JPWO2006132411A1 - Silver alloy for electrode, wiring and electromagnetic shielding - Google Patents
Silver alloy for electrode, wiring and electromagnetic shielding Download PDFInfo
- Publication number
- JPWO2006132411A1 JPWO2006132411A1 JP2007520199A JP2007520199A JPWO2006132411A1 JP WO2006132411 A1 JPWO2006132411 A1 JP WO2006132411A1 JP 2007520199 A JP2007520199 A JP 2007520199A JP 2007520199 A JP2007520199 A JP 2007520199A JP WO2006132411 A1 JPWO2006132411 A1 JP WO2006132411A1
- Authority
- JP
- Japan
- Prior art keywords
- silver alloy
- thin film
- silver
- electrode
- additive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3006—Ag as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
- C22C5/08—Alloys based on silver with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本発明は、銀を主成分とし、第1の添加元素群としてニッケル、モリブデン、銅、コバルト、チタン、スカンジウム、イットリウム、マンガン、シリコン、鉄、ジルコニウム、ニオブ、タンタル、タングステン、クロム、炭素を少なくとも1種含んでなる電極、配線及び電磁波遮蔽用の銀合金である。ここで、第1の添加元素群は、銅、チタン、ジルコニウム、マンガン、イットリウムが好ましく、更に、第2の添加元素群として、ガリウム、パラジウム、ジスプロシウムの少なくとも1種を添加するのが好ましい。また、これら添加元素濃度の合計は、0.01〜20.0原子%とすることが好ましい。The present invention is mainly composed of silver, and at least nickel, molybdenum, copper, cobalt, titanium, scandium, yttrium, manganese, silicon, iron, zirconium, niobium, tantalum, tungsten, chromium, and carbon as a first additive element group. A silver alloy for shielding an electromagnetic wave, an electrode, a wiring, and one kind. Here, the first additive element group is preferably copper, titanium, zirconium, manganese, and yttrium, and it is preferable to add at least one of gallium, palladium, and dysprosium as the second additive element group. The total concentration of these additive elements is preferably 0.01 to 20.0 atomic%.
Description
本発明は、電極及び配線材料、更には、電磁波遮蔽材料として有用な銀合金に関し、耐環境性が著しく改善され、比抵抗値も低い銀合金に関する。 The present invention relates to a silver alloy useful as an electrode and wiring material, and further to an electromagnetic wave shielding material, and relates to a silver alloy having significantly improved environmental resistance and a low specific resistance value.
銀は、金属の中で最も比抵抗が低く電気伝導性に優れており、電極材料又は配線材料としての適用性が期待できる金属材料である。とりわけ、太陽電池の電極材料、有機発光ディスプレイや液晶ディスプレイ等の表示デバイス、各種電子部品の薄膜電極材料、配線材料としての適用が検討されている。これは、従来から配線材料として使用されてきたタンタル、クロム、モリブデン、チタン等の高融点金属材料等は、電気抵抗値が比較的高いため信号遅延が問題となっていたことに応えるものである。
また、近年、パソコン、ワープロ等の電子機器の普及により、これらの電子機器が発生する電磁波ノイズによる機器同士及び人体への影響を鑑みて電磁波遮蔽の必要性がクローズアップされてきている。銀はその比抵抗の低さ故に、電磁波遮蔽体の構成材料としても期待できる材料である。電磁波が物体を透過する際の減衰(吸収)は、電磁波の周波数、該物体の比抵抗に依存するが、比抵抗が低い材料ほど減衰が大きくなる傾向があるからである。
更に、比抵抗が低いということは、抵抗値を抑制しつつ可能な限り薄い膜を形成できることに繋がる。そのため、銀は導電性を有する(電磁波遮蔽効果を有する)光透過膜を形成するのにも有用であり、上記の電極・配線材料及び電磁波遮蔽材料において、透明電極、ガラス等の透明体に電磁波遮蔽効果を付与するための材料として期待できる。 Furthermore, the low specific resistance leads to the ability to form as thin a film as possible while suppressing the resistance value. Therefore, silver is also useful for forming a light-transmitting film having electrical conductivity (having an electromagnetic wave shielding effect). In the above electrode / wiring material and electromagnetic wave shielding material, electromagnetic waves are applied to transparent bodies such as transparent electrodes and glass. It can be expected as a material for imparting a shielding effect.
上記利点がある反面、銀は耐環境性に乏しく、腐食し易いという問題がある。腐食による銀の変化は、黒色化という外観上のものが顕著ではあるが、同時に比抵抗の上昇、透過率の悪化も生じる。また、この銀の腐食の原因は、その詳細は用途により異なるが、基本的に使用環境における水分、熱によるものである。そして、かかる銀の腐食による特性悪化の問題は、装置の信頼性に影響を与えることとなる。 On the other hand, there is a problem that silver is poor in environmental resistance and easily corroded. The change in silver due to corrosion is remarkable in terms of the appearance of blackening, but at the same time, the specific resistance increases and the transmittance deteriorates. The cause of this silver corrosion is basically due to moisture and heat in the environment of use, although the details differ depending on the application. And the problem of the characteristic deterioration by such corrosion of silver will affect the reliability of an apparatus.
そこで、本発明は、耐環境性を大きく改善し、低比抵抗を維持しつつ、電極・配線材料、電磁波遮蔽材料として好適な材料を提供することを目的とする。尚、本発明において、耐環境性とは、加熱雰囲気、加湿雰囲気、硫化雰囲気等、その銀合金が置かれる環境の影響による比抵抗、透過率の悪化を抑制する性質をいい、耐熱性、耐湿性、耐硫化性とも称することがある。 Therefore, an object of the present invention is to provide a material suitable as an electrode / wiring material or an electromagnetic wave shielding material while greatly improving the environmental resistance and maintaining a low specific resistance. In the present invention, the environmental resistance refers to a property that suppresses deterioration of specific resistance and transmittance due to the influence of the environment in which the silver alloy is placed, such as a heated atmosphere, a humidified atmosphere, and a sulfurized atmosphere. And sometimes referred to as sulfidation resistance.
