JPWO2006134643A1 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JPWO2006134643A1
JPWO2006134643A1 JP2007521035A JP2007521035A JPWO2006134643A1 JP WO2006134643 A1 JPWO2006134643 A1 JP WO2006134643A1 JP 2007521035 A JP2007521035 A JP 2007521035A JP 2007521035 A JP2007521035 A JP 2007521035A JP WO2006134643 A1 JPWO2006134643 A1 JP WO2006134643A1
Authority
JP
Japan
Prior art keywords
semiconductor device
insulating film
conductive film
manufacturing
electrode pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007521035A
Other languages
Japanese (ja)
Inventor
浩 大野
浩 大野
朝夫 松澤
朝夫 松澤
裕史 堀部
裕史 堀部
西田 隆文
隆文 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Publication of JPWO2006134643A1 publication Critical patent/JPWO2006134643A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68331Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding of passive members, e.g. die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Wire Bonding (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

前工程(ウエハ工程)において、Low-k材からなる絶縁膜を含む層間絶縁膜上に、第1の金属膜と、前記第1の金属膜上に設けられ、かつ前記第1の金属膜よりも硬質の第2の金属膜とを含む電極パッドを形成し、その後、ウエハ検査工程において、前記電極パッドの前記第2の電極膜にプローブ針を圧接して電気特性を検査する。これにより、半導体装置の信頼性向上を図ることができる。In the pre-process (wafer process), the first metal film is provided on the interlayer insulating film including the insulating film made of the low-k material, and the first metal film is used. An electrode pad including a hard second metal film is formed, and then, in a wafer inspection process, a probe needle is pressed against the second electrode film of the electrode pad to inspect electric characteristics. Thereby, the reliability of the semiconductor device can be improved.

Description

本発明は、半導体装置及びその製造技術に関し、特に、配線間容量の低減化を図るため、層間絶縁膜に比誘電率が低い材料(Low−k材)からなる絶縁膜を用いた半導体装置に適用して有効な技術に関するものである。   The present invention relates to a semiconductor device and a manufacturing technique thereof, and more particularly to a semiconductor device using an insulating film made of a material having a low relative dielectric constant (Low-k material) as an interlayer insulating film in order to reduce inter-wiring capacitance. It is related to effective technology when applied.

半導体装置の製造では、半導体ウエハに、各々がスクライブラインによって区画され、かつ各々が集積回路及び複数の電極パッドを有する複数のチップ形成領域を形成した後、ウエハ状態で各々のチップ形成領域における集積回路の電気特性を検査するウエハ検査工程(プローブ検査工程)が施される。ウエハ検査工程は、集積回路と電気的に接続された電極パッドにプローブ針の先端を圧接することによって行われる。   In the manufacture of a semiconductor device, a plurality of chip formation regions each having a plurality of integrated circuits and a plurality of electrode pads are formed on a semiconductor wafer, and then integrated in each chip formation region in a wafer state. A wafer inspection process (probe inspection process) for inspecting the electrical characteristics of the circuit is performed. The wafer inspection process is performed by pressing the tip of the probe needle against an electrode pad electrically connected to the integrated circuit.

なお、特開平10−270512号公報には、「ボンディングパッドの最上層膜に反射防止膜(チタンライトライド膜)を形成したままの状態でプローブをあてて測定を行うことにより、酸化膜に起因するパッドとプローブとの接触抵抗の増大を防ぎ、測定を正確に行えるようにした技術」が開示されている。   Japanese Patent Laid-Open No. 10-270512 discloses that “measurement caused by an oxide film is performed by applying a probe with the antireflection film (titanium lightride film) formed on the uppermost layer film of the bonding pad. "Technology that prevents an increase in contact resistance between a pad and a probe to be performed and enables accurate measurement".

また、特開2003−86624号公報には、「ダイソート用プローブが接触されるダイソート用電極パッドとボンディングワイヤが接続されるワイヤボンディング用電極パッドとを層構造とすることで、半導体チップ表面における電極パッド領域の面積を増加させずに、ボンディングワイヤとワイヤボンディング用電極パッドとの電気特性を向上させた技術」が開示されている。
特開平10−270512号公報 特開2003−86624号公報
Further, Japanese Patent Laid-Open No. 2003-86624 discloses that “the electrode on the surface of the semiconductor chip has a layer structure of the die sort electrode pad to which the die sort probe contacts and the wire bond electrode pad to which the bonding wire is connected. A technique that improves the electrical characteristics of the bonding wire and the electrode pad for wire bonding without increasing the area of the pad region is disclosed.
JP-A-10-270512 JP 2003-86624 A

半導体装置の製造においては、主に前工程と後工程に分類される。前工程は、ウエハ工程とも呼ばれ、半導体ウエハに、各々がスクライブラインによって区画され、かつ各々が集積回路及び複数の電極パッドを有する複数のチップ形成領域を形成する工程である。後工程は、組立工程とも呼ばれ、半導体ウエハをスクライブラインに沿って分割して複数の半導体チップを形成し、この半導体チップを様々な形態のパッケージにパッケージングする工程である。   In manufacturing a semiconductor device, it is mainly classified into a preprocess and a postprocess. The pre-process is also referred to as a wafer process, and is a process of forming a plurality of chip formation regions, each of which is defined by a scribe line, each having an integrated circuit and a plurality of electrode pads on a semiconductor wafer. The post-process is also called an assembly process, and is a process of dividing a semiconductor wafer along a scribe line to form a plurality of semiconductor chips and packaging the semiconductor chips into various forms of packages.

前工程では、半導体ウエハに複数のチップ形成領域を形成した後、各チップ形成領域に形成された集積回路の電気特性を検査し、良品、不良品、動作周波数等の特性グレードを判別するウエハ検査工程(プローブ検査工程)が実施される。このウエハ検査工程では、集積回路と電気的に接続された電極パッドにプローブ針の先端を圧接して行われるため、この圧接時の衝撃が電極パッド下の層間絶縁膜に伝達される。   In the previous process, after forming a plurality of chip formation areas on a semiconductor wafer, the wafer inspection that inspects the electrical characteristics of the integrated circuit formed in each chip formation area and discriminates the quality grade such as non-defective product, defective product, operating frequency, etc. A process (probe inspection process) is performed. In this wafer inspection process, since the tip of the probe needle is pressed against an electrode pad electrically connected to the integrated circuit, an impact at the time of the pressure contact is transmitted to an interlayer insulating film below the electrode pad.

一方、集積回路においては、高集積化や多機能化、更に高速化の一途を辿っており、微細化や高速化を図るうえで配線間容量の低減化が余儀なくされている。   On the other hand, in an integrated circuit, high integration, multiple functions, and higher speed are being pursued, and in order to achieve miniaturization and higher speed, the inter-wiring capacitance must be reduced.

そこで、配線間容量の低減化を図るため、層間絶縁膜に比誘電率の低い材料(Low−k材)からなる絶縁膜が適用されつつある。   Therefore, in order to reduce the inter-wiring capacitance, an insulating film made of a material having a low relative dielectric constant (Low-k material) is being applied to the interlayer insulating film.

しかしながら、Low−k材は、従来の絶縁材と比べて弾性率が低く、対衝撃性に弱いため、電極パッド下の層間絶縁膜にLow−k材からなる絶縁膜を適用した場合、ウエハ検査工程において、電極パッドにプローブ針を圧接した時の衝撃で層間絶縁膜に亀裂等の不具合が発生し易くなる。このような不具合は半導体装置の信頼性を低下させる要因となる。   However, since the low-k material has a lower elastic modulus than the conventional insulating material and is weak in impact resistance, when an insulating film made of the low-k material is applied to the interlayer insulating film under the electrode pad, wafer inspection is performed. In the process, a defect such as a crack is likely to occur in the interlayer insulating film due to an impact when the probe needle is pressed against the electrode pad. Such a defect causes a decrease in the reliability of the semiconductor device.

本発明の目的は、半導体装置の信頼性向上を図ることが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of improving the reliability of a semiconductor device.

本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかになるであろう。   The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。   Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.

前記目的は、前工程(ウエハ工程)において、Low−k材からなる絶縁膜を含む層間絶縁膜上に、第1の導電膜と、前記第1の導電膜上に設けられ、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む電極パッドを形成し、その後、ウエハ検査工程において、前記電極パッドの前記第2の電極膜にプローブ針を圧接して電気特性を検査することによって達成される。   The object is to provide the first conductive film and the first conductive film on the interlayer insulating film including the insulating film made of a low-k material in the previous process (wafer process), and the first conductive film. An electrode pad including a second conductive film harder than the conductive film is formed, and then in a wafer inspection process, a probe needle is pressed against the second electrode film of the electrode pad to inspect the electrical characteristics. Is achieved.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

本発明によれば、半導体装置の信頼性向上を図ることができる。   According to the present invention, the reliability of a semiconductor device can be improved.

図1は本発明の実施例1である半導体装置の内部構造を示す図((a)は模式的平面図,(b)は(a)のa−a線に沿う模式的断面図)である。1A and 1B are diagrams showing an internal structure of a semiconductor device according to a first embodiment of the present invention (FIG. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along line aa in FIG. 1A). . 図2は図1の半導体チップの平面レイアウトを示す模式的平面図である。FIG. 2 is a schematic plan view showing a planar layout of the semiconductor chip of FIG. 図3は図2の半導体チップの内部構造を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing the internal structure of the semiconductor chip of FIG. 図4は図3の一部を拡大した模式的断面図である。FIG. 4 is an enlarged schematic cross-sectional view of a part of FIG. 図5は実施例1の半導体装置の製造に使用されるマルチ配線基板の一部を示す模式的平面図である。FIG. 5 is a schematic plan view showing a part of a multi-wiring substrate used for manufacturing the semiconductor device of the first embodiment. 図6は実施例1の半導体装置の製造工程を示すフローチャートである。FIG. 6 is a flowchart showing manufacturing steps of the semiconductor device of the first embodiment. 図7は実施例1の半導体装置の製造において、半導体ウエハに複数のチップ形成領域が形成された状態を示す模式的平面図である。7 is a schematic plan view showing a state in which a plurality of chip formation regions are formed on a semiconductor wafer in the manufacture of the semiconductor device of Example 1. FIG. 図8は実施例1の半導体装置の製造に使用される半導体ウエハの模式的平面図である。FIG. 8 is a schematic plan view of a semiconductor wafer used for manufacturing the semiconductor device of the first embodiment. 図9は実施例1の半導体装置の製造工程を示す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 1. 図10は実施例1の半導体装置の製造工程(導電膜形成工程)を示す模式的断面図である。FIG. 10 is a schematic cross-sectional view showing the manufacturing process (conductive film forming process) of the semiconductor device of Example 1. 図11は実施例1の半導体装置の製造工程(電極パッド形成工程)を示す模式的断面図である。FIG. 11 is a schematic cross-sectional view showing the manufacturing process (electrode pad forming process) of the semiconductor device of Example 1. 図12は実施例1の半導体装置の製造工程(プローブ検査工程)を示す模式的断面図である。FIG. 12 is a schematic cross-sectional view illustrating the manufacturing process (probe inspection process) of the semiconductor device of Example 1. 図13は実施例1の半導体装置の製造工程(保護膜形成工程)を示す模式的断面図である。FIG. 13 is a schematic cross-sectional view showing the manufacturing process (protective film forming process) of the semiconductor device of Example 1. 図14は実施例1の半導体装置の製造工程(開口形成工程)を示す模式的断面図である。FIG. 14 is a schematic cross-sectional view showing the manufacturing process (opening forming process) of the semiconductor device of Example 1. 図15は実施例1の半導体装置の製造工程(保護膜形成工程)を示す模式的断面図である。FIG. 15 is a schematic cross-sectional view showing the manufacturing process (protective film forming process) of the semiconductor device of Example 1. 図16は実施例1の半導体装置の製造工程(開口形成工程)を示す模式的断面図である。FIG. 16 is a schematic cross-sectional view showing the manufacturing process (opening forming process) of the semiconductor device of Example 1. 図17は実施例1の半導体装置の製造工程(ダイシング工程)を示す模式的平面図である。FIG. 17 is a schematic plan view showing the manufacturing process (dicing process) of the semiconductor device of Example 1. FIG. 図18は実施例1の半導体装置の製造工程を示す模式的断面図((a)はチップ搭載工程,(b)はワイヤボンディング工程)である。FIG. 18 is a schematic cross-sectional view ((a) is a chip mounting process, and (b) is a wire bonding process) showing the manufacturing process of the semiconductor device of Example 1. 図19は図18(b)の一部を拡大した模式的断面図である。FIG. 19 is an enlarged schematic cross-sectional view of a part of FIG. 図20は実施例1の半導体装置の製造工程を示す模式的断面図((a)は封止工程,(b)はバンプ形成工程)である。FIG. 20 is a schematic cross-sectional view ((a) is a sealing process, and (b) is a bump forming process) showing the manufacturing process of the semiconductor device of Example 1. 図21は実施例1の半導体装置の製造工程(ダイシング工程)を示す模式的断面図である。FIG. 21 is a schematic cross-sectional view showing the manufacturing process (dicing process) of the semiconductor device of Example 1. 図22は本発明の実施例2である半導体装置の製造工程を示すフローチャートである。FIG. 22 is a flowchart showing manufacturing steps of a semiconductor device that is Embodiment 2 of the present invention. 図23は実施例2の半導体装置の製造工程(開口形成工程)を示す模式的断面図である。FIG. 23 is a schematic cross-sectional view showing the manufacturing process (opening forming process) of the semiconductor device of Example 2. 図24は実施例2の半導体装置の製造工程(プローブ検査工程)を示す模式的断面図である。FIG. 24 is a schematic cross-sectional view showing the manufacturing process (probe inspection process) of the semiconductor device of Example 2. 図25は実施例2の半導体装置の製造工程(導電膜パターニング工程)を示す模式的断面図である。FIG. 25 is a schematic cross-sectional view showing the manufacturing process (conductive film patterning process) of the semiconductor device of Example 2. 図26は本発明の実施例3である半導体装置に組み込まれる半導体チップの内部構造を示す模式的断面図である。FIG. 26 is a schematic cross-sectional view showing the internal structure of a semiconductor chip incorporated in a semiconductor device that is Embodiment 3 of the present invention. 図27は図25の配線パターンを示す模式的平面図である。FIG. 27 is a schematic plan view showing the wiring pattern of FIG. 図28は実施例3の半導体装置の製造工程を示す模式的断面図である。FIG. 28 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 3. 図29は実施例3の半導体装置の製造工程を示す模式的断面図である。FIG. 29 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 3. 図30は実施例3の半導体装置の製造工程を示す模式的断面図である。30 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 3. FIG. 図31は実施例3の半導体装置の製造工程を示す模式的断面図である。FIG. 31 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 3. 図32は実施例3の半導体装置の製造工程を示す模式的断面図である。FIG. 32 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device of Example 3. 図33は実施例3の変形例である半導体装置の製造工程を示す模式的断面図である。FIG. 33 is a schematic cross-sectional view showing a manufacturing process of a semiconductor device which is a modification of the third embodiment. 図34は本発明の実施例4である半導体装置の内部構造を示す模式的断面図である。FIG. 34 is a schematic cross-sectional view showing the internal structure of a semiconductor device that is Embodiment 4 of the present invention. 図35は本発明の実施例5である半導体装置に組み込まれる半導体チップの内部構造を示す模式的断面図である。FIG. 35 is a schematic cross-sectional view showing the internal structure of a semiconductor chip incorporated in a semiconductor device that is Embodiment 5 of the present invention. 図36は本発明の効果を説明するための図((a)は従来の半導体チップのパッド配置を示す模式的平面図,(b)は本発明を適用した半導体チップのパッド配置を示す模式的平面図)である。FIG. 36 is a diagram for explaining the effect of the present invention ((a) is a schematic plan view showing a pad arrangement of a conventional semiconductor chip, and (b) is a schematic diagram showing a pad arrangement of a semiconductor chip to which the present invention is applied. Is a plan view). 図37は本発明の効果を説明するための図((a)は従来の半導体チップのパッド配置を示す模式的平面図,(b)は本発明を適用した半導体チップのパッド配置を示す模式的平面図)である。FIG. 37 is a diagram for explaining the effect of the present invention ((a) is a schematic plan view showing a pad arrangement of a conventional semiconductor chip, and (b) is a schematic diagram showing a pad arrangement of a semiconductor chip to which the present invention is applied. Is a plan view). 図38は本発明の効果を説明するための図((a)は従来の半導体チップのパッド配置を示す模式的平面図,(b)は本発明を適用した半導体チップのパッド配置を示す模式的平面図)である。FIG. 38 is a diagram for explaining the effect of the present invention ((a) is a schematic plan view showing a pad layout of a conventional semiconductor chip, and (b) is a schematic diagram showing a pad layout of a semiconductor chip to which the present invention is applied. Is a plan view).

