JPWO2005051861A1 - High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device - Google Patents

High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device Download PDF

Info

Publication number
JPWO2005051861A1
JPWO2005051861A1 JP2005515736A JP2005515736A JPWO2005051861A1 JP WO2005051861 A1 JPWO2005051861 A1 JP WO2005051861A1 JP 2005515736 A JP2005515736 A JP 2005515736A JP 2005515736 A JP2005515736 A JP 2005515736A JP WO2005051861 A1 JPWO2005051861 A1 JP WO2005051861A1
Authority
JP
Japan
Prior art keywords
dielectric
high frequency
ceramic composition
composition
duplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005515736A
Other languages
Japanese (ja)
Other versions
JP3979433B2 (en
Inventor
石川 達也
石川  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP3979433B2 publication Critical patent/JP3979433B2/en
Publication of JPWO2005051861A1 publication Critical patent/JPWO2005051861A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • C04B2235/326Tungstates, e.g. scheelite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

高い比誘電率εrと高いQ値を有し、また共振周波数の温度係数τfが0ppm/℃を中心に任意に制御できる、高周波用誘電体磁器組成物を提供しようとする。組成式:xCaTiaO1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2We/2)O1+(d+3e)/2で表わされる組成を有し、上記組成式におけるx、y、z、a、b、c、d、およびe(ただしx、y、zはモル比である)は、0.475≦x≦0.58、0.21≦y≦0.505、0.018≦z≦0.25、x+y+z=1.000、0.9≦a≦1.05、0.9≦b≦1.1、0.9≦c≦1.1、0.9≦d≦1.1、0.9≦e≦1.05の範囲内にある。An object of the present invention is to provide a dielectric ceramic composition for high frequency, which has a high relative dielectric constant εr and a high Q value, and the temperature coefficient τf of the resonance frequency can be arbitrarily controlled around 0 ppm / ° C. Composition formula: xCaTiaO1 + 2a-yCa (Alb / 2Nbc / 2) O1 + (3b + 5c) / 4-zCa (Mgd / 2We / 2) O1 + (d + 3e) / 2 In the formula, x, y, z, a, b, c, d, and e (where x, y, and z are molar ratios) are 0.475 ≦ x ≦ 0.58, 0.21 ≦ y ≦ 0. .505, 0.018 ≦ z ≦ 0.25, x + y + z = 1.000, 0.9 ≦ a ≦ 1.05, 0.9 ≦ b ≦ 1.1, 0.9 ≦ c ≦ 1.1, 0 .9 ≦ d ≦ 1.1 and 0.9 ≦ e ≦ 1.05.

Description

この発明は、マイクロ波やミリ波等の高周波領域において利用される高周波用誘電体磁器組成物、ならびにそれを用いて構成される誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置に関する。   The present invention relates to a high-frequency dielectric ceramic composition used in a high-frequency region such as a microwave and a millimeter wave, and a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device configured using the same About.

マイクロ波やミリ波等の高周波領域において、誘電体共振器や回路基板等を構成する材料として、誘電体磁器が広く利用されている。   In high frequency regions such as microwaves and millimeter waves, dielectric ceramics are widely used as materials constituting dielectric resonators and circuit boards.

このような高周波用誘電体磁器が、特に誘電体共振器や誘電体フィルタ等の用途に向けられる場合、要求される誘電特性としては、(1)誘電体中では電磁波の波長が1/(εr1/2に短縮されるので、小型化の要求への対応として比誘電率(εr)が高いこと、(2)誘電損失が小さい、すなわちQ値が高いこと、(3)共振周波数の温度安定性が優れている、すなわち共振周波数の温度係数(τf)が0ppm/℃付近であること等が挙げられる。When such a high-frequency dielectric ceramic is particularly intended for applications such as dielectric resonators and dielectric filters, the required dielectric characteristics are as follows: (1) the wavelength of electromagnetic waves in the dielectric is 1 / (ε r ) is reduced to 1/2 , so that the dielectric constant (ε r ) is high as a response to the demand for miniaturization, (2) the dielectric loss is small, that is, the Q value is high, (3) the resonance frequency In that the temperature coefficient of resonance frequency (τ f ) is around 0 ppm / ° C.

ここでτfは、25℃における共振周波数(f25)と、55℃における共振周波数(f55)の値とを用いて、共振周波数温度曲線を直線近似したときの傾き(1次微係数)を表わすものであり、その値はτf=(f55−f25)/(f25・(55℃−25℃))の式によって求められる。Here, τ f is the slope (first derivative) when the resonance frequency temperature curve is linearly approximated using the resonance frequency (f 25 ) at 25 ° C. and the value of the resonance frequency (f 55 ) at 55 ° C. The value is obtained by the equation of τ f = (f 55 −f 25 ) / (f 25 · (55 ° C.−25 ° C.)).

従来、上述したような要求を満たし得る高周波用誘電体磁器組成物として、例えばCaO−TiO2−Al23−(Nb、Ta)25系(特許文献1〜7参照)、Ca(Mg1/21/2)O3系等の磁器組成物が、既に多数提案されている。
特開平10−95663号公報 特開2001−302331号公報 特開2001−302332号公報 特開2001−302333号公報 特開2001−302334号公報 特開2002−255640号公報 特開2002−308670号公報 特開平9−241073号公報
Conventionally, as a high frequency dielectric ceramic composition that can satisfy the above-described requirements, for example, CaO—TiO 2 —Al 2 O 3 — (Nb, Ta) 2 O 5 (see Patent Documents 1 to 7), Ca ( Many porcelain compositions such as Mg 1/2 W 1/2 ) O 3 have already been proposed.
JP-A-10-95663 JP 2001-302331 A JP 2001-302332 A JP 2001-302333 A JP 2001-302334 A JP 2002-255640 A JP 2002-308670 A Japanese Patent Laid-Open No. 9-2441073

近年、電子機器の低損失化、かつ小型化の要求が高まり、誘電体共振器や誘電体フィルタ等の用途に向けられる高周波用誘電体磁器に要求される誘電特性に関して、より優れたものが必要とされるようになっている。特に、高周波領域で使用しても、高いεr、高いQ値、および高い温度安定性(τfが0ppm/℃付近)を併せ持つ材料に対する要求が高まってきている。In recent years, there has been an increasing demand for low loss and downsizing of electronic devices, and more excellent dielectric properties required for high frequency dielectric ceramics for applications such as dielectric resonators and dielectric filters are required. It is supposed to be. In particular, even when used in a high frequency region, there is an increasing demand for materials having both high ε r , high Q value, and high temperature stability (τ f is around 0 ppm / ° C.).

しかしながら、前記特許文献1に記載された組成系を有する誘電体磁器組成物は、εrが41〜66と高いものの、Q値(1GHz)が12000〜27300であり充分高いとは言えなかった。However, although the dielectric ceramic composition having the composition system described in Patent Document 1 has a high ε r of 41 to 66, the Q value (1 GHz) is 12000 to 27300 and cannot be said to be sufficiently high.

また、前記特許文献2〜7に記載された組成系を有する誘電体磁器組成物は、εrが35以上と高く、τfが0ppm/℃付近で制御できるものの、εrを高くするとτfとQ値(1GHz)が悪化するという問題があった。Moreover, the dielectric ceramic composition having the composition system described in Patent Documents 2 to 7 has a high ε r of 35 or more and τ f can be controlled around 0 ppm / ° C. However, when ε r is increased, τ f There was a problem that the Q value (1 GHz) deteriorated.

また、前記特許文献8に記載された組成系を有する誘電体磁器組成物は、Q値(1GHz)が45000以上と高いものの、εrが17〜19と低く、またτfの絶対値が70以上と大きかった。The dielectric ceramic composition having the composition system described in Patent Document 8 has a high Q value (1 GHz) of 45000 or more, but has a low ε r of 17 to 19 and an absolute value of τ f of 70. It was more than that.

そこで、この発明の目的は、上述したような問題を解決し得る、すなわちマイクロ波やミリ波等の高周波領域で使用しても、高いεrと高いQ値を有し、またτfの絶対値が小さい、高周波用誘電体磁器組成物を提供しようとすることである。Therefore, an object of the present invention is to solve the above-described problem, that is, even when used in a high frequency region such as a microwave or a millimeter wave, it has a high ε r and a high Q value, and the absolute value of τ f An object is to provide a dielectric ceramic composition for high frequency with a small value.

上述した技術的課題を解決するため、この発明の高周波用誘電体磁器組成物は、 組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成を有し、上記組成式におけるx、y、z、a、b、c、d、およびe(ただしx、y、zはモル比である)は、0.475≦x≦0.58、0.21≦y≦0.505、0.018≦z≦0.25、x+y+z=1.000、0.9≦a≦1.05、0.9≦b≦1.1、0.9≦c≦1.1、0.9≦d≦1.1、0.9≦e≦1.05の範囲内にある。In order to solve the above technical problem, the dielectric ceramic composition for high frequency of the present invention has a composition formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c / 2 ) O 1+ (3b + 5c ) / 4- zCa (Mg d / 2 W e / 2 ) O 1+ (d + 3e) / 2 , and x, y, z, a, b, c, d in the above composition formula , And e (where x, y and z are molar ratios) are 0.475 ≦ x ≦ 0.58, 0.21 ≦ y ≦ 0.505, 0.018 ≦ z ≦ 0.25, x + y + z = 1.000, 0.9 ≦ a ≦ 1.05, 0.9 ≦ b ≦ 1.1, 0.9 ≦ c ≦ 1.1, 0.9 ≦ d ≦ 1.1, 0.9 ≦ e ≦ It is in the range of 1.05.

そして、前記組成式中のNbの一部または全部が、Taおよび/またはSbで置換されており、かつSbの置換量l(ただしlはSb/(Nb+Ta+Sb)モル比である)は、0≦l≦0.5の範囲内にある。   In addition, part or all of Nb in the composition formula is substituted with Ta and / or Sb, and the substitution amount l of Sb (where l is a Sb / (Nb + Ta + Sb) molar ratio) is 0 ≦ It is in the range of l ≦ 0.5.