上記課題を解決すべく、本発明者等は、銀を主体としつつ、耐環境性改善のために好適な添加元素の選定を行った。その結果、添加元素として、銀よりも高融点の元素である、ニッケル、モリブデン、銅、コバルト、チタン、スカンジウム、イットリウム、マンガン、シリコン、鉄、ジルコニウム、ニオブ、タンタル、タングステン、クロム、炭素の添加により、耐環境性向上の効果があることを見出し、本発明に想到するに至った。 In order to solve the above-described problems, the present inventors have selected a suitable additive element for improving environmental resistance while mainly using silver. As a result, addition of nickel, molybdenum, copper, cobalt, titanium, scandium, yttrium, manganese, silicon, iron, zirconium, niobium, tantalum, tungsten, chromium, and carbon, which are higher melting points than silver Thus, the inventors have found that there is an effect of improving the environmental resistance, and have come to the present invention.
即ち、本発明は、銀を主成分とし、第1の添加元素群としてニッケル、モリブデン、銅、コバルト、チタン、スカンジウム、イットリウム、マンガン、シリコン、鉄、ジルコニウム、ニオブ、タンタル、タングステン、クロム、炭素を少なくとも1種含んでなる電極、配線及び電磁波遮蔽用の銀合金である。 That is, the present invention is mainly composed of silver, and the first additive element group is nickel, molybdenum, copper, cobalt, titanium, scandium, yttrium, manganese, silicon, iron, zirconium, niobium, tantalum, tungsten, chromium, carbon. Is a silver alloy for shielding an electromagnetic wave, an electrode comprising at least one kind.
本発明者等の検討によれば、第1の添加元素群として挙げられる高融点の元素の中でも銅、チタン、ジルコニウム、マンガン、イットリウムを添加した銀合金において、反射・透過膜に要求される耐湿性を特に高い次元で保持することが確認されている。これらの元素を単独で、若しくは、群の中から2元素、3元素又はそれ以上の多元素を選択し、組合せて「第1の添加元素群」として使用することにより、著しく耐湿性を向上できる。また、銅、チタン、ジルコニウム、マンガン、イットリウム以外の上記第1の添加元素も、耐湿性向上にそれぞれ効果がある。 According to the study by the present inventors, among the high melting point elements listed as the first additive element group, in the silver alloy added with copper, titanium, zirconium, manganese, yttrium, the moisture resistance required for the reflection / transmission film It has been confirmed that the property is maintained at a particularly high dimension. Moisture resistance can be significantly improved by using these elements alone or by selecting 2 elements, 3 elements or more elements from the group and using them in combination as a “first additive element group”. . The first additive elements other than copper, titanium, zirconium, manganese, and yttrium are also effective in improving moisture resistance.
そして本発明においては第2の添加元素群として、ガリウム、ツリウム、ジスプロシウム、白金、パラジウム、マグネシウム、亜鉛、テルビウム、ガドリニウム、エルビウム、ユーロピウム、金、アルミニウム、ネオジウム、ホルミウム、錫、ビスマス、プラセオジウム、ゲルマニウム、インジウム、サマリウム、イッテルビウム、ストロンチウム、ホウ素、ロジウム、イリジウム、ルテニウム、カルシウム、鉛、アンチモン、ハフニウム、ランタン、セリウム、ユーロピウム、リチウム、リンの少なくとも1種を、更に添加したものが好ましい。これらの元素は、第1の添加元素群と共に更に複合的に耐環境性の向上に作用する。 In the present invention, the second additive element group includes gallium, thulium, dysprosium, platinum, palladium, magnesium, zinc, terbium, gadolinium, erbium, europium, gold, aluminum, neodymium, holmium, tin, bismuth, praseodymium, germanium. Indium, samarium, ytterbium, strontium, boron, rhodium, iridium, ruthenium, calcium, lead, antimony, hafnium, lanthanum, cerium, europium, lithium, and phosphorus are preferably further added. These elements together with the first additive element group further act to improve the environmental resistance.
特に、第2の添加元素群としてガリウム、パラジウム、ジスプロシウム、インジウム、錫、亜鉛、マグネシウム、アルミニウム、ガドリニウム、エルビウム、プラセオジウム、サマリウム、ランタンを添加する銀合金は、加熱環境中において薄膜材料中で発生する凝集現象を有効に抑制することができ、好ましい合金である。 In particular, a silver alloy to which gallium, palladium, dysprosium, indium, tin, zinc, magnesium, aluminum, gadolinium, erbium, praseodymium, samarium, lanthanum is added as a second additive element group is generated in a thin film material in a heating environment It is a preferable alloy that can effectively suppress the agglomeration phenomenon.
第2の添加元素群からなる成分は、特に合金の耐熱性の向上を主目的として添加される。即ち、薄膜に要求される耐熱性を確保すべく、これらの元素を単独で、若しくは、2元素、3元素又はそれ以上の多元素を選択して添加される。 The component consisting of the second additive element group is added mainly for the purpose of improving the heat resistance of the alloy. That is, in order to ensure the heat resistance required for the thin film, these elements are added alone, or two elements, three elements, or more multi-elements are selected and added.
