのち、一旦酸化皮膜を除去し、再び同一条件で陽極酸化を施すことで作製した陽極酸化ポーラスアルミナを用いることで、高い孔配列規則性を有する陽極酸化ポーラスアルミナを鋳型とすることが可能となる。   In addition, an anode having high pore arrangement regularity is obtained by using anodized porous alumina prepared by anodizing at a constant voltage for a long time, once removing the oxide film, and again anodizing under the same conditions. It becomes possible to use oxidized porous alumina as a mold.

使用する陽極酸化ポーラスアルミナとしては、たとえば、シュウ酸を電解液として用い、化成電圧30V〜60Vにおいて作製した陽極酸化ポーラスアルミナを用いることもでき、硫酸を電解液として用い、化成電圧25V〜30Vにおいて作製した陽極酸化ポーラスアルミナを用いることもできる。このような陽極酸化ポーラスアルミナを用いることで、より高い規則性を有する窪みまたは突起配列を鋳型とすることが可能となる。   As the anodized porous alumina to be used, for example, anodized porous alumina prepared using an oxalic acid as an electrolytic solution at a chemical conversion voltage of 30 V to 60 V can be used. The produced anodized porous alumina can also be used. By using such anodized porous alumina, it becomes possible to use a dent or protrusion arrangement having higher regularity as a template.

さらに、陽極酸化ポーラスアルミナの作製において、陽極酸化に先立ちアルミニウム表面に微細な窪みを形成し、これを陽極酸化時の細孔発生点とすることもできる。これにより、任意の配列を有する窪みまたは突起配列を有する鋳型とすることが可能となる。   Further, in the production of anodized porous alumina, a fine depression can be formed on the aluminum surface prior to anodization, and this can be used as a pore generation point during anodization. As a result, it is possible to obtain a template having an indentation or projection arrangement having an arbitrary arrangement.

本発明における反射防止膜は、このような方法により製造されたものであり、目標とする形状に形成された表面突起または窪みの配列により、極めて優れた反射防止性能を有するものである。この反射防止膜は、例えば光透過性高分子膜の表面に形成することにより、各種用途において目標とする反射防止性能を発揮することができる。 Antireflection coating definitive to the present invention has been produced by such a method, the surface projections or depressions arranged in the formed shape with the target, those having excellent antireflection performance. By forming this antireflection film on the surface of a light-transmitting polymer film, for example, it is possible to exhibit target antireflection performance in various applications.

本発明に係る反射防止膜作製用スタンパの製造方法は、高分子材料の表面に突起または窪みの配列を形成した反射防止膜の、前記突起または窪みの形成に用いるスタンパの製造方法であって、陽極酸化と孔径拡大化処理とを、それぞれの処理条件を調節して複数回繰り返し、最後の処理を孔径拡大化処理とするとともに、該最後の処理としての孔径拡大化処理の時間をその前の前記繰り返し処理における孔径拡大化処理の時間とは異なる処理時間とすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の孔径減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることを特徴とする方法からなる。代表的には、後述の実施例にも示すように、高分子材料の表面に突起または窪みの配列を形成した反射防止膜の、前記突起または窪みの形成に用いるスタンパの製造方法であって、陽極酸化を行った後孔径拡大化処理を行う工程をn回繰り返し、n回目の孔径拡大化処理を1回目〜(n−1)回目の孔径拡大化処理よりも処理時間を長くすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の底部側の孔径がそれよりも細孔の開口部側の細孔の孔径に比べ相対的に急激に減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることを特徴とする、反射防止膜作製用スタンパの製造方法を挙げることができる。 A method for producing a stamper for producing an antireflection film according to the present invention is a method for producing a stamper for use in forming the projections or depressions of an antireflection film in which an array of projections or depressions is formed on the surface of a polymer material, the anodic oxidation and pore diameter-Daehwa process, repeated several times to adjust the respective processing conditions, the final processing with a hole diameter-maximization process, the hole diameter-maximization process as the process in said last time the previous By setting the treatment time to be different from the pore size enlargement treatment time in the repeated treatment , the pore diameter in the pore depth direction from the opening to the bottom of the pore is seen in the longitudinal sectional shape of the pore. how the inner surface of the pores to produce an anodized porous alumina having pores curve varying bell-shaped, which comprises using the anodised porous alumina as a template with but decreasing Ranaru. Typically, as shown in the examples described later, a method of manufacturing a stamper for use in forming the protrusions or depressions of an antireflection film in which an array of protrusions or depressions is formed on the surface of a polymer material, The step of performing the pore size enlargement process after anodizing is repeated n times, and the nth pore size enlargement treatment is made longer than the first to (n-1) th pore size enlargement treatment, Looking at the longitudinal cross-sectional shape of the pore, the pore diameter on the bottom side of the pore is smaller than the pore diameter on the pore opening side in the depth direction of the pore from the opening to the bottom of the pore. Anodized porous alumina having bell-shaped pores whose inner surface changes in a curved manner while decreasing relatively rapidly, and using the anodized porous alumina as a template, antireflection A method for manufacturing a stamper for film preparation is listed. Rukoto can.

