JP2003101052A - Conductive light-reflecting film, forming method therefor and solar battery - Google Patents

Conductive light-reflecting film, forming method therefor and solar battery

Info

Publication number
JP2003101052A
JP2003101052A JP2001295937A JP2001295937A JP2003101052A JP 2003101052 A JP2003101052 A JP 2003101052A JP 2001295937 A JP2001295937 A JP 2001295937A JP 2001295937 A JP2001295937 A JP 2001295937A JP 2003101052 A JP2003101052 A JP 2003101052A
Authority
JP
Japan
Prior art keywords
reflecting film
film
conductive light
substrate
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001295937A
Other languages
Japanese (ja)
Inventor
Masayoshi Uno
正義 宇野
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001295937A priority Critical patent/JP2003101052A/en
Publication of JP2003101052A publication Critical patent/JP2003101052A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To obtain a conductive light-reflecting film on which proper texture structure is installed and light confinement effect is large, and to provide its forming method. SOLUTION: An Ag alloy layer containing Al in a range of 0.1-1.0 atm.%, or an Ag layer and an Ag alloy layer containing Al in a range of 0.1-1.0 atm.% are laminated on a substrate, and a reflection film is formed. As a result, a conductive light-reflecting film having scattering reflectivity in the long wavelength region is high is obtained. When the film is applied to a thin film solar battery such as and a-Si solar battery, short-circuiting current is increased due to light confinement effect, so that conversion efficiency is increased. Moreover, the Ag layer, the Ag alloy layer containing Al, and an oxide transparent electrode film can be laminated under the same temperature conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の裏面電
極等に用いられる導電性光反射膜およびその形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive light reflecting film used for a back electrode of a solar cell and a method for forming the same.

【0002】[0002]

【従来の技術】薄膜太陽電池では、光電変換層の吸収係
数が十分に大きくない場合、光電変換量が膜厚によって
制限される。このため、光電変換層に入射した光を有効
に利用する目的で、光電変換層の後ろ側に、光反射率の
高い金属薄膜からなる導電性光反射膜を形成し、裏面電
極を兼ねる場合が多い。
2. Description of the Related Art In a thin film solar cell, the photoelectric conversion amount is limited by the film thickness when the absorption coefficient of the photoelectric conversion layer is not sufficiently large. Therefore, in order to effectively use the light incident on the photoelectric conversion layer, a conductive light reflection film made of a metal thin film having a high light reflectance is formed on the back side of the photoelectric conversion layer, and may also serve as a back electrode. Many.

【0003】更に、この導電性光反射膜は、表面に凹凸
(テクスチヤー構造)を形成することにより、光を光電
変換層へ散乱反射させている。この導電性光反射膜は、
Al、Ag等の金属または合金、あるいはこれらとSiとの合
金を用いる方法などが知られている[特開平4−334069
号公報]。また、このような凹凸形状を持つ導電性光反
射膜の形成方法としては、特開平4−218977号公報に半
連続膜と連続膜との金属二層構造を用いる方法が、特開
平9−162430号公報には、Ag膜とAlまたはAl合金膜との
金属二層構造が、また特開平8−288529号公報に適当な
凹凸形状をもつ薄い金属膜を下部電極とする方法が開示
されている。尚、半連続膜とは、厚さの不均一が大き
く、幅或いは長さの一部に途切れた部分のある膜を言
い、連続膜とは、そのような途切れた部分の無い膜を言
う。
Further, this conductive light reflecting film has irregularities (texture structure) formed on the surface thereof to scatter and reflect light to the photoelectric conversion layer. This conductive light reflection film is
A method using a metal or alloy such as Al or Ag, or an alloy of these and Si is known [Japanese Patent Application Laid-Open No. 4-334069].
Issue bulletin]. Further, as a method of forming a conductive light-reflecting film having such a concavo-convex shape, a method of using a metal two-layer structure of a semi-continuous film and a continuous film is disclosed in JP-A-9-162430. JP-A-8-288529 discloses a metal two-layer structure of an Ag film and an Al or Al alloy film, and a method of using a thin metal film having an appropriate uneven shape as a lower electrode. . The semi-continuous film is a film having a large nonuniformity in thickness and has a discontinuous portion in a part of width or length, and the continuous film is a film without such a discontinuous portion.

【0004】[0004]

【発明の解決しようとする課題】従来、導電性光反射膜
のテクスチヤー構造を改善する手段としては、導電性光
反射膜形成時の基板温度や堆積速度を調節して行ってい
た。しかし、これらの条件の調整だけでは、薄膜形成装
置の構造等による制限があり、満足できる特性のテクス
チヤー構造を得られなかった。
Conventionally, the means for improving the texture structure of the conductive light reflecting film has been to adjust the substrate temperature and the deposition rate at the time of forming the conductive light reflecting film. However, only by adjusting these conditions, there was a limitation due to the structure of the thin film forming apparatus, and it was not possible to obtain a textured structure having satisfactory characteristics.