ここで、添加元素群の濃度は、0.01〜20.0原子%とするのが好ましい。0.01原子%未満の添加量では耐環境性向上の効果がなく、また添加元素濃度が20.0原子%を超えると、合金の比抵抗が大きくなるからである。ここで、本発明に係る銀合金からなる薄膜を用いる商品は、実際には各種様々あり、要求される特性仕様も様々なものがある。この点、本発明は、基本的に、透過率が高く比抵抗が低いものであるが、耐環境性能が最大となった薄膜を備えることを要求する商品も多い。かかる場合の添加元素濃度の最大値は、20.0原子%である。一方、耐環境性能を重視しつつ、透過率、比抵抗を向上させる場合の添加元素濃度は、10.0原子%以下である。更に、透過率、比抵抗を最優先する場合は、添加元素濃度は5.0原子%以下である。このように、薄膜が適用される商品ごとの要求仕様を考慮して、添加元素の種類、添加量を調整することができる。 Here, the concentration of the additive element group is preferably 0.01 to 20.0 atomic%. This is because if the addition amount is less than 0.01 atomic%, there is no effect of improving the environmental resistance, and if the additive element concentration exceeds 20.0 atomic%, the specific resistance of the alloy increases. Here, there are actually various products using the thin film made of the silver alloy according to the present invention, and there are various required characteristic specifications. In this respect, the present invention basically has a high transmittance and a low specific resistance, but there are many products that require a thin film having a maximum environmental resistance. In such a case, the maximum value of the additive element concentration is 20.0 atomic%. On the other hand, the concentration of the additive element in the case of improving the transmittance and specific resistance while emphasizing environmental resistance performance is 10.0 atomic% or less. Furthermore, when giving the highest priority to transmittance and specific resistance, the concentration of the additive element is 5.0 atomic% or less. In this way, the type and amount of additive element can be adjusted in consideration of the required specifications for each product to which the thin film is applied.
以上説明した本発明に係る反射・透過膜材料としての銀合金は、溶解鋳造法、焼結法により製造可能である。溶解鋳造法による製造においては特段に困難な点はなく、各原料を秤量し、溶融混合して鋳造する一般的な方法により製造可能である。また、焼結法による製造においても、特に困難な点はなく、各原料を秤量し、焼結する一般的な方法により製造可能である。 The silver alloy as the reflective / transmissive film material according to the present invention described above can be manufactured by a melt casting method or a sintering method. There is no particular difficulty in the production by the melt casting method, and it can be produced by a general method in which each raw material is weighed, melted and mixed and cast. In addition, the production by the sintering method is not particularly difficult, and can be produced by a general method in which each raw material is weighed and sintered.
本発明に係る銀合金は、各種電気・電子デバイス、部品の電極材料、配線材料として好適である。また、本発明に係る銀合金は、膜厚を適宜に調整することで光透過性も良好となる。従って、ITO等の透明電極に対する配線材料としても有用である。これら電極材料、配線材料の用途へ適用する場合、その膜厚は40〜1500Åとすることが好ましい。信頼性、耐久性を考慮しつつ、微細加工性を確保するためである。また、この膜厚範囲において、透過率を重視する透明電極への配線材料とする場合には40〜150Åとするのが好ましいが、透過率が重視されない電極、配線については、1000〜1200Åとすることが好ましい。 The silver alloy according to the present invention is suitable as various electric / electronic devices, electrode materials for parts, and wiring materials. Moreover, the silver alloy which concerns on this invention also becomes favorable for light transmittance by adjusting a film thickness suitably. Therefore, it is also useful as a wiring material for transparent electrodes such as ITO. When applied to applications of these electrode materials and wiring materials, the film thickness is preferably 40 to 1500 mm. This is to ensure fine workability while considering reliability and durability. Further, in this film thickness range, when it is used as a wiring material for a transparent electrode in which transmittance is important, it is preferably 40 to 150 mm, but for electrodes and wiring in which transmittance is not important, 1000 to 1200 mm. It is preferable.
また、本発明に係る銀合金は、電磁波遮蔽体の構成材料としても好適である。本発明を電磁波遮蔽体へ適用する場合、適宜の支持体表面に、本発明に係る銀合金を蒸着又は接合することで電磁波遮蔽体とすることができる。支持体としては、板状、シート状のゴム、繊維が適用できる。また、本発明に係る銀合金は、電磁波減衰能力を維持しつつ薄膜化することが可能であり、透過率を良好なものとすることができるので、ガラスを支持体として光透過性を有する遮蔽材とすることができる。また、プラズマディスプレイでは、発光面に対して電磁波遮蔽のためのコーティングを施すことがあるが、光透過性に優れる本発明はかかる用途にも適用できる。 Moreover, the silver alloy which concerns on this invention is suitable also as a constituent material of an electromagnetic wave shielding body. When applying this invention to an electromagnetic wave shielding body, it can be set as an electromagnetic wave shielding body by vapor-depositing or joining the silver alloy which concerns on this invention on the surface of a suitable support body. As the support, plate-like or sheet-like rubber or fiber can be applied. Further, the silver alloy according to the present invention can be thinned while maintaining the electromagnetic wave attenuation capability, and the transmittance can be improved, so that light shielding is achieved using glass as a support. It can be a material. In plasma displays, a coating for shielding electromagnetic waves may be applied to the light emitting surface, but the present invention having excellent light transmittance can also be applied to such applications.
尚、電磁波遮蔽の用途における銀合金の形態は、薄膜、板材、網体、粉体いずれでも良いが、好ましいのは薄膜である。その膜厚は、400〜150Å、特に、50〜120Åとすることが好ましい。導電性確保による電磁波遮蔽効果を維持しつつ、透過率を80%以上とするためである。 In addition, the form of the silver alloy in the electromagnetic wave shielding application may be any of a thin film, a plate material, a net, and a powder, but a thin film is preferable. The film thickness is preferably 400 to 150 mm, particularly 50 to 120 mm. This is because the transmittance is 80% or more while maintaining the electromagnetic wave shielding effect by ensuring conductivity.
そして、上記用途に対して本発明に係る銀合金からなる薄膜を形成する場合、スパッタリング法が適用可能である。従って、本発明に係る銀合金からなるスパッタリングターゲットは、好ましい特性を有する合金膜からなる電極、配線、電磁波遮蔽材を製造することができる。 And when forming the thin film which consists of a silver alloy based on this invention with respect to the said use, sputtering method is applicable. Therefore, the sputtering target made of a silver alloy according to the present invention can produce electrodes, wirings, and electromagnetic wave shielding materials made of an alloy film having desirable characteristics.
