JP6927911B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6927911B2
JP6927911B2 JP2018057478A JP2018057478A JP6927911B2 JP 6927911 B2 JP6927911 B2 JP 6927911B2 JP 2018057478 A JP2018057478 A JP 2018057478A JP 2018057478 A JP2018057478 A JP 2018057478A JP 6927911 B2 JP6927911 B2 JP 6927911B2
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
connecting pipe
case
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018057478A
Other languages
Japanese (ja)
Other versions
JP2019167910A (en
Inventor
木村 茂喜
茂喜 木村
平山 卓也
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2018057478A priority Critical patent/JP6927911B2/en
Publication of JP2019167910A publication Critical patent/JP2019167910A/en
Application granted granted Critical
Publication of JP6927911B2 publication Critical patent/JP6927911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、冷凍サイクル装置に関する。 Embodiments of the present invention relate to refrigeration cycle equipment.

冷凍サイクル装置を低温の環境下で使用する際に、始動前の圧縮機内の潤滑油中には、冷媒が液化して溶け込み、潤滑油の粘度が低下する不具合が生じることがある。 When the refrigeration cycle device is used in a low temperature environment, the refrigerant may liquefy and dissolve in the lubricating oil in the compressor before starting, which may cause a problem that the viscosity of the lubricating oil decreases.

そこで、圧縮機の密閉ケースの下部外周面に帯状のヒーターを設け、運転開始前に加熱することで起動時の潤滑不良を未然に防ぐ方法が考案されている。 Therefore, a method has been devised in which a band-shaped heater is provided on the lower outer peripheral surface of the airtight case of the compressor and heated before the start of operation to prevent poor lubrication at the time of starting.

特開2012−97638号公報Japanese Unexamined Patent Publication No. 2012-97638

しかしながら、上記従来の構造では、圧縮機の密閉ケース全体を温めることになり、余分な電力を消費していた。また、一般的な圧縮機の密閉ケースは3〜4ミリの厚さがあり、潤滑油に熱が伝わるまでに時間がかかっていた。 However, in the above-mentioned conventional structure, the entire sealed case of the compressor is heated, which consumes extra power. In addition, the airtight case of a general compressor has a thickness of 3 to 4 mm, and it takes time for heat to be transferred to the lubricating oil.

本発明が解決しようとする課題は、効率的に潤滑油を加熱することにより省電力で起動までの時間を早いできる冷凍サイクル装置を提案することである。 An object to be solved by the present invention is to propose a refrigerating cycle apparatus capable of saving power and shortening the start-up time by efficiently heating the lubricating oil.

上記の課題を解決するため本発明の実施形態に係る冷凍サイクル装置は、圧縮機と前記圧縮機に接続される放熱器と膨張装置と吸熱器を備え、前記圧縮機は冷媒が充満し、且つ、底部に潤滑油が貯留される油溜まり部が設けられる密閉ケースと、前記密閉ケース内に収容され前記冷媒を圧縮する圧縮機構部と、前記圧縮機構部を作動させることなく前記潤滑油を前記密閉ケース外と密閉ケース内間で循環可能に構成された油回路と、前記油回路内の前記潤滑油を加熱する加熱手段を備えている。 In order to solve the above problems, the refrigeration cycle apparatus according to the embodiment of the present invention includes a compressor, a radiator connected to the compressor, an expansion device, and a heat absorber, and the compressor is filled with a refrigerant and A closed case provided with an oil sump portion for storing lubricating oil at the bottom, a compression mechanism portion housed in the closed case for compressing the refrigerant, and the lubricating oil without operating the compression mechanism portion. It includes an oil circuit configured to circulate between the outside of the closed case and the inside of the closed case, and a heating means for heating the lubricating oil in the oil circuit.

本実施形態における、断面で示した圧縮機を含む冷凍サイクル装置の構成図である。It is a block diagram of the refrigeration cycle apparatus including the compressor shown in the cross section in this embodiment. 圧縮機構部を示す水平断面図である。It is a horizontal cross-sectional view which shows the compression mechanism part.