【0005】本発明の目的は、導電性光反射膜の形成材
料中の添加物量を最適化することにより、満足できる特
性のテクスチヤー構造をもつ導電性光反射膜およびその
形成方法を得ることにある。
An object of the present invention is to obtain a conductive light-reflecting film having a textured structure with satisfactory characteristics and a method for forming the same by optimizing the amount of additives in the material for forming the conductive light-reflecting film. .

【0006】[0006]

【課題を解決するための手段】上記の課題解決のため本
発明の導電性光反射膜は、基板上に少なくとも0.1〜
1.0at%の範囲のAlを含むAg合金層とを積層したもの
とする。0.1〜1.0at %の範囲のAlを含むAg合金
層とを積層すると、後記のように特に長波長領域の散乱
反射率が増大し、光閉じ込め効果が向上する。走査電子
顕微鏡観察によれば、粒形状が明瞭になり、凹凸がはっ
きりしている。何故そのようになるのか、詳細は不明で
あるが、発明者はAlを含ませることにより、融点が低下
するので、原子の拡散が促進されて粒形状になり易くな
るためと考えている。
In order to solve the above-mentioned problems, the conductive light-reflecting film of the present invention is provided on a substrate with at least 0.1.
An Ag alloy layer containing Al in the range of 1.0 at% is laminated. When a Ag alloy layer containing Al in the range of 0.1 to 1.0 at% is laminated, the scattering reflectance particularly in the long wavelength region increases and the light confinement effect improves, as described later. According to the scanning electron microscope observation, the grain shape becomes clear and the unevenness becomes clear. The reason why this is the case is not clear, but the inventor believes that the inclusion of Al lowers the melting point, which promotes the diffusion of atoms and facilitates the formation of grains.

【0007】Al 含有率が0.1at%未満では、散乱反
射率の増大分が少なく効果が小さい。また、Al含有率が
1.0at%を越えると、その上に透明導電膜を堆積した
とき、その透明導電膜が着色するなどの悪影響が起き
る。従ってAl含有率は上記の範囲が適当である。特開平
9−162430号公報に開示されているのはAlまたはAl合金
であるので、本発明の0.1〜1.0at%の範囲のAlを
含むAg合金は該当しないと考えられる。
If the Al content is less than 0.1 at%, the increase in scattering reflectance is small and the effect is small. Further, when the Al content exceeds 1.0 at%, when the transparent conductive film is deposited on the Al content, adverse effects such as coloring of the transparent conductive film occur. Therefore, the Al content is appropriately within the above range. Kohei
It is considered that the Ag alloy containing Al in the range of 0.1 to 1.0 at% of the present invention is not applicable, because it is Al or Al alloy disclosed in the 9-162430 publication.

【0008】特に、Alを含むAg合金層の膜が連続膜であ
って、その膜厚を20〜200nmの範囲内とするのが良
い。連続であればAlを含むAg合金層が単層の場合も利用
できる。膜厚が20nm未満では、連続した膜にならな
い。逆に200nmを越える厚さでは、粒形状が再び平坦
化してしまう。また無闇に厚くすることはむだである。
先に挙げた特開平4−218977号公報では、下地膜を半連
続としており、連続膜とする本発明とは異なる発明であ
る。また、特開平9−162430号公報に開示されているAl
またはAl合金の厚さは1〜20nmであり、この点でも本
発明は異なる発明である。
Particularly, it is preferable that the film of the Ag alloy layer containing Al is a continuous film and the film thickness thereof is within the range of 20 to 200 nm. If it is continuous, it can be used even if the Ag alloy layer containing Al is a single layer. If the film thickness is less than 20 nm, it will not be a continuous film. On the contrary, if the thickness exceeds 200 nm, the grain shape is flattened again. It is useless to thicken it too much.
In the above-mentioned Japanese Patent Laid-Open No. 4-218977, the base film is semi-continuous, which is different from the present invention in which it is a continuous film. In addition, Al disclosed in JP-A-9-162430
Alternatively, the Al alloy has a thickness of 1 to 20 nm, and the present invention is also a different invention in this respect.

【0009】基板上にAg層と、Alを含むAg合金層とを積
層する場合は、Ag層上にAlを含むAg合金層を積層して
も、Alを含むAg合金層上にAg層を積層しても良い。基板
上にAg層とAlを含むAg合金層とを、複数回組み合わせて
積層しても良い。Ag層がほぼ一様な厚さなので、Ag層が
上にあっても下側にあっても、Alを含むAg合金層の表面
の凹凸が保たれる。
When the Ag layer and the Ag alloy layer containing Al are laminated on the substrate, even if the Ag alloy layer containing Al is laminated on the Ag layer, the Ag layer is formed on the Ag alloy layer containing Al. You may laminate. The Ag layer and the Ag alloy layer containing Al may be combined and laminated a plurality of times on the substrate. Since the Ag layer has a substantially uniform thickness, the unevenness of the surface of the Ag alloy layer containing Al is maintained regardless of whether the Ag layer is on the upper side or the lower side.