以上説明したように、本発明に係る銀合金は、耐環境性が純銀に対して著しく改善されており、長期の使用に際しても透過率や比抵抗等の特性を維持することができる。本発明は、電極材料、配線材料の他、電磁波遮蔽材料として有用である。尚、本発明に係る銀合金は、薄膜状態における密着性も良好であり、この観点からも上記用途に好適である。 As described above, the environment resistance of the silver alloy according to the present invention is remarkably improved with respect to pure silver, and characteristics such as transmittance and specific resistance can be maintained even when used for a long time. The present invention is useful as an electromagnetic shielding material in addition to an electrode material and a wiring material. In addition, the silver alloy which concerns on this invention has the favorable adhesiveness in a thin film state, and is suitable for the said use also from this viewpoint.
以下、本発明の好適な実施形態を比較例と共に説明する。ここでは、銀を主要成分とする2元系〜5元系の各種の組成の銀合金を製造し、これからターゲットを製造してスパッタリング法にて薄膜を形成した。そして、この薄膜について種々の環境下での腐食試験(加速試験)を行い、腐食試験後の特性の変化について検討した。尚、本発明に係る合金は、本実施形態が対象とする、2元系〜5元系の合金に限られるものではなく、それ以上の多元系のものとしても良い。商品仕様に応じて6元系以上の多元系合金も製造可能である。そして、その製造においては、特段の問題はなく量産も可能である。 Hereinafter, preferred embodiments of the present invention will be described together with comparative examples. Here, silver alloys having various compositions of binary system to quinary system containing silver as a main component were manufactured, and a target was manufactured therefrom, and a thin film was formed by a sputtering method. The thin film was subjected to corrosion tests (acceleration tests) under various environments, and changes in properties after the corrosion tests were examined. In addition, the alloy which concerns on this invention is not restricted to the binary type | system | group-quinary type alloy which this embodiment makes object, It is good also as the thing of more than that. Depending on the product specifications, multi-component alloys of 6-component or higher can also be manufactured. And in the manufacture, there is no special problem and mass production is possible.
銀合金の製造は、各金属を所定濃度になるように秤量し、高周波溶解炉中で溶融させて混合して合金とする。そして、これを鋳型に鋳込んで凝固させインゴットとし、これを鍛造、圧延、熱処理した後、成形してスパッタリングターゲットとした。また、粉末焼結法によるターゲット製造も可能である。 In the production of a silver alloy, each metal is weighed to a predetermined concentration, melted in a high frequency melting furnace, and mixed to obtain an alloy. This was cast into a mold and solidified to form an ingot, which was forged, rolled, and heat treated, and then molded into a sputtering target. Moreover, target production by a powder sintering method is also possible.
薄膜の製造は、スライドガラス基板(ホウ珪酸ガラス)及びターゲットをスパッタリング装置に設置し、装置内を5.0×10−3Paまで真空に引いた後、アルゴンガスを5.0×10−1Paまで導入した。スパッタリング条件は、直流0.4kWで8秒間の成膜を行ない、膜厚を120Åとした。尚、膜厚分布は±10%以内であった。The thin film was produced by placing a slide glass substrate (borosilicate glass) and a target in a sputtering apparatus, and evacuating the apparatus to 5.0 × 10 −3 Pa, and then adding argon gas to 5.0 × 10 −1. Introduced up to Pa. As sputtering conditions, a film was formed for 8 seconds at a direct current of 0.4 kW, and the film thickness was 120 mm. The film thickness distribution was within ± 10%.
製造した薄膜の特性の評価・検討は、薄膜を種々の環境中に暴露する腐食試験を行い、試験前後の薄膜の特性を評価することで行なった。本実施形態では、製造した各種の銀合金薄膜について、耐環境性能を重視する組成の試験、及び、透過率、比抵抗を重視する組成の試験を行った。 The evaluation and examination of the properties of the manufactured thin film were conducted by conducting corrosion tests in which the thin film was exposed to various environments and evaluating the properties of the thin film before and after the test. In this embodiment, the various silver alloy thin films produced were tested for compositions that place importance on environmental performance and on compositions that place importance on transmittance and specific resistance.
A:耐環境性能重視の組成
耐環境性能を重視する組成についての試験として、塩水滴下試験と密着性試験を行った。銀合金薄膜を備える商品の実用性に関しては、人間の居住環境における耐久性の確保が優先される。即ち、銀薄膜を有する商品は、人が直接に手で触れる、飲食物等が付着する等の腐食要因があっても性能の劣化がなく維持されることが必要である。今回行った塩水滴下試験と密着性試験は、このような使用環境を考慮するものである。 A: Composition emphasizing environmental resistance performance As a test for a composition emphasizing environmental resistance performance, a salt water drop test and an adhesion test were performed. As for the practicality of a product including a silver alloy thin film, priority is given to ensuring durability in a human living environment. That is, a product having a silver thin film needs to be maintained without deterioration in performance even if there is a corrosive factor such as a person touching it directly or a food or food. The salt water drop test and the adhesion test conducted this time consider such a use environment.
塩水滴下試験は、人間の汗や醤油、味噌等の調味料の付着を想定し、劣化の加速試験を行うものである。10.0%のNaCl水溶液(25℃)を作製し、スライドガラス上の成膜直後の銀合金薄膜120Å上に2〜3滴滴下し、その変化を観察し耐久性能を判定するものである。評価は次の0〜5段階評価で判定した。
「5」:最良・・・はがれ無し
「4」: 良 ・・・一部はがれ
「3」:普通・・・半分はがれ
「1」: 悪 ・・・一部残り
「0」:最悪・・・全面はがれThe salt water drop test is an accelerated deterioration test on the assumption of adhesion of seasonings such as human sweat, soy sauce, and miso. A 10.0% NaCl aqueous solution (25 ° C.) is prepared, and 2 to 3 drops are dropped on a silver alloy thin film 120 直 後 immediately after film formation on a slide glass, and the change is observed to determine the durability performance. Evaluation was determined by the following 0-5 grade evaluation.