符号の説明Explanation of symbols

1…半導体基板、2a…内部回路形成部、2b…周辺部、3…素子分離領域、5…配線、6…導電膜、7…導電膜、8…導電膜、9…層間絶縁膜、10…絶縁膜(Low−k材膜)、11…絶縁膜、12…配線、13…層間絶縁膜、14…電極パッド、15…配線、16…保護膜、17…開口、18…保護膜、19…開口、20…半導体チップ、21…入出力セル、25…半導体ウエハ、26…チップ形成領域、27…スクライブライン、28…プローブ針、30…配線基板、31…電極パッド、32…電極パッド、35…マルチ配線基板(多数個取り配線基板)、36…モールド領域(封止領域)、37…デバイス形成領域(製品形成領域)、41…ボンディングワイヤ、42,42a…樹脂封止体、43…半田バンプ、45…半導体装置、46…配線、47…検査用電極パッド、51…配線、52…検査用電極パッド、53…保護膜、54…開口。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2a ... Internal circuit formation part, 2b ... Peripheral part, 3 ... Element isolation region, 5 ... Wiring, 6 ... Conductive film, 7 ... Conductive film, 8 ... Conductive film, 9 ... Interlayer insulation film, 10 ... Insulating film (Low-k material film), 11 ... insulating film, 12 ... wiring, 13 ... interlayer insulating film, 14 ... electrode pad, 15 ... wiring, 16 ... protective film, 17 ... opening, 18 ... protective film, 19 ... Opening, 20 ... Semiconductor chip, 21 ... I / O cell, 25 ... Semiconductor wafer, 26 ... Chip formation area, 27 ... Scribe line, 28 ... Probe needle, 30 ... Wiring substrate, 31 ... Electrode pad, 32 ... Electrode pad, 35 ... multi-wiring board (multiple wiring board), 36 ... mold area (sealing area), 37 ... device forming area (product forming area), 41 ... bonding wire, 42, 42a ... resin sealing body, 43 ... solder Bump, 45 ... Semiconductor device 46 ... wiring, 47 ... inspection electrode pads, 51 ... wire, 52 ... inspection electrode pad, 53 ... protective film, 54 ... opening.

以下、図面を参照して本発明の実施例を詳細に説明する。なお、発明の実施例を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments of the invention, those having the same function are given the same reference numerals, and their repeated explanation is omitted.

本実施例1では、プローブ針が圧接される検査用電極パッドとボンディングワイヤが接続されるワイヤ接続用電極パッドとを兼用した電極パッドを有する電極BGA(Ball Grid Array)型半導体装置に本発明を適用した例について説明する。   In the first embodiment, the present invention is applied to an electrode BGA (Ball Grid Array) type semiconductor device having an electrode pad that serves both as an inspection electrode pad to which a probe needle is pressed and a wire connection electrode pad to which a bonding wire is connected. An applied example will be described.

図1乃至図21は本発明の実施例1である半導体装置に係る図である。
図1は、半導体装置の内部構造を示す図((a)は模式的平面図,(b)は(a)のa−a線に沿う模式的断面図)である。
図2は、図1の半導体チップの平面レイアウトを示す模式的平面図である。
図3は、図2の半導体チップの内部構造を示す模式的断面図である。
図4は、図3の一部を拡大した模式的断面図である。
図5は、半導体装置の製造に使用されるマルチ配線基板の一部を示す模式的平面図である。
図6は、半導体装置の製造工程を示すフローチャートである。
図7は、半導体ウエハに複数のチップ形成領域が形成された状態を示す模式的平面図である。
図8は、半導体装置の製造に使用される半導体ウエハの模式的平面図である。
図9乃至図16は、半導体装置の製造において、ウエハ工程(前工程)を示す模式的断面図である。
図17乃至図21は、半導体装置の製造において、組み立て工程(後工程)を示す図であり、図17は模式的平面図、図18乃至図21は模式的断面図である。
1 to 21 are diagrams related to a semiconductor device which is Embodiment 1 of the present invention.
1A and 1B are diagrams showing an internal structure of a semiconductor device (FIG. 1A is a schematic plan view, and FIG. 1B is a schematic sectional view taken along line aa in FIG. 1A).
FIG. 2 is a schematic plan view showing a planar layout of the semiconductor chip of FIG.
FIG. 3 is a schematic cross-sectional view showing the internal structure of the semiconductor chip of FIG.
FIG. 4 is a schematic cross-sectional view in which a part of FIG. 3 is enlarged.
FIG. 5 is a schematic plan view showing a part of a multi-wiring substrate used for manufacturing a semiconductor device.
FIG. 6 is a flowchart showing the manufacturing process of the semiconductor device.
FIG. 7 is a schematic plan view showing a state in which a plurality of chip formation regions are formed on a semiconductor wafer.
FIG. 8 is a schematic plan view of a semiconductor wafer used for manufacturing a semiconductor device.
9 to 16 are schematic cross-sectional views showing a wafer process (pre-process) in manufacturing a semiconductor device.
17 to 21 are diagrams showing an assembly process (post-process) in manufacturing a semiconductor device. FIG. 17 is a schematic plan view, and FIGS. 18 to 21 are schematic cross-sectional views.

図1((a),(b))に示すように、本実施例1の半導体装置45は、インターポーザと呼ばれる配線基板30の主面に半導体チップ20が実装され、配線基板30の主面と反対側の裏面に突起状電極として例えばボール形状の半田バンプ43が複数配置されたBGA型パッケージ構造になっている。   As shown in FIGS. 1A and 1B, in the semiconductor device 45 of the first embodiment, the semiconductor chip 20 is mounted on the main surface of the wiring board 30 called an interposer, A BGA type package structure in which a plurality of, for example, ball-shaped solder bumps 43 are arranged as protruding electrodes on the back surface on the opposite side.

半導体チップ20は、厚さ方向と交差する平面形状が方形状になっており、本実施例1では、例えば10mm×10mmの正方形になっている。半導体チップ20は、互いに反対側に位置する主面(素子形成面,回路形成面)及び裏面を有し、その裏面が接着材を介在して配線基板30の主面に接着されている。   The semiconductor chip 20 has a square shape that intersects the thickness direction, and in the first embodiment, for example, the semiconductor chip 20 has a square shape of 10 mm × 10 mm. The semiconductor chip 20 has a main surface (element forming surface, circuit forming surface) and a back surface located on opposite sides, and the back surface is bonded to the main surface of the wiring board 30 with an adhesive interposed.

半導体チップ20の主面には、複数の電極パッド14が配置されている。この複数の電極パッド14は、例えば半導体チップ20の各辺に沿って配置されている。   A plurality of electrode pads 14 are arranged on the main surface of the semiconductor chip 20. The plurality of electrode pads 14 are arranged, for example, along each side of the semiconductor chip 20.

配線基板30は、その厚さ方向と交差する平面形状が方形状になっており、本実施例1では、例えば13mm×13mmの正方形になっている。配線基板30は、これに限定されないが、例えば、コア材と、このコア材の主面を覆うようにして形成された第1の保護膜と、前記コア材の主面を覆うようにして形成された第2の保護膜とを有する構成になっている。前記コア材は、例えばガラス繊維にエポキシ系、若しくはポリイミド系の樹脂を含浸させた高弾性樹脂基板の主面及び裏面に配線層(導電層)を有する構成になっている。前記第1及び第2の保護膜は、主に前記コア材の表裏面の配線層に形成された配線を保護する目的で形成されている。前記第1及び第2の保護膜としては、例えば絶縁性の樹脂膜(ソルダーレジスト膜)が用いられている。   The wiring substrate 30 has a square shape that intersects the thickness direction thereof, and is a square of, for example, 13 mm × 13 mm in the first embodiment. Although not limited to this, the wiring board 30 is formed, for example, so as to cover the core material, the first protective film formed so as to cover the main surface of the core material, and the main surface of the core material. The second protective film is provided. The core material has a configuration in which, for example, a wiring layer (conductive layer) is provided on the main surface and the back surface of a highly elastic resin substrate in which glass fiber is impregnated with epoxy or polyimide resin. The first and second protective films are formed mainly for the purpose of protecting the wiring formed on the wiring layers on the front and back surfaces of the core material. For example, an insulating resin film (solder resist film) is used as the first and second protective films.

配線基板30の主面には、複数の電極パッド31が配置されている。この複数の電極パッド31は、半導体チップ20の複数の電極パッドに対応して半導体チップ20の周囲に配置されている。   A plurality of electrode pads 31 are arranged on the main surface of the wiring board 30. The plurality of electrode pads 31 are arranged around the semiconductor chip 20 corresponding to the plurality of electrode pads of the semiconductor chip 20.

配線基板30の裏面には、複数の電極パッド32が配置されている。この複数の電極パッド32には、半田バンプ43が夫々固着(電気的にかつ機械的に接続)されている。   A plurality of electrode pads 32 are arranged on the back surface of the wiring board 30. Solder bumps 43 are respectively fixed (electrically and mechanically connected) to the plurality of electrode pads 32.

半導体チップ20の複数の電極パッド14は、複数のボンディングワイヤ41を介して配線基板30の複数の電極パッド31と電気的に接続されている。ボンディングワイヤ41としては、例えば金(Au)を主体とするAuワイヤが用いられている。また、ボンディングワイヤ41の接続方法としては、例えば熱圧着に超音波振動を併用したネイルヘッドボンディング(ボールボンディング)法が用いられている。   The plurality of electrode pads 14 of the semiconductor chip 20 are electrically connected to the plurality of electrode pads 31 of the wiring board 30 through the plurality of bonding wires 41. As the bonding wire 41, for example, an Au wire mainly composed of gold (Au) is used. As a method for connecting the bonding wires 41, for example, a nail head bonding (ball bonding) method using ultrasonic vibration in combination with thermocompression bonding is used.

半導体チップ20及び複数のボンディングワイヤ41等は、配線基板30の主面上に形成された樹脂封止体42によって樹脂封止されている。樹脂封止体42は、低応力化を図る目的として、例えば、フェノール系硬化剤、シリコーンゴム及びフィラー(例えばシリカ)等が添加されたビフェニール系の熱硬化性樹脂で形成されている。   The semiconductor chip 20 and the plurality of bonding wires 41 are sealed with a resin sealing body 42 formed on the main surface of the wiring substrate 30. For the purpose of reducing the stress, the resin sealing body 42 is formed of, for example, a biphenyl-based thermosetting resin to which a phenol-based curing agent, silicone rubber, filler (for example, silica) and the like are added.

樹脂封止体42は、厚さ方向と交差する平面形状が方形状になっており、本実施例1では例えば配線基板30と同一の平面サイズになっている。樹脂封止体42の形成方法としては、大量生産に好適なトランスファ・モールディング法を用いている。   The resin sealing body 42 has a rectangular planar shape that intersects the thickness direction, and has the same planar size as the wiring substrate 30 in the first embodiment, for example. As a method for forming the resin sealing body 42, a transfer molding method suitable for mass production is used.

ここで、BGA型半導体装置の製造においては、スクライブラインによって区画された複数の製品形成領域(デバイス形成領域,製品取得領域)を有するマルチ配線基板(多数個取り配線基板)を使用し、各製品形成領域に搭載された半導体チップを各製品形成領域毎に樹脂封止する個別方式のトランスファ・モールディング法や、複数の製品形成領域を有するマルチ配線基板を使用し、各製品形成領域に搭載された半導体チップを1つの樹脂封止体で一括して樹脂封止する一括方式のトランスファ・モールディング法が採用されている。本実施例1では、例えば一括方式のトランスファ・モールディング法を採用している。   Here, in the manufacture of the BGA type semiconductor device, a multi-wiring board (multiple-wiring wiring board) having a plurality of product forming areas (device forming areas, product acquiring areas) partitioned by scribe lines is used for each product. The semiconductor chip mounted in the formation area is mounted in each product formation area using an individual transfer molding method that encapsulates the resin in each product formation area or a multi-wiring board that has multiple product formation areas. A batch type transfer molding method in which semiconductor chips are collectively sealed with a single resin sealing body is employed. In the first embodiment, for example, a batch type transfer molding method is employed.

一括方式のトランスファ・モールディング法の場合、樹脂封止体を形成した後、マルチ配線基板及び樹脂封止体は、例えばダイシングによって複数の小片に分割される。従って、本実施例1の樹脂封止体42と配線基板30は、外形サイズがほぼ同一になっている。   In the case of the collective transfer molding method, after forming the resin sealing body, the multi-wiring substrate and the resin sealing body are divided into a plurality of small pieces by, for example, dicing. Therefore, the resin sealing body 42 and the wiring board 30 of Example 1 have substantially the same outer size.