本発明における反射防止膜作製用スタンパは、このような方法により製造されたものからなる。 Antireflection film fabrication stamper definitive to the present invention consists of those produced by such a method.

本発明によれば、従来の方法に比較し、より簡便に、また細孔の形状がより最適な形状制御された陽極酸化ポーラスアルミナに基づく鋳型の形成が可能となり、この結果、可視光域における反射を低減した反射防止層の製造、更には、反射防止層を形成するためのスタンパ製造が可能となる。 According to the present invention, compared with the conventional method, more conveniently, also enables the formation of mold shape of the pores is based on anodized porous alumina, which is controlled to a more optimal shape, as a result, the visible light region production of an antireflection layer with reduced reflections at, furthermore, it is possible to manufacture a stamper for forming the anti-reflection layer.

以下に、本発明の望ましい実施の形態について、図面を参照して説明する。
図1は,本発明において鋳型として用いる陽極酸化ポーラスアルミナの作製方法を示したものである。陽極酸化と孔径拡大化処理とを、それぞれの処理条件、例えば処理時間を調節して複数回繰り返し、最後の処理を孔径拡大化処理とするとともに、該最後の処理としての孔径拡大化処理の時間をその前の前記繰り返し処理における孔径拡大化処理の時間とは異なる処理時間とすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の孔径減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製する。図1に示すように、陽極酸化ポーラスアルミナ2は、アルミニウム基材1の表面に形成されるが、陽極酸化ポーラスアルミナ2の細孔3の形状は、初期の段階では円筒形状をしており、そのままでは、無反射膜を形成するための鋳型としての利用は困難である。本発明においては、陽極酸化と、エッチングによる孔径拡大処理を組み合わせることにより、最終的に細孔3の縦断面形状でみて、細孔3の孔径が細孔深さ方向に減少し細孔の内面が曲線的に変化した形状の細孔3をもつ陽極酸化ポーラスアルミナ2を作製する。図1に示した例では、最終的な細孔3の縦断面形状は、釣鐘形、つまり、細孔深さ方向に、最初は(つまり、細孔の開口部側では)緩やかに孔径が減少し細孔の内面が曲線的に変化しているが、途中から(つまり、細孔の底部側では)より急激に孔径が減少し細孔の内面が曲線的に変化している形状に形成されている。所定の時間陽極酸化を施して所望の深さの細孔を形成したのち、適当な酸溶液中に浸漬することにより孔径の拡大処理を施す。この後、再び陽極酸化を施すことにより、1段階目に比較して孔径の小さな孔を形成する。この操作を繰り返すとともに、各段階におけるそれぞれの処理条件を調節することにより、目標とする釣鐘形の形状を有する陽極酸化ポーラスアルミナ2を得ることができる。このとき,繰り返し段数を増大することにより、より滑らかな曲線形状を得ることが可能となる。とくに陽極酸化時間と孔径拡大処理時間とを調整することで、様々な曲線形状の縦断面を有する細孔の形成が可能であり、周期、孔深さと併せて、最適な屈折率変化を設計することが可能となる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a method for producing anodized porous alumina used as a mold in the present invention. Anodization and pore size enlargement treatment are repeated a plurality of times by adjusting the respective treatment conditions, for example, treatment time , and the final treatment is the pore size enlargement treatment, and the time of the pore size enlargement treatment as the last treatment In the pore depth direction from the opening of the pore toward the bottom, as seen in the vertical cross-sectional shape of the pore, by setting the treatment time different from the time of the pore diameter enlargement treatment in the previous repeat treatment , the inner surface of the pores with a pore diameter of the pores is reduced to produce an anodized porous alumina having pores curve varying bell-shaped. As shown in FIG. 1, the anodized porous alumina 2 is formed on the surface of the aluminum substrate 1, but the pores 3 of the anodized porous alumina 2 have a cylindrical shape in the initial stage. As it is, it is difficult to use it as a mold for forming an antireflective film. In the present invention, by combining the anodic oxidation and the pore diameter enlargement process by etching, the pore diameter of the pore 3 finally decreases in the depth direction of the pore 3 when viewed from the longitudinal cross-sectional shape of the pore 3, and the inner surface of the pore. The anodized porous alumina 2 having the pores 3 having a shape that changes in a curve is produced. In the example shown in FIG. 1, the final longitudinal cross-sectional shape of the pore 3 is a bell shape, that is, the pore diameter gradually decreases at the beginning (that is, on the pore opening side) at the beginning. The inner surface of the pore changes in a curved manner, but the pore diameter decreases more rapidly from the middle (that is, on the bottom side of the pore ) and the inner surface of the pore changes in a curved shape. ing. After anodizing for a predetermined time to form pores having a desired depth, the pores are enlarged by being immersed in an appropriate acid solution. Thereafter, anodization is performed again to form a hole having a smaller hole diameter compared to the first stage. By repeating this operation and adjusting each processing condition in each stage, the anodized porous alumina 2 having a target bell-shaped shape can be obtained. At this time, a smoother curve shape can be obtained by increasing the number of steps. In particular, by adjusting the anodizing time and the pore diameter expansion processing time, it is possible to form pores with various curved longitudinal sections, and design an optimal refractive index change along with the period and pore depth. It becomes possible.