本発明の実施形態について、図1及び図2に基づいて説明する。図1は冷凍サイクル装置1を示しており、この冷凍サイクル装置1は、圧縮機2と、圧縮機2に接続された放熱器である凝縮器3と、凝縮器3に接続された膨張装置4と、膨張装置4に接続された吸熱である蒸発器5と、蒸発器5に接続されたアキュムレータ6とを有し、アキュムレータ6が圧縮機2に接続されている。圧縮機2では作動流体であるガス冷媒が圧縮されて高温高圧になり、放熱器3では高温高圧のガス冷媒から放熱されて凝縮する。膨張装置4では冷媒が減圧され、蒸発器5では減圧された液冷媒が気化されてガス冷媒となる。アキュムレータ6では、ガス冷媒中に含まれる液冷媒が分離され、ガス冷媒のみが圧縮機2に供給される。 An embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a refrigeration cycle device 1, which is a compressor 2, a condenser 3 which is a radiator connected to the compressor 2, and an expansion device 4 connected to the condenser 3. The evaporator 5 which is endothermic connected to the expansion device 4 and the accumulator 6 connected to the evaporator 5 are provided, and the accumulator 6 is connected to the compressor 2. In the compressor 2, the gas refrigerant as a working fluid is compressed to a high temperature and high pressure, and in the radiator 3, heat is dissipated from the high temperature and high pressure gas refrigerant and condensed. In the expansion device 4, the refrigerant is decompressed, and in the evaporator 5, the decompressed liquid refrigerant is vaporized to become a gas refrigerant. In the accumulator 6, the liquid refrigerant contained in the gas refrigerant is separated, and only the gas refrigerant is supplied to the compressor 2.

この冷凍サイクル装置1では、冷媒がガス冷媒と液冷媒とに相変化しながら循環し、その過程で放熱と吸熱とが行われ、これらの放熱と吸熱とを利用して暖房、冷房、加熱、冷却等が行われる。 In this refrigeration cycle device 1, the refrigerant circulates while changing phase between a gas refrigerant and a liquid refrigerant, and heat dissipation and endothermic are performed in the process, and heating, cooling, and heating are performed by utilizing these heat dissipation and heat absorption. Cooling etc. are performed.

圧縮機2は、略円筒状に形成されて気密状態とされる密閉ケース7を有し、この密閉ケース7内にガス冷媒を圧縮する部分である圧縮機構部8と、この圧縮機構部8を駆動する部分である電動機部9とが収容されている。電動機部9には回転軸10が設けられ、この回転軸10を介して圧縮機構部8が電動機部9により駆動される。密閉ケース7内の底部には、潤滑油11が貯留されている。 The compressor 2 has a closed case 7 which is formed in a substantially cylindrical shape and is in an airtight state, and a compression mechanism portion 8 which is a portion for compressing a gas refrigerant and the compression mechanism portion 8 are provided in the closed case 7. The electric motor unit 9 which is a driving portion is housed. The electric motor unit 9 is provided with a rotating shaft 10, and the compression mechanism unit 8 is driven by the electric motor unit 9 via the rotating shaft 10. Lubricating oil 11 is stored in the bottom of the sealed case 7.

電動機部9は、回転軸10に固定された回転子12と、密閉ケース7の内周面に固定されて回転子12を囲む位置に配置された固定子13とを有している。回転子12には永久磁石(図示せず)が設けられ、固定子13には通電用のコイル(図示せず)が巻かれている。回転軸10は、電動機部9と圧縮機構部8との間に位置する主軸受14と、圧縮機構部8を挟んで主軸受14の反対側に位置する副軸受15とにより中心線回りに回転可能に軸支されている。 The electric motor unit 9 has a rotor 12 fixed to the rotating shaft 10 and a stator 13 fixed to the inner peripheral surface of the sealed case 7 and arranged at a position surrounding the rotor 12. A permanent magnet (not shown) is provided on the rotor 12, and a coil for energization (not shown) is wound around the stator 13. The rotating shaft 10 is rotated around the center line by a main bearing 14 located between the motor portion 9 and the compression mechanism portion 8 and an auxiliary bearing 15 located on the opposite side of the main bearing 14 with the compression mechanism portion 8 interposed therebetween. It is bearing as possible.