さらに、前記組成式中のMgの一部または全部が、Znで置換されている。   Furthermore, part or all of Mg in the composition formula is substituted with Zn.

また、この発明の誘電体共振器は、誘電体磁器が入出力端子に電磁界結合して作動するものである誘電体共振器であって、前記誘電体磁器は、上述したこの発明の高周波用誘電体磁器組成物からなる。   The dielectric resonator according to the present invention is a dielectric resonator in which a dielectric ceramic is operated by electromagnetic coupling to an input / output terminal, and the dielectric ceramic is used for the high frequency of the present invention described above. It consists of a dielectric ceramic composition.

また、この発明の誘電体フィルタは、上述した誘電体共振器と、この誘電体共振器の入出力端子に接続される外部結合手段とを備える。   The dielectric filter of the present invention includes the above-described dielectric resonator and external coupling means connected to the input / output terminal of the dielectric resonator.

また、この発明の誘電体デュプレクサは、少なくとも2つの誘電体フィルタと、前記誘電体フィルタのそれぞれに接続される入出力接続手段と、前記誘電体フィルタに共通に接続されるアンテナ接続手段とを備える誘電体デュプレクサであって、前記誘電体フィルタの少なくとも1つが、上述したこの発明に係る誘電体フィルタである。   The dielectric duplexer of the present invention includes at least two dielectric filters, input / output connection means connected to each of the dielectric filters, and antenna connection means commonly connected to the dielectric filter. A dielectric duplexer, wherein at least one of the dielectric filters is the above-described dielectric filter according to the present invention.

さらに、この発明の通信機装置は、上述の誘電体デュプレクサと、この誘電体デュプレクサの少なくとも1つの入出力接続手段に接続される送信用回路と、この送信用回路に接続される上述の入出力手段とは異なる、少なくとも1つの入出力接続手段に接続される受信用回路と、前記誘電体デュプレクサのアンテナ接続手段に接続されるアンテナとを備える。   Furthermore, the communication device of the present invention includes the above-described dielectric duplexer, a transmission circuit connected to at least one input / output connection means of the dielectric duplexer, and the input / output described above connected to the transmission circuit. A receiving circuit connected to at least one input / output connection means different from the means; and an antenna connected to the antenna connection means of the dielectric duplexer.

この発明によれば、組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成を有し、上記組成式におけるx、y、z、a、b、c、d、およびe(ただしx、y、zはモル比である)は、0.475≦x≦0.58、0.21≦y≦0.505、0.018≦z≦0.25、x+y+z=1.000、0.9≦a≦1.05、0.9≦b≦1.1、0.9≦c≦1.1、0.9≦d≦1.1、0.9≦e≦1.05の範囲内にあるようにしているので、εrが45以上であって、Q値(1GHz)で38000以上の高いQ値を示し、またτfの絶対値が25ppm/℃以内と小さい、高周波用誘電体磁器組成物を得ることができる。According to the present invention, the composition formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c / 2) O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2) O 1+ (d + 3e) / 2 , and x, y, z, a, b, c, d, and e in the above composition formula (where x, y, and z are molar ratios) 0.475 ≦ x ≦ 0.58, 0.21 ≦ y ≦ 0.505, 0.018 ≦ z ≦ 0.25, x + y + z = 1.000, 0.9 ≦ a ≦ 1.05,. Since 9 ≦ b ≦ 1.1, 0.9 ≦ c ≦ 1.1, 0.9 ≦ d ≦ 1.1, and 0.9 ≦ e ≦ 1.05, ε r Is 45 or more, a high Q value of 38000 or more is exhibited at a Q value (1 GHz), and a high-frequency dielectric ceramic composition having a small absolute value of τ f within 25 ppm / ° C. can be obtained.

そして、この発明の高周波用誘電体磁器組成物において、前記組成式中のNbの一部または全部を、Taおよび/またはSbで置換し、かつSbの置換量l(ただしlはSb/(Nb+Ta+Sb)モル比である)は、0≦l≦0.5の範囲内にあるようにすることにより、TaまたはSbで置換しない場合に比べて、τfの絶対値をより小さくすることができる。In the high frequency dielectric ceramic composition of the present invention, part or all of Nb in the composition formula is replaced with Ta and / or Sb, and the replacement amount l of Sb (where l is Sb / (Nb + Ta + Sb) ) (Which is the molar ratio) can be made to be in the range of 0 ≦ l ≦ 0.5, so that the absolute value of τ f can be made smaller than when not substituted with Ta or Sb.

さらに、この発明の高周波用誘電体磁器組成物において、前記組成式中のMgの一部または全部を、Znで置換することにより、Znで置換しない場合に比べて、εrをより高くすることができる。Furthermore, in the high frequency dielectric ceramic composition of the present invention, by replacing a part or all of Mg in the above composition formula with Zn, ε r can be made higher than when not substituted with Zn. Can do.

したがって、例えば基地局、携帯電話、パーソナル無線機、衛星放送受信機等に搭載される誘電体共振器を小型化し、誘電損失を小さいものとし、また共振周波数の温度安定性を優れたものとすることができる。その結果、このような誘電体共振器を用いれば、小型化され、かつ優れた特性を有する誘電体フィルタ、誘電体デュプレクサ、および通信機装置を有利に構成することができる。   Therefore, for example, a dielectric resonator mounted in a base station, a mobile phone, a personal radio, a satellite broadcast receiver, etc. is downsized, the dielectric loss is reduced, and the temperature stability of the resonance frequency is excellent. be able to. As a result, if such a dielectric resonator is used, a dielectric filter, a dielectric duplexer, and a communication device that are downsized and have excellent characteristics can be advantageously configured.

この発明の高周波用誘電体磁器組成物を用いて構成される誘電体共振器1の基本的構造を図解的に示す断面図である。It is sectional drawing which shows the basic structure of the dielectric resonator 1 comprised using the dielectric ceramic composition for high frequencies of this invention schematically. 図2に示した誘電体共振器1を用いて構成される通信機装置の一例を示すブロック図である。It is a block diagram which shows an example of the communication apparatus comprised using the dielectric resonator 1 shown in FIG.

符号の説明Explanation of symbols

1 誘電体共振器
2 金属ケース
3 支持台
4 誘電体磁器
5、6 結合ループ
7、8 同軸ケーブル
10 通信機装置
12 誘電体デュプレクサ
14 送信用回路
16 受信用回路
18 アンテナ
20 入力接続手段
22 出力接続手段
24 アンテナ接続手段
26、28 誘電体フィルタ
30 外部結合手段
DESCRIPTION OF SYMBOLS 1 Dielectric resonator 2 Metal case 3 Support stand 4 Dielectric porcelain 5, 6 Coupling loop 7, 8 Coaxial cable 10 Communication apparatus 12 Dielectric duplexer 14 Transmission circuit 16 Reception circuit 18 Antenna 20 Input connection means 22 Output connection Means 24 Antenna connection means 26, 28 Dielectric filter 30 External coupling means

まず、この発明の高周波用誘電体磁器組成物が適用される誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置について説明する。   First, a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device to which the high frequency dielectric ceramic composition of the present invention is applied will be described.

図1は、この発明の高周波用誘電体磁器組成物を用いて構成される誘電体共振器1の基本的構造を図解的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing the basic structure of a dielectric resonator 1 constructed using the high frequency dielectric ceramic composition of the present invention.

図1を参照して、誘電体共振器1は、金属ケース2を備え、金属ケース2内の空間には、支持台3によって支持された柱状の誘電体磁器4が配置されている。そして、同軸ケーブル7の中心導体と外導体との間に結合ループ5を形成して入力端子とする。また、同軸ケーブル8の中心導体と外導体との間に結合ループ6を形成して出力端子とする。それぞれの端子は、外導体と金属ケース2とが電気的に接合された状態で、金属ケース2によって保持されている。   Referring to FIG. 1, a dielectric resonator 1 includes a metal case 2, and a columnar dielectric ceramic 4 supported by a support base 3 is disposed in a space inside the metal case 2. A coupling loop 5 is formed between the center conductor and the outer conductor of the coaxial cable 7 to serve as an input terminal. Further, a coupling loop 6 is formed between the central conductor and the outer conductor of the coaxial cable 8 to serve as an output terminal. Each terminal is held by the metal case 2 in a state where the outer conductor and the metal case 2 are electrically joined.

誘電体磁器4は、入力端子および出力端子に電磁界結合して作動するもので、入力端子から入力された所定の周波数の信号だけが出力端子から出力される。   The dielectric porcelain 4 operates by electromagnetic coupling to the input terminal and the output terminal, and only a signal having a predetermined frequency input from the input terminal is output from the output terminal.

このような誘電体共振器1に備える誘電体磁器4が、この発明の高周波用誘電体磁器組成物から構成される。   The dielectric ceramic 4 provided in such a dielectric resonator 1 is composed of the high frequency dielectric ceramic composition of the present invention.

なお、図1に示した誘電体共振器1は、基地局等で用いられるTE01δモード共振器であるが、この発明の高周波用誘電体磁器組成物は、他のTEモード、TMモード、およびTEMモードなどを利用する誘電体共振器にも同様に適用することができる。   The dielectric resonator 1 shown in FIG. 1 is a TE01δ mode resonator used in a base station or the like, but the high-frequency dielectric ceramic composition of the present invention has other TE modes, TM modes, and TEMs. The same can be applied to a dielectric resonator using a mode or the like.

図2は、上述した誘電体共振器1を用いて構成される通信機装置の一例を示すブロック図である。   FIG. 2 is a block diagram illustrating an example of a communication device configured using the dielectric resonator 1 described above.

図2に示した通信機装置10は、誘電体デュプレクサ12、送信用回路14、受信用回路16およびアンテナ18を含む。   The communication device 10 shown in FIG. 2 includes a dielectric duplexer 12, a transmission circuit 14, a reception circuit 16, and an antenna 18.