このようにして形成された細孔径が深さ方向において変化し縦断面形状にて細孔の内面が曲線的に変化した細孔を有するポーラスアルミナを鋳型とし、図2に示すように、高分子材料4(高分子フィルム)にこの構造を転写することで表面に突起を有する反射防止構造を得ることができる。 As shown in FIG. 2, a porous alumina having pores in which the pore diameter formed in this manner changes in the depth direction and the inside surface of the pore changes in a longitudinal cross-sectional shape in a curved shape is used as a template. By transferring this structure to the material 4 (polymer film), an antireflection structure having protrusions on the surface can be obtained.

また、図3に示すように、得られた陽極酸化ポーラスアルミナ2の構造を鋳型とし、金属等のネガ型材5により同じの形状を有する鋳型を得、この鋳型(ネガ型材5による鋳型)にポジ型材6を付与すれば、ネガ型材5による鋳型を除去することによりスタンパ7を得ることも可能である。このスタンパ7は、反射防止膜を形成する高分子材料に対して、突起パターン形成用モールドとして機能できる。このようなスタンパ7は、耐久性、耐摩耗性、あるいは離型特性の持たせた構造として有効である。   Further, as shown in FIG. 3, the structure of the obtained anodized porous alumina 2 is used as a mold, and a mold having the same shape is obtained by using a negative mold material 5 such as metal, and this mold (mold by the negative mold material 5) is positive. If the mold material 6 is provided, it is possible to obtain the stamper 7 by removing the mold made of the negative mold material 5. The stamper 7 can function as a projection pattern forming mold for the polymer material forming the antireflection film. Such a stamper 7 is effective as a structure having durability, wear resistance, or release characteristics.

本発明においては、更に、図4に示すように、突起パターンのほかに、窪みパターンからなる反射防止構造の形成も可能である。この場合、細孔径が深さ方向において変化し縦断面形状にて細孔の内面が曲線的に変化した細孔を有する陽極酸化ポーラスアルミナ2を鋳型とし、金属等の材料で作製したスタンパ8を窪みパターン形成用モールドとして用いる。このような方法で得られたモールドを用いれば、サイズが深さ方向において変化し縦断面形状にて内面が曲線的に変化した窪みのパターンからなる反射防止膜の作製を行うことができる。 In the present invention, as shown in FIG. 4, it is possible to form an antireflection structure including a depression pattern in addition to the projection pattern. In this case, a stamper 8 made of a material such as a metal using an anodized porous alumina 2 having a pore whose pore diameter changes in the depth direction and has a longitudinal cross-sectional shape with a curved inner surface of the pore changed as a mold. Used as a mold for forming a recess pattern. If the mold obtained by such a method is used, it is possible to produce an antireflection film having a pattern of dents whose size changes in the depth direction and whose inner surface is curved in a longitudinal sectional shape .

図4に例示した陽極酸化ポーラスアルミナ2の細孔3の縦断面形状は、細孔深さ方向に、最初は(つまり、細孔の開口部側では)やや急激に孔径が減少し細孔の内面が曲線的に変化し、途中から(つまり、細孔の底部側では)より緩やかに孔径が減少し細孔の内面が曲線的に変化している形状に形成されている。図1、図4に示した孔径が減少し細孔の内面が曲線的に変化した細孔3は、陽極酸化と細孔の孔径拡大処理を組み合わせ、それぞれの処理条件を互いに異なる条件に調節することにより形成できる。 The longitudinal cross-sectional shape of the pores 3 of the anodized porous alumina 2 illustrated in FIG. 4 shows that the pore diameter decreases slightly abruptly at the beginning (that is, on the opening side of the pores) in the pore depth direction . The inner surface changes in a curved manner, and the pore diameter decreases more gradually from the middle (that is, on the bottom side of the pore ) , and the inner surface of the pore is changed in a curved shape. 1 and FIG. 4, the pore 3 in which the pore diameter is reduced and the inner surface of the pore is changed in a curve is combined with anodization and pore diameter enlargement processing, and the respective treatment conditions are adjusted to different conditions. Can be formed.