次に、半導体チップ20の具体的な構造について、図2乃至図4を用いて説明する。   Next, a specific structure of the semiconductor chip 20 will be described with reference to FIGS.

図2に示すように、半導体チップ20の主面には、内部回路形成部2aと、この内部回路形成部2aを平面的に囲む周辺部2bとが配置されている。内部回路形成部2aには、集積回路として例えばマイクロコンピュータが搭載されている。マイクロコンピュータは、図示していないが、内部回路形成部2aにおいて、配線チャネル領域で区画された複数の回路ブロックで構成され、各回路ブロックは、トランジスタ素子として例えば複数のMISFETで構成されている。周辺部2bには、半導体チップ20の各辺に沿って複数の電極パッド14が配置されており、更に複数の電極パッド14に対応して複数の入出力セル(I/Oセル)21が配置されている。複数の入出力セル21は、複数の電極パッド14と内部回路形成部2aとの間に配置されている。   As shown in FIG. 2, the main surface of the semiconductor chip 20 is provided with an internal circuit forming portion 2a and a peripheral portion 2b surrounding the internal circuit forming portion 2a in a plan view. In the internal circuit forming unit 2a, for example, a microcomputer is mounted as an integrated circuit. Although not shown, the microcomputer is constituted by a plurality of circuit blocks partitioned by the wiring channel region in the internal circuit forming unit 2a, and each circuit block is constituted by, for example, a plurality of MISFETs as transistor elements. In the peripheral portion 2 b, a plurality of electrode pads 14 are arranged along each side of the semiconductor chip 20, and a plurality of input / output cells (I / O cells) 21 are arranged corresponding to the plurality of electrode pads 14. Has been. The plurality of input / output cells 21 are arranged between the plurality of electrode pads 14 and the internal circuit formation portion 2a.

図3に示すように、半導体チップ20は、主に、半導体基板1と、この半導体基板1の主面上において絶縁層、配線層の夫々を複数段積み重ねた薄膜積層体1aとを有する構成になっている。本実施例1において、薄膜積層体1aは、これに限定されないが、例えば3層メタル配線構造になっている。   As shown in FIG. 3, the semiconductor chip 20 mainly includes a semiconductor substrate 1 and a thin film stack 1 a in which a plurality of insulating layers and wiring layers are stacked on the main surface of the semiconductor substrate 1. It has become. In the first embodiment, the thin film stack 1a is not limited to this, but has, for example, a three-layer metal wiring structure.

半導体基板1の主面には、トランジスタ素子が形成される活性領域(能動領域)を区画するための素子分離領域3が形成されており、この素子分離領域3で区画された複数の素子形成領域にはトランジスタ素子として例えばMISFET−Qが形成されている。   An element isolation region 3 for partitioning an active region (active region) in which a transistor element is formed is formed on the main surface of the semiconductor substrate 1, and a plurality of element formation regions partitioned by the element isolation region 3 are formed. For example, a MISFET-Q is formed as a transistor element.

半導体基板1の主面上には層間絶縁膜4が設けられている。この層間絶縁膜4は、主に、半導体基板1に形成されたトランジスタ素子と、第1層目のメタル配線層とを電気的に分離するためのものである。   An interlayer insulating film 4 is provided on the main surface of the semiconductor substrate 1. This interlayer insulating film 4 is mainly for electrically separating the transistor element formed on the semiconductor substrate 1 from the first metal wiring layer.

層間絶縁膜4上には、第1層目のメタル配線5が設けられており、更にメタル配線5を覆うようにして層間絶縁膜9が設けられている。この層間絶縁膜9は、主に、第1層目のメタル配線と第2層目のメタル配線とを電気的に分離するためのものである。   A first-layer metal wiring 5 is provided on the interlayer insulating film 4, and an interlayer insulating film 9 is further provided so as to cover the metal wiring 5. The interlayer insulating film 9 is mainly for electrically separating the first layer metal wiring and the second layer metal wiring.

層間絶縁膜9上には、第2の層目のメタル配線12が設けられており、更にメタル配線12を覆うようにして層間絶縁膜13が設けられている。この層間絶縁膜13は、第2層目のメタル配線と、第3層目のメタル配線とを電気的に分離するためのものである。   A second-layer metal wiring 12 is provided on the interlayer insulating film 9, and an interlayer insulating film 13 is further provided so as to cover the metal wiring 12. The interlayer insulating film 13 is for electrically separating the second-layer metal wiring from the third-layer metal wiring.

層間絶縁膜13上には、第3層目のメタル配線層に形成された電極パッド14が設けられており、更に第3層目のメタル配線層を覆うようにして保護膜16及び18が設けられている。   An electrode pad 14 formed on the third metal wiring layer is provided on the interlayer insulating film 13, and protective films 16 and 18 are provided so as to cover the third metal wiring layer. It has been.

図4に示すように、層間絶縁膜13は、絶縁膜10と、この絶縁膜10上に成膜された絶縁膜11とを含む多層構造(積層構造)になっている。上層の絶縁膜11は、例えば反応ガスとしてテトラエトキシシラン(TEOS:Si(OC)を用いるプラズマCVD法によって成膜されたP−TEOS酸化シリコン膜からなる。下層の絶縁膜10は、配線間容量の低減化を図るため、絶縁膜11(例えばP−TEOS酸化シリコン膜)よりも比誘電率が低い材料(Low−k)からなる膜(例えばSiOF,SiOC)で形成されている。このLow−k材膜は、P−TEOS酸化シリコン膜よりも比誘電率が低い半面、ヤング率が低く、硬くて脆い性質があるため、衝撃に対して極めて弱い。As shown in FIG. 4, the interlayer insulating film 13 has a multilayer structure (laminated structure) including the insulating film 10 and the insulating film 11 formed on the insulating film 10. The upper insulating film 11 is made of, for example, a P-TEOS silicon oxide film formed by a plasma CVD method using tetraethoxysilane (TEOS: Si (OC 2 H 5 ) 4 ) as a reaction gas. The lower insulating film 10 is a film (for example, SiOF, SiOC) made of a material (Low-k) having a lower dielectric constant than that of the insulating film 11 (for example, P-TEOS silicon oxide film) in order to reduce the capacitance between wirings. ). This Low-k material film has a lower relative dielectric constant than the P-TEOS silicon oxide film, has a low Young's modulus, and is hard and brittle, so it is extremely vulnerable to impact.

ここで、P−TEOS酸化シリコン膜のヤング率は50GPa程度であり、一般的にLow−k材と呼ばれる絶縁膜のヤング率は10〜20GPa程度である。   Here, the Young's modulus of the P-TEOS silicon oxide film is about 50 GPa, and the Young's modulus of an insulating film generally called a low-k material is about 10 to 20 GPa.

なお、層間絶縁膜9においても、配線間容量の低減化を図るため、層間絶縁膜13と同様に、Low−k材膜を含む多層構造になっている。   Note that the interlayer insulating film 9 also has a multilayer structure including a low-k material film, like the interlayer insulating film 13, in order to reduce the capacitance between wirings.

保護膜16は、例えば酸化シリコン膜又は窒化シリコン膜、若しくは酸化シリコン膜及び窒化シリコン膜からなる無機質系絶縁膜で形成されている。保護膜18は、例えばポリイミド膜等の有機質系絶縁膜で形成されている。保護膜16は、主に、薄膜積層体1aの最上層の配線層を保護する目的で設けられている。保護膜18は、主に、樹脂封止体42に含まれているフィラー等によって保護膜10に与える損傷等を抑制する目的や、半導体チップ20と樹脂封止体42の樹脂との接着性向上を図る目的で設けられている。   The protective film 16 is formed of, for example, a silicon oxide film or a silicon nitride film, or an inorganic insulating film made of a silicon oxide film and a silicon nitride film. The protective film 18 is formed of an organic insulating film such as a polyimide film. The protective film 16 is provided mainly for the purpose of protecting the uppermost wiring layer of the thin film laminate 1a. The protective film 18 is mainly used for the purpose of suppressing damage to the protective film 10 caused by fillers contained in the resin sealing body 42, and improving the adhesion between the semiconductor chip 20 and the resin of the resin sealing body 42. It is provided for the purpose of

電極パッド14上には、保護膜16をエッチングして形成された開口17が設けられ、更に保護膜18をエッチングして形成された開口19が設けられている。   An opening 17 formed by etching the protective film 16 is provided on the electrode pad 14, and an opening 19 formed by etching the protective film 18 is further provided.

電極パッド14は、これに限定されないが、例えば、主導電材である導電膜7と、導電膜7の下層に設けられた導電膜6と、導電膜7の上層に設けられた導電膜8とを含む多層構造になっている。導電膜6及び8は、相対的に導電膜7よりも薄い膜厚で形成されている。本実施例1において、主導電材である導電膜7は例えば600〜2000[nm]程度の膜厚で形成される。下層の導電膜6は例えば30[nm]程度の膜厚で形成される。上層の導電膜8は例えば50〜100[nm]程度の膜厚で形成される。   The electrode pad 14 is not limited to this, but includes, for example, a conductive film 7 that is a main conductive material, a conductive film 6 that is provided below the conductive film 7, and a conductive film 8 that is provided above the conductive film 7. It has a multi-layer structure. The conductive films 6 and 8 are formed with a film thickness relatively smaller than that of the conductive film 7. In the first embodiment, the conductive film 7 as the main conductive material is formed with a film thickness of about 600 to 2000 [nm], for example. The lower conductive film 6 is formed with a film thickness of about 30 [nm], for example. The upper conductive film 8 is formed with a film thickness of, for example, about 50 to 100 [nm].

導電膜7は、Auを主体とするボンディングワイヤ41とのボンダビリティ(接着性)が導電膜8よりも高い材料からなり、例えばアルミニウム(Al)を主体とする導電膜で形成されている。導電膜6及び8は、導電膜7よりも硬質の材料からなり、例えば窒化チタン(TiN)の単層膜、又は窒化チタン上にチタン(Ti)を積み重ねた多層膜で形成されている。   The conductive film 7 is made of a material that has higher bondability (adhesiveness) with the bonding wire 41 mainly composed of Au than the conductive film 8, and is formed of a conductive film mainly composed of aluminum (Al), for example. The conductive films 6 and 8 are made of a material harder than the conductive film 7, and are formed of, for example, a single layer film of titanium nitride (TiN) or a multilayer film in which titanium (Ti) is stacked on titanium nitride.

ここで、アルミニウムのビッカース硬度は概ね80程度であり、チタンのビッカース硬度は概ね100〜150程度であり、窒化チタンのビッカース硬度は概ね300程度である。   Here, the Vickers hardness of aluminum is approximately 80, the Vickers hardness of titanium is approximately 100 to 150, and the Vickers hardness of titanium nitride is approximately 300.

なお、導電膜6は、導電膜7の原子拡散を抑制する機能や、絶縁膜との密着性向上を図る機能を有する。導電膜8は、導電膜6と同様の機能を有し、更に配線形成のための露光処理時におけるハレーションを低減する機能を有する。   Note that the conductive film 6 has a function of suppressing atomic diffusion of the conductive film 7 and a function of improving adhesion with the insulating film. The conductive film 8 has a function similar to that of the conductive film 6 and further has a function of reducing halation during an exposure process for wiring formation.

電極パッド14には、図1((a),(b))に示すように、Auワイヤからなるボンディングワイヤ41の一端側が接続されている。Auワイヤは、窒化チタン膜やチタン膜に対してボンダビリティが低いが、Al膜やAlを主体とする合金膜に対してはボンダビリティが高い。従って、ボンディングワイヤ41と電極パッド14とのボンダビリティ向上を図るため、図4に示すように、電極パッド14のワイヤ接続領域における導電膜8は除去されており、図19に示すように、ボンディングワイヤ41の一端側は電極パッド14の導電膜7に接続されている。   As shown in FIG. 1 ((a), (b)), one end side of a bonding wire 41 made of an Au wire is connected to the electrode pad 14. The Au wire has low bondability with respect to a titanium nitride film or a titanium film, but has high bondability with respect to an Al film or an alloy film mainly composed of Al. Therefore, in order to improve the bondability between the bonding wire 41 and the electrode pad 14, the conductive film 8 in the wire connection region of the electrode pad 14 is removed as shown in FIG. 4, and as shown in FIG. One end side of the wire 41 is connected to the conductive film 7 of the electrode pad 14.

なお、配線12及び配線5は、これに限定されないが、例えば電極パッド14と同様に、半導体基板1側から導電膜6,7,8を順次積層した多層構造になっている。   The wiring 12 and the wiring 5 are not limited to this, but have a multilayer structure in which the conductive films 6, 7, and 8 are sequentially stacked from the semiconductor substrate 1 side, for example, like the electrode pad 14.

次に、半導体装置45の製造に使用されるマルチ配線基板について、図5を用いて説明する。   Next, a multi-wiring substrate used for manufacturing the semiconductor device 45 will be described with reference to FIG.

図5に示すように、マルチ配線基板35は、その厚さ方向と交差する平面形状が方形状になっており、本実施例1では長方形になっている。マルチ配線基板35の主面にはモールド領域(樹脂封止領域)36が設けられ、このモールド領域36の中には平面的に配置された複数の製品形成領域(デバイス領域)37が設けられ、この各々の製品形成領域37の中にはチップ搭載領域が設けられている。   As shown in FIG. 5, the multi-wiring board 35 has a square shape that intersects the thickness direction, and is rectangular in the first embodiment. A mold region (resin sealing region) 36 is provided on the main surface of the multi-wiring substrate 35, and a plurality of product formation regions (device regions) 37 arranged in a plane are provided in the mold region 36, A chip mounting area is provided in each product formation area 37.

各製品形成領域37は、スクライブライン38によって区画され、基本的に図1に示す配線基板30と同様の構成及び平面形状になっている。配線基板30は、スクライブライン38に沿ってマルチ配線基板35を分割することによって形成される。本実施例1において、マルチ配線基板35は、これに限定されないが、例えば、X方向に9個の製品形成領域37が並ぶ列をY方向に3段配置した構成(9×3)になっている。   Each product formation region 37 is partitioned by a scribe line 38, and basically has the same configuration and planar shape as the wiring board 30 shown in FIG. The wiring board 30 is formed by dividing the multi-wiring board 35 along the scribe line 38. In the first embodiment, the multi-wiring board 35 is not limited to this. For example, the multi-wiring board 35 has a configuration (9 × 3) in which nine product formation regions 37 arranged in the X direction are arranged in three stages in the Y direction. Yes.