“5”: Best… No peeling “4”: Good… Partial peeling “3”: Normal… Half peeling “1”: Evil… Some remaining “0”: Worst ... Peeling off the entire surface
上記塩水滴下試験で、評価3以上のものについて、更に基板に対する薄膜の密着性を評価する試験を行った。密着性試験は、各組成のスライドガラス上の薄膜試料(膜厚120Å)で、下記環境に暴露後の3種類の試料について行った。
(1)成膜直後の試料
(2)成膜後、ホットプレート上で大気中、250℃で1時間加熱した加熱試験後の試料
(3)成膜後、温度100℃、湿度100%の雰囲気中に24時間暴露した加湿試験後の試料In the above-mentioned salt water drop test, a test for evaluating the adhesion of the thin film to the substrate was performed for those having an evaluation of 3 or more. The adhesion test was performed on three types of samples after being exposed to the following environment using thin film samples (film thickness of 120 mm) on a glass slide of each composition.
(1) Sample immediately after film formation (2) Sample after heating test heated at 250 ° C. for 1 hour in air on a hot plate after film formation (3) After film formation, atmosphere at temperature of 100 ° C. and humidity of 100% Sample after humidification test exposed for 24 hours
各試料については、基板上の薄膜に、メタルマスクの専用冶具を用いてカッターナイフにより1mmピッチで11本の刻み線を入れてクロスカットし、1mm角のマス目を100マス(縦横10×10)形成した。そして、クロスカット部を覆うように市販のセロハンテープを貼り付け、十分に押圧して密着させた後、一気に面に直角方向に剥がした。テープを剥がした後、残ったマスの数を数え、5段階で評価した。
「5」:最良・・・はがれ無し
「4」: 良 ・・・一部はがれ
「3」:普通・・・半分はがれ
「1」: 悪 ・・・一部残り
「0」:最悪・・・全面はがれFor each sample, eleven score lines were put in a thin film on a substrate using a metal mask dedicated jig with a cutter knife at a pitch of 1 mm at a pitch of 1 mm, and 100 mm squares (10 × 10 × 10 × 10) ) Formed. Then, a commercially available cellophane tape was applied so as to cover the cross-cut portion, and after sufficiently pressing and adhering, it was peeled off at right angles to the surface. After peeling off the tape, the number of remaining squares was counted and evaluated in five stages.
“5”: Best… No peeling “4”: Good… Partial peeling “3”: Normal… Half peeling “1”: Evil… Some remaining “0”: Worst ... Peeling off the entire surface
以上の塩水滴下試験、密着性試験の評価結果を表1に示す。表中には比較のため純銀薄膜についての試験結果も示している。 Table 1 shows the evaluation results of the above salt water drop test and adhesion test. In the table, the test results for pure silver thin films are also shown for comparison.
これらの試験結果から、本実施形態で製造した銀合金薄膜は、いずれも純銀薄膜よりも塩水に対する耐久性に優れ、密着性も良好となり、高い耐環境性を有することが確認された。この耐環境性は、添加元素の濃度の上昇に伴い向上する。 From these test results, it was confirmed that all of the silver alloy thin films produced in the present embodiment were superior in durability to salt water, better in adhesion than pure silver thin films, and had high environmental resistance. This environmental resistance improves as the concentration of the additive element increases.
B:透過率及び比抵抗重視の組成
次に、透過率、比抵抗を優先する組成の銀合金の評価を行った。この評価でも、スライドガラス上に成膜した薄膜試料(膜厚120Å)をホットプレート上に載置し、大気中で250℃で1時間加熱し、加熱後の特性を評価した(加熱試験)。また、薄膜の耐湿性を検討するための加湿試験として、薄膜を温度100℃、湿度100%の雰囲気中に暴露し、加湿後の特性を評価した。加湿試験は、暴露時間を24時間とした。 B: Composition with emphasis on transmittance and specific resistance Next, a silver alloy having a composition giving priority to transmittance and specific resistance was evaluated. In this evaluation as well, a thin film sample (thickness 120 mm) formed on a slide glass was placed on a hot plate, heated in the atmosphere at 250 ° C. for 1 hour, and the characteristics after heating were evaluated (heating test). In addition, as a humidification test for examining the moisture resistance of the thin film, the thin film was exposed to an atmosphere at a temperature of 100 ° C. and a humidity of 100%, and the characteristics after humidification were evaluated. In the humidification test, the exposure time was 24 hours.
腐食試験前後に評価する特性は、透過率、比抵抗である。透過率の測定は、分光光度計により行い、薄膜を形成していない基板(ホウ珪酸ガラス)の透過率を100として、各薄膜の透過率を相対評価した。 The characteristics evaluated before and after the corrosion test are transmittance and specific resistance. The transmittance was measured with a spectrophotometer, and the transmittance of each thin film was evaluated relative to the transmittance of a substrate (borosilicate glass) on which a thin film was not formed as 100.
まず、腐食試験前後の透過率の評価結果を表2に示す。各測定値は、波長400nm、550nm、650nm(可視光領域において、青色、黄色、赤色の波長に相当する。)における値である。また、表中には比較のため純銀からなるターゲットから製造した薄膜についての試験結果も示している。 First, Table 2 shows the evaluation results of the transmittance before and after the corrosion test. Each measurement value is a value at wavelengths of 400 nm, 550 nm, and 650 nm (corresponding to blue, yellow, and red wavelengths in the visible light region). The table also shows test results for a thin film manufactured from a target made of pure silver for comparison.
この透過率の評価において、本発明に係る銀合金からなる薄膜について、成膜直後と腐食試験後の変化率を比較してみると、全て純銀の場合の変化率よりも低く、各波長で銀合金が純銀に優っていることが確認された。また、全般的にみると、短波長域では透過率が高くなっているが、短波長400nmの透過率と長波長650nmの透過率との差をみると、純銀の場合は28%と大きく、銀合金の場合はこの値よりも小さい。このように波長による透過率低下の差が低いことは、透過光として白色光を得ようとする場合に大きな利点となる。 In the evaluation of the transmittance, the thin film made of the silver alloy according to the present invention is compared with the rate of change immediately after the film formation and after the corrosion test. It was confirmed that the alloy was superior to pure silver. In general, the transmittance is high in the short wavelength region, but the difference between the transmittance at the short wavelength of 400 nm and the transmittance at the long wavelength of 650 nm is as large as 28% in the case of pure silver. In the case of a silver alloy, it is smaller than this value. Such a low difference in transmittance due to wavelength is a great advantage when obtaining white light as transmitted light.