本発明においては、更に、上記のような縦断面形状にて細孔の内面が曲線的に変化し孔径が減少した細孔を形成するのに先立ち、あらかじめ比較的長時間陽極酸化を施し、陽極酸化ポーラスアルミナ層の孔配列を規則化させ、その後、アルミナ層を除去することで、アルミニウム表面にポーラスアルミナの底部(バリア層と呼ばれる)に対応する規則的な窪み配列を得、再び同一の電圧での陽極酸化、および孔径拡大処理を組み合わせることで、最表面から細孔が規則配列した、所定縦断面形状の細孔を有する陽極酸化ポーラスアルミナを形成することができる。つまり、好ましい縦断面形状の細孔がより高い規則性をもって配列された陽極酸化ポーラスアルミナを形成することができる。一般に、陽極酸化ポーラスアルミナにおいて、陽極酸化初期に形成される最表面部分の細孔配列の規則性は低く、このような陽極酸化ポーラスアルミナをもとに形成された無反射膜では、光散乱が増大し良好な無反射膜としては利用が困難になる可能性があるが、上記手法に基づけば、細孔が高い規則性をもって配列した陽極酸化ポーラスアルミナを得ることが可能となり、良好な無反射膜の形成に寄与する。このとき、シュウ酸を電解液として用いる場合には、30〜60Vの化成電圧で、より好ましくは、40Vで、また、硫酸を電解液として用いる場合には、25〜30Vの化成電圧で高い規則性を有する陽極酸化ポーラスアルミナが得られることが知られている(たとえば、益田,応用物理,vol.69, No.5, p.558 (2000))。このようにして形成された高い規則性の孔配列を有する陽極酸化ポーラスアルミナは、直接、あるいは更に金属等の鋳型作製に有効に用いることが可能である。 In the present invention, further, anodization is performed for a relatively long period of time in advance before forming a pore having a longitudinal cross-sectional shape as described above, and the pore inner surface is curved and the pore diameter is reduced. By regularizing the pore arrangement of the oxidized porous alumina layer and then removing the alumina layer, a regular depression arrangement corresponding to the bottom of the porous alumina (called the barrier layer) is obtained on the aluminum surface, and the same voltage is again applied. By combining the anodic oxidation with the pore diameter expansion treatment, anodized porous alumina having pores with a predetermined vertical cross-sectional shape in which pores are regularly arranged from the outermost surface can be formed. That is, it is possible to form anodized porous alumina in which pores having a preferable longitudinal cross-sectional shape are arranged with higher regularity. In general, in anodized porous alumina, the regularity of the pore arrangement of the outermost surface portion formed at the initial stage of anodization is low. Although it may be difficult to use as a good non-reflective film, it becomes possible to obtain anodized porous alumina with pores arranged with high regularity based on the above method, and good non-reflective film Contributes to film formation. At this time, when oxalic acid is used as the electrolytic solution, a high voltage is formed at a conversion voltage of 30 to 60 V, more preferably at 40 V, and when sulfuric acid is used as the electrolytic solution, a high voltage is formed at a conversion voltage of 25 to 30 V. It is known that anodized porous alumina having properties can be obtained (for example, Masuda, Applied Physics, vol. 69, No. 5, p. 558 (2000)). The anodized porous alumina having a highly ordered hole array formed in this way can be used directly or more effectively for the production of a metal mold or the like.

本発明においては、更に、所望の配列の突起を有するモールドを用いることでアルミニウム基材の表面に微小な窪み配列を形成し、その後、窪み間隔に適合した化成電圧での陽極酸化と孔径拡大処理を組み合わせることで、窪みが孔発生の開始点となり、モールドの突起配列に対応した孔配列を有するテーパー状の孔を有する陽極酸化ポーラスアルミナを得ることが可能となる。この方法によれば、任意の周期、配列を有する陽極酸化ポーラスアルミナの形成が可能となり良好な無反射膜を得るのに寄与する。この方法では、高い規則性の細孔配列を有する陽極酸化ポーラスアルミナを得るのみならず、表示材料として用いる際に問題となる光干渉にもとづく干渉色の発生等の抑制にも寄与する。このようにして形成された高い規則性の孔配列を有する陽極酸化ポーラスアルミナは、直接、あるいは更に金属等の鋳型作製に有効に用いることが可能である。   In the present invention, furthermore, by using a mold having projections in a desired arrangement, a micro-dent array is formed on the surface of the aluminum substrate, and then anodization and pore size expansion treatment at a formation voltage suitable for the recess spacing. By combining these, the depression becomes the starting point of hole generation, and it becomes possible to obtain anodized porous alumina having tapered holes having a hole arrangement corresponding to the protrusion arrangement of the mold. According to this method, anodized porous alumina having an arbitrary period and arrangement can be formed, which contributes to obtaining a good antireflection film. This method not only obtains anodized porous alumina having a highly ordered pore arrangement, but also contributes to the suppression of the occurrence of interference colors due to light interference, which is a problem when used as a display material. The anodized porous alumina having a highly ordered hole array formed in this way can be used directly or more effectively for the production of a metal mold or the like.