次に、本実施例1の半導体装置45の製造について、図6乃至図21を用いて説明する。   Next, the manufacture of the semiconductor device 45 of Example 1 will be described with reference to FIGS.

本実施例1の半導体装置45の製造では、図6に示すように、前工程〈100〉と後工程〈110〉に分類される。前工程〈100〉は、ウエハ準備工程〈101〉〜開口形成工程〈109〉を含み、後工程〈110〉は、ウエハ小片化工程〈110〉〜基板小片化工程〈116〉を含む。   In manufacturing the semiconductor device 45 according to the first embodiment, as shown in FIG. The pre-process <100> includes a wafer preparation process <101> to an opening formation process <109>, and the post-process <110> includes a wafer fragmentation process <110> to a substrate fragmentation process <116>.

まず、前工程〈100〉について説明する。前工程〈100〉では、図7に示すように、半導体ウエハ25の主面に、スクライブライン27によって行列状に区画された複数のチップ形成領域26を形成する。各チップ形成領域26には、集積回路及び複数の電極パッド14が形成される。各チップ形成領域26は、主に、以下に示す工程を施すことによって形成される。   First, the pre-process <100> will be described. In the pre-process <100>, as shown in FIG. 7, a plurality of chip formation regions 26 partitioned in a matrix by scribe lines 27 are formed on the main surface of the semiconductor wafer 25. In each chip formation region 26, an integrated circuit and a plurality of electrode pads 14 are formed. Each chip formation region 26 is formed mainly by performing the following steps.

まず、図8に示す半導体ウエハ25を準備する(図6のウエハ準備工程〈101〉)。半導体ウエハ25としては、例えば単結晶シリコンからなるものを用いる。   First, the semiconductor wafer 25 shown in FIG. 8 is prepared (wafer preparation step <101> in FIG. 6). As the semiconductor wafer 25, for example, one made of single crystal silicon is used.

次に、半導体ウエハ25の主面に素子分離領域3(図9参照)を形成し、その後、素子分離領域3で区画された活性領域(能動領域)にトランジスタ素子として例えばMISFET−Q(図9参照)を形成する(図6の素子形成工程〈102〉)。   Next, an element isolation region 3 (see FIG. 9) is formed on the main surface of the semiconductor wafer 25, and then, for example, a MISFET-Q (FIG. 9) as a transistor element in an active region (active region) partitioned by the element isolation region 3. (See FIG. 6 for forming elements <102>).

次に、MISFET−Qを覆うようにして半導体基板1の主面上に層間絶縁膜4(図9参照)を形成し、その後、層間絶縁膜4の表面を例えばCMP(Chemical Mechanical Polishing)法を用いて平坦化し、その後、層間絶縁膜4上に第1層目のメタル配線5(図9参照)を形成する。   Next, an interlayer insulating film 4 (see FIG. 9) is formed on the main surface of the semiconductor substrate 1 so as to cover the MISFET-Q, and then the surface of the interlayer insulating film 4 is subjected to, for example, a CMP (Chemical Mechanical Polishing) method. Then, the first-layer metal wiring 5 (see FIG. 9) is formed on the interlayer insulating film 4.

次に、メタル配線5を覆うようにして層間絶縁膜4上に層間絶縁膜9(図9参照)を形成する。層間絶縁膜9は、絶縁膜10と、この絶縁膜10上に成膜された絶縁膜11とを含む多層構造になっている。上層の絶縁膜11は、例えばP−TEOS酸化シリコン膜からなり、下層の絶縁膜10は、絶縁膜11よりも誘電率が低く、ヤング率が低いLow−k材膜からなる。   Next, an interlayer insulating film 9 (see FIG. 9) is formed on the interlayer insulating film 4 so as to cover the metal wiring 5. The interlayer insulating film 9 has a multilayer structure including an insulating film 10 and an insulating film 11 formed on the insulating film 10. The upper insulating film 11 is made of, for example, a P-TEOS silicon oxide film, and the lower insulating film 10 is made of a low-k material film having a lower dielectric constant and a lower Young's modulus than the insulating film 11.

次に、層間絶縁膜9の表面を例えばCMP法で平坦化した後、層間絶縁膜9上に第2層目のメタル配線12(図9参照)を形成する。   Next, after planarizing the surface of the interlayer insulating film 9 by, for example, a CMP method, a second-layer metal wiring 12 (see FIG. 9) is formed on the interlayer insulating film 9.

次に、メタル配線12を覆うようにして層間絶縁膜9上に層間絶縁膜13(図9参照)を形成する。層間絶縁膜13は、絶縁膜10と、この絶縁膜10上に成膜された絶縁膜11とを含む多層構造になっている。上層の絶縁膜11は、例えばP−TEOS酸化シリコン膜からなり、下層の絶縁膜10は、絶縁膜11よりも誘電率が低く、ヤング率が低いLow−k材膜からなる。   Next, an interlayer insulating film 13 (see FIG. 9) is formed on the interlayer insulating film 9 so as to cover the metal wiring 12. The interlayer insulating film 13 has a multilayer structure including the insulating film 10 and the insulating film 11 formed on the insulating film 10. The upper insulating film 11 is made of, for example, a P-TEOS silicon oxide film, and the lower insulating film 10 is made of a low-k material film having a lower dielectric constant and a lower Young's modulus than the insulating film 11.

次に、層間絶縁膜13の表面を例えばCMP法で平坦化した後、図10に示すように、層間絶縁膜13上に第3層目のメタル配線層として導電膜14aを形成する。この導電膜14aは、導電膜6と、この導電膜6上に成膜された導電膜7と、この導電膜7上に成膜された導電膜8とを含む多層構造になっている。導電膜6及び8は、相対的に導電膜7よりも薄い膜厚で形成されている。   Next, after planarizing the surface of the interlayer insulating film 13 by, for example, a CMP method, a conductive film 14a is formed on the interlayer insulating film 13 as a third metal wiring layer as shown in FIG. The conductive film 14 a has a multilayer structure including a conductive film 6, a conductive film 7 formed on the conductive film 6, and a conductive film 8 formed on the conductive film 7. The conductive films 6 and 8 are formed with a film thickness relatively smaller than that of the conductive film 7.

導電膜7は、Auを主体とするボンディングワイヤ41とのボンダビリティ(接着性)が導電膜8よりも高い材料からなり、例えばアルミニウム(Al)を主体とする導電膜で形成されている。導電膜6及び8は、導電膜7よりも硬質の材料からなり、例えば窒化チタン(TiN)の単層膜、又は窒化チタン上にチタン(Ti)を積み重ねた多層膜で形成されている。導電膜6は、導電膜7の原子拡散を抑制する機能や、絶縁膜との密着性向上を図る機能を有する。導電膜8は、導電膜6と同様の機能を有し、更に配線形成のための露光処理時におけるハレーションを低減する機能を有する。   The conductive film 7 is made of a material that has higher bondability (adhesiveness) with the bonding wire 41 mainly composed of Au than the conductive film 8, and is formed of a conductive film mainly composed of aluminum (Al), for example. The conductive films 6 and 8 are made of a material harder than the conductive film 7, and are formed of, for example, a single layer film of titanium nitride (TiN) or a multilayer film in which titanium (Ti) is stacked on titanium nitride. The conductive film 6 has a function of suppressing atomic diffusion of the conductive film 7 and a function of improving adhesion with the insulating film. The conductive film 8 has a function similar to that of the conductive film 6 and further has a function of reducing halation during an exposure process for wiring formation.

次に、フォトリソグラフィ技術を用いてエッチングにより導電膜14aをパターンニングして、図11に示すように、層間絶縁膜13上に電極パッド14を形成する。この工程において、図示していないが、第3層目のメタル配線も形成される。この工程により、半導体基板1の主面上に3層メタル配線構造の薄膜積層体1aが形成される(図6の多層配線層形成工程〈103〉)。   Next, the conductive film 14a is patterned by etching using a photolithography technique to form an electrode pad 14 on the interlayer insulating film 13 as shown in FIG. In this step, although not shown, a third-layer metal wiring is also formed. Through this step, a thin film laminate 1a having a three-layer metal wiring structure is formed on the main surface of the semiconductor substrate 1 (multilayer wiring layer forming step <103> in FIG. 6).

次に、各チップ形成領域26に形成された集積回路の電気特性を検査し、良品、不良品、動作周波数等の特性グレードを判別するウエハ検査を行う(図6のプローブ検査工程〈104〉)。ウエハ検査は、図12に示すように、電極パッド14の導電膜8にプローブ針28の先端を圧接して行う。ウエハ検査では、複数の電極パッド14に複数のプローブ針28を均一に接触させる必要があるため、電極パッド14を叩くようにして電極パッド14にプローブ針28の先端が圧接される。   Next, the electrical characteristics of the integrated circuit formed in each chip formation region 26 are inspected, and wafer inspection is performed to determine characteristic grades such as non-defective products, defective products, and operating frequencies (probe inspection process <104> in FIG. 6). . As shown in FIG. 12, the wafer inspection is performed by pressing the tip of the probe needle 28 against the conductive film 8 of the electrode pad 14. In wafer inspection, it is necessary to make the plurality of probe needles 28 uniformly contact the plurality of electrode pads 14, so that the tips of the probe needles 28 are pressed against the electrode pads 14 so as to strike the electrode pads 14.

この工程において、電極パッド14にプローブ針28の先端を圧接した時の衝撃が電極パッド14下の層間絶縁膜13に伝達されるが、電極パッド14は導電膜7上にこの導電膜7よりも硬質の導電膜8を設けた構造になっており、プローブ針28の先端は硬質の導電膜8に圧接されるため、圧接時の衝撃は硬質の導電膜8よりも柔らかい導電膜7に吸収され、電極パッド14下の層間絶縁膜13に伝達される衝撃を緩和することができる。また、本実施例1の電極パッド14は、導電膜7下にもこの導電膜7よりも硬質の導電膜6を設けた構造になっているため、電極パッド14下の層間絶縁膜13に伝達される衝撃を更に緩和することができる。これにより、電極パッド14下の層間絶縁膜13に硬くて脆いLow−k材膜を適用しても、電極パッド14にプローブ針28を圧接した時の衝撃で層間絶縁膜13に発生する亀裂等の不具合を抑制することができるため、半導体装置の信頼性向上を図ることができる。   In this step, an impact when the tip of the probe needle 28 is pressed against the electrode pad 14 is transmitted to the interlayer insulating film 13 below the electrode pad 14, but the electrode pad 14 is placed on the conductive film 7 than the conductive film 7. Since the hard conductive film 8 is provided and the tip of the probe needle 28 is pressed against the hard conductive film 8, the impact during pressure contact is absorbed by the soft conductive film 7 than the hard conductive film 8. The impact transmitted to the interlayer insulating film 13 under the electrode pad 14 can be mitigated. Further, since the electrode pad 14 of Example 1 has a structure in which the conductive film 6 harder than the conductive film 7 is provided under the conductive film 7, the electrode pad 14 is transmitted to the interlayer insulating film 13 under the electrode pad 14. Can be further mitigated. As a result, even if a hard and brittle low-k material film is applied to the interlayer insulating film 13 under the electrode pad 14, a crack or the like generated in the interlayer insulating film 13 due to an impact when the probe needle 28 is pressed against the electrode pad 14. Thus, the reliability of the semiconductor device can be improved.

なお、プローブ針28は、導電膜7よりも硬質の導電膜8に圧接される。この場合においても導電膜8にプローブ針28の圧接による傷(圧接痕)が付くが、ボンディング工程においてボンディングワイヤが接続される導電膜7には圧接痕は付かない。   The probe needle 28 is pressed against the conductive film 8 that is harder than the conductive film 7. Even in this case, the conductive film 8 is scratched by the pressure contact of the probe needle 28 (pressure contact mark), but the conductive film 7 to which the bonding wire is connected is not attached in the bonding process.

次に、図13に示すように、電極パッド14を覆うようにして、層間絶縁膜13上に例えば無機質系の絶縁膜からなる保護膜16を形成する(図6の保護膜形成工程〈105〉)。この工程において、図示していないが、第3層目のメタル配線も保護膜16で覆われる。   Next, as shown in FIG. 13, a protective film 16 made of, for example, an inorganic insulating film is formed on the interlayer insulating film 13 so as to cover the electrode pads 14 (protective film forming step <105> in FIG. 6). ). In this step, although not shown, the third-layer metal wiring is also covered with the protective film 16.

次に、エッチングにより保護膜16をパターンニングして、図14に示すように、電極パッド14上に開口17を形成する(図6の開口形成工程〈106〉)。この工程において、電極パッド14のワイヤ接続領域における導電膜8もエッチングにより除去され、プローブ針28の圧接による圧接痕が付いていない導電膜7が露出される(図6の硬質膜パターンニング工程〈107〉)。   Next, the protective film 16 is patterned by etching to form openings 17 on the electrode pads 14 as shown in FIG. 14 (opening forming step <106> in FIG. 6). In this process, the conductive film 8 in the wire connection region of the electrode pad 14 is also removed by etching, and the conductive film 7 without the pressure contact mark due to the pressure contact of the probe needle 28 is exposed (hard film patterning process < 107>).

次に、図15に示すうに、電極パッド14上を覆うようにして、保護膜16上に例えば有機質系の絶縁膜からなる保護膜18を形成し(図6の保護膜形成工程〈108〉)、その後、エッチングにより保護膜18をパターンニングして、図16に示すように、電極パッド14上に開口19を形成する(図6の開口形成工程〈109〉)。   Next, as shown in FIG. 15, a protective film 18 made of, for example, an organic insulating film is formed on the protective film 16 so as to cover the electrode pad 14 (protective film forming step <108> in FIG. 6). Thereafter, the protective film 18 is patterned by etching to form an opening 19 on the electrode pad 14 as shown in FIG. 16 (opening forming step <109> in FIG. 6).

この工程により、図7に示すように、半導体ウエハ25の主面上に、各々がスクライブライン27によって区画され、かつ各々が集積回路及び複数の電極パッド14を有する複数のチップ形成領域26が形成される。   By this step, as shown in FIG. 7, a plurality of chip formation regions 26 each defined by a scribe line 27 and each having an integrated circuit and a plurality of electrode pads 14 are formed on the main surface of the semiconductor wafer 25. Is done.

次に、後工程〈110〉について説明する。
まず、図17に示すように、前工程が施された半導体ウエハ25をスクライブライン27に沿って分割して、複数の半導体チップ20を形成する(図6のウエハ小片化工程〈111〉)。この半導体ウエハ25の分割は、例えば、半導体ウエハ25をスクライブライン27に沿ってダイシングすることによって行われる。
Next, the post-process <110> will be described.
First, as shown in FIG. 17, the semiconductor wafer 25 subjected to the previous process is divided along the scribe line 27 to form a plurality of semiconductor chips 20 (wafer fragmentation process <111> in FIG. 6). The division of the semiconductor wafer 25 is performed, for example, by dicing the semiconductor wafer 25 along the scribe line 27.