【0010】Alを含むAg合金層の粒径が、0.2〜1μ
mの範囲内にあると良い。また、Alを含むAg合金層の凹
凸形状の高低差が0.06μm以上であると良い。Alを
含むAg合金層の粒形状は概ね相似形になるので、粒径
が、0.2μm未満と小さくなると、凹凸形状の高低差
が小さくなり散乱反射も小さくなってしまう。逆に粒径
が大き過ぎると、高低差が大きくなって合金層の連続性
が保たれ難くなる。後記実施例のように上の範囲が適当
な粒径、高低差である。
The grain size of the Ag alloy layer containing Al is 0.2 to 1 μm.
It should be in the range of m. Further, it is preferable that the height difference of the uneven shape of the Ag alloy layer containing Al is 0.06 μm or more. Since the grain shape of the Ag alloy layer containing Al is similar to each other, if the grain size becomes smaller than 0.2 μm, the height difference of the uneven shape becomes small and the scattering reflection also becomes small. On the other hand, if the particle size is too large, the difference in height becomes large and it becomes difficult to maintain the continuity of the alloy layer. As in Examples described later, the above range is an appropriate particle size and height difference.

【0011】Alを含むAg合金層との積層の上方に、導電
性透明電極膜が有っても、透明であれば散乱反射は大き
く保たれる。基板材料としては、絶縁基板、可とう性基
板、プラスチックフィルム基板等様々な基板を使用でき
る。導電性光反射膜の形成方法としては、基板を250
〜360℃に加熱した状態でAg層、Alを含むAg合金層お
よび導電性透明電極膜を形成するものとする。
Even if there is a conductive transparent electrode film above the laminated layer with the Ag alloy layer containing Al, if it is transparent, the scattering reflection is largely maintained. As the substrate material, various substrates such as an insulating substrate, a flexible substrate, and a plastic film substrate can be used. As a method of forming the conductive light reflection film, the substrate is set to 250.
The Ag layer, the Ag alloy layer containing Al, and the conductive transparent electrode film are formed while being heated to ˜360 ° C.

【0012】同一温度で成膜出来るので、工程が簡単に
できる利点がある。成膜温度を変化させない点でも本発
明は、先に挙げた特開平4−218977号公報と異なる。
Since the films can be formed at the same temperature, there is an advantage that the process can be simplified. The present invention is also different from the above-mentioned JP-A-4-218977 in that the film forming temperature is not changed.

【0013】[0013]

【発明の実施の形態】[実施例1]図1は、本発明にか
かる実施例1の導電性光反射膜の断面図である。透明基
板1としてはアラミド系の高分子樹脂材を使用し、その
上に導電性光反射膜を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 is a sectional view of a conductive light reflecting film of a first embodiment according to the present invention. An aramid-based polymer resin material was used as the transparent substrate 1, and a conductive light reflecting film was formed thereon.

【0014】導電性光反射膜は、厚さ100nmの99.
99%(4N) の純銀層(以下Ag層と記す)2 と厚さ100
nmの0.3原子% (以下at% と記す)のAlを含むAg−Al
合金層3 とからなる。その上に透明電極膜4 として厚さ
60nmの酸化亜鉛膜(以下ZnO 膜と記す)が形成されて
いる。各層は、形成温度350℃、Ar雰囲気0.5Pa
で、同一の真空槽中でロールツーロール方式を用いて、
連続的にスパッタ法で製膜した。Ag層2 及びAg−Al合金
層3 の製膜速度は6.4nm/s、ZnO 膜の製膜速度は1.
9nm/sである。
The conductive light-reflecting film has a thickness of 99.
99% (4N) pure silver layer (hereinafter referred to as Ag layer) 2 and thickness 100
Ag-Al containing 0.3 atomic% of nm (hereinafter referred to as at%) Al
And alloy layer 3. A 60 nm thick zinc oxide film (hereinafter referred to as a ZnO film) is formed thereon as a transparent electrode film 4. Each layer has a forming temperature of 350 ° C and an Ar atmosphere of 0.5 Pa.
Then, using the roll-to-roll method in the same vacuum tank,
The film was continuously formed by the sputtering method. The deposition rate of Ag layer 2 and Ag-Al alloy layer 3 is 6.4 nm / s, and the deposition rate of ZnO film is 1.
It is 9 nm / s.

【0015】評価は、電極表面の反射率を比較すること
で行った。入射光に対する全反射光の割合(トータル反
射率と呼びRtで表す)及び垂直方向から5度傾けた入射
光に対する−5度方向の反射光の割合(垂直反射率と呼
びRvで表す)とから、散乱反射率=(Rt- Rv )/Rtを求
めた。この散乱反射率が高いほど、光閉じ込め効果が大
きいと判断できる。
The evaluation was carried out by comparing the reflectances of the electrode surfaces. From the ratio of the total reflected light to the incident light (represented by the total reflectance is Rt) and the ratio of the reflected light in the −5 ° direction to the incident light inclined 5 ° from the vertical direction (represented by the vertical reflectance Rv) , Scattering reflectance = (Rt−Rv) / Rt was determined. It can be judged that the higher the scattering reflectance, the greater the light confinement effect.