次に、実施例に基づいて、本発明を更に具体的に説明する。
実施例1(陽極酸化ポーラスアルミナを鋳型として作製した反射防止膜の作製)
純度99.99%のアルミニウム板を0.3Mシュウ酸水溶液を電解液とし、化成電圧40Vにおいて、15秒間陽極酸化を行った。その後、5wt%リン酸30℃中に3分間浸漬し、孔径拡大処理を施した。この操作を5回繰り返し、さらに同条件下で15秒間陽極酸化を行った後、15分間孔径拡大化処理を施すことで、細孔周期100nm、細孔開口部80nm、底部40nm、孔深さ200nmの縦断面が釣鐘形状の細孔を有する陽極酸化ポーラスアルミナを得た。重合開始剤として5重量%の過酸化ベンゾイルを含むメタクリル酸メチルモノマーを細孔内に充填した後、紫外線を照射することで重合させた。重合後、鋳型を溶解除去することで、表面に釣鐘形状の突起を有するポリメチルメタクリレート樹脂膜を得た。図5に、本手法により得られた釣鐘形状の細孔を有する陽極酸化ポーラスアルミナ2を電子顕微鏡により観察した図を示す。また、図6には、この陽極酸化ポーラスアルミナ2を鋳型として得られた反射防止膜4を電子顕微鏡により観察した図を示す。
Next, based on an Example, this invention is demonstrated further more concretely.
Example 1 (Preparation of an antireflection film prepared using anodized porous alumina as a mold)
An aluminum plate with a purity of 99.99% was subjected to anodization for 15 seconds at a formation voltage of 40 V using 0.3 M oxalic acid aqueous solution as the electrolyte. After that, it was immersed in 5 wt% phosphoric acid at 30 ° C. for 3 minutes and subjected to a pore diameter expansion treatment. This operation was repeated 5 times, and after anodizing for 15 seconds under the same conditions, the pore size was increased for 15 minutes, resulting in a pore period of 100 nm, pore opening of 80 nm, bottom of 40 nm, and pore depth of 200 nm. An anodized porous alumina having a bell-shaped pore in the longitudinal section was obtained. A methyl methacrylate monomer containing 5% by weight of benzoyl peroxide as a polymerization initiator was filled in the pores, and then polymerized by irradiation with ultraviolet rays. After polymerization, the template was dissolved and removed to obtain a polymethyl methacrylate resin film having bell-shaped protrusions on the surface. FIG. 5 shows a view obtained by observing the anodized porous alumina 2 having bell-shaped pores obtained by this method with an electron microscope. FIG. 6 shows a view of the antireflection film 4 obtained using the anodized porous alumina 2 as a mold, as observed with an electron microscope.

本発明は、反射防止膜の形成が要求されるあらゆる用途に適用でき、とくに、視認性の向上が要求される各種情報機器用表示装置等に好適なものである。   The present invention can be applied to any application that requires the formation of an antireflection film, and is particularly suitable for display devices for various information devices that require improved visibility.

陽極酸化時間とエッチングを組み合わせることで、膜厚方向において所望の曲線的変化率で細孔径が連続的に変化した細孔をもつ陽極酸化ポーラスアルミナを作製する過程を示す図である。It is a figure which shows the process of producing the anodic oxidation porous alumina which has the pore in which the pore diameter changed continuously with the desired curvilinear change rate in the film thickness direction by combining anodizing time and etching. 膜厚方向において細孔径が連続的に変化した細孔をもつポーラスアルミナを鋳型とした突起形状を有する反射防止膜を作製する過程を示す図である。It is a figure which shows the process of producing the anti-reflective film which has the protrusion shape which used the porous alumina which has the pore in which the pore diameter changed continuously in the film thickness direction as a casting_mold | template. 陽極酸化ポーラスアルミナを鋳型として作製した突起パターン形成用スタンパを作製する過程を示す図である。It is a figure which shows the process of producing the stamper for protrusion pattern formation produced using the anodized porous alumina as a casting_mold | template. 陽極酸化ポーラスアルミナを鋳型として作製した窪みパターン形成用スタンパを作製する過程を示す図である。It is a figure which shows the process of producing the dent pattern formation stamper produced using the anodized porous alumina as a casting_mold | template. 釣鐘形状の細孔を有する陽極酸化ポーラスアルミナを電子顕微鏡により観察した図である。It is the figure which observed the anodized porous alumina which has a bell-shaped pore by the electron microscope. 釣鐘形状の細孔を有する陽極酸化ポーラスアルミナを鋳型として作製した反射防止膜を電子顕微鏡により観察した図である。It is the figure which observed the anti-reflective film produced using the anodized porous alumina which has a bell-shaped pore as a casting_mold | template with the electron microscope.

符号の説明Explanation of symbols

1 アルミニウム基材
2 陽極酸化ポーラスアルミナ
3 細孔
4 高分子材料(反射防止膜)ポリマー
5 ネガ型材
6 ポジ型材
7 スタンパ(突起パターン形成用モールド)
8 スタンパ(窪みパターン形成用モールド)
DESCRIPTION OF SYMBOLS 1 Aluminum base material 2 Anodized porous alumina 3 Pore 4 Polymer material (antireflection film) polymer 5 Negative mold material 6 Positive mold material 7 Stamper (mold for projection pattern formation)
8 Stamper (mold for forming recess pattern)

Claims (11)