送信用回路14は、誘電体デュプレクサ12の入力接続手段20に接続され、受信用回路16は、誘電体デュプレクサ12の出力接続手段22に接続される。   The transmission circuit 14 is connected to the input connection means 20 of the dielectric duplexer 12, and the reception circuit 16 is connected to the output connection means 22 of the dielectric duplexer 12.

また、アンテナ18は、誘電体デュプレクサ12のアンテナ接続手段24に接続される。   The antenna 18 is connected to the antenna connection means 24 of the dielectric duplexer 12.

この誘電体デュプレクサ12は、2つの誘電体フィルタ26、28を含む。誘電体フィルタ26、28は、この発明の誘電体共振器に外部結合手段を接続して構成されるものである。図示の実施形態では、例えば図1に示した誘電体共振器1の入出力端子にそれぞれ外部結合手段30を接続して、誘電体フィルタ26および28のそれぞれが構成される。そして、一方の誘電体フィルタ26は、入力接続手段20と他方の誘電体フィルタ28との間に接続され、他方の誘電体フィルタ28は、一方の誘電体フィルタ26と出力接続手段22との間に接続される。   The dielectric duplexer 12 includes two dielectric filters 26 and 28. The dielectric filters 26 and 28 are configured by connecting an external coupling means to the dielectric resonator of the present invention. In the illustrated embodiment, for example, each of the dielectric filters 26 and 28 is configured by connecting external coupling means 30 to the input / output terminals of the dielectric resonator 1 shown in FIG. One dielectric filter 26 is connected between the input connection means 20 and the other dielectric filter 28, and the other dielectric filter 28 is connected between the one dielectric filter 26 and the output connection means 22. Connected to.

次に、図1に示した誘電体共振器1に備える誘電体磁器4のように、高周波領域において有利に用いられる、この発明の高周波用誘電体磁器組成物について説明する。   Next, the dielectric ceramic composition for high frequency of the present invention that is advantageously used in the high frequency region, such as the dielectric ceramic 4 provided in the dielectric resonator 1 shown in FIG. 1, will be described.

この発明の高周波用誘電体磁器組成物は、組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成を有している。ここで上記組成式におけるx、y、z、a、b、c、d、およびe(ただしx、y、zはモル比である)は、0.475≦x≦0.58、0.21≦y≦0.505、0.018≦z≦0.25、x+y+z=1.000、0.9≦a≦1.05、0.9≦b≦1.1、0.9≦c≦1.1、0.9≦d≦1.1、0.9≦e≦1.05の範囲内にあるように選ばれる。High frequency dielectric ceramic composition of the present invention, the composition formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c / 2) O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2 ) O 1+ (d + 3e) / 2 Here, x, y, z, a, b, c, d, and e (where x, y, and z are molar ratios) in the above composition formula are 0.475 ≦ x ≦ 0.58, 0.21. ≦ y ≦ 0.505, 0.018 ≦ z ≦ 0.25, x + y + z = 1.000, 0.9 ≦ a ≦ 1.05, 0.9 ≦ b ≦ 1.1, 0.9 ≦ c ≦ 1 .1, 0.9 ≦ d ≦ 1.1 and 0.9 ≦ e ≦ 1.05.

そして、この発明の高周波用誘電体磁器組成物は、τfの絶対値をより小さくするため、前記組成式中のNbの一部または全部が、Taおよび/またはSbで置換されており、かつSbの置換量l(ただしlはSb/(Nb+Ta+Sb)モル比である)は、0≦l≦0.5の範囲内にあるように選ばれる。In the high frequency dielectric ceramic composition of the present invention, in order to make the absolute value of τ f smaller, a part or all of Nb in the composition formula is replaced with Ta and / or Sb, and The substitution amount l of Sb (where l is the molar ratio of Sb / (Nb + Ta + Sb)) is selected so as to be in the range of 0 ≦ l ≦ 0.5.

さらに、この発明の高周波用誘電体磁器組成物は、εrをより高くするため、前記組成式中のMgの一部または全部が、Znで置換されている。Furthermore, in the high frequency dielectric ceramic composition of the present invention, in order to make ε r higher, a part or all of Mg in the composition formula is substituted with Zn.

この発明において、上述のような特定的な組成を選んだ根拠となる実施例について、以下に説明する。   In the present invention, examples that serve as the basis for selecting a specific composition as described above will be described below.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化マグネシウム(MgO)、および酸化タングステン(WO3)の各粉末を準備した。As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), and tungsten oxide (WO 3 ) Each powder was prepared.

次に、表1および2に示すx、y、z、a、b、c、d、およびeにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。Next, the composition formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c /) selected for x, y, z, a, b, c, d, and e shown in Tables 1 and 2, respectively. 2 ) Each of the above starting material powders so as to obtain a composition represented by O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2 ) O 1+ (d + 3e) / 2 Was formulated.

次に、この調合粉末を、ボールミルを用いて16時間湿式混合し、均一に分散させた後、脱水および乾燥処理を施して調整粉末を得た。   Next, the blended powder was wet-mixed for 16 hours using a ball mill and dispersed uniformly, and then subjected to dehydration and drying treatment to obtain an adjusted powder.

次に、この調整粉末を、1000〜1300℃の温度で3時間仮焼し、得られた仮焼粉末に適量のバインダを加えて、再びボールミルを用いて16時間湿式粉砕することにより、焼成用粉末を得た。   Next, the adjusted powder is calcined at a temperature of 1000 to 1300 ° C. for 3 hours, an appropriate amount of binder is added to the obtained calcined powder, and wet milled again using a ball mill for 16 hours. A powder was obtained.

そして、この焼成用粉末を、0.98×102〜1.96×102MPaの圧力で円板状にプレス成形した後、1400〜1650℃の温度で4時間、大気中において焼成し、直径10mm、厚さ5mmの円板状の焼結体を得た。Then, the powder for burning, after press-molded into a disk shape at a pressure of 0.98 × 10 2 ~1.96 × 10 2 MPa, and calcined at 4 hours in air at a temperature of from 1,400 to 1,650 ° C., A disk-shaped sintered body having a diameter of 10 mm and a thickness of 5 mm was obtained.

得られた各試料に係る焼結体について、測定周波数fが6〜8GHzにおけるεrとQ値を、TE011モードによる両端短絡型誘電体共振器法にて測定し、Q×f(周波数)=一定の式に基づき、Q値(1GHz)に換算した。また、TE01δモードによるキャビティ法にて共振周波数を測定し、25〜55℃の温度範囲でのτfを測定した。With respect to the obtained sintered body of each sample, ε r and Q value at a measurement frequency f of 6 to 8 GHz were measured by a double-end short-circuited dielectric resonator method using TE011 mode, and Q × f (frequency) = Based on a fixed formula, it was converted into a Q value (1 GHz). In addition, the resonance frequency was measured by the cavity method in the TE01δ mode, and τ f in the temperature range of 25 to 55 ° C. was measured.

上述のようにして測定した、試料組成に対応したεr、Q値(1GHz)、およびτfを、表1および2に示す。Tables 1 and 2 show ε r , Q value (1 GHz), and τ f corresponding to the sample composition, measured as described above.

Figure 2005051861
Figure 2005051861

Figure 2005051861
Figure 2005051861

表1および2において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Tables 1 and 2, the sample number with * is a sample outside the scope of the present invention.

表1および2に示すように、この発明の範囲内にある試料8〜12、16〜20、23〜27、30〜34、37〜41、45〜48、57、58、61、62、65、66、69、70、73、および74に係る誘電体磁器組成物によれば、εrを45〜54程度と大きく、Q値(1GHz)を38000以上と高く、τfの絶対値を25ppm/℃以内に小さくすることができ、優れたマイクロ波誘電特性を得ることができる。As shown in Tables 1 and 2, samples 8-12, 16-20, 23-27, 30-34, 37-41, 45-48, 57, 58, 61, 62, 65 within the scope of the present invention. , 66, 69, 70, 73 and 74, ε r is as large as about 45 to 54, Q value (1 GHz) is as high as 38000 or more, and the absolute value of τ f is 25 ppm. It can be reduced within / ° C., and excellent microwave dielectric properties can be obtained.

これらに対して、この発明の範囲外にある試料について考察する。   In contrast, samples that are outside the scope of this invention are considered.

まず、x<0.475の場合は、試料53、および54に示すように、εrが45未満となり、またτfの絶対値が25ppm/℃を超える。他方、x>0.58の場合は、試料3、および4に示すように、Q値(1GHz)が38000未満となる。First, when x <0.475, as shown in samples 53 and 54, ε r is less than 45 and the absolute value of τ f exceeds 25 ppm / ° C. On the other hand, when x> 0.58, as shown in Samples 3 and 4, the Q value (1 GHz) is less than 38000.

次に、y<0.21の場合は、試料13に示すように、Q値(1GHz)が38000未満となる。他方、y>0.505の場合は、試料44に示すように、Q値(1GHz)が38000未満となる。   Next, when y <0.21, as shown in the sample 13, the Q value (1 GHz) is less than 38000. On the other hand, when y> 0.505, as shown in the sample 44, the Q value (1 GHz) is less than 38000.

次に、z<0.018の場合は、試料7、15、22、29、および36に示すように、Q値(1GHz)が38000未満となる。他方、z>0.25の場合は、試料49、および50に示すように、εrが45未満となり、またτfの絶対値が25ppm/℃を超える。Next, when z <0.018, as shown in Samples 7, 15, 22, 29, and 36, the Q value (1 GHz) is less than 38000. On the other hand, when z> 0.25, as shown in Samples 49 and 50, ε r is less than 45, and the absolute value of τ f exceeds 25 ppm / ° C.