次に、図18(a)に示すように、マルチ配線基板35の各製品形成領域37に接着材を介在して半導体チップ20を接着固定する(図6のチップ搭載工程〈112〉)。半導体チップ20の接着固定は、半導体チップ20の裏面がマルチ配線基板35の主面と向かい合う状態で行う。   Next, as shown in FIG. 18A, the semiconductor chip 20 is bonded and fixed to each product formation region 37 of the multi-wiring substrate 35 with an adhesive interposed therebetween (chip mounting step <112> in FIG. 6). The semiconductor chip 20 is bonded and fixed in a state where the back surface of the semiconductor chip 20 faces the main surface of the multi-wiring substrate 35.

次に、各製品形成領域37において、図18(b)に示すように、半導体チップ20の複数の電極パッド14と半導体チップ20の周囲に配置された複数の電極パッド31とを複数のボンディングワイヤ41で電気的に接続する(図6のワイヤボンディング工程〈113〉)。この工程により、マルチ配線基板35の主面に、複数の製品形成領域37に対応して複数の半導体チップ20が実装される。   Next, in each product formation region 37, as shown in FIG. 18B, a plurality of electrode pads 14 of the semiconductor chip 20 and a plurality of electrode pads 31 arranged around the semiconductor chip 20 are connected to a plurality of bonding wires. Electrical connection is made at 41 (wire bonding step <113> in FIG. 6). Through this step, the plurality of semiconductor chips 20 are mounted on the main surface of the multi-wiring substrate 35 so as to correspond to the plurality of product formation regions 37.

ここで、実装とは、基板に半導体チップが接着固定され、基板の接続用パッドと半導体チップの接続用パッドとが電気的に接続された状態を言う。本実施例1では、半導体チップ20の接着固定は、接着材によって行われており、マルチ配線基板35の接続用パッド(電極パッド31)と半導体チップ20の接続用パッド(電極パッド14)との電気的な接続は、ボンディングワイヤ41によって行われている。   Here, the mounting means a state in which the semiconductor chip is bonded and fixed to the substrate, and the connection pad of the substrate and the connection pad of the semiconductor chip are electrically connected. In the first embodiment, the semiconductor chip 20 is bonded and fixed with an adhesive, and the connection pad (electrode pad 31) of the multi-wiring board 35 and the connection pad (electrode pad 14) of the semiconductor chip 20 are connected. Electrical connection is made by bonding wires 41.

この工程において、ボンディングワイヤ41の一端側は、図19に示すように、半導体チップ20の電極パット14の導電膜7に接続され、他端側は図18(b)に示すように半導体チップ20の周囲に配置された電極パッド31に接続される。   In this step, one end side of the bonding wire 41 is connected to the conductive film 7 of the electrode pad 14 of the semiconductor chip 20 as shown in FIG. 19, and the other end side is connected to the semiconductor chip 20 as shown in FIG. Are connected to electrode pads 31 arranged around the periphery of the substrate.

次に、一括方式のトランスファ・モールディング法を使用して、図20(a)に示すように、マルチ配線基板35の主面上に、各製品形成領域37に実装された半導体チップ20を一括して樹脂封止する樹脂封止体42aを形成する(図6の樹脂封止工程〈114〉)。   Next, using the batch type transfer molding method, the semiconductor chips 20 mounted in the respective product formation regions 37 are bundled on the main surface of the multi-wiring substrate 35 as shown in FIG. Thus, a resin sealing body 42a to be resin-sealed is formed (resin sealing step <114> in FIG. 6).

次に、図20(b)に示すように、マルチ配線基板35の主面と反対側の裏面に、各製品形成領域37に対応して複数の半田バンプ43を形成する(図6のバンプ形成工程〈115〉)。半田バンプ43は、これに限定されないが、例えば、マルチ配線基板35の裏面の電極パッド32上にフラックス材を塗布し、その後、電極パッド32上に半田ボールを供給し、その後、半田ボールを溶融して電極パッド32との接合を行うことによって形成される。   Next, as shown in FIG. 20B, a plurality of solder bumps 43 are formed on the back surface opposite to the main surface of the multi-wiring substrate 35 corresponding to each product formation region 37 (bump formation in FIG. 6). Step <115>). The solder bumps 43 are not limited to this, but, for example, a flux material is applied on the electrode pads 32 on the back surface of the multi-wiring board 35, and then solder balls are supplied onto the electrode pads 32, and then the solder balls are melted. Then, it is formed by bonding with the electrode pad 32.

次に、半田バンプ形成工程において使用したフラックスを洗浄にて除去し、その後、マルチ配線基板35の各製品形成領域37に対応して樹脂封止体42aの上面に、例えば品名、社名、品種、製造ロット番号等の識別マークを、インクジェットマーキング法、ダイレクト印刷法、レーザマーキング法等を用いて形成する。   Next, the flux used in the solder bump formation process is removed by cleaning, and then, for example, a product name, a company name, a product type, and the like are formed on the upper surface of the resin sealing body 42a corresponding to each product formation region 37 of the multi-wiring board 35. An identification mark such as a production lot number is formed using an ink jet marking method, a direct printing method, a laser marking method, or the like.

次に、図21に示すように、マルチ配線基板35及び樹脂封止体42aを各製品形成領域27に対応して複数の小片に分割する(図6の小片化工程〈116〉)。この分割は、例えば、図21に示すダイシングシート44に樹脂封止体42aを貼り付けた状態で、マルチ配線基板35のスクライブライン38に沿ってマルチ配線基板35及び樹脂封止体42aをダイシングブレードでダイシングすることによって行われる。この工程により、図1に示す半導体装置45がほぼ完成する。   Next, as shown in FIG. 21, the multi-wiring substrate 35 and the resin sealing body 42 a are divided into a plurality of small pieces corresponding to each product formation region 27 (small piece forming step <116> in FIG. 6). For example, the dicing blade 44 is bonded to the dicing sheet 44 shown in FIG. 21 along the scribe line 38 of the multi-wiring board 35 with the dicing blade 38. This is done by dicing. Through this step, the semiconductor device 45 shown in FIG. 1 is almost completed.

このように、本実施例1では、前工程(ウエハ工程)において、Low−k材からなる絶縁膜10を含む層間絶縁膜13上に、導電膜7と、この導電膜7上に設けられ、かつ導電膜7よりも硬質の導電膜8とを含む電極パッド14を形成し、その後、ウエハ検査工程において、電極パッド14における硬質の導電膜8にプローブ針28を圧接して電気特性を検査するため、圧接時の衝撃は硬質の導電膜8よりも柔らかい導電膜7に吸収され、電極パッド14下の層間絶縁膜13に伝達される衝撃を緩和することができる。また、本実施例1の電極パッド14は、導電膜7下にもこの導電膜7よりも硬質の導電膜6を設けた構造になっているため、電極パッド14下の層間絶縁膜13に伝達される衝撃を更に緩和することができる。これにより、電極パッド14下の層間絶縁膜13に硬くて脆いLow−k材膜を適用しても、電極パッド14にプローブ針28を圧接した時の衝撃で層間絶縁膜13に発生する亀裂等の不具合を抑制することができるため、半導体装置の信頼性向上を図ることができる。   As described above, in the first embodiment, the conductive film 7 and the conductive film 7 are provided on the interlayer insulating film 13 including the insulating film 10 made of the low-k material in the previous process (wafer process). In addition, the electrode pad 14 including the conductive film 8 harder than the conductive film 7 is formed, and then, in the wafer inspection process, the probe needle 28 is pressed against the hard conductive film 8 in the electrode pad 14 to inspect the electrical characteristics. Therefore, the impact at the time of pressure contact is absorbed by the soft conductive film 7 than the hard conductive film 8, and the impact transmitted to the interlayer insulating film 13 below the electrode pad 14 can be mitigated. Further, since the electrode pad 14 of Example 1 has a structure in which the conductive film 6 harder than the conductive film 7 is provided under the conductive film 7, the electrode pad 14 is transmitted to the interlayer insulating film 13 under the electrode pad 14. Can be further mitigated. As a result, even if a hard and brittle low-k material film is applied to the interlayer insulating film 13 under the electrode pad 14, a crack or the like generated in the interlayer insulating film 13 due to an impact when the probe needle 28 is pressed against the electrode pad 14. Thus, the reliability of the semiconductor device can be improved.

プローブ針圧接時に電極パッド14下の層間絶縁膜13に伝達される衝撃を緩和する効果は、硬質の導電膜6及び8の膜厚を厚くすることで大きくなるが、硬質の導電膜6及び8の膜厚を厚くしすぎるとエッチング時間が長くなり、生産性が低下してしまう。一方、硬質の導電膜6及び8の膜厚を薄くしすぎると、衝撃緩和効果が小さくなってしまう。従って、硬質の導電膜6及び8の膜厚は、生産性及び衝撃緩和効果を考慮して設定することが望ましい。特に上層の導電膜8においては膜厚の設定によって衝撃緩和効果への影響が大きいため、上限としては例えば100[nm]程度、下限としては例えば10[nm]程度が望ましい。   The effect of mitigating the impact transmitted to the interlayer insulating film 13 below the electrode pad 14 during probe needle pressure contact is increased by increasing the thickness of the hard conductive films 6 and 8, but the hard conductive films 6 and 8 are increased. If the film thickness is too thick, the etching time becomes long, and the productivity is lowered. On the other hand, if the hard conductive films 6 and 8 are made too thin, the impact mitigating effect is reduced. Therefore, it is desirable to set the film thickness of the hard conductive films 6 and 8 in consideration of productivity and impact mitigation effect. In particular, since the upper conductive film 8 has a great influence on the impact relaxation effect depending on the film thickness setting, the upper limit is preferably about 100 [nm] and the lower limit is preferably about 10 [nm], for example.

また、導電膜6は、導電膜7の原子拡散を抑制する機能や、絶縁膜との密着性向上を図る機能を有する。導電膜8は、導電膜6と同様の機能を有し、更に配線形成のための露光処理時におけるハレーションを低減する機能を有する。従って、このような機能を考慮して導電膜6及び8の膜厚を設定することが望ましい。   The conductive film 6 has a function of suppressing atomic diffusion of the conductive film 7 and a function of improving adhesion with the insulating film. The conductive film 8 has a function similar to that of the conductive film 6 and further has a function of reducing halation during an exposure process for wiring formation. Therefore, it is desirable to set the film thickness of the conductive films 6 and 8 in consideration of such a function.

また、プローブ針28の圧接時の衝撃は、硬質の導電膜8よりも軟らかい導電膜7に吸収される。この衝撃吸収効果は導電膜7の膜厚を厚くすることで大きくなるが、導電膜7においても膜厚を厚くしすぎるとエッチング時間が長くなる。従って、導電膜7の膜厚は、生産性及び衝撃吸収効果を考慮して設定することが望ましい。   Further, the impact during the pressure contact of the probe needle 28 is absorbed by the conductive film 7 that is softer than the hard conductive film 8. This shock absorbing effect is increased by increasing the film thickness of the conductive film 7. However, if the film thickness is increased too much in the conductive film 7, the etching time becomes longer. Therefore, it is desirable to set the film thickness of the conductive film 7 in consideration of productivity and impact absorption effect.

ウエハ検査工程では、電極パッド14の導電膜8にプローブ針28の先端を圧接して電気特性の検査を行っているため、導電膜8にプローブ針28の圧接による傷(圧接痕)が付く。この圧接痕は、電極パッド14とボンディングワイヤ41とのボンダビリティを劣化させるため、ボンディングワイヤ41が接続される領域に圧接痕が存在しないようにする必要がある。本実施例1では、プローブ針が圧接される検査用電極パッドと、ボンディングワイヤが接続されるワイヤ接続用電極パッドとを1つの電極パッド14で兼用しているが、ウエハ検査工程〈104〉の後であってワイヤボンディング工程〈113〉の前に、圧接痕が付いた導電膜8を硬質膜パターンニング工程〈107〉において除去し、その後、ワイヤボンディング工程〈113〉において、圧接痕が付いていない導電膜7にボンディングワイヤ41を接続しているため、プローブ針が圧接される検査用電極パッドと、ボンディングワイヤが接続されるワイヤ接続用電極パッドとを1つの電極パッド14で兼用する場合においても、電極パッド14とボンディングワイヤ41とのボンダビリティ向上を図ることができる。   In the wafer inspection process, since the tip of the probe needle 28 is pressed against the conductive film 8 of the electrode pad 14 to inspect the electrical characteristics, the conductive film 8 is scratched by the pressure contact of the probe needle 28 (pressure contact mark). Since the press contact mark deteriorates the bondability between the electrode pad 14 and the bonding wire 41, it is necessary that the press contact mark does not exist in the region where the bonding wire 41 is connected. In the first embodiment, the electrode pad for inspection to which the probe needle is pressed and the electrode pad for wire connection to which the bonding wire is connected are used as one electrode pad 14, but the wafer inspection process <104> Later, before the wire bonding step <113>, the conductive film 8 with the pressure contact mark is removed in the hard film patterning step <107>, and then the pressure contact mark is left in the wire bonding step <113>. Since the bonding wire 41 is connected to the non-conductive film 7, when the electrode pad for inspection to which the probe needle is pressed and the electrode pad for wire connection to which the bonding wire is connected are used as one electrode pad 14. In addition, the bondability between the electrode pad 14 and the bonding wire 41 can be improved.

また、従来、1つの電極パッドに、プローブ針が圧接される第1の領域とボンディングワイヤが接続される第2の領域とを平面的に配置し、プローブ針の圧接痕に起因する、電極パッドとボンディングワイヤとのボンダビリティ低下を抑制する技術が知られている。この場合、電極パッドの占有面積が増加するため、半導体チップの小型化が困難になる。   Conventionally, a first region where a probe needle is pressed and a second region where a bonding wire is connected to one electrode pad are arranged in a plane, and the electrode pad is caused by a pressure contact mark of the probe needle. There is known a technique for suppressing a decrease in bondability between a bonding wire and a bonding wire. In this case, since the area occupied by the electrode pads increases, it is difficult to reduce the size of the semiconductor chip.