圧縮機構部8は、上下方向の両端が開口されたシリンダ16と、シリンダ16の上端側の開口部分を閉塞する閉塞部材を兼ねる主軸受14と、シリンダ16の下端側の開口部分を閉塞する閉塞部材を兼ねる副軸受15とを有し、シリンダ16の両端が主軸受14と副軸受15とで閉塞されることによりシリンダ16の内部にシリンダ室17が設けられている。シリンダ室17には回転軸10が挿通され、回転軸10におけるシリンダ室17内に位置する部分に偏心部18が設けられている。偏心部18にはローラ19が嵌合され、ローラ19は回転軸10の回転に伴ってシリンダ室17内で偏心回転するように設けられている。 The compression mechanism 8 includes a cylinder 16 having both ends opened in the vertical direction, a main bearing 14 serving as a closing member for closing the opening on the upper end side of the cylinder 16, and a closing portion for closing the opening on the lower end side of the cylinder 16. It has an auxiliary bearing 15 that also serves as a member, and a cylinder chamber 17 is provided inside the cylinder 16 by closing both ends of the cylinder 16 with the main bearing 14 and the auxiliary bearing 15. A rotary shaft 10 is inserted through the cylinder chamber 17, and an eccentric portion 18 is provided at a portion of the rotary shaft 10 located in the cylinder chamber 17. A roller 19 is fitted to the eccentric portion 18, and the roller 19 is provided so as to rotate eccentrically in the cylinder chamber 17 as the rotating shaft 10 rotates.

シリンダ16には、図2に示すように、ブレード溝20が設けられ、このブレード溝20には二つのブレード部材21、22が往復移動可能に挿入されている。二つのブレード部材21、22は、図1に示すように、回転軸10の軸方向に重ねて設けられ、ブレード部材21、22の先端部はローラ19の外周面に当接され、ブレード部材21、22の後端側にはブレード部材21、22を付勢するコイルスプリング23が配置されている。 As shown in FIG. 2, the cylinder 16 is provided with a blade groove 20, and two blade members 21 and 22 are inserted into the blade groove 20 so as to be reciprocally movable. As shown in FIG. 1, the two blade members 21 and 22 are provided so as to be overlapped with each other in the axial direction of the rotating shaft 10, and the tip portions of the blade members 21 and 22 are in contact with the outer peripheral surface of the roller 19 so that the blade member 21 , A coil spring 23 for urging the blade members 21 and 22 is arranged on the rear end side of the 22.

そして、ブレード部材21、22の先端部がローラ19の外周面に当接されることにより、図2に示すように、シリンダ室17内は吸込室24と圧縮室25とに区画されている。また、シリンダ16には、吸込室24に吸込まれるガス冷媒が流れる吸込通路26が設けられている。 The tip portions of the blade members 21 and 22 are brought into contact with the outer peripheral surface of the roller 19, so that the inside of the cylinder chamber 17 is divided into a suction chamber 24 and a compression chamber 25, as shown in FIG. Further, the cylinder 16 is provided with a suction passage 26 through which the gas refrigerant sucked into the suction chamber 24 flows.

図1に戻って、主軸受14には、圧縮室25で圧縮されたガス冷媒が吐出される吐出孔(図示せず)が設けられている。さらに主軸受14には、吐出孔を開閉する吐出弁28と、吐出孔及び吐出弁28を覆う吐出マフラ29とが設けられている。吐出マフラ29には、吐出マフラ29内と密閉ケース7内とを連通する連通孔30が形成されている。 Returning to FIG. 1, the main bearing 14 is provided with a discharge hole (not shown) for discharging the gas refrigerant compressed in the compression chamber 25. Further, the main bearing 14 is provided with a discharge valve 28 that opens and closes the discharge hole, and a discharge muffler 29 that covers the discharge hole and the discharge valve 28. The discharge muffler 29 is formed with a communication hole 30 that communicates the inside of the discharge muffler 29 and the inside of the closed case 7.