次に、a<0.9、またはa>1.05の場合は、それぞれ試料56、59に示すように、Q値(1GHz)が38000未満となる。   Next, when a <0.9 or a> 1.05, the Q value (1 GHz) is less than 38000, as shown in Samples 56 and 59, respectively.

次に、b<0.9、またはb>1.1の場合は、それぞれ試料60、63に示すように、Q値(1GHz)が38000未満となる。   Next, when b <0.9 or b> 1.1, the Q value (1 GHz) is less than 38000, as shown in samples 60 and 63, respectively.

次に、c<0.9、またはc>1.1の場合は、それぞれ試料64、67に示すように、Q値(1GHz)が38000未満となる。   Next, in the case of c <0.9 or c> 1.1, the Q value (1 GHz) is less than 38000 as shown in Samples 64 and 67, respectively.

次に、d<0.9、またはd>1.1の場合は、それぞれ試料68、71に示すように、Q値(1GHz)が38000未満となる。   Next, when d <0.9 or d> 1.1, the Q value (1 GHz) is less than 38000, as shown in samples 68 and 71, respectively.

次に、e<0.9、またはe>1.05の場合は、それぞれ試料72、75に示すようにQ値(1GHz)が38000未満となる。   Next, in the case of e <0.9 or e> 1.05, the Q value (1 GHz) is less than 38000 as shown in samples 72 and 75, respectively.

実施例2は、Nbの一部または全部を、TaまたはSbで置換することにより及ぼされる影響について調査するために実施したものである。   Example 2 was carried out in order to investigate the influence exerted by substituting part or all of Nb with Ta or Sb.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、酸化アンチモン(Sb23)、酸化マグネシウム(MgO)、および酸化タングステン(WO3)の各粉末を準備した。As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), antimony oxide (Sb 2 O 3 ), magnesium oxide (MgO), and tungsten oxide (WO 3 ) powders were prepared.

次に、表3に示すx、y、z、a、b、c、d、e、k、およびlにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa{Alb/2(Nb1-k-lTakSblc/2}O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。Next, the composition formulas: xCaTi a O 1 + 2a -yCa {Al b / 2 (chosen for x, y, z, a, b, c, d, e, k, and l shown in Table 3, respectively. nb 1-kl Ta k Sb l ) c / 2} O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2) O 1+ (d + 3e) / 2 composition represented by the Each of the above starting material powders was prepared so as to be obtained.

その後、実施例1の場合と同様の方法によって、試料となる円板状の焼結体を得、得られた各試料に係る焼結体について、εr、Q値(1GHz)、およびτfをそれぞれ測定した。Thereafter, a disk-shaped sintered body to be a sample is obtained by the same method as in Example 1, and ε r , Q value (1 GHz), and τ f are obtained for the obtained sintered body according to each sample. Was measured respectively.

試料組成に対応したεr、Q値(1GHz)、およびτfの測定結果を表3に示す。Table 3 shows the measurement results of ε r , Q value (1 GHz), and τ f corresponding to the sample composition.

Figure 2005051861
Figure 2005051861

表3において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Table 3, the sample number with * is a sample outside the scope of the present invention.

表3に示すように、この発明の範囲内にある試料76、77、79〜81、83、84、86〜90に係る誘電体磁器組成物によれば、Nbの一部または全部を、Taおよび/またはSbで置換していない場合に比べて、εrおよびQ値(1GHz)を悪化させることなく、τfの絶対値を小さくすることができ、優れたマイクロ波誘電特性を得ることができる。As shown in Table 3, according to the dielectric ceramic composition according to Samples 76, 77, 79 to 81, 83, 84, and 86 to 90 within the scope of the present invention, part or all of Nb is converted to Ta. And / or the absolute value of τ f can be reduced without deteriorating the ε r and the Q value (1 GHz) as compared with the case where no substitution is made with Sb, and excellent microwave dielectric characteristics can be obtained. it can.

これらに対して、この発明の範囲外にある試料について考察する。   In contrast, samples that are outside the scope of this invention are considered.

l>0.5の場合は、試料78、82、および85に示すように、Q値(1GHz)が38000未満となる。   In the case of l> 0.5, the Q value (1 GHz) is less than 38000 as shown in samples 78, 82, and 85.

実施例3は、Mgの一部または全部を、Znで置換することにより及ぼされる影響について調査するために実施したものである。   Example 3 was carried out in order to investigate the influence exerted by substituting part or all of Mg with Zn.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、酸化アンチモン(Sb23)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)および酸化タングステン(WO3)の各粉末を準備した。As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), antimony oxide (Sb 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), and tungsten oxide (WO 3 ) powders were prepared.

次に、表4に示すx、y、z、a、b、c、d、e、k、l、およびmにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa{Alb/2(Nb1-k-lTakSblc/2}O1+(3b+5c)/4−zCa{(Mg1-mZnmd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。Next, the composition formula: xCaTi a O 1 + 2a −yCa {Al b / , which was selected for each of x, y, z, a, b, c, d, e, k, l, and m shown in Table 4. 2 (Nb 1-kl Ta k Sb l ) c / 2 } O 1+ (3b + 5c) / 4 −zCa {(Mg 1−m Zn m ) d / 2 W e / 2 ) O 1+ (d + Each of the above starting material powders was prepared so as to obtain a composition represented by 3e) / 2 .

その後、実施例1の場合と同様の方法によって、試料となる円板状の焼結体を得、得られた各試料に係る焼結体について、εr、Q値(1GHz)、およびτfをそれぞれ測定した。Thereafter, a disk-shaped sintered body to be a sample is obtained by the same method as in Example 1, and ε r , Q value (1 GHz), and τ f are obtained for the obtained sintered body according to each sample. Was measured respectively.

試料組成に対応したεr、Q値(1GHz)、およびτfの測定結果を表4に示す。Table 4 shows the measurement results of ε r , Q value (1 GHz), and τ f corresponding to the sample composition.

Figure 2005051861
Figure 2005051861

表4において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Table 4, the sample number with * is a sample outside the scope of the present invention.

表4に示すように、この発明の範囲内にある試料91〜110、116〜120に係る誘電体磁器組成物によれば、Mgの一部または全部を、Znで置換していない場合に比べて、Q値(1GHz)およびτfの絶対値を悪化させることなく、εrを向上させることができ、優れたマイクロ波誘電特性を得ることができる。As shown in Table 4, according to the dielectric ceramic composition according to Samples 91 to 110 and 116 to 120 within the scope of the present invention, compared to the case where part or all of Mg is not substituted with Zn. Thus, ε r can be improved without deteriorating the Q value (1 GHz) and the absolute value of τ f , and excellent microwave dielectric characteristics can be obtained.

これらに対して、この発明の範囲外にある試料について考察する。   In contrast, samples that are outside the scope of this invention are considered.

Mgの一部または全部を、Znで置換した場合においても、l>0.5の場合、試料111〜115に示すように、Q値(1GHz)が38000未満となる。   Even when part or all of Mg is replaced with Zn, when l> 0.5, the Q value (1 GHz) is less than 38000 as shown in Samples 111 to 115.

なお、この発明の高周波用誘電体磁器組成物は、この発明の目的を損なわない範囲内で、わずかな添加物を加えてもよい。例えば、ZrO2、SiO2、Li2O、B23、PbO、Bi23、MnO2、NiO、CuO、Fe23、Cr23、V25等を0.01〜1.00重量%添加することで、誘電体磁器の特性を劣化させることなく、焼成温度を20〜30℃低下させることができる。The high frequency dielectric ceramic composition of the present invention may be added with a slight amount of additives as long as the object of the present invention is not impaired. For example, ZrO 2 , SiO 2 , Li 2 O, B 2 O 3 , PbO, Bi 2 O 3 , MnO 2 , NiO, CuO, Fe 2 O 3 , Cr 2 O 3 , V 2 O 5, etc. are 0.01. By adding ˜1.00 wt%, the firing temperature can be lowered by 20 to 30 ° C. without deteriorating the characteristics of the dielectric ceramic.

また、BaCO3、SrCO3等を1.00〜3.00重量%添加することで、εrとτの微調整が可能となり、優れたマイクロ波誘電特性を得ることができる。Further, by adding 1.00 to 3.00% by weight of BaCO 3 , SrCO 3 or the like, ε r and τ f can be finely adjusted, and excellent microwave dielectric characteristics can be obtained.

上述のように、この発明によれば、εrが45以上、Q値(1GHz)が38000以上、τfの絶対値が25ppm/℃以内の高周波用誘電体磁器組成物を得ることが可能で、この高周波用誘電体磁器組成物を用いることにより、小型化され、かつ優れた特性を有する誘電体フィルタ、誘電体デュプレクサ、および通信機装置を有利に構成することができる。
したがって、本願発明は、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置などの分野に広く利用することが可能である。
As described above, according to the present invention, it is possible to obtain a dielectric ceramic composition for high frequency with ε r of 45 or more, Q value (1 GHz) of 38000 or more, and absolute value of τ f within 25 ppm / ° C. By using this dielectric ceramic composition for high frequency, a dielectric filter, a dielectric duplexer, and a communication device that are downsized and have excellent characteristics can be advantageously configured.
Therefore, the present invention can be widely used in fields such as a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device.

この発明は、マイクロ波やミリ波等の高周波領域において利用される高周波用誘電体磁器組成物、ならびにそれを用いて構成される誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置に関する。   The present invention relates to a high-frequency dielectric ceramic composition used in a high-frequency region such as a microwave and a millimeter wave, and a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device configured using the same About.

マイクロ波やミリ波等の高周波領域において、誘電体共振器や回路基板等を構成する材料として、誘電体磁器が広く利用されている。   In high frequency regions such as microwaves and millimeter waves, dielectric ceramics are widely used as materials constituting dielectric resonators and circuit boards.