これに対し、本実施例1では、ウエハ検査工程後に電極パッド14の導電膜8を除去しているため、電極パッド14にプローブ針28を圧接する第1の領域と、電極パッド14にボンディングワイヤ41を接続する第2の領域とを平面的に重ねることができる。従って、従来設けていた第1の領域の面積を削除することができ、電極パッド14の占有面積を縮小することができるため、半導体チップ20の小型化を図ることができる。   In contrast, in the first embodiment, since the conductive film 8 of the electrode pad 14 is removed after the wafer inspection process, the first region in which the probe needle 28 is pressed against the electrode pad 14 and the bonding wire to the electrode pad 14. The second region connecting 41 can be overlapped in a plane. Therefore, the area of the first region that has been conventionally provided can be eliminated, and the area occupied by the electrode pad 14 can be reduced, so that the semiconductor chip 20 can be reduced in size.

前述の実施例1では、保護膜16を形成する前に、ウエハ検査工程を実施する例について説明したが、本実施例2では、保護膜16を形成した後に、ウエハ検査工程を実施する例について説明する。   In the first embodiment, the example in which the wafer inspection process is performed before the protective film 16 is formed has been described. However, in the second embodiment, the wafer inspection process is performed after the protective film 16 is formed. explain.

図22乃至図25は、本発明の実施例2である半導体装置に係る図であり、
図22は、半導体装置の製造工程を示すフローチャート、
図23乃至図25は、半導体装置の製造工程を示す模式的断面図である。
22 to 25 are diagrams related to a semiconductor device which is Embodiment 2 of the present invention.
FIG. 22 is a flowchart showing a manufacturing process of a semiconductor device;
23 to 25 are schematic cross-sectional views showing the manufacturing process of the semiconductor device.

図11に示すように、層間絶縁膜13上に電極パッド14を形成した後、電極パッド14を覆うようにして層間絶縁膜13上に保護膜16を形成し(図22の保護膜形成工程〈105〉)、その後、エッチングにより保護膜16をパターンニングして、図23に示すように、電極パッド14上に開口17を形成する(図22の開口形成工程〈106〉)。この工程において、電極パッド14の導電膜8は除去しない。   As shown in FIG. 11, after the electrode pad 14 is formed on the interlayer insulating film 13, a protective film 16 is formed on the interlayer insulating film 13 so as to cover the electrode pad 14 (protective film forming step < 105>), and thereafter, the protective film 16 is patterned by etching to form an opening 17 on the electrode pad 14 as shown in FIG. 23 (opening forming step <106> in FIG. 22). In this step, the conductive film 8 of the electrode pad 14 is not removed.

次に、図24に示すように、電極パッド14の導電膜8にプローブ針28の先端を圧接して電気特性を検査する(プローブ検査工程〈104〉)。   Next, as shown in FIG. 24, the electrical characteristics are inspected by pressing the tip of the probe needle 28 against the conductive film 8 of the electrode pad 14 (probe inspection step <104>).

次に、電極パッド14の導電膜8を選択的にエッチングして、図25に示すように、ボンディングワイヤが接続される部分の導電膜8を除去する(図22の硬質膜パターンニング工程〈107〉)。   Next, the conductive film 8 of the electrode pad 14 is selectively etched to remove the portion of the conductive film 8 to which the bonding wire is connected as shown in FIG. 25 (hard film patterning step <107 of FIG. 22). >).

この後、前述の実施例1と同様に、保護膜18及びボンディング開口19を形成することにより、前工程がほぼ終了する。   Thereafter, the protective film 18 and the bonding opening 19 are formed in the same manner as in the first embodiment, whereby the pre-process is almost completed.

本実施例2では、保護膜16を形成した後、ウエハ検査工程(プローブ検査工程〈104〉)を実施しているため、薄膜積層体1aの最上層の配線層が異物によって汚染される不具合を抑制でき、半導体装置の製造歩留まり向上を図ることができる。   In the second embodiment, since the wafer inspection process (probe inspection process <104>) is performed after the protective film 16 is formed, the uppermost wiring layer of the thin film stack 1a is contaminated by foreign matters. Therefore, the manufacturing yield of the semiconductor device can be improved.

前述の実施例1では、プローブ針が圧接される検査用電極パッドと、ボンディングワイヤが接続されるワイヤ接続用電極パッドとを1つの電極パッドで兼用した例について説明したが、本実施例3では、検査用電極パッドとワイヤ接続用電極パッドとを分けた例について説明する。   In the first embodiment, the example in which the electrode pad for inspection to which the probe needle is pressed and the electrode pad for wire connection to which the bonding wire is connected is used as one electrode pad has been described. An example in which the inspection electrode pad and the wire connection electrode pad are separated will be described.

図26乃至図32は、本実施例3の半導体装置に係る図であり、
図26は、半導体装置に組み込まれる半導体チップの内部構造を示す模式的断面図、
図27は、配線パターンを示す模式的平面図、
図28乃至図32は、半導体装置の製造工程を示す模式的断面図である。
26 to 32 are diagrams related to the semiconductor device of the third embodiment.
FIG. 26 is a schematic cross-sectional view showing the internal structure of a semiconductor chip incorporated in a semiconductor device;
FIG. 27 is a schematic plan view showing a wiring pattern;
28 to 32 are schematic cross-sectional views showing the manufacturing process of the semiconductor device.

図26に示すように、本実施例3の半導体チップ20は、層間絶縁膜13上に電極パッド14及び検査用電極パッド47が設けられている。電極パッド14及び検査用電極パッド47は、図26及び図27に示すように、層間絶縁膜13上に設けられた第3層目のメタル配線46の一部で形成され、互いに電気的に接続されている。電極パッド14は、半導体チップ20の周辺部2bに配置され、検査用電極パッド47は、半導体チップ20の内部回路形成部2aの活性領域(能動領域)上に配置されている。   As shown in FIG. 26, in the semiconductor chip 20 of the third embodiment, an electrode pad 14 and an inspection electrode pad 47 are provided on the interlayer insulating film 13. As shown in FIGS. 26 and 27, the electrode pad 14 and the inspection electrode pad 47 are formed by a part of the third-layer metal wiring 46 provided on the interlayer insulating film 13 and are electrically connected to each other. Has been. The electrode pad 14 is disposed on the peripheral portion 2 b of the semiconductor chip 20, and the inspection electrode pad 47 is disposed on the active region (active region) of the internal circuit forming portion 2 a of the semiconductor chip 20.

検査用電極パッド47上には、保護膜16をエッチングして形成された開口17aが設けられ、更に保護膜18をエッチングして形成された開口19aが設けられている。検査用電極パッド47は、電極パッド14と同様の多層構造になっている。   On the inspection electrode pad 47, an opening 17a formed by etching the protective film 16 is provided, and an opening 19a formed by etching the protective film 18 is further provided. The inspection electrode pad 47 has a multilayer structure similar to that of the electrode pad 14.

次に、本実施例3の半導体装置の製造について、図28乃至図31を用いて説明する。   Next, the manufacture of the semiconductor device of Example 3 will be described with reference to FIGS.

図10に示すように、層間絶縁膜13上に第3層目のメタル配線層として導電膜14aを形成し、その後、フォトリソグラフィ技術を用いてエッチングにより導電膜14aをパターンニングして、図28に示すように、層間絶縁膜13上に電極パッド14及び検査用電極パッド47を含むメタル配線46を形成する。   As shown in FIG. 10, a conductive film 14a is formed as a third metal wiring layer on the interlayer insulating film 13, and then the conductive film 14a is patterned by etching using a photolithography technique. As shown in FIG. 3, a metal wiring 46 including the electrode pad 14 and the inspection electrode pad 47 is formed on the interlayer insulating film 13.

次に、メタル配線46を覆うようにして、層間絶縁膜13上に保護膜16を形成し、その後、エッチングにより保護膜16をパターンニングして、図29に示すように、電極パッド14上に開口17、検査用電極パッド47上に開口17aを夫々形成する。この工程において、電極パッド14及び検査用電極パッド47の導電膜8は除去しない。   Next, a protective film 16 is formed on the interlayer insulating film 13 so as to cover the metal wiring 46, and then the protective film 16 is patterned by etching, and as shown in FIG. Openings 17a are formed on the openings 17 and the inspection electrode pads 47, respectively. In this step, the conductive film 8 of the electrode pad 14 and the inspection electrode pad 47 is not removed.

次に、図30に示すように、検査用電極パッド47の導電膜8にプローブ針28の先端を圧接して電気特性を検査する。この工程において、前述の実施例1で説明したように、検査用電極パッド47下の層間絶縁膜13に伝達される衝撃を緩和することができるため、トランジスタ素子が形成される活性領域上に検査用電極パッド47を配置することができる。   Next, as shown in FIG. 30, the tip of the probe needle 28 is pressed against the conductive film 8 of the inspection electrode pad 47 to inspect the electrical characteristics. In this process, as described in the first embodiment, since the impact transmitted to the interlayer insulating film 13 under the test electrode pad 47 can be reduced, the test is performed on the active region where the transistor element is formed. An electrode pad 47 can be disposed.

次に、電極パッド14の導電膜8を選択的にエッチングして、図31に示すように、ボンディングワイヤが接続される部分の導電膜8を除去する。この工程において、検査用電極パッド47の導電膜8は、除去しても良いし、除去しなくても良い。   Next, the conductive film 8 on the electrode pad 14 is selectively etched to remove the conductive film 8 at the portion to which the bonding wire is connected, as shown in FIG. In this step, the conductive film 8 of the inspection electrode pad 47 may or may not be removed.

次に、電極パッド14上及び検査用電極パッド47上を覆うようにして、保護膜16上に保護膜18を形成し、その後、エッチングにより保護膜18をパターンニングして、図26に示すように、電極パッド14上に開口19、検査用電極パッド47上に開口19aを夫々形成する。この工程により、前工程がほぼ終了する。   Next, the protective film 18 is formed on the protective film 16 so as to cover the electrode pad 14 and the inspection electrode pad 47, and then the protective film 18 is patterned by etching, as shown in FIG. In addition, an opening 19 is formed on the electrode pad 14 and an opening 19 a is formed on the inspection electrode pad 47. By this process, the previous process is almost completed.

この後、図32に示すように、後工程のワイヤボンディング工程において、電極パッド14の導電膜7にボンディングワイヤ41が接続される。   Thereafter, as shown in FIG. 32, the bonding wire 41 is connected to the conductive film 7 of the electrode pad 14 in the wire bonding step in the subsequent step.

このように、プローブ針28が圧接される検査用電極パッド47とボンディングワイヤ41が接続されるワイヤ接続用電極パッド(電極パッド14)とを分けた場合においても、Low−k材からなる絶縁膜10を含む層間絶縁膜13上に、導電膜7と、この導電膜7上に設けられ、かつ導電膜7よりも硬質の導電膜8とを含む検査用電極パッド47を形成し、その後、ウエハ検査工程において、検査用電極パッド47の電極膜8にプローブ針28を圧接して電気特性を検査することにより、前述の実施例1と同様に、プローブ針28の圧接時に検査用電極パッド47下の層間絶縁膜13に伝達される衝撃を緩和することができる。   Thus, even when the inspection electrode pad 47 to which the probe needle 28 is pressed and the wire connection electrode pad (electrode pad 14) to which the bonding wire 41 is connected are separated, an insulating film made of a low-k material is used. An inspection electrode pad 47 including a conductive film 7 and a conductive film 8 provided on the conductive film 7 and harder than the conductive film 7 is formed on the interlayer insulating film 13 including 10. In the inspection process, the probe needle 28 is pressed against the electrode film 8 of the inspection electrode pad 47 to inspect the electrical characteristics, so that the probe needle 28 is pressed under the inspection electrode pad 47 as in the first embodiment. The impact transmitted to the interlayer insulating film 13 can be mitigated.

また、検査用電極パッド47下の層間絶縁膜13に伝達される衝撃を緩和することができるため、検査用電極パッド47をトランジスタが形成される活性領域上に配置することができる。この結果、ワイヤ接続用電極パッドと検査用電極パッドとを半導体チップの辺に沿って配置する場合と比べて、半導体チップの小型化を図ることができる。   In addition, since the impact transmitted to the interlayer insulating film 13 under the test electrode pad 47 can be reduced, the test electrode pad 47 can be disposed on the active region where the transistor is formed. As a result, the semiconductor chip can be reduced in size as compared with the case where the wire connection electrode pad and the inspection electrode pad are arranged along the side of the semiconductor chip.

また、検査用電極パッド47を半導体チップ20の内部回路形成部2aに配置することができるため、半導体チップ20の大型化を図ることなく、検査用電極パッド47の大型化を図ることができ、検査用電極パッド47とプローブ針28との位置合わせを容易に行うことができる。   In addition, since the inspection electrode pad 47 can be disposed in the internal circuit forming portion 2a of the semiconductor chip 20, the inspection electrode pad 47 can be increased in size without increasing the size of the semiconductor chip 20. The inspection electrode pad 47 and the probe needle 28 can be easily aligned.

図33は、実施例3の変形例である半導体装置の製造工程を示す模式的断面図である。   FIG. 33 is a schematic cross-sectional view illustrating a manufacturing process of a semiconductor device which is a modification of the third embodiment.

前述の実施例3では、保護膜16を形成した後に、ウエハ検査工程を実施する例について説明したが、実施例1と同様に、図33に示すように、保護膜16を形成する前に、ウエハ検査工程を実施してもよい。   In the above-described third embodiment, the example in which the wafer inspection process is performed after the protective film 16 is formed has been described. However, as in the first embodiment, before the protective film 16 is formed, as shown in FIG. A wafer inspection process may be performed.

図34は、本発明の実施例4である半導体装置の内部構造を示す模式的断面図である。   FIG. 34 is a schematic cross-sectional view showing the internal structure of a semiconductor device that is Embodiment 4 of the present invention.

前述の実施例3では、検査用電極パッド47の導電膜8を除去する例について説明したが、ボンディングワイヤ41は電極パッド14に接続されるため、図34に示すように、検査用電極パッド47の導電膜8は除去しなくとも良い。   In the above-described third embodiment, the example in which the conductive film 8 of the inspection electrode pad 47 is removed has been described. However, since the bonding wire 41 is connected to the electrode pad 14, as shown in FIG. The conductive film 8 may not be removed.

図35は、本発明の実施例5である半導体装置に組み込まれる半導体チップの内部構造を示す模式的断面図である。   FIG. 35 is a schematic cross-sectional view showing the internal structure of a semiconductor chip incorporated in a semiconductor device that is Embodiment 5 of the present invention.

図35に示すように、電極パッド14が形成されるメタル配線層には、半導体チップの辺に沿ってリング状に延在する電源用配線15が設けられる場合がある。このような場合、実施例3のように、電極パッド14と検査用電極パッド47とを同一の配線層に形成することが困難である。   As shown in FIG. 35, the metal wiring layer on which the electrode pad 14 is formed may be provided with a power supply wiring 15 extending in a ring shape along the side of the semiconductor chip. In such a case, it is difficult to form the electrode pad 14 and the inspection electrode pad 47 in the same wiring layer as in the third embodiment.