陽極酸化と孔径拡大化処理とを、それぞれの処理条件を調節して複数回繰り返し、最後の処理を孔径拡大化処理とするとともに、該最後の処理としての孔径拡大化処理の時間をその前の前記繰り返し処理における孔径拡大化処理の時間とは異なる処理時間とすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の孔径減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることにより、あるいは該陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いることにより、高分子材料の表面に前記細孔の形状に対応した形状の突起または窪みの配列を形成することを特徴とする反射防止膜の製造方法。 The anodic oxidation and pore diameter-Daehwa process, repeated several times to adjust the respective processing conditions, the final processing with a hole diameter-maximization process, the hole diameter-maximization process as the process in said last time the previous By setting the treatment time to be different from the pore size enlargement treatment time in the repeated treatment , the pore diameter in the pore depth direction from the opening to the bottom of the pore is seen in the longitudinal sectional shape of the pore. Of anodized porous alumina having bell- shaped pores in which the inner surface of the pores changes in a curved manner as the amount of the pores decreases, and using the anodized porous alumina as a template, or using the anodized porous alumina as a template By using the produced stamper, an array of protrusions or depressions having a shape corresponding to the shape of the pores is formed on the surface of the polymer material. Method of manufacturing a stop film. 陽極酸化を行った後孔径拡大化処理を行う工程をn回繰り返し、n回目の孔径拡大化処理を1回目〜(n−1)回目の孔径拡大化処理よりも処理時間を長くすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の底部側の孔径がそれよりも細孔の開口部側の細孔の孔径に比べ相対的に急激に減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることにより、あるいは該陽極酸化ポーラスアルミナを鋳型として作製したスタンパを用いることにより、高分子材料の表面に前記細孔の形状に対応した形状の突起または窪みの配列を形成することを特徴とする反射防止膜の製造方法。The step of performing the pore size enlargement process after anodizing is repeated n times, and the nth pore size enlargement treatment is made longer than the first to (n-1) th pore size enlargement treatment, Looking at the longitudinal cross-sectional shape of the pore, the pore diameter on the bottom side of the pore is smaller than the pore diameter on the pore opening side in the depth direction of the pore from the opening to the bottom of the pore. Anodized porous alumina having bell-shaped pores whose inner surface is changed in a curvilinear manner while decreasing relatively abruptly is prepared, and the anodized porous alumina is used as a template, or the anodized porous A method of manufacturing an antireflection film, wherein an array of protrusions or depressions having a shape corresponding to the shape of the pores is formed on a surface of a polymer material by using a stamper manufactured using alumina as a mold. 前記高分子材料の表面に形成される突起に対応する前記細孔の縦断面形状が、細孔の開口部から底部に向かう細孔深さ方向に沿って見た孔径の変化に関して、細孔の開口部側の孔径の方が細孔の底部側の孔径に比べ相対的に緩やかに減少している形状からなる、請求項1の反射防止膜の製造方法。 The vertical cross-sectional shape of the pore corresponding to the protrusion formed on the surface of the polymer material is related to the change in pore diameter as viewed along the pore depth direction from the opening to the bottom of the pore. 2. The method of manufacturing an antireflection film according to claim 1, wherein the opening side has a shape in which the hole diameter is relatively gradually reduced as compared with the hole diameter on the bottom side . 前記高分子材料の表面に形成される窪みに対応する前記細孔の縦断面形状が、細孔の開口部から底部に向かう細孔深さ方向に沿って見た孔径の変化に関して、細孔の開口部側の孔径の方が細孔の底部側の孔径に比べ相対的に急激に減少している形状からなる、請求項1の反射防止膜の製造方法。 The vertical cross-sectional shape of the pore corresponding to the depression formed on the surface of the polymer material is related to the change in pore diameter as viewed along the pore depth direction from the opening to the bottom of the pore. The method for producing an antireflection film according to claim 1, wherein the hole diameter on the opening side has a shape that is relatively abruptly reduced as compared with the hole diameter on the bottom side of the pore . 細孔周期50nm〜300nm,細孔深さ100nm以上の陽極酸化ポーラスアルミナを用いる、請求項1〜のいずれかに記載の反射防止膜の製造方法。 Pore period 50 nm to 300 nm, using a pore depth 100nm or more of the anodized porous alumina, a manufacturing method of an antireflection film according to any one of claims 1-4. 