このような高周波用誘電体磁器が、特に誘電体共振器や誘電体フィルタ等の用途に向けられる場合、要求される誘電特性としては、(1)誘電体中では電磁波の波長が1/(εr1/2に短縮されるので、小型化の要求への対応として比誘電率(εr)が高いこと、(2)誘電損失が小さい、すなわちQ値が高いこと、(3)共振周波数の温度安定性が優れている、すなわち共振周波数の温度係数(τf)が0ppm/℃付近であること等が挙げられる。 When such a high-frequency dielectric ceramic is particularly intended for applications such as dielectric resonators and dielectric filters, the required dielectric characteristics are as follows: (1) the wavelength of electromagnetic waves in the dielectric is 1 / (ε r ) is reduced to 1/2 , so that the dielectric constant (ε r ) is high as a response to the demand for miniaturization, (2) the dielectric loss is small, that is, the Q value is high, (3) the resonance frequency In that the temperature coefficient of resonance frequency (τ f ) is around 0 ppm / ° C.

ここでτfは、25℃における共振周波数(f25)と、55℃における共振周波数(f55)の値とを用いて、共振周波数温度曲線を直線近似したときの傾き(1次微係数)を表わすものであり、その値はτf=(f55−f25)/(f25・(55℃−25℃))の式によって求められる。 Here, τ f is the slope (first derivative) when the resonance frequency temperature curve is linearly approximated using the resonance frequency (f 25 ) at 25 ° C. and the value of the resonance frequency (f 55 ) at 55 ° C. The value is obtained by the equation of τ f = (f 55 −f 25 ) / (f 25 · (55 ° C.−25 ° C.)).

従来、上述したような要求を満たし得る高周波用誘電体磁器組成物として、例えばCaO−TiO2−Al23−(Nb、Ta)25系(特許文献1〜7参照)、Ca(Mg1/21/2)O3系等の磁器組成物が、既に多数提案されている。
特開平10−95663号公報 特開2001−302331号公報 特開2001−302332号公報 特開2001−302333号公報 特開2001−302334号公報 特開2002−255640号公報 特開2002−308670号公報 特開平9−241073号公報
Conventionally, as a high frequency dielectric ceramic composition that can satisfy the above-described requirements, for example, CaO—TiO 2 —Al 2 O 3 — (Nb, Ta) 2 O 5 (see Patent Documents 1 to 7), Ca ( Many porcelain compositions such as Mg 1/2 W 1/2 ) O 3 have already been proposed.
JP-A-10-95663 JP 2001-302331 A JP 2001-302332 A JP 2001-302333 A JP 2001-302334 A JP 2002-255640 A JP 2002-308670 A Japanese Patent Laid-Open No. 9-2441073

近年、電子機器の低損失化、かつ小型化の要求が高まり、誘電体共振器や誘電体フィルタ等の用途に向けられる高周波用誘電体磁器に要求される誘電特性に関して、より優れたものが必要とされるようになっている。特に、高周波領域で使用しても、高いεr、高いQ値、および高い温度安定性(τfが0ppm/℃付近)を併せ持つ材料に対する要求が高まってきている。 In recent years, there has been an increasing demand for low loss and downsizing of electronic devices, and more excellent dielectric properties required for high frequency dielectric ceramics for applications such as dielectric resonators and dielectric filters are required. It is supposed to be. In particular, even when used in a high frequency region, there is an increasing demand for materials having both high ε r , high Q value, and high temperature stability (τ f is around 0 ppm / ° C.).

しかしながら、前記特許文献1に記載された組成系を有する誘電体磁器組成物は、εrが41〜66と高いものの、Q値(1GHz)が12000〜27300であり充分高いとは言えなかった。 However, although the dielectric ceramic composition having the composition system described in Patent Document 1 has a high ε r of 41 to 66, the Q value (1 GHz) is 12000 to 27300 and cannot be said to be sufficiently high.

また、前記特許文献2〜7に記載された組成系を有する誘電体磁器組成物は、εrが35以上と高く、τfが0ppm/℃付近で制御できるものの、εrを高くするとτfとQ値(1GHz)が悪化するという問題があった。 Moreover, the dielectric ceramic composition having the composition system described in Patent Documents 2 to 7 has a high ε r of 35 or more and τ f can be controlled around 0 ppm / ° C. However, when ε r is increased, τ f There was a problem that the Q value (1 GHz) deteriorated.

また、前記特許文献8に記載された組成系を有する誘電体磁器組成物は、Q値(1GHz)が45000以上と高いものの、εrが17〜19と低く、またτfの絶対値が70以上と大きかった。 The dielectric ceramic composition having the composition system described in Patent Document 8 has a high Q value (1 GHz) of 45000 or more, but has a low ε r of 17 to 19 and an absolute value of τ f of 70. It was more than that.

そこで、この発明の目的は、上述したような問題を解決し得る、すなわちマイクロ波やミリ波等の高周波領域で使用しても、高いεrと高いQ値を有し、またτfの絶対値が小さい、高周波用誘電体磁器組成物を提供しようとすることである。 Therefore, an object of the present invention is to solve the above-described problem, that is, even when used in a high frequency region such as a microwave or a millimeter wave, it has a high ε r and a high Q value, and the absolute value of τ f An object is to provide a dielectric ceramic composition for high frequency with a small value.

上述した技術的課題を解決するため、この発明の高周波用誘電体磁器組成物は、組成式:xCaTiO 3 −yCa(Al 1/2 Nb 1/2 )O 3 −zCa(Mg 1/2 1/2 )O 3 で表わされる組成を有し、上記組成式におけるx、y、z(ただしx、y、zはモル比である)は、0.5≦x≦0.58、0.21≦y≦0.482、0.018≦z≦0.213、x+y+z=1.000の範囲内にあり、かつ、ε r が45以上、Q値(1GHz)が40000以上、τ f の絶対値が±15ppm/℃であることを特徴としている。 In order to solve the above technical problem, the high frequency dielectric ceramic composition of the present invention has a composition formula: xCaTiO 3 —yCa (Al 1/2 Nb 1/2 ) O 3 —zCa (Mg 1/2 W 1) / 2) has a composition represented by O 3, x in the above composition formula, y, z (was however x, y, z are mole ratio), 0.5 ≦ x ≦ 0.58,0. 21 ≦ y ≦ 0.482, 0.018 ≦ z ≦ 0.213, in the range of x + y + z = 1.00 0 , and, epsilon r is 45 or more, Q value (1 GHz) is 40,000 or more, the tau f The absolute value is ± 15 ppm / ° C.

そして、前記組成式中のNbの一部または全部が、Taで置換されている。 And a part or all of Nb in the composition formula is substituted with Ta .

さらに、前記組成式中のMgの一部または全部が、Znで置換されている。   Furthermore, part or all of Mg in the composition formula is substituted with Zn.

また、この発明の誘電体共振器は、誘電体磁器が入出力端子に電磁界結合して作動するものである誘電体共振器であって、前記誘電体磁器は、上述したこの発明の高周波用誘電体磁器組成物からなる。   The dielectric resonator according to the present invention is a dielectric resonator in which a dielectric ceramic is operated by electromagnetic coupling to an input / output terminal, and the dielectric ceramic is used for the high frequency of the present invention described above. It consists of a dielectric ceramic composition.

また、この発明の誘電体フィルタは、上述した誘電体共振器と、この誘電体共振器の入出力端子に接続される外部結合手段とを備える。   The dielectric filter of the present invention includes the above-described dielectric resonator and external coupling means connected to the input / output terminal of the dielectric resonator.

また、この発明の誘電体デュプレクサは、少なくとも2つの誘電体フィルタと、前記誘電体フィルタのそれぞれに接続される入出力接続手段と、前記誘電体フィルタに共通に接続されるアンテナ接続手段とを備える誘電体デュプレクサであって、前記誘電体フィルタの少なくとも1つが、上述したこの発明に係る誘電体フィルタである。   The dielectric duplexer of the present invention includes at least two dielectric filters, input / output connection means connected to each of the dielectric filters, and antenna connection means commonly connected to the dielectric filter. A dielectric duplexer, wherein at least one of the dielectric filters is the above-described dielectric filter according to the present invention.

さらに、この発明の通信機装置は、上述の誘電体デュプレクサと、この誘電体デュプレクサの少なくとも1つの入出力接続手段に接続される送信用回路と、この送信用回路に接続される上述の入出力手段とは異なる、少なくとも1つの入出力接続手段に接続される受信用回路と、前記誘電体デュプレクサのアンテナ接続手段に接続されるアンテナとを備える。   Furthermore, the communication device of the present invention includes the above-described dielectric duplexer, a transmission circuit connected to at least one input / output connection means of the dielectric duplexer, and the input / output described above connected to the transmission circuit. A receiving circuit connected to at least one input / output connection means different from the means; and an antenna connected to the antenna connection means of the dielectric duplexer.

この発明によれば、組成式:xCaTiO 3 −yCa(Al 1/2 Nb 1/2 )O 3 −zCa(Mg 1/2 1/2 )O 3 で表わされる組成を有し、上記組成式におけるx、y、z(ただしx、y、zはモル比である)は、0.5≦x≦0.58、0.21≦y≦0.482、0.018≦z≦0.213、x+y+z=1.000の範囲内にあるようにしており、かつ、εrが45以上であって、Q値(1GHz)で40000以上の高いQ値を示し、またτfの絶対値が15ppm/℃以内と小さいことを要件としているので、従来の技術では得ることができなかったような特性の良好な高周波用誘電体磁器組成物を得ることができる。 According to this invention, it has a composition represented by the composition formula: xCaTiO 3 —yCa (Al 1/2 Nb 1/2 ) O 3 —zCa (Mg 1/2 W 1/2 ) O 3 , x, y, z (was however x, y, z are molar ratios) in the, 0.5 ≦ x ≦ 0.58,0.21 ≦ y ≦ 0.482, 0.018 ≦ z ≦ 0. 213, x + y + z = 1.00 and as in the range of 0, and, epsilon r is not more 45 or more and to 40,000 or more high Q value in the Q value (1 GHz), also the absolute value of tau f Is required to be as small as 15 ppm / ° C. or less, and therefore a high frequency dielectric ceramic composition having good characteristics that cannot be obtained by conventional techniques can be obtained.