次に、表3に各銀合金薄膜の、腐食試験前後の比抵抗の評価結果を示す。 Next, Table 3 shows the evaluation results of the specific resistance of each silver alloy thin film before and after the corrosion test.
比抵抗の評価において、腐食試験前の純銀の比抵抗は最も低いが、加熱試験後には29%の上昇、加湿試験後には24%も上昇してしまっている。これに対し、本発明に係る銀合金の場合は、比抵抗の上昇率は2%〜12%以内である。これらの結果は銀合金の場合、環境試験により透過率が変化しにくいことと一致しており、電気的にも安定であることを示している。 In the evaluation of specific resistance, the specific resistance of pure silver before the corrosion test is the lowest, but increased by 29% after the heating test and increased by 24% after the humidification test. On the other hand, in the case of the silver alloy according to the present invention, the increase rate of the specific resistance is within 2% to 12%. These results are consistent with the fact that in the case of a silver alloy, the transmittance is hardly changed by an environmental test, and shows that the silver alloy is also electrically stable.
次に、上記腐食試験前後の薄膜について密着性試験を行った。この試験は、上記の密着性試験と同様、薄膜をクロスカットし、1mm角のマス目を100マス形成した。そして、セロハンテープを貼り付け、密着させて一気に剥がした。評価の方法は上記と同様、5段階で評価した。表4は、この密着性試験の結果を示す。 Next, an adhesion test was performed on the thin film before and after the corrosion test. In this test, similarly to the above-described adhesion test, the thin film was cross-cut to form 100 squares of 1 mm squares. Then, cellophane tape was affixed and brought into close contact and peeled off at once. The evaluation method was evaluated in five steps as described above. Table 4 shows the results of this adhesion test.
この結果、純銀薄膜の場合、腐食試験後には薄膜が基板から全面剥がれが生じることがわかる。これに対し、本発明に係る銀合金の場合、密着性が大きく改善されており、特に、環境試験実施後も成膜直後と同様に全くはがれない強い密着力を得ることが可能になった。これは、電極、配線パターン作成の実用目的には大いに有効である。 As a result, in the case of a pure silver thin film, it can be seen that the thin film peels off the entire surface after the corrosion test. On the other hand, in the case of the silver alloy according to the present invention, the adhesion is greatly improved, and in particular, it is possible to obtain a strong adhesion that does not peel off at all after the environmental test as well as immediately after the film formation. This is very effective for practical purposes of creating electrodes and wiring patterns.
本実施形態では、更に、各薄膜のエッチング性の評価も行なった。ここでも上記の腐食試験前後の薄膜を試料とした。基板上の薄膜に、フォトレジストをスピンコーターで塗布、乾燥し、フォトマスクにより専用パターン(100μmのライン&スペース)を露光後、一定時間ホールドし、その後現像、乾燥した。そして、銀のエッチング液に約30秒(添加元素の種類によっては、エッチング速度に差があるため適宜に調整した)、薄膜のエッチングを行った。その後、レジスト剥離、洗浄、乾燥し、パタニングが完成された基板とした。この基板につき、100〜400倍の光学顕微鏡、電子顕微鏡を用いて観察した。オーバーエッチング量、テーパーの測定には、レジスト付きの基板を使用し、切断後断面観察、測定した。評価は各項目を総合し、5段階で判定した。「0」「1」判定は、実用には不向きな状態で、「4」「5」判定は、実用に推奨できる状態として判断した。この評価結果を表5に示す。 In the present embodiment, the etching property of each thin film was also evaluated. Here again, the thin film before and after the corrosion test was used as a sample. Photoresist was applied to the thin film on the substrate with a spin coater and dried, and a dedicated pattern (100 μm line and space) was exposed with a photomask, then held for a certain time, and then developed and dried. Then, the thin film was etched in the silver etching solution for about 30 seconds (depending on the type of the additive element, the etching rate was appropriately adjusted). Thereafter, the resist was peeled, washed, and dried to obtain a substrate on which patterning was completed. The substrate was observed using an optical microscope and an electron microscope of 100 to 400 times. For measurement of the amount of overetching and taper, a substrate with a resist was used, and the cross section was observed and measured after cutting. Evaluation was made in 5 stages by combining each item. The “0” and “1” judgments were unsuitable for practical use, and the “4” and “5” judgments were judged as being recommended for practical use. The evaluation results are shown in Table 5.
評価結果から、純銀薄膜の場合は、直線性は良くエッチング後の残渣物も少なかったが、断面パターンでのオーバーエッチング量が多く、これに起因するテーパーがきつく実用には不向きであった。一方、本発明に係る銀合金薄膜の場合は、各種添加元素の効果により大きく改善され、実用レベルに到達している。 From the evaluation results, in the case of a pure silver thin film, the linearity was good and the residue after etching was small, but the amount of over-etching in the cross-sectional pattern was large, and this was unsuitable for practical use where the taper resulting from this was tight. On the other hand, in the case of the silver alloy thin film according to the present invention, it is greatly improved by the effect of various additive elements and has reached a practical level.
本発明は、薄膜トランジスタ型液晶ディスプレイ(TFT−LCD)、有機ELディスプレイ、プラズマディスプレイといった各種の表示デバイスの電極・配線材料として有用である。 The present invention is useful as an electrode / wiring material for various display devices such as a thin film transistor type liquid crystal display (TFT-LCD), an organic EL display, and a plasma display.