従って、電源用配線15が延在する場合は、図35に示すように、電極パッド14よりも上層のメタル配線層に検査用電極バッド52を形成し、メタル配線51を用いて電極パッド14と検査用電極パッド52とを電気的に接続する。   Therefore, when the power supply wiring 15 extends, as shown in FIG. 35, an inspection electrode pad 52 is formed in a metal wiring layer above the electrode pad 14, and the metal wiring 51 is used to connect the electrode pad 14. The test electrode pad 52 is electrically connected.

このような構造は、保護膜16に開口17を形成した後、電極パッド14上を含む保護膜16上に導電膜7及び導電膜8を順次成膜し、その後、導電膜8及び7を順次パターンニングして、一端側に検査用電極パッド52を有し、他端側が開口17を通して電極パッド14と電気的に接続されたメタル配線51を形成し、その後、電極パッド14上およびメタル配線51上を含む保護膜16上に無機質系の絶縁膜からなる保護膜53を形成し、その後、エッチングにより保護膜53をエッチングして、電極パッド14上の保護膜53を除去すると共に、検査用電極パッド52上に開口54を形成し、その後、電極パッド14上および検査用電極パッド52上を含む保護膜53上に保護膜18を形成し、その後、エッチングにより保護膜18をパターンニングして、電極パッド14上に開口19、検査用電極パッド52上に開口19aを形成することによって形成される。   In such a structure, after the opening 17 is formed in the protective film 16, the conductive film 7 and the conductive film 8 are sequentially formed on the protective film 16 including the electrode pad 14, and then the conductive films 8 and 7 are sequentially formed. Patterning is performed to form a metal wiring 51 having an inspection electrode pad 52 on one end side and the other end side being electrically connected to the electrode pad 14 through the opening 17, and then on the electrode pad 14 and the metal wiring 51. A protective film 53 made of an inorganic insulating film is formed on the protective film 16 including the upper part, and then the protective film 53 is etched by etching to remove the protective film 53 on the electrode pad 14 and to inspect the inspection electrode. An opening 54 is formed on the pad 52, and then the protective film 18 is formed on the protective film 53 including the electrode pad 14 and the inspection electrode pad 52, and then the protective film 18 is formed by etching. And turn training, opening 19 on the electrode pad 14 is formed by forming an opening 19a on the inspection electrode pads 52.

このように、本実施例5においても、前述の実施例4と同様の効果が得られる。   As described above, also in the fifth embodiment, the same effect as in the fourth embodiment described above can be obtained.

図36乃至図38は、本発明の効果を説明するための図である。図36乃至図38において、(a)は従来の半導体チップのパッド配置を示す模式的平面図であり、(b)は本発明を適用した半導体チップのパッド配置を示す模式的平面図である。図中、14mはプローブ針が圧接される第1の領域、14nはボンディングワイヤが接続される第2の領域、28aはプローブ圧接痕、41aはワイヤ接続痕、20aは半導体チップ20の周辺(周縁)である。   36 to 38 are diagrams for explaining the effect of the present invention. 36 to 38, (a) is a schematic plan view showing a pad arrangement of a conventional semiconductor chip, and (b) is a schematic plan view showing a pad arrangement of a semiconductor chip to which the present invention is applied. In the figure, 14m is a first area where the probe needle is pressed, 14n is a second area where the bonding wire is connected, 28a is a probe pressure mark, 41a is a wire connection mark, and 20a is the periphery (periphery of the semiconductor chip 20). ).

従来、図36(a)に示すように、1つの電極パッド14に、プローブ針が圧接される第1の領域14mと、ボンディングワイヤが接続される第2の領域14nとを平面的に分けて配置し、プローブ針圧接痕28aに起因する、電極パッドとボンディングワイヤとのボンダビリティ低下を抑制する技術が知られている。この場合、電極パッド14の占有面積が増加するため、半導体チップ20の小型が困難になる。   Conventionally, as shown in FIG. 36A, a first region 14m where a probe needle is pressed against one electrode pad 14 and a second region 14n where a bonding wire is connected are divided in a plane. A technique is known that is arranged and suppresses a decrease in bondability between the electrode pad and the bonding wire due to the probe needle pressure contact mark 28a. In this case, since the area occupied by the electrode pad 14 increases, the semiconductor chip 20 is difficult to downsize.

これに対し、本実施例1では、ウエハ検査工程後に電極パッド14の導電膜8を除去しているため、電極パッド14にプローブ針28を圧接する第1の領域14mと、電極パッド14にボンディングワイヤ41を接続する第2の領域14nとを平面的に重ねることができる。従って、図36(b)に示すように、従来設けていた第1の領域14mの面積を削除することができ、電極パッド14の占有面積を縮小することができるため、半導体チップ20の小型化を図ることができる。   On the other hand, in the first embodiment, since the conductive film 8 of the electrode pad 14 is removed after the wafer inspection process, the first region 14m in which the probe needle 28 is pressed against the electrode pad 14 and the bonding to the electrode pad 14 are performed. The second region 14n to which the wire 41 is connected can be overlapped in a plane. Therefore, as shown in FIG. 36B, the area of the first region 14m which has been conventionally provided can be deleted and the area occupied by the electrode pad 14 can be reduced, so that the semiconductor chip 20 can be downsized. Can be achieved.

また、従来設けていた第1の領域14mにプローブ針圧接痕28aが存在しないため、図37(b)に示すように、電極パッド14の任意の位置でワイヤボンディングが可能となる。   Further, since the probe needle pressure contact mark 28a does not exist in the first region 14m provided conventionally, wire bonding can be performed at an arbitrary position of the electrode pad 14 as shown in FIG.

また、従来設けていた第1の領域14mにプローブ針圧接痕28aが存在しないため、図38(b)に示すように、ダブルボンディング等、同一のパッドに複数のボンディングワイヤを接続(1つの電極パッド14に複数のワイヤ接続痕41a)することができる。   Further, since the probe needle pressure contact mark 28a does not exist in the first region 14m provided conventionally, as shown in FIG. 38B, a plurality of bonding wires are connected to the same pad such as double bonding (one electrode). A plurality of wire connection marks 41a) can be formed on the pad 14.

以上、本発明者によってなされた発明を、前記実施例に基づき具体的に説明したが、本発明は、前記実施例に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは勿論である。
As mentioned above, the invention made by the present inventor has been specifically described based on the above embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Of course.

Claims (39)