そして、この発明の高周波用誘電体磁器組成物において、前記組成式中のNbの一部または全部を、Taで置換することにより、Taで置換しない場合に比べて、τfの絶対値をより小さくすることができる。 In the dielectric ceramic composition for high frequency according to the present invention, by replacing part or all of Nb in the composition formula with Ta, the absolute value of τ f can be made larger than when not substituted with Ta. Can be small.

さらに、この発明の高周波用誘電体磁器組成物において、前記組成式中のMgの一部または全部を、Znで置換することにより、Znで置換しない場合に比べて、εrをより高くすることができる。 Furthermore, in the high frequency dielectric ceramic composition of the present invention, by replacing a part or all of Mg in the above composition formula with Zn, ε r can be made higher than when not substituted with Zn. Can do.

したがって、例えば基地局、携帯電話、パーソナル無線機、衛星放送受信機等に搭載される誘電体共振器を小型化し、誘電損失を小さいものとし、また共振周波数の温度安定性を優れたものとすることができる。その結果、このような誘電体共振器を用いれば、小型化され、かつ優れた特性を有する誘電体フィルタ、誘電体デュプレクサ、および通信機装置を有利に構成することができる。   Therefore, for example, a dielectric resonator mounted in a base station, a mobile phone, a personal radio, a satellite broadcast receiver, etc. is downsized, the dielectric loss is reduced, and the temperature stability of the resonance frequency is excellent. be able to. As a result, if such a dielectric resonator is used, a dielectric filter, a dielectric duplexer, and a communication device that are downsized and have excellent characteristics can be advantageously configured.

この発明の高周波用誘電体磁器組成物を用いて構成される誘電体共振器1の基本的構造を図解的に示す断面図である。It is sectional drawing which shows the basic structure of the dielectric resonator 1 comprised using the dielectric ceramic composition for high frequencies of this invention schematically. 図2に示した誘電体共振器1を用いて構成される通信機装置の一例を示すブロック図である。It is a block diagram which shows an example of the communication apparatus comprised using the dielectric resonator 1 shown in FIG.

符号の説明Explanation of symbols

1 誘電体共振器
2 金属ケース
3 支持台
4 誘電体磁器
5、6 結合ループ
7、8 同軸ケーブル
10 通信機装置
12 誘電体デュプレクサ
14 送信用回路
16 受信用回路
18 アンテナ
20 入力接続手段
22 出力接続手段
24 アンテナ接続手段
26、28 誘電体フィルタ
30 外部結合手段
DESCRIPTION OF SYMBOLS 1 Dielectric resonator 2 Metal case 3 Support stand 4 Dielectric porcelain 5, 6 Coupling loop 7, 8 Coaxial cable 10 Communication apparatus 12 Dielectric duplexer 14 Transmission circuit 16 Reception circuit 18 Antenna 20 Input connection means 22 Output connection Means 24 Antenna connection means 26, 28 Dielectric filter 30 External coupling means

まず、この発明の高周波用誘電体磁器組成物が適用される誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置について説明する。   First, a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device to which the high frequency dielectric ceramic composition of the present invention is applied will be described.

図1は、この発明の高周波用誘電体磁器組成物を用いて構成される誘電体共振器1の基本的構造を図解的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing the basic structure of a dielectric resonator 1 constructed using the high frequency dielectric ceramic composition of the present invention.

図1を参照して、誘電体共振器1は、金属ケース2を備え、金属ケース2内の空間には、支持台3によって支持された柱状の誘電体磁器4が配置されている。そして、同軸ケーブル7の中心導体と外導体との間に結合ループ5を形成して入力端子とする。また、同軸ケーブル8の中心導体と外導体との間に結合ループ6を形成して出力端子とする。それぞれの端子は、外導体と金属ケース2とが電気的に接合された状態で、金属ケース2によって保持されている。   Referring to FIG. 1, a dielectric resonator 1 includes a metal case 2, and a columnar dielectric ceramic 4 supported by a support base 3 is disposed in a space inside the metal case 2. A coupling loop 5 is formed between the center conductor and the outer conductor of the coaxial cable 7 to serve as an input terminal. Further, a coupling loop 6 is formed between the central conductor and the outer conductor of the coaxial cable 8 to serve as an output terminal. Each terminal is held by the metal case 2 in a state where the outer conductor and the metal case 2 are electrically joined.

誘電体磁器4は、入力端子および出力端子に電磁界結合して作動するもので、入力端子から入力された所定の周波数の信号だけが出力端子から出力される。   The dielectric porcelain 4 operates by electromagnetic coupling to the input terminal and the output terminal, and only a signal having a predetermined frequency input from the input terminal is output from the output terminal.

このような誘電体共振器1に備える誘電体磁器4が、この発明の高周波用誘電体磁器組成物から構成される。   The dielectric ceramic 4 provided in such a dielectric resonator 1 is composed of the high frequency dielectric ceramic composition of the present invention.

なお、図1に示した誘電体共振器1は、基地局等で用いられるTE01δモード共振器であるが、この発明の高周波用誘電体磁器組成物は、他のTEモード、TMモード、およびTEMモードなどを利用する誘電体共振器にも同様に適用することができる。   The dielectric resonator 1 shown in FIG. 1 is a TE01δ mode resonator used in a base station or the like, but the high-frequency dielectric ceramic composition of the present invention has other TE modes, TM modes, and TEMs. The same can be applied to a dielectric resonator using a mode or the like.

図2は、上述した誘電体共振器1を用いて構成される通信機装置の一例を示すブロック図である。   FIG. 2 is a block diagram illustrating an example of a communication device configured using the dielectric resonator 1 described above.

図2に示した通信機装置10は、誘電体デュプレクサ12、送信用回路14、受信用回路16およびアンテナ18を含む。   The communication device 10 shown in FIG. 2 includes a dielectric duplexer 12, a transmission circuit 14, a reception circuit 16, and an antenna 18.

送信用回路14は、誘電体デュプレクサ12の入力接続手段20に接続され、受信用回路16は、誘電体デュプレクサ12の出力接続手段22に接続される。   The transmission circuit 14 is connected to the input connection means 20 of the dielectric duplexer 12, and the reception circuit 16 is connected to the output connection means 22 of the dielectric duplexer 12.

また、アンテナ18は、誘電体デュプレクサ12のアンテナ接続手段24に接続される。   The antenna 18 is connected to the antenna connection means 24 of the dielectric duplexer 12.

この誘電体デュプレクサ12は、2つの誘電体フィルタ26、28を含む。誘電体フィルタ26、28は、この発明の誘電体共振器に外部結合手段を接続して構成されるものである。図示の実施形態では、例えば図1に示した誘電体共振器1の入出力端子にそれぞれ外部結合手段30を接続して、誘電体フィルタ26および28のそれぞれが構成される。そして、一方の誘電体フィルタ26は、入力接続手段20と他方の誘電体フィルタ28との間に接続され、他方の誘電体フィルタ28は、一方の誘電体フィルタ26と出力接続手段22との間に接続される。   The dielectric duplexer 12 includes two dielectric filters 26 and 28. The dielectric filters 26 and 28 are configured by connecting an external coupling means to the dielectric resonator of the present invention. In the illustrated embodiment, for example, each of the dielectric filters 26 and 28 is configured by connecting external coupling means 30 to the input / output terminals of the dielectric resonator 1 shown in FIG. One dielectric filter 26 is connected between the input connection means 20 and the other dielectric filter 28, and the other dielectric filter 28 is connected between the one dielectric filter 26 and the output connection means 22. Connected to.

次に、図1に示した誘電体共振器1に備える誘電体磁器4のように、高周波領域において有利に用いられる、この発明の高周波用誘電体磁器組成物について説明する。   Next, the dielectric ceramic composition for high frequency of the present invention that is advantageously used in the high frequency region, such as the dielectric ceramic 4 provided in the dielectric resonator 1 shown in FIG. 1, will be described.

この発明の高周波用誘電体磁器組成物は、組成式:xCaTiO 3 −yCa(Al 1/2 Nb 1/2 )O 3 −zCa(Mg 1/2 1/2 )O 3 で表わされる組成を有している。ここで上記組成式におけるx、y、z(ただしx、y、zはモル比である)は、0.5≦x≦0.58、0.21≦y≦0.482、0.018≦z≦0.213、x+y+z=1.000の範囲内にあるように選ばれる。そして、εr45以上、Q値(1GHz)が40000以上、τ f の絶対値が±15ppm/℃の特性を備えたものがこの発明の範囲内の高周波用誘電体磁器組成物となる。 The dielectric ceramic composition for high frequency according to the present invention has a composition represented by the composition formula: xCaTiO 3 —yCa (Al 1/2 Nb 1/2 ) O 3 —zCa (Mg 1/2 W 1/2 ) O 3. Have. Where x in the above composition formula, y, z (was however x, y, z are mole ratio), 0.5 ≦ x ≦ 0.58,0.21 ≦ y ≦ 0.482, 0.018 ≦ z ≦ 0.213, chosen to be within the range of x + y + z = 1.00 0 . A dielectric ceramic composition for high frequency within the scope of the present invention has the characteristics that ε r is 45 or more, Q value (1 GHz) is 40000 or more, and the absolute value of τ f is ± 15 ppm / ° C.

そして、この発明の高周波用誘電体磁器組成物は、τfの絶対値をより小さくするため、前記組成式中のNbの一部または全部が、Taで置換されるように選ばれる。 The high frequency dielectric ceramic composition of the present invention is selected so that part or all of Nb in the composition formula is replaced with Ta in order to make the absolute value of τ f smaller.

さらに、この発明の高周波用誘電体磁器組成物は、εrをより高くするため、前記組成式中のMgの一部または全部が、Znで置換されている。 Furthermore, in the high frequency dielectric ceramic composition of the present invention, in order to make ε r higher, a part or all of Mg in the composition formula is substituted with Zn.