圧縮されたガス冷媒の圧力が設定圧に達すると、吐出弁28が開弁され、圧縮されたガス冷媒が吐出孔(図示せず)から吐出マフラ29内に吐出される。吐出マフラ29内に吐出された高圧のガス冷媒は、連通孔30を通過して密閉ケース7内に流入し、密閉ケース7内が高圧のガス冷媒で満たされる。密閉ケース7内の高圧のガス冷媒は、吸熱器3、膨張装置4、蒸発器5を順に経由して再び圧縮機2へと循環することにより、冷凍サイクルが実行される。 When the pressure of the compressed gas refrigerant reaches the set pressure, the discharge valve 28 is opened, and the compressed gas refrigerant is discharged into the discharge muffler 29 from the discharge hole (not shown). The high-pressure gas refrigerant discharged into the discharge muffler 29 passes through the communication hole 30 and flows into the closed case 7, and the inside of the closed case 7 is filled with the high-pressure gas refrigerant. The high-pressure gas refrigerant in the sealed case 7 circulates to the compressor 2 again via the endothermic device 3, the expansion device 4, and the evaporator 5, so that the refrigeration cycle is executed.

密閉ケース7の下部には、油回路41が設けられている。油回路41は外観略コの字状の中空のパイプ(配管)で形成され、密閉ケース7の側面を上下2か所で垂直に貫通して密閉ケース7内の潤滑油11中に開口するように構成されている。すなわち、油回路41は、一端部が密閉ケース7の内壁面より内側に突出して潤滑油11中に開口するとともに、密閉ケース7の側面を垂直に貫通して直線状に延出された下部接続管41aと、下部接続管41aの他端部で略90度上方にL字状に曲げられ、密閉ケース7と略平行に延出された潤滑油伝熱部41bと、潤滑油伝熱部41bの先端部で略90度L字状に曲げられ、密閉ケース7の側面を垂直に貫通して密閉ケース7の内壁面より内側に突出し、潤滑油11の油面より下方に開口する上部接続管41cで構成されている。 An oil circuit 41 is provided in the lower part of the sealed case 7. The oil circuit 41 is formed of a hollow pipe (piping) having a substantially U-shape in appearance, and vertically penetrates the side surface of the sealed case 7 at two places above and below so as to open into the lubricating oil 11 in the sealed case 7. It is configured in. That is, one end of the oil circuit 41 protrudes inward from the inner wall surface of the sealed case 7 to open into the lubricating oil 11, and the lower connection extends linearly through the side surface of the sealed case 7. Lubricating oil heat transfer part 41b and lubricating oil heat transfer part 41b that are bent upward by about 90 degrees in an L shape at the other end of the pipe 41a and the lower connecting pipe 41a and extend substantially parallel to the sealed case 7. An upper connecting pipe that is bent into an L-shape at approximately 90 degrees at the tip of the sealing case 7, vertically penetrates the side surface of the sealing case 7, protrudes inward from the inner wall surface of the sealing case 7, and opens below the oil level of the lubricating oil 11. It is composed of 41c.

ところで、密閉ケース7内においては、圧縮機構部8に吸入される吸入冷媒または圧縮機構部8から吐出された圧縮冷媒が充満している。運転が停止されると、密閉ケース7の温度が次第に低下し、密閉ケース8内に充満している冷媒が液化しやすくなる。液化した液冷媒は、油溜まり部44に貯留されている潤滑油11中に溶け込み潤滑油の粘度が低下する。この状態で運転を開始(始動)すると、摺動部へ粘度の低い潤滑油11が供給され、潤滑不良が起こってしまう。 By the way, the closed case 7 is filled with the suction refrigerant sucked into the compression mechanism unit 8 or the compression refrigerant discharged from the compression mechanism unit 8. When the operation is stopped, the temperature of the sealed case 7 gradually decreases, and the refrigerant filling the sealed case 8 tends to liquefy. The liquefied liquid refrigerant dissolves in the lubricating oil 11 stored in the oil sump 44, and the viscosity of the lubricating oil decreases. If the operation is started (started) in this state, the lubricating oil 11 having a low viscosity is supplied to the sliding portion, resulting in poor lubrication.