【0016】図2は、本発明にかる導電性光反射膜の波
長依存性を調べた特性図である。縦軸は散乱反射率、横
軸は波長である。比較例として、同じ条件で厚さ100
nmの99.99%(4N) の純銀層を二回堆積し、その上に
透明電極層として厚さ60nmのZnO 膜を形成した導電性
光反射膜の波長依存性も記載した。
FIG. 2 is a characteristic diagram for examining the wavelength dependence of the conductive light reflecting film according to the present invention. The vertical axis represents the scattering reflectance and the horizontal axis represents the wavelength. As a comparative example, the thickness is 100 under the same conditions.
The wavelength dependence of the conductive light-reflecting film in which a pure silver layer of 99.99% (4N) of nm was deposited twice and a ZnO film having a thickness of 60 nm was formed thereon as a transparent electrode layer was also described.

【0017】純Ag膜を2層形成した従来の膜(図2中
A)に比べ、Ag層上にAg・Al合金層を形成した本実施例
の導電性光反射膜(図2中B)では、散乱反射率が60
0〜800nmの波長範囲で、最大40%向上しているこ
とがわかる。図3、4はそれぞれ、従来の膜と本実施例
の導電性光反射膜との表面を観察した走査電子顕微鏡
(SEM)写真である。
Compared with the conventional film having two pure Ag films (A in FIG. 2), the conductive light-reflecting film of this embodiment in which an Ag.Al alloy layer is formed on the Ag layer (B in FIG. 2). Then, the scattering reflectance is 60
It can be seen that the maximum improvement is 40% in the wavelength range of 0 to 800 nm. 3 and 4 are scanning electron microscope (SEM) photographs of the surfaces of the conventional film and the conductive light-reflecting film of this example, respectively.

【0018】この観察結果から、図3の従来の光反射膜
に比べ、図4の本実施例の光反射膜の方が、凹凸がはっ
きりした粒状である。次に、本実施例による光反射膜の
光閉じ込め効果を確認するため、アモルフアスシリコン
(a−Si)およびアモルフアスシリコンゲルマニウム(a
−SiGe)をi層に用いたa−Si/a−SiGe/a−SiGe構造の
トリプル接合型の太陽電池を試作した。図6はその太陽
電池の積層状態を示す断面図である。なお、比較のた
め、上記比較例の光反射膜を持つa−Si/a−SiGe/a−S
iGe構造のトリプル接合型の太陽電池も同時に試作し
た。
From this observation result, the light-reflecting film of this embodiment shown in FIG. 4 is more granular than the conventional light-reflecting film shown in FIG. Next, in order to confirm the light confining effect of the light reflecting film according to the present embodiment, amorphous silicon (a-Si) and amorphous silicon germanium (a
-SiGe) was used for the i-layer, and a triple junction solar cell with an a-Si / a-SiGe / a-SiGe structure was prototyped. FIG. 6 is a sectional view showing a laminated state of the solar cell. For comparison, a-Si / a-SiGe / a-S having the light-reflecting film of the above comparative example is used.
An iGe structure triple junction solar cell was also prototyped at the same time.

【0019】フィルム基板1側からボトムセル、ミドル
セル、トップセルとなっており、ボトムセルとミドルセ
ルのi層がa−SiGe、トップセルのi層がa−Siとなってい
る。ボトムセル、ミドルセル、トップセルのi層膜厚
は、それぞれ60〜120nm、60〜160nm、70〜
100nmである。各セルの電流マッチングをとるために
は各層の膜厚およびバンドギャップの制御が重要とな
る。ボトムセル、ミドルセル、トップセルの各i層の光
学ギャップはそれぞれ1.35〜1.6eV、1.5〜
1.6eV、1.75〜1.8eV である。
From the film substrate 1 side, there are a bottom cell, a middle cell, and a top cell. The i layer of the bottom cell and the middle cell is a-SiGe, and the i layer of the top cell is a-Si. The i-layer thickness of the bottom cell, middle cell, and top cell is 60 to 120 nm, 60 to 160 nm, and 70 to
It is 100 nm. Controlling the film thickness and bandgap of each layer is important for current matching of each cell. The optical gap of each i layer of the bottom cell, middle cell, and top cell is 1.35 to 1.6 eV, 1.5 to
It is 1.6 eV and 1.75 to 1.8 eV.