TFT−LCDでは、2枚のガラス基板間に液晶材が封入される構造を有し、上側のガラス基板にはフィルターが、下側のガラス基板には薄型トランジスタ(TFT)が形成される。TFT基板側の電極には、ゲート電極、ソース電極、ドレイン電極が形成される。これらの電極材料及びITO透明電極に対する配線材料として、本発明に係る銀合金が有用である。例えば、ホウ珪酸ガラスの透明基板に絶縁膜等を形成し、これに本発明に係る銀合金薄膜の一例としてAg−1.7%Cuを膜厚120Åで形成し、エッチングを行い比抵抗値を評価すると、3.421μΩ・cmと低い比抵抗であり、耐環境性にも優れその有用性が確認できた。 A TFT-LCD has a structure in which a liquid crystal material is sealed between two glass substrates. A filter is formed on the upper glass substrate, and a thin transistor (TFT) is formed on the lower glass substrate. A gate electrode, a source electrode, and a drain electrode are formed on the electrode on the TFT substrate side. The silver alloy according to the present invention is useful as a wiring material for these electrode materials and ITO transparent electrodes. For example, an insulating film or the like is formed on a transparent substrate of borosilicate glass, and Ag-1.7% Cu is formed with a thickness of 120 mm as an example of a silver alloy thin film according to the present invention, and etching is performed to obtain a specific resistance value. As a result of evaluation, the resistivity was as low as 3.421 μΩ · cm, the environment resistance was excellent, and its usefulness could be confirmed.
有機ELディスプレイはエレクトロルミネッセンス現象を利用したディスプレイであり、用いられるEL素子自体が発光する。一般的には、ガラス基板/ITO透明電極/第1誘電体層/蛍光体層/第2誘電体層/背面電極の蛍光体を一対の誘電体で挟んだ構造をしている。本発明に係る銀合金は、電極材料およびITO透明導電膜に対する配線材料として有効である。例えば、ホウ珪酸ガラスの透明基板にITO透明導電膜を形成し、次いで、本発明に係る銀合金薄膜の一例としてAg−1.7%Cu−1.2%Ga−7.0Mgを膜厚120Åで形成し、エッチングをして配線材料として比抵抗を評価したところ、耐環境性に優れその有用性が確認できた。 An organic EL display is a display using an electroluminescence phenomenon, and the EL element itself emits light. Generally, a glass substrate / ITO transparent electrode / first dielectric layer / phosphor layer / second dielectric layer / back electrode phosphor is sandwiched between a pair of dielectrics. The silver alloy according to the present invention is effective as a wiring material for the electrode material and the ITO transparent conductive film. For example, an ITO transparent conductive film is formed on a transparent substrate of borosilicate glass, and then Ag-1.7% Cu-1.2% Ga-7.0 Mg is used as an example of a silver alloy thin film according to the present invention. When the specific resistance was evaluated as a wiring material, it was excellent in environmental resistance, and its usefulness was confirmed.
プラズマディスプレイは、一般的に、ガラス基板内にデータ電極と表示電極(走査/維持電極)を並列に取り付け、その間隙にネオン主体のガスを封入した構造をしている。そして、各画素に封入されたネオン主体のガスを電圧によってプラズマ化して放電させてガスから紫外線を放出させ、これをガラス基板内側に塗布してある赤、青、緑の蛍光体に照射して発光させる。本発明に係る銀合金は、各種電極の電極として有効である。例えば、ホウ珪酸ガラスの透明基板に保護膜、誘電体層等を形成させ、電極材料として本発明に係る銀合金薄膜の一例としてAg−1.2%Yを膜厚120Åで形成し、評価を行ったところ、その比抵抗は5.302μΩ・cmと低い比抵抗であり、耐環境性にも優れその有用性が確認された。 In general, a plasma display has a structure in which a data electrode and a display electrode (scan / sustain electrode) are mounted in parallel in a glass substrate, and a neon-based gas is sealed in the gap. Then, the neon-dominated gas sealed in each pixel is turned into plasma by a voltage and discharged to emit ultraviolet rays from the gas, and this is irradiated to the red, blue and green phosphors applied to the inside of the glass substrate. Make it emit light. The silver alloy according to the present invention is effective as an electrode for various electrodes. For example, a protective film, a dielectric layer, and the like are formed on a transparent substrate of borosilicate glass, Ag-1.2% Y is formed as an electrode material with a film thickness of 120 mm as an example of the silver alloy thin film according to the present invention, and evaluation is performed. As a result, the specific resistance was as low as 5.302 μΩ · cm, and the environment resistance was excellent, and its usefulness was confirmed.
本発明に係る銀合金は、電磁波遮蔽体の構成材料としても好適である。電磁波遮蔽体へ適用する場合、適宜の支持体表面に、本発明に関わる銀合金を蒸着又は接合することで電磁波遮蔽体とすることができる。支持体としては、板状のアクリルやポリカーボネ−ト、シート状のゴム、繊維が適用できる。また、ガラスを支持体として光透過性を有する遮蔽材とすることができる。従って、プラズマディスプレイパネルの発光面に電磁波遮蔽のためのコーティングを施しても、光の透過率が高く、画質の劣化が無いため高い信頼性が得られる。例えば、ホウ珪酸ガラスの透明基板に、透明誘電体層、及び、本発明に係る銀合金薄膜の実用例としてAg−1.7%Cu−1.5%Ga−1.5%Dy薄膜(膜厚120Å)を形成し多層構造として評価した場合、耐環境性に優れその有用性が確認された。この透明誘電体層は銀合金薄膜との密着力も良好であり、透過率も全波長にわたって50%を超える高い透過率が得られた。
The silver alloy which concerns on this invention is suitable also as a constituent material of an electromagnetic wave shielding body. When applying to an electromagnetic wave shielding body, it can be set as an electromagnetic wave shielding body by vapor-depositing or joining the silver alloy concerning this invention on the surface of a suitable support body. As the support, plate-like acrylic, polycarbonate, sheet-like rubber, or fiber can be applied. Moreover, it can be set as the light-shielding shielding material by using glass as a support. Therefore, even if a coating for shielding electromagnetic waves is applied to the light emitting surface of the plasma display panel, high light transmittance is obtained and image quality is not deteriorated, so that high reliability can be obtained. For example, as a practical example of a transparent dielectric layer and a silver alloy thin film according to the present invention on a transparent substrate of borosilicate glass, an Ag-1.7% Cu-1.5% Ga-1.5% Dy thin film (film) When a thickness of 120 mm) was formed and evaluated as a multilayer structure, it was excellent in environmental resistance and its usefulness was confirmed. This transparent dielectric layer had good adhesion to the silver alloy thin film, and a high transmittance exceeding 50% was obtained over all wavelengths.