定電圧で長時間陽極酸化を施したのち、一旦酸化皮膜を除去し、再び同一条件で陽極酸化を施すことで作製した陽極酸化ポーラスアルミナを用いる、請求項1〜のいずれかに記載の反射防止膜の製造方法。 The reflection according to any one of claims 1 to 5 , wherein anodized porous alumina prepared by anodizing at a constant voltage for a long time, once removing the oxide film and anodizing again under the same conditions is used. Manufacturing method of prevention film. シュウ酸を電解液として用い、化成電圧30V〜60Vにおいて作製した陽極酸化ポーラスアルミナを用いる、請求項1〜のいずれかに記載の反射防止膜の製造方法。 The manufacturing method of the anti-reflective film in any one of Claims 1-6 using the anodic oxidation porous alumina produced in the conversion voltage 30V-60V using oxalic acid as electrolyte solution. 硫酸を電解液として用い、化成電圧25V〜30Vにおいて作製した陽極酸化ポーラスアルミナを用いる、請求項1〜のいずれかに記載の反射防止膜の製造方法。 Using sulfuric acid as the electrolytic solution, using anodized porous alumina prepared in formation voltage 25V~30V, method for producing an antireflection film according to any one of claims 1-6. 前記陽極酸化ポーラスアルミナの作製において、陽極酸化に先立ちアルミニウム表面に微細な窪みを形成し、これを陽極酸化時の細孔発生点とする、請求項1〜のいずれかに記載の反射防止膜の製造方法。 The antireflection film according to any one of claims 1 to 8 , wherein in the production of the anodized porous alumina, a fine depression is formed on the aluminum surface prior to anodization, and this is used as a pore generation point during anodization. Manufacturing method. 高分子材料の表面に突起または窪みの配列を形成した反射防止膜の、前記突起または窪みの形成に用いるスタンパの製造方法であって、陽極酸化と孔径拡大化処理とを、それぞれの処理条件を調節して複数回繰り返し、最後の処理を孔径拡大化処理とするとともに、該最後の処理としての孔径拡大化処理の時間をその前の前記繰り返し処理における孔径拡大化処理の時間とは異なる処理時間とすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の孔径減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることを特徴とする、反射防止膜作製用スタンパの製造方法。 A method of manufacturing a stamper for use in forming a projection or a depression of an antireflection film having a projection or depression array on the surface of a polymer material, wherein anodization and pore diameter enlargement treatment are performed under the respective treatment conditions. Adjusting and repeating a plurality of times, the last process is a pore size enlargement process, and the time of the pore size enlargement process as the last process is different from the time of the pore size enlargement process in the previous repeat process with, viewed in longitudinal section of the pores, the pore depth direction toward the bottom from the opening of the pores, changes the inner surface of the pores curvilinear with a pore size of the pores decreases bell A method for producing a stamper for producing an antireflection film, comprising producing anodized porous alumina having pores having a shape and using the anodized porous alumina as a template. 高分子材料の表面に突起または窪みの配列を形成した反射防止膜の、前記突起または窪みの形成に用いるスタンパの製造方法であって、陽極酸化を行った後孔径拡大化処理を行う工程をn回繰り返し、n回目の孔径拡大化処理を1回目〜(n−1)回目の孔径拡大化処理よりも処理時間を長くすることにより、細孔の縦断面形状で見て、細孔の開口部から底部に向かう細孔深さ方向において、細孔の底部側の孔径がそれよりも細孔の開口部側の細孔の孔径に比べ相対的に急激に減少するとともに細孔の内面が曲線的に変化する釣鐘形状の細孔をもつ陽極酸化ポーラスアルミナを作製し、該陽極酸化ポーラスアルミナを鋳型として用いることを特徴とする、反射防止膜作製用スタンパの製造方法。A method of manufacturing a stamper for use in forming a projection or a depression of an antireflection film having a projection or depression array on the surface of a polymer material, the step of performing an enlargement process after anodizing By repeating the n-th pore size enlargement process longer than the first to (n-1) th pore size enlargement treatment, the pore opening portion is viewed in the shape of the longitudinal cross section of the pore. In the pore depth direction from the bottom to the bottom, the pore diameter on the bottom side of the pore decreases more rapidly than the pore diameter on the opening side of the pore, and the inner surface of the pore is curved. A method for producing a stamper for producing an antireflective film, comprising producing anodized porous alumina having bell-shaped pores that change into a shape, and using the anodized porous alumina as a template.
JP2005273561A 2005-09-21 2005-09-21 Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method Active JP4848161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273561A JP4848161B2 (en) 2005-09-21 2005-09-21 Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273561A JP4848161B2 (en) 2005-09-21 2005-09-21 Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method

