JPWO2005061900A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
JPWO2005061900A1
JPWO2005061900A1 JP2005512329A JP2005512329A JPWO2005061900A1 JP WO2005061900 A1 JPWO2005061900 A1 JP WO2005061900A1 JP 2005512329 A JP2005512329 A JP 2005512329A JP 2005512329 A JP2005512329 A JP 2005512329A JP WO2005061900 A1 JPWO2005061900 A1 JP WO2005061900A1
Authority
JP
Japan
Prior art keywords
screw
oil
compressor
casing body
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005512329A
Other languages
Japanese (ja)
Other versions
JP4473819B2 (en
Inventor
雅章 上川
雅章 上川
浩之 米田
浩之 米田
聡一 白石
聡一 白石
博之 山川
博之 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2005061900A1 publication Critical patent/JPWO2005061900A1/en
Application granted granted Critical
Publication of JP4473819B2 publication Critical patent/JP4473819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/045Heating; Cooling; Heat insulation of the electric motor in hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Abstract

この発明は、圧縮室の隙間シールや軸受潤滑を目的とする油を低圧側近傍まで循環させる油通路をケーシング本体内に設けた断熱効率および体積効率の高いスクリュー圧縮機である。また、この発明は、油通路をケーシング本体内のスクリューボア外周部に設けることにより、スクリューロータとケーシング本体のスクリューボア部との接触が発生しないスクリュー圧縮機である。また、この発明は、モータ室を通過した冷媒ガス、または液状態の冷媒との熱交換用の伝熱面積を大きくするために放熱座を設けることにより、液バック耐力の向上を図ったスクリュー圧縮機である。The present invention is a screw compressor with high heat insulation efficiency and volumetric efficiency in which an oil passage for circulating oil for the purpose of clearance sealing in a compression chamber and bearing lubrication to the vicinity of the low pressure side is provided in the casing body. Moreover, this invention is a screw compressor which does not generate | occur | produce a contact with a screw rotor and the screw bore part of a casing main body by providing an oil path in the screw bore outer peripheral part in a casing main body. In addition, the present invention provides a screw compression that improves the liquid back resistance by providing a heat dissipating seat to increase the heat transfer area for heat exchange with the refrigerant gas that has passed through the motor chamber or with the liquid refrigerant. Machine.

Description

この発明は、冷媒ガスを圧縮するスクリュー圧縮機に関するもので、圧縮室の隙間シールや軸受潤滑を目的として圧縮室や軸受部に注入される油を冷却して、断熱効率および体積効率の高いスクリュー圧縮機に関する。また、スクリューロータとケーシング本体のスクリューボア部との温度差による熱膨張差を抑制し、スクリューロータとスクリューボア部との間の隙間が無くなることによるスクリューロータとケーシング本体のスクリューボア部との接触が発生しないスクリュー圧縮機に関する。更にまた、万一の液バック運転時でも、液冷媒との熱交換を行うことで液圧縮の発生を抑制し、液バック耐力の向上を図ったスクリュー圧縮機に関する。  The present invention relates to a screw compressor that compresses a refrigerant gas, and cools oil injected into a compression chamber and a bearing portion for the purpose of clearance sealing of a compression chamber and bearing lubrication, and has high heat insulation efficiency and volume efficiency. It relates to a compressor. In addition, the thermal expansion difference due to the temperature difference between the screw rotor and the screw bore portion of the casing body is suppressed, and the contact between the screw rotor and the screw bore portion of the casing body is eliminated by eliminating the gap between the screw rotor and the screw bore portion. The present invention relates to a screw compressor that does not generate any problems. Furthermore, the present invention relates to a screw compressor that suppresses the occurrence of liquid compression by exchanging heat with a liquid refrigerant even in the event of liquid back operation, thereby improving the liquid back strength.

従来のスクリュー圧縮機においては、圧縮室の隙間シールや軸受潤滑を目的とする油を高圧側から吐出ガス温度相当の状態で圧縮室や軸受部に注入する構造を採用していた。この従来のスクリュー圧縮機では、圧縮室の隙間シールや軸受潤滑を目的とする油が高圧側から吐出ガス温度相当の状態で圧縮室や軸受部に注入されていたことにより、圧縮室の温度が必要以上に上昇し、その結果、吐出ガス温度が上昇して油温も更に上昇するという悪循環があった。これを抑制するための液冷媒の注入や、高温での油粘度の低下などにより圧縮機の断熱効率や体積効率を低下させるという問題があった。また、吐出ガス温度相当となる高温の油が圧縮室に注入されることにより、ケーシングのスクリューボア部に比べて熱容量の小さいスクリューロータはケーシングのスクリューボア部よりも早く熱膨張し、その結果、スクリューロータとケーシングのスクリューボア部との隙間が減少し、初期設定隙間が過小の場合にはスクリューロータとケーシングのスクリューボア部とが接触して圧縮機運転不能になるという問題があった。
さらに、従来のスクリュー圧縮機においては、ケーシングのスクリューボア部の熱膨張差を低減するために、ケーシングのスクリューボア部を温める構造としては吐出ガスによるものがあった。例えば、日本特開平6−42474号公報には、スクリューロータの外周部を覆うケーシング内筒が、低圧室からの温度影響を強く受けるのを回避し、これらスクリューロータとケーシング内筒との間のシール隙間を殊更大きくすることなく高い性能を維持しながら、スクリューロータとケーシング内筒との間で焼き付きが生じるのを防止できる構造として、吐出ガス通路をスクリューロータの軸方向吸入側の端面部近傍まで引き廻すことにより、吐出ガスで温めるようにしたスクリュー圧縮機が示されている。
この従来方法では運転条件によっては高差圧となり、吐出ガス風量が小さくなってしまう場合があり、この場合にはケーシングのスクリューボア部の熱応答改善効果が小さくなり、スクリューロータとケーシングのスクリューボア部で熱膨張差が生じてしまい、接触に至ってしまうという問題があった。
この発明は、上述のような課題を解決するためになされたもので、圧縮室の隙間シールや軸受潤滑を目的として圧縮室や軸受部に注入される油を冷却して、断熱効率および体積効率の高いスクリュー圧縮機を提供することを目的としている。
また、この発明は、スクリューロータとケーシング本体のスクリューボア部との温度差による熱膨張差を抑制し、スクリューロータとスクリューボア部との間の隙間が無くなることによるスクリューロータとケーシング本体のスクリューボア部との接触が発生しないスクリュー圧縮機を提供することを目的としている。
また、この発明は、万一の液バック運転時でも、液冷媒との熱交換を行うことで液圧縮の発生を抑制し、液バック耐力の向上を図ったスクリュー圧縮機を提供することを目的としている。
さらにまた、この発明は、ケーシング本体に内蔵されているモータの電源取出し端子部への結露発生を抑制するスクリュー圧縮機を提供することを目的としている。
A conventional screw compressor employs a structure in which oil for the purpose of clearance sealing in a compression chamber or bearing lubrication is injected from the high pressure side into the compression chamber or the bearing portion in a state corresponding to the discharge gas temperature. In this conventional screw compressor, oil for the purpose of clearance sealing in the compression chamber and bearing lubrication is injected into the compression chamber and the bearing portion from the high pressure side in a state corresponding to the discharge gas temperature. There was a vicious cycle in which the discharge gas temperature increased and the oil temperature further increased as a result of the increase more than necessary. There has been a problem that the heat insulation efficiency and volumetric efficiency of the compressor are lowered by injection of a liquid refrigerant for suppressing this and a decrease in oil viscosity at high temperature. In addition, when high-temperature oil corresponding to the discharge gas temperature is injected into the compression chamber, the screw rotor having a smaller heat capacity than the screw bore portion of the casing thermally expands faster than the screw bore portion of the casing, and as a result, When the clearance between the screw rotor and the screw bore portion of the casing is reduced and the initial setting clearance is too small, there is a problem that the screw rotor and the screw bore portion of the casing come into contact with each other and the compressor cannot be operated.
Furthermore, in the conventional screw compressor, in order to reduce the difference in thermal expansion of the screw bore portion of the casing, the structure for warming the screw bore portion of the casing is based on discharged gas. For example, Japanese Patent Laid-Open No. 6-42474 avoids that the casing inner cylinder covering the outer periphery of the screw rotor is strongly affected by the temperature from the low-pressure chamber, and between the screw rotor and the casing inner cylinder. As a structure that can prevent seizure between the screw rotor and the casing inner cylinder while maintaining high performance without enlarging the seal gap, the discharge gas passage is located near the end surface of the screw rotor in the axial suction side. A screw compressor is shown that is warmed with the discharge gas by being drawn up to.
In this conventional method, depending on the operating conditions, there may be a high differential pressure and the discharge gas air volume may be reduced. In this case, the effect of improving the thermal response of the screw bore portion of the casing is reduced, and the screw bores of the screw rotor and casing are reduced. There was a problem that a difference in thermal expansion occurred in the portion, leading to contact.
The present invention has been made to solve the above-described problems, and by cooling the oil injected into the compression chamber and the bearing portion for the purpose of clearance sealing of the compression chamber and bearing lubrication, heat insulation efficiency and volume efficiency are achieved. The purpose is to provide a high screw compressor.
In addition, the present invention suppresses a difference in thermal expansion due to a temperature difference between the screw rotor and the screw bore portion of the casing body, and eliminates a gap between the screw rotor and the screw bore portion. It aims at providing the screw compressor which does not generate | occur | produce a contact with a part.
Another object of the present invention is to provide a screw compressor that suppresses the occurrence of liquid compression by performing heat exchange with a liquid refrigerant even in the event of a liquid back operation, thereby improving the liquid back strength. It is said.
Still another object of the present invention is to provide a screw compressor that suppresses the occurrence of condensation on the power supply terminal portion of a motor built in the casing body.

この発明に係わるスクリュー圧縮機においては、圧縮室の隙間シールや軸受潤滑を目的とする油を低圧側近傍まで循環させる油通路をケーシング本体内に設けたものである。
また、この発明は、上述した油通路をケーシング本体内のスクリューボア外周部に設けたものである。
また、この発明は、モータ室を通過した冷媒ガス、または液状態の冷媒との熱交換用の伝熱面積を大きくするために放熱座を設けたものである。
In the screw compressor according to the present invention, an oil passage is provided in the casing body for circulating the oil for the purpose of sealing the clearance of the compression chamber and the bearing lubrication to the vicinity of the low pressure side.
Moreover, this invention provides the oil passage mentioned above in the screw bore outer peripheral part in a casing main body.
Further, in the present invention, a heat dissipating seat is provided in order to increase the heat transfer area for heat exchange with the refrigerant gas that has passed through the motor chamber or with the liquid refrigerant.

第1図は、この発明の実施の形態1を示すスクリュー圧縮機の断面図である。第2図は、この発明の実施の形態2を示すスクリュー圧縮機の断面図である。第3図は、この発明の実施の形態3を示すスクリュー圧縮機の断面図である。第4図は、この発明の実施の形態3を示すスクリュー圧縮機の一部構造図である。第5図は、この発明の実施の形態4を示すスクリュー圧縮機の断面図である。第6図は、この発明の実施の形態5を示すスクリュー圧縮機の断面図である。  FIG. 1 is a sectional view of a screw compressor showing Embodiment 1 of the present invention. FIG. 2 is a sectional view of a screw compressor showing Embodiment 2 of the present invention. FIG. 3 is a sectional view of a screw compressor showing Embodiment 3 of the present invention. FIG. 4 is a partial structural view of a screw compressor showing Embodiment 3 of the present invention. FIG. 5 is a sectional view of a screw compressor showing Embodiment 4 of the present invention. FIG. 6 is a sectional view of a screw compressor showing Embodiment 5 of the present invention.

この発明をより詳細に説明するために、添付の図面に従ってこれを説明する。
実施の形態1
第1図は、この発明を実施するための実施の形態1におけるスクリュー圧縮機を示す断面図である。第1図に示すように、スクリュー圧縮機の本体を構成する筒状のケーシング本体1内にモータ2が内接して固定されている。このモータ2はケーシング本体1に内接固定されたステータ3と、このステータの内側に配置されたロータ4とから構成されている。またケーシング本体1内には、スクリューロータ5が配置されており、このスクリューロータ5とモータロータ4は互いに同一軸線上に配置されるようにスクリュー軸6に取り付けられている。スクリューロータ5は複数の螺旋状の圧縮溝が形成され、スクリュー軸6によりモータ2に連結されて回転駆動される。またケーシング本体1の両端部にはモータカバー7と、油分離器8が固定されている。
上記のように構成されたスクリュー圧縮機において、ケーシング本体1内周面とスクリューロータ5外周面との間に形成される圧縮室9の隙間シールや軸受潤滑等を目的として、圧縮室9内に注入している油を、圧縮機低圧室10などの低圧側近傍へ循環させる構造とする。すなわち、ケーシング本体1のうち、スクリューロータ5が内側に配置されたスクリューケーシング部1aのスクリューボア外周部1bに圧縮室9から圧縮機低圧室10へ向かう油通路11を形成する。これにより、圧縮室9に注入される油が低圧側近傍の低温の冷媒で冷却され、温度が低下した油が注入されることによって、圧縮熱の除去が可能となる。さらに、圧縮熱除去の目的で別途注入している液冷媒による断熱効率および体積効率の低下を防ぎ、油温の低下に伴い油の粘度が上昇することによって油による隙間のシール性が向上し、高効率のスクリュー圧縮機を得ることができる。
また、熱容量がケーシング本体1に比べて小さいスクリューロータ5は、吐出ガス温度相当の高温の油が注入されることによってケーシング本体1より早く膨張し、ケーシング本体1とスクリューロータ5との隙間が縮小してしまうという現象が生じるが、上述するように油を低圧側近傍で冷却することにより、ケーシング本体1とスクリューロータ5との熱容量の違いによる熱膨張差を軽減することができ、初期隙間を小さくした場合においてもスクリューロータ5とケーシング本体1の接触を防ぎ、信頼性の高いスクリュー圧縮機を得ることができる。
また、低圧側近傍へ油を循環させる際の油通路11をスクリューケーシング部1a内のスクリューボア外周部1bに設ける構造とすることにより、油はスクリューケーシング部1aの低圧側近傍すなわち低温部分に到達するまでの間スクリューボア外周部1bを吐出ガス相当の温度で温めることとなり、スクリューケーシング部1aの吐出ガス温度に対する熱応答性が向上し、スクリューロータ5とスクリューケーシング部1aとの熱膨張差を軽減することが可能となる。
また、上記構造のように油通路11をスクリューケーシング部1aのスクリューボア外周部1bに設けて、油でスクリューケーシング部1aを温めることにより、吐出ガス風量が減少する高差圧運転条件においても油は減少することなく供給されるため、スクリューケーシング部1aを温める効果が減少することなくスクリューロータ5とスクリューケーシング部1aの熱膨張差を低減し、信頼性の高いスクリュー圧縮機を得ることが可能となる。
さらに、例えば油の循環経路11を油分離器8からスクリューケーシング部1aのスクリューボア外周部1bを通過してスクリューボア部4bを加温し、その後、圧縮機低圧室10やモータ室などの低圧側に循環し、油を冷却した後に圧縮室9に油を注入する構造とすることにより、上記した油によるスクリューケーシング部1aの加温や、油の冷却による断熱効率および体積効率の向上という両方の効果を得ることができ、高効率で信頼性の高いスクリュー圧縮機を提供することが可能となる。
実施の形態2
第2図は、この発明の実施の形態2を示すスクリュー圧縮機の断面図である。第2図に示すように、油通路11に、ケーシング本体1の外側に突出する油外出し通路11aを別に設け、この油外出し通路11aに電磁弁12を取り付けることにより油通路11に油を流す場合と流さない場合を設定することができる構造とする。このような構造とすることにより、例えば通常運転時などスクリューロータ5の膨張が小さく、スクリューケーシング部1aの加温効果を必要としない場合はスクリューロータ5とスクリューケーシング部1aのスクリューボア部との隙間を拡大させないために電磁弁14を閉成して油を流さず、吐出ガス温度の上昇などにより、スクリューロータ5が膨張し、スクリューロータ5とスクリューケーシング部1aのスクリューボア部との隙間が縮小する場合にのみ油通路11に油を流すことにより、通常運転時の隙間の拡大による体積効率の低下を防ぎながら、スクリュー圧縮機の信頼性を確保することができる。
実施の形態3
第3図は、この発明の実施の形態3を示すスクリュー圧縮機の断面図である。実施の形態1においては油分離器8に溜まった油を油通路11へ導く構造としたが、この実施の形態3では、油を油通路11へ導く前に、油通路11の前段側に油の温度を制御する油温制御装置13を設けたものである。第3図では油温制御装置13を圧縮機外部の油タンク14内に設けた例を示したが、圧縮機内部の油分離器8下部の油溜まり部に設けるようにしても良い。油温制御装置13にて油温を調節することで、高圧縮比運転時や吐出ガス上昇時にスクリューケーシング部1aを加熱してスクリューボア部を膨張させることが可能となり、スクリューケーシング部1aとスクリューロータ5の熱膨張差を最小限に抑えてスクリューケーシング部1aとスクリューロータ5の接触を防ぐことで、信頼性の高いスクリュー圧縮機を得ることが可能となる。また、油がスクリューケーシング部1aのスクリューボア部を通過し、スクリューケーシング1aを温めた後に上記油温制御を行い、油を冷却してその冷却された油を圧縮室9に注入することにより、スクリューロータ5の膨張が原因で起こる焼き付き等を防止することができ信頼性が高く、さらに油粘度の上昇によってシール性が向上し、高効率のスクリュー圧縮機を提供することができる。
さらに、上記油温制御装置13をスクリューケーシング部1aのスクリューボア外周部1b通過前後に二つに分割して設けることにより、スクリューボア外周部1b通過前は高温の油となるように設定し、スクリューボア外周部1b通過後は低温の油となるように設定することで、油冷却による断熱効率および体積効率向上、並びにケーシングの加温による信頼性向上を効果的に行うことができる。
また、上記油温制御を行う際に、吐出ガス温度を検出し、吐出ガス温度あるいは吐出ガス過熱度に対応して油の温度を制御し、例えば吐出ガス温度が100℃を超えるような高い場合にはスクリューケーシング部1aをより膨張させるために油温を高く設定することにより、スクリューロータ5とスクリューケーシング部1aのスクリューボア部との接触を防ぐことができる。
また、さらに上記油温制御を行う際に、第4図に示すように、スクリューケーシング部1aとスクリューロータ5の隙間を検出する非接触・渦電流式等の隙間検出装置15を取り付け、その隙間を検出しながら油温を制御することで、スクリューロータ5とスクリューケーシング部1a間の隙間を最小限の隙間に保つことが可能となる。これにより、隙間からの内部漏れの少ない高性能な圧縮機を得つつ、信頼性の高いスクリュー圧縮機を得ることが可能となる。
また、実施の形態1においては油通路11をスクリューボア外周部1bに設けること、この実施の形態3では循環させる油の温度制御を行うことを示したが、その際、油通路11の上部と下部を分割した構造としたものである。スクリュー圧縮機において湿り状態あるいは液バック状態で冷媒を吸込む場合、冷媒が自重によって圧縮機下部に集まり易いため、圧縮機上部に比べて圧縮機下部のスクリューケーシング部温度が低下しやすい傾向がある。油通路11の上部と下部を分割し、実施の形態1で示した油通路11の下部伝熱面積を上部伝熱面積に比べて広くすることや下部に供給する油温度を上部より高くするかあるいは下部にのみ油を流すことなどにより積極的に圧縮機下部を温めることで、圧縮機上部下部の温度差を縮小し液バック耐力を有する信頼性の高いスクリュー圧縮機を得ることが可能となる。
また、吸入ガスの湿り度が大きい場合には油の流量を多くするなどの調整を行い、油の流量を変化させることで、より最適な制御を行い、液バック耐力を向上させる。
実施の形態4
第5図は、この発明の実施の形態4を示すスクリュー圧縮機の断面図である。実施の形態1では高温の油を低圧側近傍まで循環させる油通路11を設けたが、第5図では油通路11の一部または全部を延長させて、圧縮機のケーシング本体1内に設置されているモータ2の電源端子部16および端子台17の付近まで循環させる油通路11bを付加する構造としたものである。スクリュー圧縮機において、低温運転条件すなわち吸込みガス温度が低い場合には、外気の温度湿度条件によっては端子台17および電源端子部16に結露が生じ電源が短絡する恐れがあるが、油を循環させることで結露防止の加温を行うことが可能となり、信頼性の高いスクリュー圧縮機を得ることが可能となる。
実施の形態5
第6図は、この発明の実施の形態5を示すスクリュー圧縮機の断面図である。上記実施の形態1では、スクリュー圧縮機において油を低圧側近傍まで循環させる油通路11を設けた構造としたが、第6図に示すように、例えば低圧側となるモータ2室と圧縮機低圧室10との境界を成すケーシング本体1の境界壁1c近傍まで油を循環させる構造とし、その境界壁1cにモータ2室と圧縮機低圧室10との間に跨る放熱座18を取り付けることにより、境界壁1cまで循環して冷却される油の伝熱面積を大きくすることができる。また、低圧側近傍まで油を循環させることにより冷媒が液状態で吸入された場合においても高温の油によって冷媒が加熱されるが、上述した放熱座18を取り付けることにより、冷媒と油との熱交換伝熱面積を大きくすることが可能となり、液バック耐力が向上した信頼性の高いスクリュー圧縮機を得ることが可能となる。
ケーシング本体1の境界壁1cにモータ2室と圧縮機低圧室10との間に跨って取り付けられる放熱座18は、例えばその表面に放熱フィンを付加することで熱交換をさらに向上させることができる。
In order to explain the present invention in more detail, it will be described with reference to the accompanying drawings.
Embodiment 1
FIG. 1 is a sectional view showing a screw compressor according to Embodiment 1 for carrying out the present invention. As shown in FIG. 1, a motor 2 is inscribed and fixed in a cylindrical casing body 1 constituting a main body of a screw compressor. The motor 2 includes a stator 3 that is inscribed and fixed to the casing body 1 and a rotor 4 that is disposed inside the stator. A screw rotor 5 is disposed in the casing body 1, and the screw rotor 5 and the motor rotor 4 are attached to the screw shaft 6 so as to be disposed on the same axis. The screw rotor 5 is formed with a plurality of helical compression grooves, and is connected to the motor 2 by a screw shaft 6 and is driven to rotate. A motor cover 7 and an oil separator 8 are fixed to both ends of the casing body 1.
In the screw compressor configured as described above, in the compression chamber 9 for the purpose of clearance sealing, bearing lubrication, etc. of the compression chamber 9 formed between the inner peripheral surface of the casing body 1 and the outer peripheral surface of the screw rotor 5. The structure is such that the injected oil is circulated to the vicinity of the low pressure side such as the compressor low pressure chamber 10. That is, in the casing body 1, an oil passage 11 that extends from the compression chamber 9 to the compressor low-pressure chamber 10 is formed in the screw bore outer peripheral portion 1 b of the screw casing portion 1 a in which the screw rotor 5 is disposed inside. Thereby, the oil injected into the compression chamber 9 is cooled by the low-temperature refrigerant in the vicinity of the low-pressure side, and the oil whose temperature has decreased is injected, so that the compression heat can be removed. In addition, the heat insulation efficiency and volumetric efficiency due to the liquid refrigerant separately injected for the purpose of removing heat of compression are prevented, and the oil viscosity increases as the oil temperature decreases, thereby improving the sealing performance of the gaps due to oil, A highly efficient screw compressor can be obtained.
The screw rotor 5 having a smaller heat capacity than the casing body 1 expands faster than the casing body 1 by injecting high-temperature oil corresponding to the discharge gas temperature, and the gap between the casing body 1 and the screw rotor 5 is reduced. However, by cooling the oil in the vicinity of the low pressure side as described above, the difference in thermal expansion due to the difference in heat capacity between the casing body 1 and the screw rotor 5 can be reduced, and the initial gap can be reduced. Even when the size is reduced, contact between the screw rotor 5 and the casing body 1 can be prevented, and a highly reliable screw compressor can be obtained.
In addition, the oil reaches the vicinity of the low pressure side of the screw casing portion 1a, that is, the low temperature portion, by providing the oil passage 11 in the vicinity of the low pressure side in the screw bore outer peripheral portion 1b in the screw casing portion 1a. In the meantime, the screw bore outer peripheral portion 1b is heated at a temperature corresponding to the discharge gas, the thermal responsiveness to the discharge gas temperature of the screw casing portion 1a is improved, and the thermal expansion difference between the screw rotor 5 and the screw casing portion 1a is increased. It becomes possible to reduce.
Further, as in the above structure, the oil passage 11 is provided in the screw bore outer peripheral portion 1b of the screw casing portion 1a and the screw casing portion 1a is warmed with oil, so that the oil pressure can be reduced even under high differential pressure operating conditions in which the discharge gas flow rate is reduced. Is supplied without decreasing, so that the effect of warming the screw casing part 1a can be reduced without reducing the difference in thermal expansion between the screw rotor 5 and the screw casing part 1a, and a highly reliable screw compressor can be obtained. It becomes.
Further, for example, the oil circulation path 11 is passed from the oil separator 8 through the screw bore outer peripheral portion 1b of the screw casing portion 1a to heat the screw bore portion 4b, and then the low pressure in the compressor low pressure chamber 10 and the motor chamber, etc. By circulating to the side and cooling the oil, the oil is injected into the compression chamber 9 so that both the heating of the screw casing part 1a by the oil and the improvement of the heat insulation efficiency and the volume efficiency by the oil cooling are performed. Thus, it is possible to provide a highly efficient and highly reliable screw compressor.
Embodiment 2
FIG. 2 is a sectional view of a screw compressor showing Embodiment 2 of the present invention. As shown in FIG. 2, the oil passage 11 is provided with an oil outlet passage 11a that protrudes outward from the casing body 1, and an oil valve 11 is attached to the oil outlet passage 11a so that oil is supplied to the oil passage 11. A structure that can set whether to flow or not. With such a structure, for example, when the expansion of the screw rotor 5 is small, such as during normal operation, and the heating effect of the screw casing part 1a is not required, the screw rotor 5 and the screw bore part of the screw casing part 1a In order not to enlarge the gap, the solenoid valve 14 is closed and no oil is allowed to flow, the screw rotor 5 expands due to an increase in the discharge gas temperature, etc., and there is a gap between the screw rotor 5 and the screw bore portion of the screw casing portion 1a. By flowing the oil into the oil passage 11 only when reducing, it is possible to ensure the reliability of the screw compressor while preventing a decrease in volumetric efficiency due to expansion of the gap during normal operation.
Embodiment 3
FIG. 3 is a sectional view of a screw compressor showing Embodiment 3 of the present invention. In the first embodiment, the oil collected in the oil separator 8 is guided to the oil passage 11. However, in this third embodiment, before the oil is guided to the oil passage 11, the oil is placed on the upstream side of the oil passage 11. An oil temperature control device 13 for controlling the temperature of the oil is provided. Although FIG. 3 shows an example in which the oil temperature control device 13 is provided in the oil tank 14 outside the compressor, the oil temperature control device 13 may be provided in an oil reservoir portion below the oil separator 8 inside the compressor. By adjusting the oil temperature with the oil temperature control device 13, the screw casing portion 1a can be heated to expand the screw bore portion during high compression ratio operation or when the discharge gas rises, and the screw casing portion 1a and screw It is possible to obtain a highly reliable screw compressor by minimizing the difference in thermal expansion of the rotor 5 and preventing contact between the screw casing portion 1a and the screw rotor 5. Further, the oil passes through the screw bore portion of the screw casing portion 1a, and after the screw casing 1a is warmed, the oil temperature control is performed, the oil is cooled, and the cooled oil is injected into the compression chamber 9, The seizure or the like caused by the expansion of the screw rotor 5 can be prevented, and the reliability is high. Further, the sealing performance is improved by increasing the oil viscosity, and a highly efficient screw compressor can be provided.