そこで、油回路41の潤滑油伝熱部41bの近傍には、加熱手段43が設けられている。これは、圧縮機2の始動する前に、潤滑油11を加熱して潤滑油11内に含まれる液化した冷媒を気化させるためである。加熱手段43としては、例えば公知のリボンヒーターやテープヒーターを用いることができ、これらを潤滑油伝熱部41bの外周面に巻き付けたり、貼り付けたりすることで潤滑油伝熱部41bを直接加熱する。これにより、その熱が油回路41を流れる潤滑油11に伝わることで加熱される。これにより、油溜まり部44の潤滑油11中に含まれる冷媒が気化されることで潤滑油11の粘度が高くなる。結果として圧縮機2を始動する際には、油吸入部45から所定の粘度の潤滑油を供給することができ、摺動部での潤滑不足を防ぐことができる。また、本実施形態ではケース全体を温める従来の方法と比較して、潤滑油11を効率的に加熱することでるので暖機運転が短縮でき、省電力化が図れる。 Therefore, a heating means 43 is provided in the vicinity of the lubricating oil heat transfer portion 41b of the oil circuit 41. This is because the lubricating oil 11 is heated to vaporize the liquefied refrigerant contained in the lubricating oil 11 before the compressor 2 is started. As the heating means 43, for example, a known ribbon heater or tape heater can be used, and the lubricating oil heat transfer portion 41b is directly heated by winding or attaching these to the outer peripheral surface of the lubricating oil heat transfer portion 41b. do. As a result, the heat is transferred to the lubricating oil 11 flowing through the oil circuit 41 to be heated. As a result, the refrigerant contained in the lubricating oil 11 of the oil sump portion 44 is vaporized, so that the viscosity of the lubricating oil 11 increases. As a result, when starting the compressor 2, lubricating oil having a predetermined viscosity can be supplied from the oil suction portion 45, and insufficient lubrication at the sliding portion can be prevented. Further, in the present embodiment, as compared with the conventional method of heating the entire case, the lubricating oil 11 can be efficiently heated, so that the warm-up operation can be shortened and power saving can be achieved.

また、加熱手段43にはその動作を制御する制御手段46が設けられている。圧縮機2に始動の信号が入った際に、制御手段46は密閉ケース7下部に設けられている油温センサー47から潤滑油の温度を測定する。その温度が所定値以下だった場合には、加熱手段43に通電し、潤滑油11を加熱する。潤滑油11の温度が設定値を超えた場合には、加熱手段43への通電を停止し、圧縮機2を起動する。こうすることで、潤滑油11の温度を常に正常に保つことができ、圧縮機2の信頼性と性能を高めることができる。また必要な際にだけ加熱するため、無駄な電力を消費することなく省エネ化が図れる。 Further, the heating means 43 is provided with a control means 46 for controlling its operation. When the start signal is input to the compressor 2, the control means 46 measures the temperature of the lubricating oil from the oil temperature sensor 47 provided in the lower part of the sealed case 7. When the temperature is equal to or lower than a predetermined value, the heating means 43 is energized to heat the lubricating oil 11. When the temperature of the lubricating oil 11 exceeds the set value, the energization of the heating means 43 is stopped and the compressor 2 is started. By doing so, the temperature of the lubricating oil 11 can always be kept normal, and the reliability and performance of the compressor 2 can be improved. Moreover, since it is heated only when necessary, energy saving can be achieved without wasting power.

油回路41を形成するパイプは、密閉ケース7の材料である鋼材よりも熱伝導率が高い材料である銅やアルミニウム合金等で構成されている。したがって、油回路41を形成するパイプの方が密閉ケース7よりも熱伝達率が良いため、加熱手段43の熱を効率良く潤滑油伝熱部41b内の潤滑油11に伝えることができる。また加熱手段43で加熱された潤滑油伝熱部41bの熱は油回路41の上部接続管41c、下部接続管41aを伝って、密閉ケース内の油溜まり部44にも伝わるため、より効率的に潤滑油11を加熱することができる。 The pipe forming the oil circuit 41 is made of copper, an aluminum alloy, or the like, which has a higher thermal conductivity than the steel material, which is the material of the sealed case 7. Therefore, since the pipe forming the oil circuit 41 has a better heat transfer coefficient than the closed case 7, the heat of the heating means 43 can be efficiently transferred to the lubricating oil 11 in the lubricating oil heat transfer section 41b. Further, the heat of the lubricating oil heat transfer portion 41b heated by the heating means 43 is transmitted to the upper connecting pipe 41c and the lower connecting pipe 41a of the oil circuit 41 and also to the oil pool portion 44 in the sealed case, which is more efficient. The lubricating oil 11 can be heated.