【0020】図7は、両太陽電池の反射スペクトル図で
ある。図中の実線が本実施例の光反射膜を適用した太陽
電池の反射スペクトル、破線は比較例の光反射膜を適用
した太陽電池の反射スペクトルである。この図から明ら
かに本実施例の基板を適用したセルの方が長波長額域の
反射率が小さくなっており、光閉じ込め性能が向上して
いることが分かる。
FIG. 7 is a reflection spectrum diagram of both solar cells. In the figure, the solid line represents the reflection spectrum of the solar cell to which the light reflecting film of this example was applied, and the broken line represents the reflection spectrum of the solar cell to which the light reflecting film of the comparative example was applied. From this figure, it is apparent that the cell to which the substrate of this example is applied has a smaller reflectance in the long-wavelength range, and the optical confinement performance is improved.

【0021】図8は、両太陽電池の収集効率の波長依存
性を示す特性図である。図7の反射スペクトルと良く対
応して、本実施例の光反射膜を用いた太陽電池では、長
波長領域での収集効率が向上していることが分かる。結
果的に、収集効率をAM1.5、1sun のもとで積分して
得られるトップ、ミドル、ボトムセルのトータル電流は
約1mA/cm2向上した。
FIG. 8 is a characteristic diagram showing the wavelength dependence of the collection efficiency of both solar cells. It can be seen that the solar cell using the light-reflecting film of this example has improved collection efficiency in the long wavelength region, which corresponds well to the reflection spectrum of FIG. 7. As a result, the total current of the top, middle, and bottom cells obtained by integrating the collection efficiency under AM1.5, 1 sun was improved by about 1 mA / cm 2 .

【0022】表1に種々の電極上に形成したトリプルセ
ルのセル特性比較結果を示す。
Table 1 shows comparison results of cell characteristics of triple cells formed on various electrodes.

【0023】[0023]

【表1】 この中で従来の光反射膜を適用した太陽電池がセルA、
本実施例の光反射膜を適用した太陽電池がセルBであ
る。セル特性の各パラメータはセルAの値で規格化され
ている。
[Table 1] Among them, the solar cell to which the conventional light reflecting film is applied is the cell A,
The solar cell to which the light reflecting film of this embodiment is applied is the cell B. Each parameter of the cell characteristics is standardized by the value of the cell A.

【0024】この表から、セルBはセルAに比べて短絡
電流(Isc)が4.5% 大きくなっていることが分か
る。この結果は、前述の収集効率の結果と良く対応して
いる。しかしながら、セルBは開放電圧(Voc)および
フィルファクター(FF)がそれぞれ1〜2% 程度小さく
なっており、結果的に変換効率の向上は2.2% となっ
た。
From this table, it can be seen that the short circuit current (Isc) of cell B is 4.5% larger than that of cell A. This result corresponds well with the above-mentioned result of collection efficiency. However, the open voltage (Voc) and the fill factor (FF) of the cell B were reduced by about 1 to 2%, respectively, and as a result, the improvement of the conversion efficiency was 2.2%.

【0025】Voc、FFの低下原因は電極の凹凸が激しく
なったことによりホワイトストライプスと称する欠陥が
発生したことによると考えられる(Japanese Journal o
f Applied Physics, Vol.29,No.4,April ,1990,P
P.630 −635参照)。実際、セルBの透過電子顕微鏡
(TEM)観察を行ったところ、凹凸の谷の部分からホワ
イトストライプスが発生していることが確認できた。
It is considered that the cause of the decrease in Voc and FF is due to the occurrence of defects called white stripes due to the severe irregularities of the electrodes (Japanese Journal o.
f Applied Physics, Vol. 29, No.4, April, 1990, P
P. 630-635). In fact, when the cell B was observed with a transmission electron microscope (TEM), it was confirmed that white stripes were generated from the valleys of the irregularities.

【0026】Voc、FFの低下を抑制するには電極の凹凸
形状を若干緩やかにしてホワイトストライプスの発生を
抑える必要がある。 [実施例2]実施例1同様の方法で、各電極層の膜厚
を、Ag層:140nm、Ag合金層:60nm、ZnO層:60n
mとした。
In order to suppress the decrease of Voc and FF, it is necessary to make the concavo-convex shape of the electrode slightly gentle to suppress the occurrence of white stripes. [Example 2] In the same manner as in Example 1, the thickness of each electrode layer was changed to Ag layer: 140 nm, Ag alloy layer: 60 nm, ZnO layer: 60 n.
It was m.

【0027】この光反射膜の散乱反射率の測定結果も図
2に示した(図中C)。実施例1に比べ、600〜80
0nmの波長範囲での散乱反射率が多少低下しているもの
の、大きな差は見られないことが分かる。図5は本実施
例2の導電性光反射膜の表面を観察した走査電子顕微鏡
(SEM)写真である。
The measurement result of the scattering reflectance of this light reflecting film is also shown in FIG. 2 (C in the figure). Compared with Example 1, 600-80
It can be seen that the scattering reflectance in the wavelength range of 0 nm is slightly lowered, but no significant difference is observed. FIG. 5 is a scanning electron microscope (SEM) photograph of the surface of the conductive light-reflecting film of Example 2.