この発明において、上述のような特定的な組成を選んだ根拠となる実施例について、以下に説明する。   In the present invention, examples that serve as the basis for selecting a specific composition as described above will be described below.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化マグネシウム(MgO)、および酸化タングステン(WO3)の各粉末を準備した。 As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), and tungsten oxide (WO 3 ) Each powder was prepared.

次に、表1および2に示すx、y、z、a、b、c、d、およびeにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。 Next, the composition formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c /) selected for x, y, z, a, b, c, d, and e shown in Tables 1 and 2, respectively. 2 ) Each of the above starting material powders so as to obtain a composition represented by O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2 ) O 1+ (d + 3e) / 2 Was formulated.

次に、この調合粉末を、ボールミルを用いて16時間湿式混合し、均一に分散させた後、脱水および乾燥処理を施して調整粉末を得た。   Next, the blended powder was wet-mixed for 16 hours using a ball mill and dispersed uniformly, and then subjected to dehydration and drying treatment to obtain an adjusted powder.

次に、この調整粉末を、1000〜1300℃の温度で3時間仮焼し、得られた仮焼粉末に適量のバインダを加えて、再びボールミルを用いて16時間湿式粉砕することにより、焼成用粉末を得た。   Next, the adjusted powder is calcined at a temperature of 1000 to 1300 ° C. for 3 hours, an appropriate amount of binder is added to the obtained calcined powder, and wet milled again using a ball mill for 16 hours. A powder was obtained.

そして、この焼成用粉末を、0.98×102〜1.96×102MPaの圧力で円板状にプレス成形した後、1400〜1650℃の温度で4時間、大気中において焼成し、直径10mm、厚さ5mmの円板状の焼結体を得た。 Then, the powder for burning, after press-molded into a disk shape at a pressure of 0.98 × 10 2 ~1.96 × 10 2 MPa, and calcined at 4 hours in air at a temperature of from 1,400 to 1,650 ° C., A disk-shaped sintered body having a diameter of 10 mm and a thickness of 5 mm was obtained.

得られた各試料に係る焼結体について、測定周波数fが6〜8GHzにおけるεrとQ値を、TE011モードによる両端短絡型誘電体共振器法にて測定し、Q×f(周波数)=一定の式に基づき、Q値(1GHz)に換算した。また、TE01δモードによるキャビティ法にて共振周波数を測定し、25〜55℃の温度範囲でのτfを測定した。 With respect to the obtained sintered body of each sample, ε r and Q value at a measurement frequency f of 6 to 8 GHz were measured by a double-end short-circuited dielectric resonator method using TE011 mode, and Q × f (frequency) = Based on a fixed formula, it was converted into a Q value (1 GHz). In addition, the resonance frequency was measured by the cavity method in the TE01δ mode, and τ f in the temperature range of 25 to 55 ° C. was measured.

上述のようにして測定した、試料組成に対応したεr、Q値(1GHz)、およびτfを、表1および2に示す。 Tables 1 and 2 show ε r , Q value (1 GHz), and τ f corresponding to the sample composition, measured as described above.

Figure 2005051861
Figure 2005051861

Figure 2005051861
Figure 2005051861

表1および2において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Tables 1 and 2, the sample number with * is a sample outside the scope of the present invention.

表1および2に示すように、この発明の範囲内にある試料18,24〜26,31〜33,および38に係る誘電体磁器組成物によれば、εrを45以上と大きく、Q値(1GHz)を40000以上と高く、τfの絶対値を15ppm/℃以内に小さくすることができ、優れたマイクロ波誘電特性を得ることができる。 As shown in Tables 1 and 2, according to the dielectric ceramic composition according to Samples 18, 24 to 26, 31 to 33, and 38 within the scope of the present invention, ε r is as large as 45 or more, and the Q value is (1 GHz) is as high as 40000 or more, the absolute value of τ f can be reduced within 15 ppm / ° C., and excellent microwave dielectric characteristics can be obtained.

これらに対して、この発明の範囲外にある試料について考察する。   In contrast, samples that are outside the scope of this invention are considered.

まず、x<0.5の場合は、試料43〜50に示すように、τ f の絶対値が15ppm/℃を超える。他方、x>0.58の場合も、試料1〜3に示すように、τ f の絶対値が15ppm/℃を超える。 First, in the case of x <0.5, as shown in sample 43 to 50, the absolute value of tau f is more than 15 ppm / ° C.. On the other hand, in the case of x> 0.58, as shown in Sample 1-3, the absolute value of tau f is more than 15 ppm / ° C..

次に、y<0.21の場合は、試料28、35、42に示すように、τ f の絶対値が15ppm/℃を超える。他方、y>0.482の場合は、試料44,45,53に示すように、τ f の絶対値が15ppm/℃を超える。 Next, when y <0.21, the absolute value of τ f exceeds 15 ppm / ° C. as shown in samples 28 , 35, and 42 . On the other hand, when y> 0.482 , as shown in Samples 44 , 45, 53 , the absolute value of τ f exceeds 15 ppm / ° C.

次に、z<0.018の場合は、試料1,2,7に示すように、τ f の絶対値が15ppm/℃を超える。他方、z>0.213の場合は、試料27,34,41に示すように、τfの絶対値が15ppm/℃を超える。 Then, in the case of z <0.018, as shown in the sample 1, 2, 7, the absolute value of tau f is more than 15 ppm / ° C.. On the other hand, when z> 0.213 , as shown in samples 27 , 34, and 41 , the absolute value of τ f exceeds 15 ppm / ° C.

実施例2は、Nbの一部または全部を、TaまたはSbで置換することにより及ぼされる影響について調査するために実施したものである。   Example 2 was carried out in order to investigate the influence exerted by substituting part or all of Nb with Ta or Sb.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、酸化アンチモン(Sb23)、酸化マグネシウム(MgO)、および酸化タングステン(WO3)の各粉末を準備した。 As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), antimony oxide (Sb 2 O 3 ), magnesium oxide (MgO), and tungsten oxide (WO 3 ) powders were prepared.

次に、表3に示すx、y、z、a、b、c、d、e、k、およびlにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa{Alb/2(Nb1-k-lTakSblc/2}O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。 Next, the composition formulas: xCaTi a O 1 + 2a -yCa {Al b / 2 (chosen for x, y, z, a, b, c, d, e, k, and l shown in Table 3, respectively. nb 1-kl Ta k Sb l ) c / 2} O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2) O 1+ (d + 3e) / 2 composition represented by the Each of the above starting material powders was prepared so as to be obtained.

その後、実施例1の場合と同様の方法によって、試料となる円板状の焼結体を得、得られた各試料に係る焼結体について、εr、Q値(1GHz)、およびτfをそれぞれ測定した。 Thereafter, a disk-shaped sintered body to be a sample is obtained by the same method as in Example 1, and ε r , Q value (1 GHz), and τ f are obtained for the obtained sintered body according to each sample. Was measured respectively.

試料組成に対応したεr、Q値(1GHz)、およびτfの測定結果を表3に示す。 Table 3 shows the measurement results of ε r , Q value (1 GHz), and τ f corresponding to the sample composition.

Figure 2005051861
Figure 2005051861

表3において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Table 3, the sample number with * is a sample outside the scope of the present invention.

表3に示すように、この発明の範囲内にある試料79に係る誘電体磁器組成物によれば、Nbを、Taで置換していない場合に比べて、εrおよびQ値(1GHz)を悪化させることなく、τfの絶対値を小さくすることができ、優れたマイクロ波誘電特性を得ることができる。 As shown in Table 3, according to the dielectric ceramic composition according to sample 79 within the scope of the present invention, ε r and Q value (1 GHz) were compared with the case where Nb was not replaced with Ta. Without deteriorating, the absolute value of τ f can be reduced, and excellent microwave dielectric characteristics can be obtained.

実施例3は、Mgの一部または全部を、Znで置換することにより及ぼされる影響について調査するために実施したものである。   Example 3 was carried out in order to investigate the influence exerted by substituting part or all of Mg with Zn.

出発原料として、高純度の炭酸カルシウム(CaCO3)、酸化チタン(TiO2)、酸化アルミニウム(Al23)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、酸化アンチモン(Sb23)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)および酸化タングステン(WO3)の各粉末を準備した。 As starting materials, high-purity calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), antimony oxide (Sb 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), and tungsten oxide (WO 3 ) powders were prepared.

次に、表4に示すx、y、z、a、b、c、d、e、k、l、およびmにそれぞれ選ばれた、組成式:xCaTia1+2a−yCa{Alb/2(Nb1-k-lTakSblc/2}O1+(3b+5c)/4−zCa{(Mg1-mZnmd/2e/2)O1+(d+3e)/2で表わされる組成が得られるように、前記の各出発原料粉末を調合した。 Next, the composition formula: xCaTi a O 1 + 2a −yCa {Al b / , which was selected for each of x, y, z, a, b, c, d, e, k, l, and m shown in Table 4. 2 (Nb 1-kl Ta k Sb l ) c / 2 } O 1+ (3b + 5c) / 4 −zCa {(Mg 1−m Zn m ) d / 2 W e / 2 ) O 1+ (d + Each of the above starting material powders was prepared so as to obtain a composition represented by 3e) / 2 .

その後、実施例1の場合と同様の方法によって、試料となる円板状の焼結体を得、得られた各試料に係る焼結体について、εr、Q値(1GHz)、およびτfをそれぞれ測定した。 Thereafter, a disk-shaped sintered body to be a sample is obtained by the same method as in Example 1, and ε r , Q value (1 GHz), and τ f are obtained for the obtained sintered body according to each sample. Was measured respectively.

試料組成に対応したεr、Q値(1GHz)、およびτfの測定結果を表4に示す。 Table 4 shows the measurement results of ε r , Q value (1 GHz), and τ f corresponding to the sample composition.