また、下部接続管41aの中間には、潤滑油11を強制的に循環させるための循環手段としてポンプ42が設けられており、これにより密閉ケース7内の潤滑油11が油回路41を循環される。このように構成することで、圧縮機2を運転することなく、潤滑油11を循環させることができ、尚且つ短時間で油溜まり部44の潤滑油11中に溶け込んだ冷媒を気化させることができる。 Further, a pump 42 is provided in the middle of the lower connecting pipe 41a as a circulation means for forcibly circulating the lubricating oil 11, whereby the lubricating oil 11 in the sealed case 7 is circulated in the oil circuit 41. NS. With this configuration, the lubricating oil 11 can be circulated without operating the compressor 2, and the refrigerant dissolved in the lubricating oil 11 of the oil sump portion 44 can be vaporized in a short time. can.

なお、ポンプ42は必須の構成ではなくてもよい。ポンプ42を用いなくとも、潤滑油伝熱部41bで加熱手段43によって加熱された潤滑油11は自然対流により油溜まり部44の上部に流れる。これにより油溜まり部44の冷えた潤滑油11は下方向に押し下げられ、下部接続管41aに流入する。このようにして自然対流を循環手段として利用することにより、ポンプ42を用いずに潤滑油11を循環・加熱することが可能である。この場合、ポンプ42を用いないため、更なる省電力可が実現できる。なお、循環手段として自然対流を用いる場合には、下部接続管41aよりも上部接続管41cの方が上側にある必要があり、かつ上部接続管41cは油溜まり部44の油面よりも下にある必要がある。 The pump 42 does not have to have an essential configuration. Even if the pump 42 is not used, the lubricating oil 11 heated by the heating means 43 in the lubricating oil heat transfer section 41b flows to the upper part of the oil sump section 44 by natural convection. As a result, the cold lubricating oil 11 in the oil sump 44 is pushed down downward and flows into the lower connecting pipe 41a. By using natural convection as a circulation means in this way, it is possible to circulate and heat the lubricating oil 11 without using the pump 42. In this case, since the pump 42 is not used, further power saving can be realized. When natural convection is used as the circulation means, the upper connecting pipe 41c needs to be above the lower connecting pipe 41a, and the upper connecting pipe 41c is below the oil level of the oil sump 44. There must be.

また、本実施形態では、膨張装置4と放熱器5を接続する配管には、第一の制御弁51aが設けられ、当該第一の制御弁51aを迂回するように、膨張装置4と第一の制御弁51aの間と、第一の制御弁51aと放熱器5の間を連通し、第二の制御弁51bを有するとともに、途中が潤滑油伝熱部41bの近傍に延出したバイパス回路50が設けられている。通常時は、第二の制御弁51bは閉じられており、第一の制御弁51aが開いている。圧縮比の高い運転条件や外気温度が高い夏場などで圧縮機2を運転させる場合には、潤滑油11が高温になる。そこで、圧縮機2から圧縮された冷媒の温度を検出する吐出温度センサー48を吐出配管に設け、冷媒の吐出温度が設定値を超えた際には、第二の制御弁51bを開け、第一の制御弁51aを閉じることで、膨張装置4によって減圧された低圧低温の冷媒をバイパス回路50に流すことにより、低圧冷媒部52と潤滑油伝熱部41bの間において冷媒と潤滑油11とを熱交換させる。これにより潤滑油11は冷却される。冷媒の吐出温度が規定値を下回った場合には、第二の制御弁51bを閉じ、第一の制御弁51aを開け通常運転に戻す。なお、低温冷媒部52と潤滑油伝熱部41bとの熱交換は、公知のフィンチューブ熱交換器を用いても良いし、低圧冷媒部52を潤滑油伝熱部41bに巻きつける方法であっても良い。また、低圧冷媒部52近傍にファンを設けて熱交換をさせてもよい。 Further, in the present embodiment, the first control valve 51a is provided in the pipe connecting the expansion device 4 and the radiator 5, and the expansion device 4 and the first control valve 51a are bypassed so as to bypass the first control valve 51a. A bypass circuit that communicates between the control valves 51a, the first control valve 51a, and the radiator 5, has a second control valve 51b, and extends in the middle to the vicinity of the lubricating oil heat transfer section 41b. 50 is provided. Normally, the second control valve 51b is closed and the first control valve 51a is open. When the compressor 2 is operated under operating conditions with a high compression ratio or in the summer when the outside air temperature is high, the lubricating oil 11 becomes hot. Therefore, a discharge temperature sensor 48 that detects the temperature of the refrigerant compressed from the compressor 2 is provided in the discharge pipe, and when the discharge temperature of the refrigerant exceeds the set value, the second control valve 51b is opened and the first control valve 51b is opened. By closing the control valve 51a of the above, the low-pressure low-temperature refrigerant decompressed by the expansion device 4 is allowed to flow through the bypass circuit 50, thereby causing the refrigerant and the lubricating oil 11 to flow between the low-pressure refrigerant section 52 and the lubricating oil heat transfer section 41b. Let the heat exchange. As a result, the lubricating oil 11 is cooled. When the discharge temperature of the refrigerant falls below the specified value, the second control valve 51b is closed, the first control valve 51a is opened, and normal operation is resumed. The heat exchange between the low temperature refrigerant section 52 and the lubricating oil heat transfer section 41b may be performed by using a known fin tube heat exchanger, or by winding the low pressure refrigerant section 52 around the lubricating oil heat transfer section 41b. You may. Further, a fan may be provided in the vicinity of the low-pressure refrigerant portion 52 to exchange heat.

なお、本実施形態は回転式圧縮機で説明をしたが、スクロール式の圧縮機であっても同様の効果を得ることができる。 Although the present embodiment has been described with a rotary compressor, the same effect can be obtained even with a scroll compressor.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

1…冷凍サイクル装置、2…圧縮機、3…吸熱器、4…膨張装置、5…蒸発器、7…密閉ケース、8…圧縮機構部、11…潤滑油、41…油回路、42…ポンプ、43…加熱手段、44…油溜まり部、45…油吸入部、52…低圧冷媒部 1 ... Refrigeration cycle device, 2 ... Compressor, 3 ... Heat absorber, 4 ... Expansion device, 5 ... Evaporator, 7 ... Sealed case, 8 ... Compression mechanism, 11 ... Lubricating oil, 41 ... Oil circuit, 42 ... Pump , 43 ... Heating means, 44 ... Oil reservoir, 45 ... Oil suction part, 52 ... Low pressure refrigerant part

Claims (5)

圧縮機と前記圧縮機に接続される放熱器と膨張装置と吸熱器を備え、
前記圧縮機は冷媒が充満し、且つ、底部に潤滑油が貯留される油溜まり部が設けられる密閉ケースと、
前記密閉ケース内に収容され前記冷媒を圧縮する圧縮機構部と、
前記圧縮機構部を作動させることなく前記潤滑油を前記密閉ケース外と密閉ケース内間で循環可能に構成された油回路と、
前記油回路内の前記潤滑油を加熱する加熱手段を備え、
前記油回路は、外観略コの字状の中空のパイプであって、前記密閉ケースに垂直に貫通する下部接続管と、該下部接続管よりも上方に位置して前記密閉ケースに垂直に貫通する上部接続管と、前記下部接続管と前記上部接続管の間で密閉ケースと略平行に延出された潤滑油伝熱部を有し、前記上部接続管は油溜まり部の油面よりも下方に位置することを特徴とする冷凍サイクル装置。
It is equipped with a compressor, a radiator connected to the compressor, an expansion device, and a heat absorber.
The compressor has a sealed case filled with a refrigerant and provided with an oil sump at the bottom for storing lubricating oil.
A compression mechanism unit housed in the airtight case and compressing the refrigerant, and
An oil circuit configured so that the lubricating oil can be circulated between the outside of the closed case and the inside of the closed case without operating the compression mechanism portion.
A heating means for heating the lubricating oil in the oil circuit is provided.
The oil circuit is a hollow pipe having a substantially U-shaped appearance, and has a lower connecting pipe that penetrates vertically through the sealed case and a lower connecting pipe that is located above the lower connecting pipe and penetrates vertically through the sealed case. The upper connecting pipe has a lubricating oil heat transfer portion extending substantially parallel to the closed case between the lower connecting pipe and the upper connecting pipe, and the upper connecting pipe is higher than the oil level of the oil sump. A refrigeration cycle device characterized by being located below.
前記油回路は前記潤滑油を循環させる強制循環手段を有することを特徴とする請求項1に記載の冷凍サイクル装置 The refrigeration cycle apparatus according to claim 1, wherein the oil circuit includes a forced circulation means for circulating the lubricating oil. 前記油回路を形成するパイプは、前記密閉ケース内面よりも内側に突出するとともに前記密閉ケースよりも熱伝導率が高い材料で形成されていることを特徴とする請求項1または2に記載の冷凍サイクル装置。The refrigeration according to claim 1 or 2, wherein the pipe forming the oil circuit projects inward from the inner surface of the closed case and is made of a material having a higher thermal conductivity than the closed case. Cycle device. 前記圧縮機構部の動作中に前記密閉ケース外の前記油回路内の潤滑油を冷却する冷却手 段を有することを特徴とする請求項1ないし3に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 1 to 3, further comprising a cooling mechanism for cooling the lubricating oil in the oil circuit outside the closed case during the operation of the compression mechanism unit. 前記冷却手段は、前記冷凍サイクル内を流動する低圧冷媒を用いることを特徴とする請求項4に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 4, wherein the cooling means uses a low-pressure refrigerant that flows in the refrigeration cycle.
JP2018057478A 2018-03-26 2018-03-26 Refrigeration cycle equipment Active JP6927911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057478A JP6927911B2 (en) 2018-03-26 2018-03-26 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057478A JP6927911B2 (en) 2018-03-26 2018-03-26 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2019167910A JP2019167910A (en) 2019-10-03
JP6927911B2 true JP6927911B2 (en) 2021-09-01

Family

ID=68106574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057478A Active JP6927911B2 (en) 2018-03-26 2018-03-26 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6927911B2 (en)

Also Published As

Publication number Publication date
JP2019167910A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
TWI313729B (en) Multistage rotary compressor
EP1965022A1 (en) Rotary fluid machine and refrigerating cycle device
JP4816220B2 (en) Refrigeration equipment
EP1215449A1 (en) Multi-stage compression refrigerating device
JP2009127902A (en) Refrigerating device and compressor
TW200403415A (en) Refrigerant cycling device and compressor using the same
JP2008175496A (en) Expander integrated compressor and refrigerating cycle device including it
JP2007285675A (en) Refrigerating appliance
JP2010032195A (en) Refrigerating device
JP5862460B2 (en) Air conditioner
WO2006095572A1 (en) Refrigeration cycle system
JP3818286B2 (en) Heating system and vending machine
JP6927911B2 (en) Refrigeration cycle equipment
JP6094080B2 (en) Air conditioner
JP2014190271A (en) Rotary compressor and air conditioner outdoor unit including the same
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
WO2009098863A1 (en) Refrigeration device
JP6150906B2 (en) Refrigeration cycle equipment
CN110520623B (en) Scroll compressor, control method thereof and air conditioner
JP2013044469A (en) Refrigerating air conditioning apparatus
JP3960349B1 (en) Compressor and vending machine
JP2007010257A (en) Heat pump device
JP5115355B2 (en) Fluid machinery
JP4973099B2 (en) Compressor
JP2005264829A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210805

R150 Certificate of patent or registration of utility model

Ref document number: 6927911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150