【0028】図4の実施例1の光反射膜に比べ、図5の
実施例2の光反射膜の方が、凹凸がやや緩和されている
ことが分かる。実施例2の光反射膜を適用してトリプル
セル型太陽電池を試作した。その太陽電池の特性を表1
中のセルCの欄に記載した。セルAに対するIsc の向上
分は3.9% であり、実施例1のセルBよりもわずかに
低くなっている。しかしながら、Voc、FFの低下が抑え
られ、セルBよりも効率はわずかながら高くなった。
It can be seen that the light-reflecting film of Example 2 of FIG. 5 is slightly less uneven than the light-reflecting film of Example 1 of FIG. A triple cell solar cell was manufactured by applying the light reflecting film of Example 2. The characteristics of the solar cell are shown in Table 1.
It is described in the column of cell C in the inside. The improvement of Isc with respect to the cell A is 3.9%, which is slightly lower than that of the cell B of Example 1. However, the decrease of Voc and FF was suppressed, and the efficiency was slightly higher than that of cell B.

【0029】[実施例3]実施例1と同様の方法で、Ag
合金層中のAl濃度を0.1at% にして、同様に光反射膜
の製膜をおこなった。この光反射膜の散乱反射率の測定
結果も図2に示した(図中D)。実施例2に比べやや散
乱反射率が低下するものの、従来よりはテクスチヤー化
が進んでいることが分かる。
[Embodiment 3] In the same manner as in Embodiment 1, Ag
The Al concentration in the alloy layer was set to 0.1 at%, and a light reflecting film was similarly formed. The measurement result of the scattering reflectance of this light reflecting film is also shown in FIG. 2 (D in the figure). It can be seen that although the scattering reflectance is slightly lower than in Example 2, it is more textured than in the past.

【0030】本実施例の光反射膜を適用してトリプルセ
ル型太陽電池を試作した。その太陽電池の特性を表1中
のセルDの欄に記載した。セルAに対するIscの向上分
は2.6% であり、セルBの半分程度に低下している。
しかしながら、Voc、FFの低下が抑えられたため、セル
Aに比べれば1.6% 効率が高くなっている。
A triple cell type solar cell was manufactured by applying the light reflecting film of this example. The characteristics of the solar cell are shown in the column of cell D in Table 1. The improvement in Isc with respect to the cell A is 2.6%, which is about half that of the cell B.
However, the decrease in Voc and FF was suppressed, so the efficiency was 1.6% higher than that of cell A.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、透
明基板上に導電性光反射膜を形成する際に、微量のAlを
ドープしたAg合金を積層することにより、同一の成膜温
度で光閉じ込め効果を向上させた膜を形成することが出
来る。本発明の導電性光反射膜をa−Si太陽電池等の薄
膜太陽電池に適用すれば、光閉じ込め効果により短絡電
流が増大する。従って、容易に従来より変換効率を高め
た太陽電池を提供することが可能となる。
As described above, according to the present invention, when a conductive light reflecting film is formed on a transparent substrate, by stacking a small amount of Al-doped Ag alloy, the same film forming temperature can be obtained. Can form a film having an improved light confinement effect. When the conductive light-reflecting film of the present invention is applied to a thin-film solar cell such as an a-Si solar cell, the short-circuit current increases due to the light confinement effect. Therefore, it becomes possible to easily provide a solar cell having higher conversion efficiency than conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の導電性光反射膜の断面図FIG. 1 is a sectional view of a conductive light-reflecting film of Example 1 of the present invention.

【図2】本発明実施例1、実施例2、実施例3および比
較例の導電性光反射膜の散乱反射率の波長依存性を調べ
た特性図
FIG. 2 is a characteristic diagram in which the wavelength dependence of the scattering reflectance of the conductive light-reflecting films of Examples 1, 2 and 3 of the present invention and a comparative example is examined.

【図3】従来の導電性光反射膜の表面を観察したSEM
写真
FIG. 3 is an SEM observing the surface of a conventional conductive light reflecting film.
Photo

【図4】本発明実施例1の導電性光反射膜の表面を観察
したSEM写真
FIG. 4 is an SEM photograph of the surface of the conductive light-reflecting film of Example 1 of the present invention.

【図5】本発明実施例2の導電性光反射膜の表面を観察
したSEM写真
FIG. 5 is an SEM photograph of the surface of the conductive light-reflecting film of Example 2 of the present invention.

【図6】試作したa−Si/a−SiGe/a−SiGe構造のトリ
プル接合型の太陽電池の積層状態を示す断面図
FIG. 6 is a cross-sectional view showing a stacked state of a prototype a-Si / a-SiGe / a-SiGe structure triple-junction solar cell.