Publications (2)

Publication Number Publication Date
JP2007086283A JP2007086283A (en) 2007-04-05
JP4848161B2 true JP4848161B2 (en) 2011-12-28

Family

ID=37973350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273561A Active JP4848161B2 (en) 2005-09-21 2005-09-21 Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method

Country Status (1)

Country Link
JP (1) JP4848161B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066234B2 (en) 2001-04-25 2006-06-27 Alcove Surfaces Gmbh Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2009042714A (en) * 2006-11-08 2009-02-26 Nissan Motor Co Ltd Water repellent anti-reflective structure and method of manufacturing the same
JP5283846B2 (en) * 2007-02-09 2013-09-04 三菱レイヨン株式会社 Molded body and manufacturing method thereof
KR100904644B1 (en) 2007-07-24 2009-06-25 제이엠아이 주식회사 Manufactory method of nano-master with hybrid nano-pattern
KR100898124B1 (en) 2007-08-01 2009-05-18 포항공과대학교 산학협력단 Fabricating Method of 3D Shape Structure Having Hydrophobic Inner Surface
JP5079452B2 (en) * 2007-10-30 2012-11-21 財団法人神奈川科学技術アカデミー Method for producing glass material having concavo-convex pattern on surface
WO2009107294A1 (en) 2008-02-27 2009-09-03 シャープ株式会社 Roller type nano-imprint device, mold roll for the roller type nano-imprint device, fixed roll for the roller type nano-imprint device, and nano-imprint sheet manufacturing method
JP5396587B2 (en) * 2008-03-11 2014-01-22 富山県 Nano-columnar structure, manufacturing method thereof and applied device
JP5269467B2 (en) * 2008-04-18 2013-08-21 三菱レイヨン株式会社 Protective plate for lighting device and lighting device equipped with the same
JP5254664B2 (en) 2008-05-27 2013-08-07 株式会社Dnpファインケミカル Antireflection film and method for manufacturing the same
JP2010047454A (en) * 2008-08-22 2010-03-04 Kanagawa Acad Of Sci & Technol Carbon material having regular unevenness pattern on its surface, and manufacturing method thereof
JP5112221B2 (en) * 2008-08-22 2013-01-09 積水化成品工業株式会社 Molding device and method of manufacturing foamed molded article using the molding device
JP5381040B2 (en) * 2008-11-21 2014-01-08 大日本印刷株式会社 Evaluation method, manufacturing method and regeneration method of mold for manufacturing moth-eye type antireflection film, and manufacturing method of moth-eye type antireflection film
EP2377970B1 (en) 2008-12-26 2013-02-13 Sharp Kabushiki Kaisha Method for producing mold and method for producing anti-reflection film using mold
JP5742098B2 (en) * 2010-02-08 2015-07-01 大日本印刷株式会社 Method for producing mold for production of antireflection film
KR101207406B1 (en) * 2010-02-09 2012-12-04 웅진케미칼 주식회사 OLED having high-definition
JP2011167924A (en) * 2010-02-18 2011-09-01 Kanagawa Acad Of Sci & Technol Material with low reflection conductive surface and manufacturing method thereof
JP2011221470A (en) * 2010-04-14 2011-11-04 Sony Corp Optical element, method for manufacturing the same, display unit, and solar cell
JP4849183B1 (en) * 2010-08-05 2012-01-11 大日本印刷株式会社 Method for producing mold for producing antireflection film
JP5899638B2 (en) * 2011-03-28 2016-04-06 大日本印刷株式会社 Method for producing mold for producing antireflection film
JP5903943B2 (en) * 2012-03-13 2016-04-13 大日本印刷株式会社 Antireflection film manufacturing method, molding mold manufacturing method, and antireflection film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714507B2 (en) * 1996-08-26 2005-11-09 日本電信電話株式会社 Method for producing porous anodized alumina film
JP2003043203A (en) * 2001-08-01 2003-02-13 Hitachi Maxell Ltd Antireflection film, method for manufacturing the same, stamper for manufacture of antireflection film, method for manufacturing the stamper, casting mold for manufacture of stamper and method for manufacturing the casting mold
JP2004012856A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Optical element, mold for optical element, and method for manufacturing optical element
JPWO2004031815A1 (en) * 2002-10-07 2006-03-23 ナルックス株式会社 Anti-reflection diffraction grating
JP4406553B2 (en) * 2003-11-21 2010-01-27 財団法人神奈川科学技術アカデミー Method for manufacturing antireflection film
JP2005173457A (en) * 2003-12-15 2005-06-30 Konica Minolta Holdings Inc Optical element and optical system having antireflection structure

Also Published As

Publication number Publication date
JP2007086283A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4848161B2 (en) Antireflection film manufacturing method and antireflection film manufacturing stamper manufacturing method
JP4406553B2 (en) Method for manufacturing antireflection film
US8071402B2 (en) Anti-reflective film and production method thereof, and stamper for producing anti-reflective film and production method thereof
JP4583506B2 (en) Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
JP4531131B1 (en) Method for manufacturing mold and method for manufacturing antireflection film using mold
EP2487279B1 (en) Mold and production method for same, and anti-reflection film
JP2006124827A (en) Method for manufacturing nanostructure
WO2011055757A1 (en) Method for producing die, and die
KR20060051907A (en) Method for manufacturing nanostructure
TWI457589B (en) Mold for motheye structure, mold manufacturing method and motheye structure formation method
JP4460020B2 (en) Mold made of anodized porous alumina and method for producing the same
JP5027347B2 (en) Mold and mold manufacturing method
US9403293B2 (en) Method for forming anodized layer, method for producing mold, method for producing antireflective film, and mold and antireflective film
KR101433090B1 (en) Metal mold for anti-reflection lenses with nanostructures on the surface using etch stop layer and manufacturing method thereof
US8790503B2 (en) Method for forming anodized layer
JP4595044B2 (en) Mold made of anodized porous alumina and method for producing the same
JP4588106B2 (en) Mold made of anodized porous alumina and method for producing the same
JP4588105B2 (en) Mold made of anodized porous alumina and method for producing the same
JP5227909B2 (en) Stamper and manufacturing method of antireflection film using the same
JP5622118B2 (en) Antireflection film, mold used for production of antireflection film, and method for producing mold
JP2006018097A (en) Fine grid manufacturing method
JP2013140251A (en) Mold, manufacturing method of mold, and manufacturing method of antireflection film using mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4848161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250