Claims (15)
The target which consists of a silver alloy of any one of Claims 1-6.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005170867 | 2005-06-10 | ||
JP2005170867 | 2005-06-10 | ||
PCT/JP2006/311714 WO2006132411A1 (en) | 2005-06-10 | 2006-06-12 | Silver alloy for electrode, wiring and electromagnetic shielding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2006132411A1 true JPWO2006132411A1 (en) | 2009-01-08 |
Family
ID=37498593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007520199A Pending JPWO2006132411A1 (en) | 2005-06-10 | 2006-06-12 | Silver alloy for electrode, wiring and electromagnetic shielding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006132411A1 (en) |
WO (1) | WO2006132411A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101413607B1 (en) * | 2012-09-21 | 2014-07-08 | 부산대학교 산학협력단 | metal single crystal substituted by a metal element |
KR20140122338A (en) | 2013-04-09 | 2014-10-20 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Touch Panel, Preparing Method Thereof, and Ag-Pd-Nd Alloy for Touch Panel |
CN113383099B (en) * | 2019-01-24 | 2024-05-31 | 古普塔·苏哈斯·派特 | Silver alloy with improved mechanical properties |
CN112226643B (en) * | 2020-09-18 | 2022-03-11 | 国金黄金股份有限公司 | Precious metal silver material, preparation method thereof and silverware |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002117587A (en) * | 2000-07-21 | 2002-04-19 | Target Technology Co Llc | Alloy for reflective or semi-reflective layer of optical storage medium |
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
JP2004277780A (en) * | 2003-03-13 | 2004-10-07 | Furuya Kinzoku:Kk | Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it |
JP2004315970A (en) * | 2003-04-03 | 2004-11-11 | Kobe Steel Ltd | Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING |
JP2004339585A (en) * | 2003-05-16 | 2004-12-02 | Kobe Steel Ltd | Ag-Bi-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3558301B2 (en) * | 1993-04-22 | 2004-08-25 | 三菱マテリアル株式会社 | High corrosion resistant Ag-Mg alloy thin film |
JP2003101052A (en) * | 2001-09-27 | 2003-04-04 | Fuji Electric Co Ltd | Conductive light-reflecting film, forming method therefor and solar battery |
JP2004235505A (en) * | 2003-01-31 | 2004-08-19 | Shin Etsu Handotai Co Ltd | Ohmic electrode structure for light emitting element and semiconductor element |
-
2006
- 2006-06-12 JP JP2007520199A patent/JPWO2006132411A1/en active Pending
- 2006-06-12 WO PCT/JP2006/311714 patent/WO2006132411A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002117587A (en) * | 2000-07-21 | 2002-04-19 | Target Technology Co Llc | Alloy for reflective or semi-reflective layer of optical storage medium |
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
JP2004277780A (en) * | 2003-03-13 | 2004-10-07 | Furuya Kinzoku:Kk | Layered structure of silver alloy, and electrode, electric wiring, reflective film and reflective electrode using it |
JP2004315970A (en) * | 2003-04-03 | 2004-11-11 | Kobe Steel Ltd | Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING, AND LAMINATE OF Ag-BASE ALLOY FILM FOR ELECTROMAGNETIC SHIELDING |
JP2004339585A (en) * | 2003-05-16 | 2004-12-02 | Kobe Steel Ltd | Ag-Bi-BASED ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR |
Also Published As
Publication number | Publication date |
---|---|
WO2006132411A1 (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2006132413A1 (en) | Silver alloy for electrode, wiring and electromagnetic shielding | |
JPWO2006132410A1 (en) | Silver alloy for electrode, wiring and electromagnetic shielding | |
JP6888318B2 (en) | Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film | |
JPWO2006132412A1 (en) | Silver alloy for electrode, wiring and electromagnetic shielding | |
JP6016083B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP2004002929A (en) | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material | |
CA2497395A1 (en) | Metallic material for electronic components, method of working and process for producing thereof | |
KR20140093739A (en) | Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE | |
JP2005008983A (en) | Silver-base alloy and its use for forming reflective layer, sputtering material and vapor deposition material | |
KR20190010701A (en) | Laminate wiring layer for an electronic component and a sputtering target material for forming a coating layer | |
JP2004131747A (en) | Silver alloy for display device, and display device using electrode film or reflection film formed by using the silver alloy | |
JP4918231B2 (en) | Method for producing Ag alloy film | |
JPWO2006132411A1 (en) | Silver alloy for electrode, wiring and electromagnetic shielding | |
JP6870332B2 (en) | Method for manufacturing laminated transparent conductive film, laminated wiring film and laminated wiring film | |
KR100999908B1 (en) | Al-Ni-B ALLOY MATERIAL FOR REFLECTION FILM | |
JP6292466B2 (en) | Metal thin film and Mo alloy sputtering target material for metal thin film formation | |
JP6361957B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP6037208B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP4470147B2 (en) | Thin film wiring layer | |
JP2014074225A (en) | SPUTTERING TARGET FOR FORMING Ag ALLOY FILM | |
WO2017131183A1 (en) | Multilayer transparent conductive film, multilayer wiring film and method for producing multilayer wiring film | |
JP2023156905A (en) | Target and blackened film | |
JP2004061845A (en) | Ag ALLOY FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM FORMATION | |
JP2004238648A (en) | Ag-ALLOY FILM FOR ELECTRONIC PART, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR DEPOSITING Ag-ALLOY FILM FOR ELECTRONIC PART |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090410 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121001 |