【図7】本発明実施例および比較例の光反射膜を適用し
た太陽電池の反射率スペクトル図
FIG. 7 is a reflectance spectrum diagram of solar cells to which the light-reflecting films of Examples of the present invention and Comparative Examples are applied.

【図8】本発明実施例および比較例の光反射膜を適用し
た太陽電池の収集効率の波長依存性を示す特性図
FIG. 8 is a characteristic diagram showing the wavelength dependence of the collection efficiency of the solar cells to which the light reflecting films of the example of the present invention and the comparative example are applied.

【符号の説明】[Explanation of symbols]

1.透明基板 2.Ag(4N)層 3.Al−Ag合金層 4.透明電極膜 5.ボトムn層 6.ボトムi層 7.ボトムp層 8.ミドルn層 9.ミドルi層 10.ミドルp 層 11.トップn 層 12.トップi 層 13.トップp 層 1. Transparent substrate 2. Ag (4N) layer 3. Al-Ag alloy layer Four. Transparent electrode film Five. Bottom n layer 6. Bottom i layer 7. Bottom p layer 8. Middle n layer 9. Middle i layer Ten. Middle p layer 11. Top n tier 12. Top i tier 13. Top p layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA11 BA22 BB02 BC03 BD09 CA05 EA01 EA08 5F051 AA05 DA04 FA15 FA19 FA23 FA25 GA05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K029 AA11 BA22 BB02 BC03 BD09                       CA05 EA01 EA08                 5F051 AA05 DA04 FA15 FA19 FA23                       FA25 GA05

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】基板上に0.1〜1.0at%の範囲のAlを
含むAg合金層を積層したことを特徴とする導電性光反射
膜。
1. A conductive light-reflecting film comprising an Ag alloy layer containing Al in the range of 0.1 to 1.0 at% laminated on a substrate.
【請求項2】Alを含むAg合金層の膜が連続であって、そ
の膜厚が20〜200nmであることを特徴とする請求項
1に記載の導電性光反射膜。
2. The conductive light-reflecting film according to claim 1, wherein the film of the Ag alloy layer containing Al is continuous and has a film thickness of 20 to 200 nm.
【請求項3】基板上に少なくともAg層と、0.1〜1.
0at%の範囲のAlを含むAg合金層とを積層したことを特
徴とする導電性光反射膜。
3. A substrate having at least an Ag layer, and 0.1-1.
A conductive light-reflecting film, comprising: an Ag alloy layer containing Al in an amount of 0 at%.
【請求項4】Alを含むAg合金層の膜が連続であって、そ
の膜厚が20〜200nmであることを特徴とする請求項
3に記載の導電性光反射膜。
4. The conductive light reflecting film according to claim 3, wherein the film of the Ag alloy layer containing Al is continuous and has a film thickness of 20 to 200 nm.
【請求項5】基板上にAg層、Alを含むAg合金層の順に積
層したことを特徴とする請求項3または4に記載の導電
性光反射膜。
5. The conductive light reflecting film according to claim 3, wherein an Ag layer and an Ag alloy layer containing Al are laminated in this order on the substrate.
【請求項6】基板上にAlを含むAg合金層、Ag層の順に積
層したことを特徴とする請求項3または4に記載の導電
性光反射膜。
6. The conductive light reflecting film according to claim 3, wherein an Ag alloy layer containing Al and an Ag layer are laminated in this order on the substrate.
【請求項7】基板上にAg層とAlを含むAg合金層とを、複
数回組み合わせて積層したことを特徴とする請求項3ま
たは4に記載の導電性光反射膜。
7. The conductive light-reflecting film according to claim 3, wherein an Ag layer and an Ag alloy layer containing Al are laminated a plurality of times on a substrate and laminated.
【請求項8】積層されたAg層もしくは、Alを含むAg合金
層の粒径が0.2〜1μmであることを特徴とする請求
項1ないし7のいずれかに記載の導電性光反射膜。
8. The conductive light-reflecting film according to claim 1, wherein the grain size of the stacked Ag layer or the Ag alloy layer containing Al is 0.2 to 1 μm. .
【請求項9】積層されたAlを含むAg合金層の凹凸形状が
0.06μm以上であることを特徴とする請求項1ない
し8のいずれかに記載の導電性光反射膜。
9. The conductive light-reflecting film according to claim 1, wherein the unevenness of the laminated Ag alloy layer containing Al is 0.06 μm or more.
【請求項10】Alを含むAg合金層の積層の上方に、導電
性透明電極膜を有することを特徴とする請求項1ないし
9のいずれかに記載の導電性光反射膜。
10. The conductive light-reflecting film according to claim 1, further comprising a conductive transparent electrode film above a stack of Ag alloy layers containing Al.
【請求項11】基板材料として絶縁基板を使用したこと
を特徴とする請求項1ないし10のいずれかに記載の導
電性光反射膜。
11. The conductive light-reflecting film according to claim 1, wherein an insulating substrate is used as the substrate material.
【請求項12】基板材料として可とう性基板を使用した
ことを特徴とする請求項1ないし10のいずれかに記載
の導電性光反射膜。
12. The conductive light reflection film according to claim 1, wherein a flexible substrate is used as the substrate material.
【請求項13】基板材料としてプラスチックフィルム基
板を使用したことを特徴とする請求項11または12に
記載の導電性光反射膜。
13. The conductive light-reflecting film according to claim 11, wherein a plastic film substrate is used as the substrate material.
【請求項14】基板上にAg層、Alを含むAg合金層および
導電性透明電極膜を積層した導電性光反射膜の形成方法
において、基板を250〜360℃に加熱した状態でAg
層、Alを含むAg合金層および導電性透明電極膜を形成す
ることを特徴とする導電性光反射膜の形成方法。
14. A method of forming a conductive light-reflecting film comprising a substrate, an Ag layer, an Ag alloy layer containing Al, and a conductive transparent electrode film laminated on the substrate, wherein the substrate is heated to 250 to 360 ° C.
A method for forming a conductive light-reflecting film, which comprises forming a layer, an Ag alloy layer containing Al, and a conductive transparent electrode film.
【請求項15】請求項1ないし13のいずれかに記載の
導電性光反射膜を、裏面電極として備えることを特徴と
する太陽電池。
15. A solar cell comprising the conductive light reflecting film according to claim 1 as a back electrode.
JP2001295937A 2001-09-27 2001-09-27 Conductive light-reflecting film, forming method therefor and solar battery Withdrawn JP2003101052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295937A JP2003101052A (en) 2001-09-27 2001-09-27 Conductive light-reflecting film, forming method therefor and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295937A JP2003101052A (en) 2001-09-27 2001-09-27 Conductive light-reflecting film, forming method therefor and solar battery

Publications (1)

Publication Number Publication Date
JP2003101052A true JP2003101052A (en) 2003-04-04

Family

ID=19117284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295937A Withdrawn JP2003101052A (en) 2001-09-27 2001-09-27 Conductive light-reflecting film, forming method therefor and solar battery

Country Status (1)

Country Link
JP (1) JP2003101052A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and method for manufacturing the same
WO2006132414A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132410A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132411A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132415A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
DE102011012921A1 (en) 2010-03-16 2011-12-15 Fuji Electric Co., Ltd Thin-film solar cell and process for its production
JP2012142539A (en) * 2010-12-14 2012-07-26 Mitsubishi Materials Corp Back electrode tape for thin film solar cell and manufacturing method of thin film solar cell using back electrode tape
WO2014098014A1 (en) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 Transparent electrode and electronic device
JP2018152579A (en) * 2008-02-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Silver reflectors for semiconductor processing chambers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264329A (en) * 2004-02-19 2005-09-29 Ulvac Seimaku Kk Ag alloy film and method for manufacturing the same
JP4714477B2 (en) * 2004-02-19 2011-06-29 アルバック成膜株式会社 Ag alloy film and manufacturing method thereof
WO2006132414A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
WO2006132410A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132411A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132415A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy having excellent reflectivity/transmissivity maintaining characteristics
JP2018152579A (en) * 2008-02-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Silver reflectors for semiconductor processing chambers
DE102011012921A1 (en) 2010-03-16 2011-12-15 Fuji Electric Co., Ltd Thin-film solar cell and process for its production
JP2012142539A (en) * 2010-12-14 2012-07-26 Mitsubishi Materials Corp Back electrode tape for thin film solar cell and manufacturing method of thin film solar cell using back electrode tape
WO2014098014A1 (en) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 Transparent electrode and electronic device
JPWO2014098014A1 (en) * 2012-12-18 2017-01-12 コニカミノルタ株式会社 Transparent electrode and electronic device

Similar Documents

Publication Publication Date Title
TW297167B (en)
EP0940857B1 (en) Thin film photoelectric transducer
US4694116A (en) Thin-film solar cell
EP1100130B3 (en) Silicon-base thin-film photoelectric device
JP5069790B2 (en) Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
KR101024288B1 (en) Silicon based thin film solar cell
JP2908067B2 (en) Substrate for solar cell and solar cell
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
EP0841706A2 (en) Transparent conductive film of thin-film solar cell and method for producing the transparent conductive film
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
FR2491261A1 (en) SOLAR CELL AND METHOD OF MANUFACTURING
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP2003101052A (en) Conductive light-reflecting film, forming method therefor and solar battery
JP2001217440A (en) Hybrid thin film photoelectric conversion device and translucent laminate used for the same
JPH09139515A (en) Transparent conducting film electrode
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JP3025392B2 (en) Thin film solar cell and manufacturing method
JP5144949B2 (en) Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same
JP2016127179A (en) Thin film solar cell and manufacturing method thereof
JPH09307130A (en) Thin film photoelectric material and thin film type photoelectric converter containing the same
JP4562220B2 (en) Thin film solar cell
JP2024502584A (en) solar cells

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090421