(a)半導体基板上に、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む層間絶縁膜を形成する工程と、
(b)前記層間絶縁膜上に、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む電極パッドを形成する工程と、
(c)前記電極パッドの前記第2の導電膜にプローブ針を接触させて電気特性を検査する工程とを有することを特徴とする半導体装置の製造方法。
(A) forming an interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film on a semiconductor substrate;
(B) An electrode pad including a first conductive film and a second conductive film stacked on the first conductive film and harder than the first conductive film on the interlayer insulating film. Forming, and
(C) a method of inspecting electrical characteristics by bringing a probe needle into contact with the second conductive film of the electrode pad.
請求項1に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The method of manufacturing a semiconductor device, wherein the first insulating film is made of a material having a relative dielectric constant lower than that of the second insulating film.
請求項1に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The method for manufacturing a semiconductor device, wherein the first insulating film is made of a material having a lower relative dielectric constant and Young's modulus than the second insulating film.
(a)半導体基板上に、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む層間絶縁膜を形成する工程と、
(b)前記層間絶縁膜上に、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む電極パッドを形成する工程と、
(c)前記電極パッドの前記第2の導電膜にプローブ針を接触させて電気特性を検査する工程と、
(d)前記電極パッドの前記第2の導電膜を除去する工程と、
(e)前記電極パッドの前記第1の導電膜にボンディングワイヤを接続する工程とを有することを特徴とする半導体装置の製造方法。
(A) forming an interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film on a semiconductor substrate;
(B) An electrode pad including a first conductive film and a second conductive film stacked on the first conductive film and harder than the first conductive film on the interlayer insulating film. Forming, and
(C) inspecting electrical characteristics by bringing a probe needle into contact with the second conductive film of the electrode pad;
(D) removing the second conductive film of the electrode pad;
(E) connecting a bonding wire to the first conductive film of the electrode pad.
請求項4に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method of manufacturing a semiconductor device, wherein the first insulating film is made of a material having a relative dielectric constant lower than that of the second insulating film.
請求項4に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method for manufacturing a semiconductor device, wherein the first insulating film is made of a material having a lower relative dielectric constant and Young's modulus than the second insulating film.
請求項4に記載の半導体装置の製造方法において、
前記第1の導電膜は、前記第2の導電膜よりも前記ボンディングワイヤとの接着性が高い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method of manufacturing a semiconductor device, wherein the first conductive film is made of a material having higher adhesion to the bonding wire than the second conductive film.
請求項4に記載の半導体装置の製造方法において、
前記第2の導電膜は、前記第1の導電膜よりも反射率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method for manufacturing a semiconductor device, wherein the second conductive film is made of a material having a reflectance lower than that of the first conductive film.
請求項4に記載の半導体装置の製造方法において、
前記第2の導電膜は、前記第1の導電膜よりも膜厚が薄いことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method of manufacturing a semiconductor device, wherein the second conductive film is thinner than the first conductive film.
請求項4に記載の半導体装置の製造方法において、
前記電極パッドは、前記第1の導電膜の下層に、前記第1の導電膜よりも硬質の第3の導電膜を有することを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method of manufacturing a semiconductor device, wherein the electrode pad includes a third conductive film that is harder than the first conductive film in a lower layer of the first conductive film.
請求項4に記載の半導体装置の製造方法において、
前記第1の導電膜は、アルミニウムを主体とする材料からなり、
前記第2の導電膜は、窒化チタンの単層膜、若しくはチタン上に窒化チタンを積み重ねた積層膜からなり、
前記ボンディングワイヤは、金を主体とする材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The first conductive film is made of a material mainly composed of aluminum,
The second conductive film is a single layer film of titanium nitride or a laminated film in which titanium nitride is stacked on titanium.
The method of manufacturing a semiconductor device, wherein the bonding wire is made of a material mainly composed of gold.
請求項4に記載の半導体装置の製造方法において、
前記電極パッドは、フォトリソグラフィ技術を用いて前記第2及び第1の導電膜をパターンニングすることによって形成されることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The method of manufacturing a semiconductor device, wherein the electrode pad is formed by patterning the second and first conductive films using a photolithography technique.
請求項4に記載の半導体装置の製造方法において、
前記(c)工程の後であって、前記(e)工程の前に、前記電極パッドを覆うようにして前記層間絶縁膜上に保護膜を形成する工程と、前記保護膜をエッチングして前記電極パッド上に開口を形成する工程とを有し、
前記(d)工程は、前記開口形成工程において実施されることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
After the step (c) and before the step (e), a step of forming a protective film on the interlayer insulating film so as to cover the electrode pad, and etching the protective film to Forming an opening on the electrode pad,
The method of manufacturing a semiconductor device, wherein the step (d) is performed in the opening forming step.
請求項4に記載の半導体装置の製造方法において、
前記(b)工程の後であって、前記(c)工程の前に、前記電極パッドを覆うようにして前記層間絶縁膜上に保護膜を形成する工程と、前記保護膜をエッチングして前記電極パッド上に開口を形成する工程とを有することを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
After the step (b) and before the step (c), a step of forming a protective film on the interlayer insulating film so as to cover the electrode pad, and etching the protective film to And a step of forming an opening on the electrode pad.
請求項4に記載の半導体装置の製造方法において、
前記半導体基板は、各々がスクライブラインによって区画され、かつ各々に前記層間絶縁膜及び前記電極パッドが形成された複数の領域を有し、
前記(d)工程の後であって、前記(e)工程の前に、前記スクライブラインに沿って前記半導体基板を分割することにより、複数の半導体チップを形成する工程を有することを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The semiconductor substrate has a plurality of regions each defined by a scribe line, and each formed with the interlayer insulating film and the electrode pad,
A step of forming a plurality of semiconductor chips by dividing the semiconductor substrate along the scribe line after the step (d) and before the step (e). A method for manufacturing a semiconductor device.
請求項4に記載の半導体装置の製造方法において、
前記(e)工程は、前記電極パッドと、前記半導体基板の周囲に配置された接続部とを前記ボンディングワイヤで電気的に接続する工程であることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The step (e) is a method of electrically connecting the electrode pad and a connection portion disposed around the semiconductor substrate with the bonding wire.
(a)半導体ウエハに、各々がスクライブラインによって区画され、かつ各々が集積回路及び複数の電極パッドを有する複数のチップ形成領域を形成する工程と、
(b)前記スクライブラインに沿って前記半導体ウエハを分割することにより、各々が前記集積回路及び複数の電極パッドを有する複数の半導体チップを形成する工程と、
(c)前記半導体チップの複数の電極パッドと前記半導体チップの周囲に配置された複数の接続部とを複数のボンディングワイヤで電気的に接続する工程とを有し、
前記(a)工程は、
(a1)前記半導体ウエハ上に、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む層間絶縁膜を形成する工程と、
(a2)前記層間絶縁膜上に、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む電極パッドを形成する工程と、
(a3)前記電極パッドの前記第2の導電膜にプローブ針を接触させて電気特性を検査する工程と、
(a4)前記(a3)工程の後、前記電極パッドの前記第2の導電膜を除去する工程とを有し、
前記(c)工程において、前記ボンディングワイヤは、前記電極パッドの第2の導電膜に接続されることを特徴とする半導体装置の製造方法。
(A) forming a plurality of chip formation regions on the semiconductor wafer, each of which is partitioned by a scribe line, and each having an integrated circuit and a plurality of electrode pads;
(B) dividing the semiconductor wafer along the scribe line to form a plurality of semiconductor chips each having the integrated circuit and a plurality of electrode pads;
(C) electrically connecting a plurality of electrode pads of the semiconductor chip and a plurality of connection portions arranged around the semiconductor chip with a plurality of bonding wires;
The step (a)
(A1) forming an interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film on the semiconductor wafer;
(A2) An electrode pad including a first conductive film and a second conductive film stacked on the first conductive film and harder than the first conductive film on the interlayer insulating film. Forming, and
(A3) inspecting electrical characteristics by bringing a probe needle into contact with the second conductive film of the electrode pad;
(A4) after the step (a3), the step of removing the second conductive film of the electrode pad,
In the step (c), the bonding wire is connected to a second conductive film of the electrode pad.
請求項17に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 17,
The method of manufacturing a semiconductor device, wherein the first insulating film is made of a material having a relative dielectric constant lower than that of the second insulating film.
請求項17に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 17,
The method for manufacturing a semiconductor device, wherein the first insulating film is made of a material having a lower relative dielectric constant and Young's modulus than the second insulating film.
請求項17に記載の半導体装置の製造方法において、
前記第1の導電膜は、前記第2の導電膜よりも前記ボンディングワイヤとの接着性が高い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 17,
The method of manufacturing a semiconductor device, wherein the first conductive film is made of a material having higher adhesion to the bonding wire than the second conductive film.
請求項17に記載の半導体装置の製造方法において、
前記第2の導電膜は、前記第1の導電膜よりも反射率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 17,
The method for manufacturing a semiconductor device, wherein the second conductive film is made of a material having a reflectance lower than that of the first conductive film.
(a)半導体基板上に、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む層間絶縁膜を形成する工程と、
(b)前記層間絶縁膜上に、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む積層膜を形成する工程と、
(c)前記積層膜をパターンニングして前記層間絶縁膜上に、互いに電気的に接続された第1及び第2の電極パッドを形成する工程と、
(d)前記第1の電極パッドの前記第2の導電膜にプローブ針を接触させて電気特性を検査する工程と、
(e)前記第1の電極パッドの前記第2の導電膜を除去する工程と、
(f)前記第1の電極パッドの前記第1の導電膜にボンディングワイヤを接続する工程とを有することを特徴とする半導体装置の製造方法。
(A) forming an interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film on a semiconductor substrate;
(B) A laminated film including a first conductive film and a second conductive film laminated on the first conductive film and harder than the first conductive film on the interlayer insulating film. Forming, and
(C) patterning the laminated film to form first and second electrode pads electrically connected to each other on the interlayer insulating film;
(D) inspecting electrical characteristics by bringing a probe needle into contact with the second conductive film of the first electrode pad;
(E) removing the second conductive film of the first electrode pad;
(F) connecting a bonding wire to the first conductive film of the first electrode pad. A method for manufacturing a semiconductor device, comprising:
請求項22に記載の半導体装置の製造方法において、
前記(a)工程の前に、前記半導体基板の第1の領域に複数のトランジスタ素子を形成する工程を有し、
前記第2の電極パッドは、前記半導体基板の第1の領域上に形成され、
前記第1の電極パッドは、前記半導体基板の第1の領域の周囲における第2の領域上に形成されることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
A step of forming a plurality of transistor elements in the first region of the semiconductor substrate before the step (a);
The second electrode pad is formed on the first region of the semiconductor substrate,
The method of manufacturing a semiconductor device, wherein the first electrode pad is formed on a second region around the first region of the semiconductor substrate.
請求項22に記載の半導体装置の製造方法において、
前記半導体基板は、スクライブラインによって区画されるチップ形成領域を有し、
前記チップ形成領域は、複数のトランジスタ素子が形成される第1の領域と、前記第1の領域の周囲に配置された第2の領域とを有し、
前記第2の電極パッドは、前記第1の領域上に形成され、
前記第1の電極パッドは、前記第2の領域上に形成されることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
The semiconductor substrate has a chip formation region partitioned by a scribe line,
The chip formation region has a first region where a plurality of transistor elements are formed, and a second region disposed around the first region,
The second electrode pad is formed on the first region;
The method of manufacturing a semiconductor device, wherein the first electrode pad is formed on the second region.
請求項22に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
The method of manufacturing a semiconductor device, wherein the first insulating film is made of a material having a relative dielectric constant lower than that of the second insulating film.
請求項22に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
The method for manufacturing a semiconductor device, wherein the first insulating film is made of a material having a lower relative dielectric constant and Young's modulus than the second insulating film.
請求項22に記載の半導体装置の製造方法において、
前記第1の導電膜は、前記第2の導電膜よりも前記ボンディングワイヤとの接着性が高い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
The method of manufacturing a semiconductor device, wherein the first conductive film is made of a material having higher adhesion to the bonding wire than the second conductive film.
請求項22に記載の半導体装置の製造方法において、
前記第2の導電膜は、前記第1の導電膜よりも反射率が低い材料からなることを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 22,
The method for manufacturing a semiconductor device, wherein the second conductive film is made of a material having a reflectance lower than that of the first conductive film.
(a)半導体基板上に、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む第1の層間絶縁膜を形成する工程と、
(b)前記第1の層間絶縁膜上に、第1の電極パッドを形成する工程と、
(c)前記第1の層間絶縁膜上に第2の層間絶縁膜を形成する工程と、
(d)前記第2の層間絶縁膜上に、前記第1の電極パッドと電気的に接続された第2の電極パッドを形成する工程と、
(e)前記第2の電極パッドにプローブ針を接触させて電気特性を検査する工程と、
(f)前記第1の電極パッドにボンディングワイヤを接続する工程とを有し、
前記第2の電極パッドは、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含み、
前記(e)工程は、前記第2の電極パッドの前記第2の導電膜に前記プローブ針を接触させて行われることを特徴とする半導体装置の製造方法。
(A) forming a first interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film on a semiconductor substrate;
(B) forming a first electrode pad on the first interlayer insulating film;
(C) forming a second interlayer insulating film on the first interlayer insulating film;
(D) forming a second electrode pad electrically connected to the first electrode pad on the second interlayer insulating film;
(E) inspecting electrical characteristics by bringing a probe needle into contact with the second electrode pad;
(F) connecting a bonding wire to the first electrode pad;
The second electrode pad includes a first conductive film, and a second conductive film that is stacked on the first conductive film and is harder than the first conductive film,
The step (e) is performed by bringing the probe needle into contact with the second conductive film of the second electrode pad.
請求項29に記載の半導体装置の製造方法において、
前記半導体基板は、スクライブラインによって区画されるチップ形成領域を有し、
前記チップ形成領域は、複数のトランジスタ素子が形成される第1の領域と、前記第1の領域の周囲に配置された第2の領域とを有し、
前記第2の電極パッドは、前記第1の領域上に形成され、
前記第1の電極パッドは、前記第2の領域上に形成されることを特徴とする半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 29,
The semiconductor substrate has a chip formation region partitioned by a scribe line,
The chip formation region has a first region where a plurality of transistor elements are formed, and a second region disposed around the first region,
The second electrode pad is formed on the first region;
The method of manufacturing a semiconductor device, wherein the first electrode pad is formed on the second region.
請求項29に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率が低い材料からなることを特徴とする半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 29,
The method of manufacturing a semiconductor device, wherein the first insulating film is made of a material having a relative dielectric constant lower than that of the second insulating film.
請求項29に記載の半導体装置の製造方法において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 29,
The method for manufacturing a semiconductor device, wherein the first insulating film is made of a material having a lower relative dielectric constant and Young's modulus than the second insulating film.
請求項29に記載の半導体装置の製造方法において、
前記第1の電極パッドは、第3の導電膜と、前記第3の導電膜上に積層され、かつ前記第3の導電膜よりも反射率が低い第4の導電膜とを含み、
前記(f)工程の前に、前記第4の導電膜を除去する工程を有し、
前記ボンディングワイヤは、前記第1の電極パッドの第3の導電膜に接続されることを特徴とする半導体装置の製造方法。
The method of manufacturing a semiconductor device according to claim 29,
The first electrode pad includes a third conductive film, and a fourth conductive film that is stacked on the third conductive film and has a lower reflectance than the third conductive film,
A step of removing the fourth conductive film before the step (f);
The method of manufacturing a semiconductor device, wherein the bonding wire is connected to a third conductive film of the first electrode pad.
主面に互いに電気的に接続された第1及び第2の電極パッドを有する半導体チップと、
前記半導体チップの前記第1の電極パッドと前記半導体チップの周囲に配置された接続部とを電気的に接続するボンディングワイヤとを有し、
前記第1及び第2の電極パッドは、第1の絶縁膜及び前記第1の絶縁膜よりも硬質の第2の絶縁膜を含む層間絶縁膜上に配置され、
前記第2の電極パッドは、第1の導電膜と、前記第1の導電膜上に積層され、かつ前記第1の導電膜よりも硬質の第2の導電膜とを含む積層膜からなることを特徴とする半導体装置。
A semiconductor chip having first and second electrode pads electrically connected to each other on a main surface;
A bonding wire for electrically connecting the first electrode pad of the semiconductor chip and a connection portion disposed around the semiconductor chip;
The first and second electrode pads are disposed on an interlayer insulating film including a first insulating film and a second insulating film harder than the first insulating film,
The second electrode pad is formed of a stacked film including a first conductive film and a second conductive film that is stacked on the first conductive film and is harder than the first conductive film. A semiconductor device characterized by the above.
請求項34に記載の半導体装置において、
前記半導体チップは、複数のトランジスタ素子が形成された第1の領域と、前記第1の領域の周囲に配置された第2の領域とを有し、
前記第2の電極パッドは、前記第1の領域上に配置され、
前記第1の電極パッドは、前記第2の領域上に配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 34, wherein
The semiconductor chip has a first region in which a plurality of transistor elements are formed, and a second region disposed around the first region,
The second electrode pad is disposed on the first region;
The semiconductor device according to claim 1, wherein the first electrode pad is disposed on the second region.
請求項34に記載の半導体装置において、
前記第2の電極パッドは、電気特性を検査する時にプローブ針が圧接される検査用パッドであることを特徴とする半導体装置。
The semiconductor device according to claim 34, wherein
The semiconductor device according to claim 2, wherein the second electrode pad is an inspection pad to which a probe needle is pressed when inspecting electrical characteristics.
請求項34に記載の半導体装置において、
前記第1の絶縁膜は、前記第2の絶縁膜よりも比誘電率及びヤング率が低い材料からなることを特徴とする半導体装置。
The semiconductor device according to claim 34, wherein
The semiconductor device according to claim 1, wherein the first insulating film is made of a material having a relative dielectric constant and Young's modulus lower than those of the second insulating film.
請求項34に記載の半導体装置において、
前記第1及び第2の電極パッドは、同一層に形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 34, wherein
The semiconductor device, wherein the first and second electrode pads are formed in the same layer.
請求項34に記載の半導体装置において、
前記第2の電極パッドは、前記第1の電極パッドよりも上層に形成されていることを特徴とする半導体装置。
The semiconductor device according to claim 34, wherein
The semiconductor device, wherein the second electrode pad is formed in an upper layer than the first electrode pad.
JP2007521035A 2005-06-14 2005-06-14 Semiconductor device and manufacturing method thereof Pending JPWO2006134643A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/010879 WO2006134643A1 (en) 2005-06-14 2005-06-14 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
JPWO2006134643A1 true JPWO2006134643A1 (en) 2009-01-08

Family

ID=37532015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007521035A Pending JPWO2006134643A1 (en) 2005-06-14 2005-06-14 Semiconductor device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2006134643A1 (en)
WO (1) WO2006134643A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951276B2 (en) * 2006-05-29 2012-06-13 ルネサスエレクトロニクス株式会社 Semiconductor chip and semiconductor device
JP5401817B2 (en) * 2008-03-25 2014-01-29 富士通セミコンダクター株式会社 Semiconductor device manufacturing method and semiconductor device
JP6968557B2 (en) * 2017-03-21 2021-11-17 キヤノン株式会社 Substrate for liquid discharge head, semiconductor substrate, and their manufacturing method
WO2024122395A1 (en) * 2022-12-07 2024-06-13 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device and method for producing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270512A (en) * 1997-03-24 1998-10-09 Nec Kyushu Ltd Manufacture of semiconductor device
JP2000183104A (en) * 1998-12-15 2000-06-30 Texas Instr Inc <Ti> Method and system for bonding on integrated circuit
JP2003100746A (en) * 2001-09-27 2003-04-04 Hitachi Ltd Method of manufacturing semiconductor device
JP2003332423A (en) * 2002-05-14 2003-11-21 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2004288672A (en) * 2003-03-19 2004-10-14 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
WO2005024902A2 (en) * 2003-08-26 2005-03-17 Freescale Semiconductor, Inc. Method of forming a bond pad
JP2005142553A (en) * 2003-10-15 2005-06-02 Toshiba Corp Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270512A (en) * 1997-03-24 1998-10-09 Nec Kyushu Ltd Manufacture of semiconductor device
JP2000183104A (en) * 1998-12-15 2000-06-30 Texas Instr Inc <Ti> Method and system for bonding on integrated circuit
JP2003100746A (en) * 2001-09-27 2003-04-04 Hitachi Ltd Method of manufacturing semiconductor device
JP2003332423A (en) * 2002-05-14 2003-11-21 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2004288672A (en) * 2003-03-19 2004-10-14 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
WO2005024902A2 (en) * 2003-08-26 2005-03-17 Freescale Semiconductor, Inc. Method of forming a bond pad
JP2005142553A (en) * 2003-10-15 2005-06-02 Toshiba Corp Semiconductor device

Also Published As

Publication number Publication date
WO2006134643A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
US6900551B2 (en) Semiconductor device with alternate bonding wire arrangement
TWI284960B (en) Manufacturing method of semiconductor device
US7550833B2 (en) Semiconductor device having a second semiconductor construction mounted on a first semiconductor construction and a manufacturing method thereof
US9607956B2 (en) Semiconductor device and method of manufacturing the same
JP3701542B2 (en) Semiconductor device and manufacturing method thereof
US10128129B2 (en) Method of manufacturing semiconductor device
US20060267008A1 (en) Semiconductor bond pad structures and methods of manufacturing thereof
WO2010095205A1 (en) Semiconductor sensor device, method of manufacturing semiconductor sensor device, package, method of manufacturing package, module, method of manufacturing module, and electronic device
JP2002016069A (en) Semiconductor device and its manufacturing method
JP2010278040A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2002368160A (en) Wafer level package and manufacturing method therefor
JP4241302B2 (en) Manufacturing method of semiconductor device
KR100403619B1 (en) Bond pad of semiconductor device having advantage against thermo-mechanical stress and method for fabricating thereof
JPWO2006134643A1 (en) Semiconductor device and manufacturing method thereof
TWI316741B (en) Method for forming an integrated cricuit, method for forming a bonding pad in an integrated circuit and an integrated circuit structure
US5898226A (en) Semiconductor chip having a bonding window smaller than a wire ball
KR20000053437A (en) Semiconductor device and a process of fabricating the same
US6762499B2 (en) Semiconductor integrated device
JP2007258381A (en) Semiconductor apparatus and manufacturing method thereof
KR100968008B1 (en) A Semiconductor device and a method of manufacturing the same
JP4850852B2 (en) Manufacturing method of semiconductor device
JP5234703B2 (en) Manufacturing method of semiconductor device
JP2004296464A (en) Semiconductor device
JP5320275B2 (en) Semiconductor device and manufacturing method thereof
JPH0982851A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208