Furthermore, by setting the oil temperature control device 13 in two before and after passing through the screw bore outer peripheral portion 1b of the screw casing portion 1a, the oil temperature control device 13 is set to be hot oil before passing through the screw bore outer peripheral portion 1b, By setting the oil to be low-temperature oil after passing through the screw bore outer peripheral portion 1b, it is possible to effectively improve heat insulation efficiency and volume efficiency by oil cooling and reliability improvement by heating the casing.
When the oil temperature control is performed, the discharge gas temperature is detected, and the oil temperature is controlled corresponding to the discharge gas temperature or the discharge gas superheat degree. For example, when the discharge gas temperature is higher than 100 ° C. In order to further expand the screw casing part 1a, the oil temperature can be set high to prevent contact between the screw rotor 5 and the screw bore part of the screw casing part 1a.
Further, when performing the above oil temperature control, as shown in FIG. 4, a non-contact / eddy current type gap detecting device 15 for detecting the gap between the screw casing portion 1a and the screw rotor 5 is attached. By controlling the oil temperature while detecting, the gap between the screw rotor 5 and the screw casing portion 1a can be kept at a minimum gap. This makes it possible to obtain a highly reliable screw compressor while obtaining a high-performance compressor with little internal leakage from the gap.
In the first embodiment, the oil passage 11 is provided in the screw bore outer peripheral portion 1b, and in the third embodiment, the temperature control of the oil to be circulated is performed. The lower part is divided. When the refrigerant is sucked in the wet state or the liquid back state in the screw compressor, the refrigerant tends to collect in the lower part of the compressor due to its own weight, and therefore, the temperature of the screw casing part in the lower part of the compressor tends to be lower than that in the upper part of the compressor. Whether the upper and lower portions of the oil passage 11 are divided and the lower heat transfer area of the oil passage 11 shown in the first embodiment is made wider than the upper heat transfer area or the oil temperature supplied to the lower portion is made higher than the upper portion. Alternatively, it is possible to obtain a highly reliable screw compressor having a liquid back strength by reducing the temperature difference between the upper and lower parts of the compressor by actively warming the lower part of the compressor by flowing oil only in the lower part. .
Further, when the wetness of the suction gas is high, adjustment such as increasing the flow rate of oil is performed, and by changing the flow rate of oil, more optimal control is performed and the liquid back resistance is improved.
Embodiment 4
FIG. 5 is a sectional view of a screw compressor showing Embodiment 4 of the present invention. In the first embodiment, the oil passage 11 for circulating hot oil to the vicinity of the low pressure side is provided. However, in FIG. 5, a part or all of the oil passage 11 is extended and installed in the casing body 1 of the compressor. The oil passage 11b is added to circulate to the vicinity of the power supply terminal portion 16 and the terminal block 17 of the motor 2. In the screw compressor, when the low temperature operation condition, that is, the suction gas temperature is low, the terminal block 17 and the power supply terminal section 16 may be condensed depending on the temperature and humidity conditions of the outside air, but the power supply may be short-circuited. Thus, it is possible to perform heating for preventing condensation, and it is possible to obtain a highly reliable screw compressor.
Embodiment 5
FIG. 6 is a sectional view of a screw compressor showing Embodiment 5 of the present invention. In the first embodiment, the screw compressor is provided with the oil passage 11 for circulating the oil to the vicinity of the low pressure side. However, as shown in FIG. 6, for example, the motor 2 chamber on the low pressure side and the compressor low pressure are provided. With the structure in which oil is circulated to the vicinity of the boundary wall 1c of the casing body 1 that forms a boundary with the chamber 10, and by attaching a heat dissipating seat 18 straddling between the motor 2 chamber and the compressor low pressure chamber 10 to the boundary wall 1c, The heat transfer area of the oil that circulates and cools to the boundary wall 1c can be increased. Further, even when the refrigerant is sucked in the liquid state by circulating the oil to the vicinity of the low pressure side, the refrigerant is heated by the high-temperature oil. However, by attaching the heat dissipating seat 18 described above, the heat of the refrigerant and the oil is increased. The exchange heat transfer area can be increased, and a highly reliable screw compressor with improved liquid back strength can be obtained.
The heat dissipating seat 18 attached across the boundary wall 1c of the casing body 1 between the motor 2 chamber and the compressor low pressure chamber 10 can further improve heat exchange, for example, by adding heat dissipating fins on the surface thereof. .

以上のように、この発明によれば、圧縮室に注入する油を低圧側近傍まで循環させることにより油が冷却され、その冷却された油を圧縮室に注入することによって圧縮熱の除去が可能となり、断熱効率および体積効率の低下を防ぐことが可能となる。さらに、油温の低下に伴い油の粘度が上昇することによって油による隙間のシール性が向上し、高効率のスクリュー圧縮機を得ることができる。
また、低圧となるモータ室と圧縮機低圧室の境界位置近傍に放熱座を取り付けることにより、油冷却のための伝熱面積を拡大でき、さらに油を低圧近傍まで循環させることや放熱座を設けることにより、万一の液バック運転時でも液冷媒との熱交換を行うことで液圧縮の発生を抑制し、液バック耐力の向上したスクリュー圧縮機を提供することが可能となる。
As described above, according to the present invention, oil is cooled by circulating oil injected into the compression chamber to the vicinity of the low pressure side, and compression heat can be removed by injecting the cooled oil into the compression chamber. Thus, it is possible to prevent a decrease in heat insulation efficiency and volumetric efficiency. Furthermore, as the oil temperature increases as the oil temperature decreases, the sealing performance of the gaps due to the oil is improved, and a highly efficient screw compressor can be obtained.
In addition, by installing a heat dissipating seat near the boundary between the low-pressure motor chamber and the compressor low-pressure chamber, the heat transfer area for oil cooling can be expanded, and oil can be circulated to near the low pressure and a heat dissipating seat is provided. As a result, it is possible to provide a screw compressor that suppresses the occurrence of liquid compression by exchanging heat with the liquid refrigerant even in the case of liquid back operation, and has improved liquid back strength.

Claims (9)

ケーシング本体と、このケーシング本体内に設けられたモータと、このモータのロータとともに前記ケーシング本体内で回転するように配置されたスクリューロータと、このスクリューロータと前記ケーシング本体との間に形成された圧縮室とを備えたスクリュー圧縮機において、前記ケーシング本体内に、前記圧縮室の隙間シール又は軸受潤滑のために圧縮室内に注入する油を圧縮機の低圧側近傍まで循環させる油通路を設けたことを特徴とするスクリュー圧縮機。A casing body, a motor provided in the casing body, a screw rotor arranged to rotate in the casing body together with a rotor of the motor, and the screw rotor and the casing body are formed. In the screw compressor provided with a compression chamber, an oil passage is provided in the casing body for circulating oil injected into the compression chamber for clearance sealing or bearing lubrication of the compression chamber to the vicinity of the low pressure side of the compressor. A screw compressor characterized by that. 油通路をケーシング本体内のスクリューボア外周部に設けたことを特徴とする請求の範囲第1項記載のスクリュー圧縮機。2. The screw compressor according to claim 1, wherein an oil passage is provided in an outer peripheral portion of the screw bore in the casing body. 油通路の一部をケーシング本体の外側に突出させるとともに、この外側に突出された油外出し通路に電磁弁を設けたことを特徴とする請求の範囲第1項記載のスクリュー圧縮機。2. The screw compressor according to claim 1, wherein a part of the oil passage projects outside the casing body, and an electromagnetic valve is provided in the oil outside passage projecting outside. 油通路の前段側に、油通路へ導く前の油の温度を調節制御する油温制御装置を設けたことを特徴とする請求の範囲第1項記載のスクリュー圧縮機。2. The screw compressor according to claim 1, wherein an oil temperature control device for adjusting and controlling the temperature of the oil before being led to the oil passage is provided on the front stage side of the oil passage. 油温制御装置を、油通路のスクリューボア外周部通過前後に分割して設け、スクリューボア外周部通過前は高温の油となるように設定し、スクリューボア外周部通過後は低温の油となるように設定することを特徴とする請求の範囲第4項記載のスクリュー圧縮機。The oil temperature control device is provided separately before and after passing through the outer periphery of the screw bore in the oil passage, set to be hot oil before passing through the outer periphery of the screw bore, and becomes low temperature oil after passing through the outer periphery of the screw bore. The screw compressor according to claim 4, wherein the screw compressor is set as follows. ケーシング本体内周部とスクリューロータとの間の隙間を検出する隙間検出装置を設け、この隙間検出装置の検出結果により油の温度を制御することを特徴とする請求の範囲第4項記載のスクリュー圧縮機。The screw according to claim 4, wherein a gap detecting device for detecting a gap between the inner peripheral portion of the casing body and the screw rotor is provided, and the temperature of the oil is controlled based on a detection result of the gap detecting device. Compressor. 油通路をケーシング本体内に設置されているモータの電源端子部および端子台付近まで延長させたことを特徴とする請求の範囲第1項記載のスクリュー圧縮機。The screw compressor according to claim 1, wherein the oil passage is extended to the vicinity of a power supply terminal portion and a terminal block of a motor installed in the casing body. 油通路を、モータ室と圧縮機低圧室との境界を成すケーシング本体の境界壁近傍まで延長し、この境界壁に前記モータ室と前記圧縮機低圧室に跨る放熱座を設けたことを特徴とする請求の範囲第1項記載のスクリュー圧縮機。The oil passage is extended to the vicinity of the boundary wall of the casing body that forms the boundary between the motor chamber and the compressor low-pressure chamber, and a heat dissipating seat straddling the motor chamber and the compressor low-pressure chamber is provided on the boundary wall. The screw compressor according to claim 1. ケーシング本体と、このケーシング本体内に設けられたモータと、このモータのロータとともに前記ケーシング本体内で回転するように配置されたスクリューロータと、このスクリューロータと前記モータロータが同一軸線上に配置されるように取り付けられたスクリュー軸と、このスクリュー軸を支持する軸受と、前記スクリューロータと前記ケーシング本体との間に形成された圧縮室とを備えたスクリュー圧縮機において、前記ケーシング本体内に、前記圧縮室の隙間シール又は軸受潤滑のために圧縮室内に注入する油を圧縮機の低圧側近傍まで循環させる油通路を設けたことを特徴とするスクリュー圧縮機。A casing main body, a motor provided in the casing main body, a screw rotor arranged to rotate in the casing main body together with a rotor of the motor, and the screw rotor and the motor rotor are arranged on the same axis. In a screw compressor comprising a screw shaft attached in this manner, a bearing supporting the screw shaft, and a compression chamber formed between the screw rotor and the casing body, the casing body includes the A screw compressor characterized in that an oil passage is provided for circulating oil injected into a compression chamber for clearance sealing or bearing lubrication of the compression chamber to the vicinity of the low pressure side of the compressor.
JP2005512329A 2003-12-22 2003-12-22 Screw compressor Expired - Lifetime JP4473819B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016448 WO2005061900A1 (en) 2003-12-22 2003-12-22 Screw compressor

Publications (2)

Publication Number Publication Date
JPWO2005061900A1 true JPWO2005061900A1 (en) 2007-07-12
JP4473819B2 JP4473819B2 (en) 2010-06-02

Family

ID=34708603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512329A Expired - Lifetime JP4473819B2 (en) 2003-12-22 2003-12-22 Screw compressor

Country Status (5)

Country Link
US (1) US20060182647A1 (en)
EP (1) EP1705379B1 (en)
JP (1) JP4473819B2 (en)
CN (1) CN100387843C (en)
WO (1) WO2005061900A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410182A4 (en) * 2009-03-16 2016-03-30 Daikin Ind Ltd Screw compressor
WO2015094464A1 (en) * 2013-12-18 2015-06-25 Carrier Corporation Refrigerant compressor lubricant viscosity enhancement
JP6453682B2 (en) * 2015-03-19 2019-01-16 三菱重工サーマルシステムズ株式会社 Compressor drive motor and cooling method thereof
DE102016011504A1 (en) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH System for a commercial vehicle comprising a screw compressor and an electric motor
BE1029289B1 (en) * 2021-04-09 2022-11-17 Atlas Copco Airpower Nv Element, device and method for compressing gas to be compressed at a low temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057985U (en) * 1991-07-15 1993-02-02 株式会社神戸製鋼所 Oil cooling type compressor
JPH11336684A (en) * 1998-05-22 1999-12-07 Hitachi Ltd Jacket cooling device for oil-free screw compressor
JP2001520352A (en) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling screw type vacuum pump
JP2002310078A (en) * 2001-04-11 2002-10-23 Kobe Steel Ltd Oil cooling type screw compressor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409868A (en) * 1920-08-05 1922-03-14 W M Hardwick Pump
US1672571A (en) * 1926-03-27 1928-06-05 Leonard Pump & Motor Co Compressor
US1706829A (en) * 1928-05-28 1929-03-26 Joseph Mercadante Pump
US2388523A (en) * 1942-06-03 1945-11-06 Gen Electric Lubricant heating system for turbosuperchargers and the like
US2938664A (en) * 1955-01-17 1960-05-31 Leybold S Nachfolger Fa E Pump
US3129877A (en) * 1956-05-17 1964-04-21 Svenska Rotor Maskiner Ab Rotary piston, positive displacement compressor
DD136758A1 (en) * 1978-05-29 1979-07-25 Alexander Pietsch HERMETIC ENGINE COMPRESSOR UNIT WITH SCREW COMPRESSOR
JPS5776298A (en) * 1980-10-30 1982-05-13 Ebara Corp Screw compressor
JPS57135292A (en) * 1981-02-12 1982-08-20 Ebara Corp Screw compressor
SE450150B (en) 1982-04-13 1987-06-09 Stal Refrigeration Ab HERMETIC TYPE COMPRESSOR
GB2164095B (en) * 1984-09-05 1988-01-27 Hydrovane Compressor Rotary air compressors
JPS61265381A (en) * 1985-05-20 1986-11-25 Hitachi Ltd Gas injector for screw compressor
US4780061A (en) * 1987-08-06 1988-10-25 American Standard Inc. Screw compressor with integral oil cooling
JPH01167490A (en) * 1987-12-22 1989-07-03 Sumitomo Heavy Ind Ltd Cooling method for lubricating oil of pneumatic compressor
JPH01313686A (en) * 1988-06-10 1989-12-19 Hitachi Ltd Nonlubricated screw compressor
JPH02275089A (en) * 1989-04-13 1990-11-09 Kobe Steel Ltd Screw type vacuum pump
JP3170882B2 (en) 1992-07-24 2001-05-28 ダイキン工業株式会社 Single screw compressor
JP3499110B2 (en) * 1997-08-11 2004-02-23 株式会社神戸製鋼所 Oil-cooled screw compressor
US7186101B2 (en) * 1998-07-31 2007-03-06 The Texas A&M University System Gerotor apparatus for a quasi-isothermal Brayton cycle Engine
JP3668616B2 (en) * 1998-09-17 2005-07-06 株式会社日立産機システム Oil-free screw compressor
DE19845993A1 (en) * 1998-10-06 2000-04-20 Bitzer Kuehlmaschinenbau Gmbh Screw compressor
US6834513B2 (en) * 2001-05-07 2004-12-28 Carrier Corporation Crankcase heater control
JP2003161274A (en) * 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd Screw type fluid device
JP2003322093A (en) * 2002-04-26 2003-11-14 Mitsubishi Heavy Ind Ltd Screw type fluid machine and refrigerating device provided with the same
US7059839B2 (en) * 2002-12-10 2006-06-13 Tecumseh Products Company Horizontal compressor end cap with a terminal, a visually transparent member, and a heater well mounted on the end cap projection
US7037091B2 (en) * 2003-05-19 2006-05-02 Bristol Compressors, Inc. Crankcase heater mounting for a compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057985U (en) * 1991-07-15 1993-02-02 株式会社神戸製鋼所 Oil cooling type compressor
JP2001520352A (en) * 1997-10-10 2001-10-30 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling screw type vacuum pump
JPH11336684A (en) * 1998-05-22 1999-12-07 Hitachi Ltd Jacket cooling device for oil-free screw compressor
JP2002310078A (en) * 2001-04-11 2002-10-23 Kobe Steel Ltd Oil cooling type screw compressor

Also Published As

Publication number Publication date
EP1705379A1 (en) 2006-09-27
WO2005061900A1 (en) 2005-07-07
US20060182647A1 (en) 2006-08-17
EP1705379A4 (en) 2011-12-21
EP1705379B1 (en) 2015-04-01
CN1745252A (en) 2006-03-08
CN100387843C (en) 2008-05-14
JP4473819B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
KR101818872B1 (en) Expander-integrated compressor, freezer, and freezer operation method
JP2009127902A (en) Refrigerating device and compressor
KR102370941B1 (en) Intercooler cooling apparatus for controlling oil temperature and method for controlling of the same
JP4473819B2 (en) Screw compressor
JP6125375B2 (en) Screw compressor
JP5506953B2 (en) Refrigerant compressor
JP6113259B2 (en) Screw compressor
WO2014083901A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
CN113994575A (en) Sealed motor cooling system
WO2018090894A1 (en) Compressor assembly and control method thereof and refrigerating/heating system
KR101373070B1 (en) Gas compressor with high speed impeller and gas compressor system including the same
CN113286941B (en) Cooled piston and cylinder for compressors and engines
KR102201142B1 (en) Heat transfer pipe and Heat exchanger for chiller
JP2014001667A (en) Rankine cycle device
JPS63100285A (en) Compressor
JP2007010257A (en) Heat pump device
JP6927911B2 (en) Refrigeration cycle equipment
JPS59224491A (en) Lubricating device for compressor
JP7327023B2 (en) Expander and Rankine cycle device
EP4353972A1 (en) Screw compressor
CN107806354A (en) Oil temperature control regulating system and method
EP4187090A1 (en) Compressor and compressor system
JP2009127464A (en) Displacement type expander, expander-integrated compressor and refrigerating cycle device
JP5892261B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP2023111600A (en) Compressor and heat pump system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4473819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term