Figure 2005051861
Figure 2005051861

表4において、試料番号に*を付したものは、この発明の範囲外の試料である。   In Table 4, the sample number with * is a sample outside the scope of the present invention.

表4に示すように、この発明の範囲内にある試料96〜105に係る誘電体磁器組成物によれば、Mgの一部または全部を、Znで置換していない場合に比べて、Q値(1GHz)およびτfの絶対値を悪化させることなく、εrを向上させることができ、優れたマイクロ波誘電特性を得ることができる。 As shown in Table 4, according to the dielectric ceramic composition according to Samples 96 to 105 within the scope of the present invention, the Q value was compared with the case where part or all of Mg was not substituted with Zn. Ε r can be improved without deteriorating the absolute values of (1 GHz) and τ f , and excellent microwave dielectric characteristics can be obtained.

なお、この発明の高周波用誘電体磁器組成物は、この発明の目的を損なわない範囲内で、わずかな添加物を加えてもよい。例えば、ZrO2、SiO2、Li2O、B23、PbO、Bi23、MnO2、NiO、CuO、Fe23、Cr23、V25等を0.01〜1.00重量%添加することで、誘電体磁器の特性を劣化させることなく、焼成温度を20〜30℃低下させることができる。 The high frequency dielectric ceramic composition of the present invention may be added with a slight amount of additives as long as the object of the present invention is not impaired. For example, ZrO 2 , SiO 2 , Li 2 O, B 2 O 3 , PbO, Bi 2 O 3 , MnO 2 , NiO, CuO, Fe 2 O 3 , Cr 2 O 3 , V 2 O 5, etc. are 0.01. By adding ˜1.00 wt%, the firing temperature can be lowered by 20 to 30 ° C. without deteriorating the characteristics of the dielectric ceramic.

また、BaCO3、SrCO3等を1.00〜3.00重量%添加することで、εrとτfの微調整が可能となり、優れたマイクロ波誘電特性を得ることができる。 Further, by adding 1.00 to 3.00% by weight of BaCO 3 , SrCO 3 or the like, ε r and τ f can be finely adjusted, and excellent microwave dielectric characteristics can be obtained.

上述のように、この発明によれば、εrが45以上、Q値(1GHz)が40000以上、τfの絶対値が15ppm/℃以内の高周波用誘電体磁器組成物を得ることが可能で、この高周波用誘電体磁器組成物を用いることにより、小型化され、かつ優れた特性を有する誘電体フィルタ、誘電体デュプレクサ、および通信機装置を有利に構成することができる。
したがって、本願発明は、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置などの分野に広く利用することが可能である。
As described above, according to the present invention, epsilon r is 45 or more, Q value (1 GHz) is 40,000 or more, the absolute value of tau f can be obtained high-frequency dielectric ceramic composition within 15 ppm / ° C. Thus, by using this high-frequency dielectric ceramic composition, a dielectric filter, a dielectric duplexer, and a communication device that are downsized and have excellent characteristics can be advantageously configured.
Therefore, the present invention can be widely used in fields such as a dielectric resonator, a dielectric filter, a dielectric duplexer, and a communication device.

Claims (7)

組成式:xCaTia1+2a−yCa(Alb/2Nbc/2)O1+(3b+5c)/4−zCa(Mgd/2e/2)O1+(d+3e)/2で表わされる組成を有し、上記組成式におけるx、y、z、a、b、c、d、およびe(ただしx、y、zはモル比である)は、
0.475≦x≦0.58、
0.21≦y≦0.505、
0.018≦z≦0.25、
x+y+z=1.000、
0.9≦a≦1.05、
0.9≦b≦1.1、
0.9≦c≦1.1、
0.9≦d≦1.1、
0.9≦e≦1.05
の範囲内にある、高周波用誘電体磁器組成物。
Formula: xCaTi a O 1 + 2a -yCa (Al b / 2 Nb c / 2) O 1+ (3b + 5c) / 4 -zCa (Mg d / 2 W e / 2) O 1+ (d + 3e ) / 2 , and x, y, z, a, b, c, d, and e (where x, y, and z are molar ratios) in the above composition formula are:
0.475 ≦ x ≦ 0.58,
0.21 ≦ y ≦ 0.505,
0.018 ≦ z ≦ 0.25,
x + y + z = 1.000,
0.9 ≦ a ≦ 1.05,
0.9 ≦ b ≦ 1.1,
0.9 ≦ c ≦ 1.1,
0.9 ≦ d ≦ 1.1,
0.9 ≦ e ≦ 1.05
A dielectric ceramic composition for high frequency within the range of
前記組成式中のNbの一部または全部が、Taおよび/またはSbで置換されており、かつSbによる置換量l(ただしlはSb/(Nb+Ta+Sb)モル比である)は、
0≦l≦0.5
の範囲内にある、請求項1に記載の高周波用誘電体磁器組成物。
A part or all of Nb in the composition formula is substituted with Ta and / or Sb, and the substitution amount l by Sb (where l is a molar ratio of Sb / (Nb + Ta + Sb)) is:
0 ≦ l ≦ 0.5
The dielectric ceramic composition for high frequency according to claim 1, which is within the range.
前記組成式中のMgの一部または全部が、Znで置換されている、請求項1または2に記載の高周波用誘電体磁器組成物。   The dielectric ceramic composition for high frequency according to claim 1 or 2, wherein a part or all of Mg in the composition formula is substituted with Zn. 誘電体磁器が入出力端子に電磁界結合して作動するものである誘電体共振器であって、前記誘電体磁器は、請求項1から3のうちのいずれか1つに記載の高周波用誘電体磁器組成物からなる、誘電体共振器。   A high frequency dielectric according to any one of claims 1 to 3, wherein the dielectric ceramic is a dielectric resonator that operates by being electromagnetically coupled to an input / output terminal. A dielectric resonator comprising a body ceramic composition. 請求項4に記載の誘電体共振器と、前記誘電体共振器の入出力端子に接続される外部結合手段とを備える、誘電体フィルタ。   5. A dielectric filter comprising: the dielectric resonator according to claim 4; and external coupling means connected to an input / output terminal of the dielectric resonator. 少なくとも2つの誘電体フィルタと、前記誘電体フィルタのそれぞれに接続される入出力接続手段と、前記誘電体フィルタに共通に接続されるアンテナ接続手段とを備える誘電体デュプレクサであって、前記誘電体フィルタの少なくとも1つが請求項5に記載の誘電体フィルタである、誘電体デュプレクサ。   A dielectric duplexer comprising at least two dielectric filters, input / output connection means connected to each of the dielectric filters, and antenna connection means commonly connected to the dielectric filter, wherein the dielectric A dielectric duplexer, wherein at least one of the filters is a dielectric filter according to claim 5. 請求項6に記載の誘電体デュプレクサと、前記誘電体デュプレクサの少なくとも1つの入出力接続手段に接続される送信用回路と、前記送信用回路に接続される前記入出力手段とは異なる少なくとも1つの入出力接続手段に接続される受信用回路と、前記誘電体デュプレクサのアンテナ接続手段に接続されるアンテナとを備える、通信機装置。   7. The dielectric duplexer according to claim 6, a transmission circuit connected to at least one input / output connection means of the dielectric duplexer, and at least one different from the input / output means connected to the transmission circuit A communication apparatus comprising: a receiving circuit connected to an input / output connection means; and an antenna connected to an antenna connection means of the dielectric duplexer.
JP2005515736A 2003-11-27 2004-09-08 High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device Expired - Fee Related JP3979433B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003397828 2003-11-27
JP2003397828 2003-11-27
PCT/JP2004/013064 WO2005051861A1 (en) 2003-11-27 2004-09-08 Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus

Publications (2)

Publication Number Publication Date
JP3979433B2 JP3979433B2 (en) 2007-09-19
JPWO2005051861A1 true JPWO2005051861A1 (en) 2007-12-06

Family

ID=34631549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515736A Expired - Fee Related JP3979433B2 (en) 2003-11-27 2004-09-08 High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device

Country Status (2)

Country Link
JP (1) JP3979433B2 (en)
WO (1) WO2005051861A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241073A (en) * 1996-03-07 1997-09-16 Kyocera Corp Dielectric porcelain composition for high frequency
JP4548876B2 (en) * 1999-09-29 2010-09-22 京セラ株式会社 High frequency dielectric ceramic composition and dielectric resonator using the same
JP2002255640A (en) * 2001-02-26 2002-09-11 Ube Electronics Ltd Dielectric ceramic composition

Also Published As

Publication number Publication date
JP3979433B2 (en) 2007-09-19
WO2005051861A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4596004B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR20020096011A (en) High frequency ceramic compact, use thereof and method of producing the same
KR100406123B1 (en) High Frequency Dielectric Ceramic Composition, Dielectric Resonator, Dielectric Filter, Dielectric Duplexer, and Communication System
EP1172345B1 (en) Dielectric ceramic for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication unit
JP4155132B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4839496B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4513076B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
US6940371B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3979433B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
US6245702B1 (en) High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer and communication device
JP4691876B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4867132B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP4830286B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3376933B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP2005075708A (en) Dielectric porcelain composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JP2000233970A (en) Dielectric porcelain composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JP2005015248A (en) Dielectric porcelain composition for high frequency wave, dielectric resonator, dielectric filter, dielectric duplexer, and communication unit
JP2007217191A (en) Dielectric porcelain composition for high frequency wave, dielectric resonator, dielectric filter, dielectric duplexer, and communication equipment
JP2001114558A (en) Dielectric ceramic composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
JP2003112970A (en) Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
JP2004051385A (en) Dielectric porcelain composition and dielectric resonator
JP2004123466A (en) Dielectric porcelain for high-frequency use, dielectric resonator, dielectric filter, dielectric duplexer and communication instrument
JP2004359533A (en) Dielectric ceramic composition for high-frequency wave, dielectric resonator, dielectric filter, dielectric duplexer and communication equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees