JPWO2005037469A1 - Abrasion resistant parts and method of manufacturing - Google Patents

Abrasion resistant parts and method of manufacturing Download PDF

Info

Publication number
JPWO2005037469A1
JPWO2005037469A1 JP2005514829A JP2005514829A JPWO2005037469A1 JP WO2005037469 A1 JPWO2005037469 A1 JP WO2005037469A1 JP 2005514829 A JP2005514829 A JP 2005514829A JP 2005514829 A JP2005514829 A JP 2005514829A JP WO2005037469 A1 JPWO2005037469 A1 JP WO2005037469A1
Authority
JP
Japan
Prior art keywords
sample
nitriding
wear
layer
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005514829A
Other languages
Japanese (ja)
Other versions
JP4668793B2 (en
Inventor
福原 弘之
弘之 福原
佐々木 健二
健二 佐々木
健介 平田
健介 平田
利彦 本間
利彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2005037469A1 publication Critical patent/JPWO2005037469A1/en
Application granted granted Critical
Publication of JP4668793B2 publication Critical patent/JP4668793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Abstract

Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施すことで、表面をFe−Cr−Nの化合物層2とFe−Cr−Nの拡散層と基地の混合組織3とした。The material is formed by compaction sintering using iron-based alloy powder containing Cr, and the surface is subjected to nitriding treatment that eliminates the carburizing component, so that the surface is composed of the Fe—Cr—N compound layer 2 and Fe— A mixed structure 3 of Cr—N diffusion layer and base was obtained.

Description

本発明は、窒化処理により硬さを増大させた耐摩耗部品及びその製作方法に関するものである。  The present invention relates to a wear-resistant component whose hardness is increased by nitriding and a method for manufacturing the wear-resistant component.

ロータリコンプレッサ等に設けられるベーンは、シリンダに形成されたベーン溝に摺動自在に取り付けられており、ベーンはその側面がベーン溝の側壁と摺接するとともに、その先端部がローラに摺接することから、耐摩耗性が要求される。そこで、母材としてクロムを含有した鋼、焼結合金あるいは鋳鉄を使用し、母材を軟窒化処理し、表面層にFe−Cr−Nの第1の化合物層を形成するとともに、第1の化合物層の下方に同じ成分からなる第2の化合物層を形成したものが提案されている(例えば、特許文献1参照。)。  A vane provided in a rotary compressor or the like is slidably attached to a vane groove formed in a cylinder, and the vane has a side surface in sliding contact with a side wall of the vane groove and a tip end portion in sliding contact with a roller. Wear resistance is required. Therefore, steel containing chromium, sintered alloy or cast iron is used as a base material, the base material is soft-nitrided, and a first compound layer of Fe—Cr—N is formed on the surface layer. A structure in which a second compound layer made of the same component is formed below the compound layer has been proposed (see, for example, Patent Document 1).

また、ステンレス鋼の母材の表面に窒化処理を施すことにより窒化層を形成したものも提案されている(例えば、特許文献2参照。)。  In addition, a material in which a nitrided layer is formed by nitriding the surface of a stainless steel base material has been proposed (see, for example, Patent Document 2).

さらに、鉄系粉末材の材料を使用して空孔率10%以下あるいは15%以下とした焼結鉄を焼き入れ焼戻し処理により基地をマルテンサイト組織とした後、表面に窒化あるいは軟窒化処理によりFe−Nからなる化合物層を形成し、その内側に窒素拡散層を形成するようにしたものもある(例えば、特許文献3あるいは4参照。)。  Furthermore, after the sintered iron having a porosity of 10% or less or 15% or less using a material of an iron-based powder material is quenched and tempered to make the base a martensite structure, the surface is subjected to nitriding or soft nitriding treatment Some have a compound layer made of Fe—N and a nitrogen diffusion layer formed inside (see, for example, Patent Document 3 or 4).

特開昭60−26195号公報JP-A-60-26195 特開平11−101189号公報JP-A-11-101189 特開2001−140782号公報Japanese Patent Laid-Open No. 2001-140782 特開2001−342981号公報JP 2001-342981 A

しかしながら、上記従来の構成では、表面がFe−Cr−NあるいはFe−Nの化合物層あるいはFe−Cr−Nの拡散層で形成されており、表面が単一組成で硬さが均一であることから、コンプレッサを運転した時に発生するベーン等の耐摩耗部品の微少な摩耗も均一となっていた。その結果、表面に所定の保油性を維持することが難しく、焼き付きを生じるおそれがあった。  However, in the above conventional configuration, the surface is formed of an Fe—Cr—N or Fe—N compound layer or an Fe—Cr—N diffusion layer, and the surface has a single composition and a uniform hardness. Therefore, minute wear of wear-resistant parts such as vanes generated when the compressor is operated is uniform. As a result, it was difficult to maintain a predetermined oil retaining property on the surface, and there was a risk of seizing.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、耐摩耗部品の表面を硬さの異なる混合面とすることにより微少な油溜まりを形成して、耐摩耗部品を運転したときの保油性を向上することができ、焼き付きなどの不具合を解消することができる信頼性の高い耐摩耗部品を提供することを目的としている。  The present invention has been made in view of the above-described problems of the prior art. The wear-resistant component is formed by forming a small oil reservoir by making the surface of the wear-resistant component a mixed surface having different hardness. An object of the present invention is to provide a highly reliable wear-resistant component that can improve the oil retaining property when operating and can eliminate problems such as seizure.

上記目的を達成するため、本発明にかかる耐摩耗部品の製作方法は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。  In order to achieve the above object, a method for manufacturing a wear-resistant component according to the present invention is a nitriding treatment in which a material is formed by compaction sintering using an iron-based alloy powder containing Cr and carburizing components are eliminated. And the surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix.

また、本発明にかかる耐摩耗部品の製作方法の別の形態は、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。  Another embodiment of the method for manufacturing a wear-resistant component according to the present invention is to use an iron-based alloy powder containing Cr and an alloy powder containing at least one metal element among Mn, Ti, and V. The material is formed by body sintering molding, nitriding treatment is performed to eliminate carburizing components, and the surface is a mixed structure of Fe—Cr—N compound layer, Fe—Cr—N diffusion layer, and matrix. To do.

好ましくは、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層と基地との混合組織であるのがよい。  Preferably, the surface has vacancies, and an Fe—Cr—N compound layer in the vicinity of the vacancies, and a mixed structure of the Fe—Cr—N diffusion layer and the base as the distance from the vacancies increases. Good.

本発明にかかる耐摩耗部品の製作方法のさらに別の形態は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層とソルバイトの基地組織の混合組織としたことを特徴とする。  Still another embodiment of the method for producing a wear-resistant part according to the present invention is to form a material by compaction sintering using iron-based alloy powder containing Cr, and to perform a nitriding treatment that eliminates carburizing components. The surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a sorbite base structure.

この場合、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層とソルバイト組織の基地との混合組織であるのがよい。  In this case, there are vacancies on the surface, and the vicinity of the vacancies is a compound layer of Fe-Cr-N, and as the distance from the vacancies, the mixed structure of the diffusion layer of Fe-Cr-N and the base of the sorbite structure There should be.

また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくともFe−Cr−Nの化合物層を含む混合組織とすることもできる。  Moreover, after forming the material by green compact sintering, quenching and tempering, it is subjected to nitriding treatment that excludes the carburizing component, removal processing is performed on a part of the surface, and the surface is at least Fe-Cr-N It can also be set as the mixed structure | tissue containing these compound layers.

窒化処理の前に軽微な酸化処理のための大気処理を行うようにしてもよく、大気処理は380℃の温度以上で行うのが好ましい。  An air treatment for a slight oxidation treatment may be performed before the nitriding treatment, and the air treatment is preferably performed at a temperature of 380 ° C. or higher.

耐摩耗部品は、表面にFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織とを有し、窒化後の焼結素材の表面のほぼ全面が0.1〜0.5μm程度の粒子あるいは突起に覆われているのがよい。  The wear-resistant part has an Fe—Cr—N compound layer, an Fe—Cr—N diffusion layer, and a matrix mixed structure on the surface, and almost the entire surface of the sintered material after nitriding is 0.1 to It is preferable to cover the particles or protrusions of about 0.5 μm.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
Crを含有する鉄系合金粉末あるいはCrを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形法で素材を成形し、浸炭成分の入っていない窒化処理を施し、表面を化合物層と拡散層と基地の混合層としたので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになり、さらに、耐摩耗部品を運転すると、柔らかい基地部分に微少な摩耗が発生して油溜まりを形成することになり、焼き付きのない信頼性の高い耐摩耗部品を実現することができる。
Since the present invention is configured as described above, the following effects can be obtained.
The raw material is formed by the green compact sintering method using an iron-based alloy powder containing Cr or an iron-based alloy powder containing Cr containing an alloy powder containing at least one metal element of Mn, Ti, and V. However, nitriding treatment that does not contain carburizing components is applied, and the surface is a compound layer / diffusion layer / base mixed layer. When a wear-resistant part is operated, a slight wear is generated in the soft base part to form an oil sump, and there is no seizure and high reliability. Wear-resistant parts can be realized.

また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用すると、化合物層と拡散層にはCr、Mn、Ti、Vのうち少なくとも一つの成分が含まれることになるので、Fe、Crで所定の硬さを確保した上で、Mnの存在によりさらに硬さを向上させたり、Tiの存在により窒化処理を促進させたり、あるいはVの存在により窒化深さを深くすることができるので、耐摩耗部品の信頼性がさらに向上する。  When an alloy powder containing at least one metal element of Mn, Ti, and V is used for the iron-based alloy powder containing Cr, at least one of Cr, Mn, Ti, and V is used for the compound layer and the diffusion layer. Since two components are contained, after ensuring a predetermined hardness with Fe and Cr, the hardness is further improved by the presence of Mn, the nitriding treatment is promoted by the presence of Ti, or V Since the nitriding depth can be increased due to the presence, the reliability of the wear-resistant parts is further improved.

さらに、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、焼き入れ焼き戻しを行った後、浸炭成分の入ってない窒化処理を施し、表面は化合物層と拡散層とソルバイトの基地組織の混合組織としたので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。また、耐摩耗部品を運転(相対摩擦運動)すると、化合物層や拡散層に比べて柔らかい基地部分が微少な摩耗を起こして油溜まりとなる。さらに、基地組織が焼き入れ焼き戻しで硬くなっているので、化合物層と拡散層は窒化によりさらに硬くなり、焼き付くことが無くさらに高い耐摩耗性を持つ信頼性の高い耐摩耗部品を実現できる。  Furthermore, after forming the material by green compact sintering using iron-based alloy powder containing Cr, quenching and tempering, nitriding treatment without carburizing component is performed, and the surface is a compound layer In addition, since the mixed structure of the base structure of the diffusion layer and sorbite is used, when the wear-resistant parts are finished, the amount of processing of the soft base portion increases, and a small depression is formed to form an oil reservoir. In addition, when the wear-resistant parts are operated (relative frictional motion), the soft base portion is slightly worn compared to the compound layer and the diffusion layer and becomes an oil reservoir. Furthermore, since the matrix structure is hardened by quenching and tempering, the compound layer and the diffusion layer become harder due to nitriding, and it is possible to realize a highly reliable wear-resistant part having higher wear resistance without being seized.

また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分の入ってない窒化処理を施し、一部の表面に除去加工を行うことにより、表面がFe−Cr−Nの化合物層だけではなく、硬さのばらつきを持つ表面となる。したがって、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、稼動(相対摩擦運動)時に柔らかい部分が微少な摩耗を発生して、そこが油溜まりとなり潤滑性が向上するとともに、耐摩耗性はそのほかの化合物層部分で維持することができるので、耐摩耗部品の信頼性を向上することができる。  Also, after forming the material by green compact sintering, quenching and tempering, nitriding treatment without carburizing component is performed, and removal processing is performed on a part of the surface, so that the surface is Fe-Cr Not only the -N compound layer but also a surface with hardness variation. Therefore, when finishing, the amount of processing of the soft base portion is increased, and a minute depression is formed to form an oil reservoir. In addition, during operation (relative frictional motion), the soft part generates slight wear, which becomes an oil reservoir and improves lubricity, and the wear resistance can be maintained in the other compound layer part. The reliability of worn parts can be improved.

本発明にかかる耐摩耗部品の断面エッチング写真である。It is a cross-sectional etching photograph of the abrasion-resistant component concerning this invention. 図1の耐摩耗部品の表面を研削加工して削り取った表面のエッチング写真である。FIG. 2 is an etching photograph of the surface of the wear-resistant component of FIG. 図1の耐摩耗部品の表面のマイクロビッカース硬さ測定圧痕の写真である。It is a photograph of the micro Vickers hardness measurement impression of the surface of the wear-resistant component of FIG. 図1の耐摩耗部品の硬さ分布曲線である。2 is a hardness distribution curve of the wear-resistant part of FIG. 1. 各試料の素材に対して行った熱処理パターンを示す図表である。It is a graph which shows the heat processing pattern performed with respect to the raw material of each sample. 窒化後の試料Xの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample X after nitriding. 窒化後の試料Yの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample Y after nitriding. 窒化後の試料Zの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample Z after nitriding. 窒化後の試料Xの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of 200 magnification of the sample X after nitriding. 窒化後の試料Xの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample X after nitriding is 1,000. 窒化後の試料Xの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample X after nitriding is 5,000. 窒化後の試料Xの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 20,000 of the sample X after nitriding. 窒化後の試料Yの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 200 of the sample Y after nitriding. 窒化後の試料Yの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Y after nitriding is 1,000. 窒化後の試料Yの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample Y after nitriding is 5,000. 窒化後の試料Yの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Y after nitriding is 20,000. 窒化後の試料Zの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of 200 magnifications of the sample Z after nitriding. 窒化後の試料Zの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 1,000. 窒化後の試料Zの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 5,000. 窒化後の試料Zの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 20,000. 窒化後の試料Zの別の部位の倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification of 5,000 of another site | part of the sample Z after nitriding. 窒化後の試料Zの別の部位の倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 20,000 of another site | part of the sample Z after nitriding. 各試料の表層近傍における合金元素の最高濃度を示すグラフである。It is a graph which shows the highest density | concentration of the alloy element in the surface layer vicinity of each sample. 各試料の表層近傍における合金元素の最高濃度部位におけるO濃度を示すグラフである。It is a graph which shows O concentration in the highest concentration site | part of the alloy element in the surface layer vicinity of each sample.

符号の説明Explanation of symbols

1 空孔
2 化合物層
3 混合組織
8 空孔と空孔の間のマイクロビッカースの圧痕
1 Hole 2 Compound Layer 3 Mixed Structure 8 Micro Vickers Indentation Between Holes

以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明にかかる耐摩耗部品は、例えばローリングピストン等に設けられているベーン等として使用されるもので、例えば粉末ハイス(粉末ハイスピード鋼)等のCrを含有する鉄系合金粉末に対し約1200℃の温度で真空焼結を行って素材を成形した後、焼き入れ処理を行ってマルテンサイト組織とし、さらに焼き戻しの熱処理を480℃〜580℃で行ってソルバイト組織にした後に、浸炭成分を排除した状態で焼戻し温度以下の400℃で約6時間のガス窒化処理を施したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The wear-resistant component according to the present invention is used as, for example, a vane provided in a rolling piston or the like, and is about 1200 for an iron-based alloy powder containing Cr such as powder high speed (powder high speed steel). After forming the material by vacuum sintering at a temperature of ℃, quenching treatment is performed to obtain a martensite structure, and further tempering heat treatment is performed at 480 ° C. to 580 ° C. to form a sorbite structure, In the excluded state, gas nitriding treatment was performed at 400 ° C. below the tempering temperature for about 6 hours.

図1は、このようにして製作した本発明にかかる耐摩耗部品の窒化処理後の断面組織を示しており、ガス窒化処理後、エッチングを施し、化合物層を見やすくしたものである。  FIG. 1 shows a cross-sectional structure after nitriding of the wear-resistant component according to the present invention manufactured as described above. After the gas nitriding treatment, etching is performed to make the compound layer easy to see.

素材が圧粉体焼結成形で製作されているので、密度は80〜90%程度までしか上がらず、空孔1が多数存在し、窒化処理に使用したガスが空孔1を通過して奥まで窒化が行われており、白い色の化合物層2が空孔1の周りに形成されている。また、空孔1から離れるにしたがって、黒い部分3が多くなっているが、これは拡散層と基地の混合組織である。  Since the material is manufactured by green compact molding, the density increases only to about 80-90%, there are many holes 1 and the gas used for the nitriding treatment passes through the holes 1 Nitriding is performed until a white compound layer 2 is formed around the pores 1. Further, as the distance from the hole 1 increases, the black portion 3 increases, which is a mixed structure of the diffusion layer and the base.

図2は、この耐摩耗部品を図1の面に対して直角方向に切断し(すなわち、表面から所定の深さで切断し)、切断面を研削したものの表面を450倍に拡大したものである。  FIG. 2 shows the wear-resistant part cut in a direction perpendicular to the plane of FIG. 1 (that is, cut at a predetermined depth from the surface), and the surface of the cut surface is magnified 450 times. is there.

図2に示されるように、研削面には圧粉体焼結成形品特有の空孔1が存在し、その周辺は窒化処理のガスが侵入して窒化が進行しているので、Fe−Cr−Nの化合物層2がエッチングされて白い色になっている。また、空孔1の表面から離れたところでは白い色が少なくなり、Fe−Cr−Nの拡散層と基地の混合組織3となっている。すなわち、空孔1のある耐摩耗品の表面は化合物層2と拡散層と基地組織の混合組織3となっている。  As shown in FIG. 2, there are pores 1 peculiar to a green compact molded product on the ground surface, and nitriding progresses in the periphery of the nitriding gas. Fe—Cr The -N compound layer 2 is etched to have a white color. In addition, the white color is reduced away from the surface of the hole 1, and the mixed structure 3 of the diffusion layer of Fe—Cr—N and the base is formed. That is, the surface of the wear-resistant article having the pores 1 is a mixed structure 3 of the compound layer 2, the diffusion layer, and the base structure.

図3は、その断面をマイクロビッカース硬さで測定した圧痕の写真であり、圧痕が小さいほどマイクロビッカース硬さが硬いことを示している。マイクロビッカースの圧痕の大きさから明らかなように、空孔1の周辺は比較的小さく、空孔1と空孔1の間8のマイクロビッカースの圧痕の大きさは空孔の周辺に比べて大きく、硬さが低下していることがわかる。これは、空孔1の周辺は窒化ガスが入り込んで化合物層2ができており、空孔1と空孔1の間8は拡散層と基地の混合組織3となっているため、硬さが空孔1の周辺に比べて低くなっていると考えられる。  FIG. 3 is a photograph of an indentation whose cross section was measured by micro Vickers hardness, and shows that the smaller the indentation, the harder the micro Vickers hardness. As apparent from the size of the micro Vickers indentation, the periphery of the hole 1 is relatively small, and the size of the micro Vickers indentation 8 between the holes 1 and 1 is larger than that of the periphery of the hole. It can be seen that the hardness is reduced. This is because the nitriding gas enters the periphery of the pores 1 to form the compound layer 2, and the space 8 between the pores 1 and 1 is the mixed structure 3 of the diffusion layer and the base. It is considered that it is lower than the periphery of the hole 1.

このように表面の硬さが適度にばらついているので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、耐摩耗部品が作動すると、柔らかい基地組織の部分には微少な摩耗が発生して油溜まりの役目を果たすようになり、圧粉体焼結成形品の空孔に加えてくさび効果の高い油溜まりが可動部全面にわたって形成される。したがって、表面全体としては保油性が高まって潤滑性が良好となり、耐摩耗性は空孔の周辺の化合物層と拡散層で確保できるので、表面全体が硬い耐摩耗部品に比べて良好な信頼性を確保することができる。  As described above, since the hardness of the surface varies moderately, when the wear-resistant part is finished, the amount of processing of the soft base portion increases, and a minute recess is formed to form an oil reservoir. In addition, when the wear-resistant parts are activated, a slight wear is generated in the soft base structure, which acts as an oil reservoir, and has a high wedge effect in addition to the pores of the green compact. An oil sump is formed over the entire movable portion. Therefore, the entire surface has improved oil retention and improved lubricity, and wear resistance can be ensured with the compound layer and diffusion layer around the pores, so it has better reliability than wear resistant parts with a hard entire surface Can be secured.

なお、本実施の形態は、粉末ハイスの焼き入れ、焼き戻し品で説明したが、素材を一般的な合金粉で製作しても良く、また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉で製作しても同様な効果を得ることができる。  Although the present embodiment has been described with the quenching and tempering of powder high speed steel, the material may be manufactured with a general alloy powder, and Mn, Ti may be added to the iron-based alloy powder containing Cr. The same effect can be obtained even when manufactured with an alloy powder containing at least one metal element of V.

図4は、図1の耐摩耗部品の窒化処理後の硬さ分布曲線を示しており、表面から0.4mmを越えた位置Aでも、硬さは表面Bとほとんど変わっていない。この耐摩耗部品の表面を0.1mm程度研削して除去加工した後の、表面からの深さ0.1mmの位置Cをエッチングすると図2の断面組織のようになる。  FIG. 4 shows a hardness distribution curve of the wear-resistant part of FIG. 1 after nitriding treatment, and the hardness is hardly different from the surface B even at a position A exceeding 0.4 mm from the surface. When the surface C of the wear-resistant component is ground and removed by about 0.1 mm and the position C having a depth of 0.1 mm from the surface is etched, the cross-sectional structure of FIG. 2 is obtained.

このように粉末ハイスの圧粉体焼結品は短時間の窒化処理でも、素材に空孔があるため窒化のガスが内部まで浸透しやすく深く窒化される。したがって、通常の窒化処理では、素材の粗加工後、窒化処理を行い、更に仕上げ加工といった工程を踏む必要があるのに対し、粉末ハイスの圧粉体焼結品は、素材に窒化処理を行い、直接仕上げ加工を行っても、必要な硬さを容易に得ることができる。さらに、素材の焼き入れ焼き戻しによる変形が発生して取り代が不均一となっても、深く窒化されているので完成品の一番硬い化合物層の表面硬さのばらつきは小さくすることができる。  In this way, even if the powdered high-speed green compact is subjected to nitriding for a short time, since the material has pores, the nitriding gas easily penetrates into the inside and is deeply nitrided. Therefore, in the normal nitriding treatment, it is necessary to perform a nitriding treatment after roughing the material, and then to perform a finishing process. On the other hand, in the powder high-speed sintered compact, the material is subjected to nitriding treatment. Even if direct finishing is performed, the required hardness can be easily obtained. Furthermore, even if deformation due to quenching and tempering of the material occurs and the machining allowance becomes non-uniform, variation in the surface hardness of the hardest compound layer of the finished product can be reduced because it is deeply nitrided. .

さらに、表面を除去加工することにより、Fe−Cr−Nの化合物層だけでなく、Fe−Cr−Nの拡散層及び基地の混合組織が表れるが、これは、表面に近い場所でも硬さが低い部分が存在することからも理解できることである。すなわち、本発明にかかる耐摩耗部品は、優れた耐摩耗性を保持しつつ、粗加工工程を省略することができるので、安価に製作することができる。  Furthermore, by removing the surface, not only the compound layer of Fe—Cr—N but also the diffusion layer of Fe—Cr—N and the mixed structure of the matrix appear. It can be understood from the existence of the low part. That is, the wear-resistant component according to the present invention can be manufactured at low cost because the rough machining process can be omitted while maintaining excellent wear resistance.

3種類のCrを含有する鉄系合金粉末を所定の形状にまず成形し、この成形体を所定の温度(例えば、1180℃)で真空焼結して焼結体を作製し、焼結体に所定の熱処理を行った後、表面形状を調査した。各試料の材料はSKH51に相当し、ここでは試料X,Y,Zという。  First, an iron-based alloy powder containing three types of Cr is formed into a predetermined shape, and this formed body is vacuum-sintered at a predetermined temperature (eg, 1180 ° C.) to produce a sintered body. After performing a predetermined heat treatment, the surface shape was examined. The material of each sample corresponds to SKH51, and is referred to as sample X, Y, Z here.

表1は、試料X,Y,Zの熱処理後の組成分析結果を示している。

Figure 2005037469
Figure 2005037469
Table 1 shows the composition analysis results after heat treatment of samples X, Y, and Z.
Figure 2005037469
Figure 2005037469

また、図5は各試料の素材に対して行った熱処理パターンを示しており、表2は各試料の材質特性を示している。

Figure 2005037469
FIG. 5 shows the heat treatment pattern performed on the material of each sample, and Table 2 shows the material characteristics of each sample.
Figure 2005037469

その後、試料X及びYに対しては400℃の温度で6時間窒化処理を行ったのに対し、試料Zに対しては480℃の温度で3時間の大気処理(軽微な酸化処理)を行い、さらに400℃の温度で6時間の窒化処理を行った。  After that, the samples X and Y were subjected to nitriding treatment at a temperature of 400 ° C. for 6 hours, while the sample Z was subjected to atmospheric treatment (light oxidation treatment) at a temperature of 480 ° C. for 3 hours. Further, nitriding treatment was performed at a temperature of 400 ° C. for 6 hours.

次に、倍率40〜20,000の走査型電子顕微鏡を用いて、各試料の表面形状及び表面性状を調査、評価した。  Next, the surface shape and surface properties of each sample were investigated and evaluated using a scanning electron microscope with a magnification of 40 to 20,000.

図6乃至8は、窒化後の試料X,Y,Zの倍率40のときの表面状態をそれぞれ示しており、試料Y及びZは同様の表面状態を呈しているのに対し、試料Xは試料Y及びZに比べて微少粒状を呈しており、活性な表面状態が認められる。  FIGS. 6 to 8 show the surface states of the samples X, Y, and Z after nitriding at a magnification of 40, respectively. Samples Y and Z exhibit the same surface state, whereas sample X is the sample. Compared to Y and Z, it is finer and shows an active surface state.

また、図9乃至12は、試料Xの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示しており、図13乃至16は、試料Yの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示している。また、図17乃至20は、試料Zの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示しており、図21及び22は、試料Zの別の部位の倍率5,000、20,000のときの表面状態をそれぞれ示している。  9 to 12 show the surface states of the sample X when the magnification is 200, 1,000, 5,000, and 20,000, respectively, and FIGS. Surface states at 000, 5,000, and 20,000 are shown, respectively. FIGS. 17 to 20 show the surface states of the sample Z at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. The surface states at 5,000 and 20,000 are shown, respectively.

図9乃至12によれば、試料Xの表面は小粒が圧着焼結され焼結粒間隙の表面に微細な凸状析出物が無数に存在しており、これらの微少析出物回りに窒化物粒の析出が認められる。すなわち、試料Xは、400℃の温度で6時間窒化処理を行うことにより内部まで窒化されていることが分かる。  According to FIGS. 9 to 12, the surface of the sample X is pressure-sintered with small grains, and countless fine convex precipitates exist on the surface of the gap between the sintered grains, and the nitride grains around these fine precipitates. Is observed. That is, it can be seen that the sample X is nitrided to the inside by performing nitriding treatment at a temperature of 400 ° C. for 6 hours.

図13乃至16によれば、試料Yは試料Xに比べて焼結粒子が大きく、図9及び10と図13及び14を比較すると分かるように、試料Yは比較的平らな表面状態を呈しており、倍率5,000以上の観察においても、試料Xに認められる微細凸状析出物の割合が少なく、安定した(不活性な)表面状態にある。  According to FIGS. 13 to 16, sample Y has larger sintered particles than sample X, and sample Y exhibits a relatively flat surface state as can be seen by comparing FIGS. 9 and 10 with FIGS. Even in the observation at a magnification of 5,000 or more, the proportion of fine convex precipitates observed in the sample X is small, and the surface state is stable (inactive).

また、図17(倍率200)によれば、試料Z表面の焼結粒子は試料Yに類似しており、試料Xに比べて大きい状態にあるが、図18乃至22に示される倍率1,000以上の観察によれば、試料Zは表面及び焼結粒間隙に微細な析出物が試料X以上に存在し、微視的には試料Xに類似した表面状態が形成されている。  17 (magnification 200), the sintered particles on the surface of the sample Z are similar to the sample Y and are larger than the sample X, but the magnification 1,000 shown in FIGS. According to the above observation, the sample Z has fine precipitates on the surface and the gap between the sintered grains more than the sample X, and a surface state microscopically similar to the sample X is formed.

試料Yと試料Zの相違点は、焼結後の素材の大気処理の有無にあり、前者は非処理状態にあるのに対し、後者は大気処理した状態にある。非処理材は、上述したように表面が平らで安定な状態を呈しているが、大気処理した試料Zは表面に凸状析出物が無数に生じていることから、試料Xと同様、表面が活性化している。  The difference between the sample Y and the sample Z is the presence or absence of atmospheric treatment of the sintered material. The former is in an untreated state, while the latter is in an air-treated state. As described above, the non-treated material has a flat and stable surface. However, the sample Z treated with the air has numerous surface-shaped precipitates on the surface. It is activated.

一方、窒化後の各試料の硬さは表3のとおりであった。

Figure 2005037469
On the other hand, the hardness of each sample after nitriding was as shown in Table 3.
Figure 2005037469

表3から分かるように、表面から深さ0.01mm及び0.05mmの部位における硬さは、試料Z、X、Yの順に前者ほど高い。  As can be seen from Table 3, the hardness of the parts having a depth of 0.01 mm and 0.05 mm from the surface is higher in the order of samples Z, X, and Y.

表3に示される硬さと上述した表面形状とを比較すると、窒化後の表面に存在する微細析出粒は、図9乃至22に示されるように、試料Z、Y、Xの順に前者ほど密度が高い。試料Zは試料Yを窒化処理する前に大気処理することにより試料表面に微細な酸化物粒子が形成されていることから、試料Zは微細析出した酸化物粒子が表面を活性化させることにより窒化反応が容易になったものと想定される。  When the hardness shown in Table 3 is compared with the surface shape described above, the fine precipitates existing on the surface after nitriding have a density in the order of samples Z, Y, and X as shown in FIGS. 9 to 22. high. In sample Z, fine oxide particles are formed on the sample surface by subjecting sample Y to air treatment before nitriding, so sample Z is nitrided by activating the surface with finely precipitated oxide particles. It is assumed that the reaction has become easier.

また、試料Yの場合、窒化温度を上昇するか(例えば、約430℃)、あるいは窒化温度は400℃であっても窒化時間を長くする(例えば、約10時間)ことにより、表面からの深さ0.5mmの部位における硬さが900Hv以上まで高くなる場合もあったが、窒化が不安定で、割れが発生することがあった。  In the case of sample Y, the nitridation temperature is increased (for example, about 430 ° C.), or even if the nitridation temperature is 400 ° C., the nitridation time is increased (for example, about 10 hours). In some cases, the hardness at a 0.5 mm portion was increased to 900 Hv or more, but nitriding was unstable and cracking sometimes occurred.

さらに、試料Zに対し、処理時間を一定(3時間)にして処理温度を280℃、380℃、480℃、580℃に変えて大気処理を行ったところ、280℃では表面から深さ1.5mmの部位における硬さが900Hvを下回ったものの、処理温度が380℃以上の場合、表面から深さ1.5mmまでの硬さがすべて900Hv以上であることが確認された。  Furthermore, when the sample Z was subjected to atmospheric treatment with a constant treatment time (3 hours) and a treatment temperature changed to 280 ° C., 380 ° C., 480 ° C., and 580 ° C., a depth of 1. Although the hardness at the 5 mm portion was lower than 900 Hv, it was confirmed that when the processing temperature was 380 ° C. or higher, the hardness from the surface to a depth of 1.5 mm was all 900 Hv or higher.

すなわち、試料Y及びZは窒化性が悪いが、380℃の温度で3時間の大気処理を行った後、400℃の温度で6時間の窒化処理を行うことで、試料Xと同様、窒化性が向上する。  That is, samples Y and Z have poor nitriding properties, but after nitriding for 6 hours at a temperature of 400 ° C. after performing atmospheric treatment for 3 hours at a temperature of 380 ° C., as in sample X, Will improve.

なお、各試料は表層近傍における合金元素(Cr,W,Mo,V)及びO濃度に相違が認められ、これら元素濃度分布の相違が窒化反応に影響を与えている。  Each sample has a difference in alloy elements (Cr, W, Mo, V) and O concentration in the vicinity of the surface layer, and the difference in these element concentration distributions affects the nitriding reaction.

さらに詳述すると、各試料の表層組成調査を約50μmの深さまで実施したところ、いずれの材料も3μm以上の深度部分の濃度は殆ど同じ値を示したので、3μmの深さまでのデータを基に表層を構成する元素の濃度分布を解析した。  More specifically, when the surface layer composition survey of each sample was carried out to a depth of about 50 μm, all the materials showed almost the same concentration in the depth portion of 3 μm or more, so the data up to a depth of 3 μm was used. The concentration distribution of elements constituting the surface layer was analyzed.

その結果、試料Xは表層から約0.2μmの深さに、基材部組成の約2〜3倍に濃化したCr,W,Mo及びVの濃化域が認められ、最表層において約30%に達するO量が検出された。また、試料Yの表層近傍におけるW,Mo及びV濃度は基材部組成の約1.5倍程度に濃化していたが、Crは脱元素化現象を呈していた。さらに、最表層におけるO濃度は約6%程度であり、試料Xに較べると低い。  As a result, in Sample X, a concentrated region of Cr, W, Mo, and V concentrated to a depth of about 0.2 μm from the surface layer to a concentration of about 2 to 3 times the base material composition was recognized, and about X in the outermost layer. An amount of O reaching 30% was detected. Further, the W, Mo, and V concentrations in the vicinity of the surface layer of the sample Y were concentrated to about 1.5 times the base material composition, but Cr exhibited a deelementization phenomenon. Further, the O concentration in the outermost layer is about 6%, which is lower than that of the sample X.

また、試料Zは試料Xと同様に表層から約0.2μmの深さに、基材部組成の約1.5〜2倍に濃化したW及びとMoと、最表層において約6%程度のO量が検出された。一方、Cr及びVの挙動は試料Yに類似しており、前者は脱元素挙動を後者は最表層において濃化する現象を示していた。  Sample Z, like Sample X, has a depth of about 0.2 μm from the surface layer, W and Mo concentrated to about 1.5 to 2 times the base material composition, and about 6% in the outermost layer. The amount of O was detected. On the other hand, the behaviors of Cr and V are similar to those of the sample Y, and the former showed a de-elemental behavior and the latter showed a phenomenon of concentration in the outermost layer.

以上より、試料Z表層を構成する元素濃度は、試料Xと試料Yの中間的様相を有しているものと想定される。  From the above, it is assumed that the element concentration constituting the sample Z surface layer has an intermediate aspect between the sample X and the sample Y.

図23は、各試料の表層における合金元素の最高濃度を示しており、表層におけるCr,W,Mo及びV量は試料Xが最も高い。また、試料Yと試料Zにおいては、Cr量は略等量であるが、その他の元素は試料Yに較べて試料Zが高い。これらの事から、窒化した場合、試料X,Z,Yの順に前者ほど硬化し易い状態にあるものと推察される。  FIG. 23 shows the maximum concentration of alloy elements in the surface layer of each sample, and the amount of Cr, W, Mo, and V in the surface layer is the highest in sample X. Further, in the sample Y and the sample Z, the Cr amount is substantially equal, but the other elements are higher in the sample Z than in the sample Y. From these things, when nitriding, it is guessed that it is in the state where it hardens as the former in the order of samples X, Z, and Y.

各試料は大気加熱処理することにより窒化が容易になることから、各合金元素の最高濃度部位におけるO濃度に着目すると図24のグラフが得られた。このグラフによれば、Vの最高濃度部位におけるO濃度の挙動を除くと、試料Xは他の試料に比較して高濃度のO量が検出される。一方、窒化し難い試料YはO濃度が最も低い。これらのことから、表層近傍に生じるCr,W及びMoの最高濃度部位におけるO濃度の高低が窒化の難易を決定づけているものと想定される。  Since each sample can be easily nitrided by heating in the atmosphere, the graph of FIG. 24 is obtained by paying attention to the O concentration at the highest concentration site of each alloy element. According to this graph, excluding the behavior of the O concentration at the highest concentration site of V, the sample X detects a higher concentration of O than the other samples. On the other hand, the sample Y which is not easily nitrided has the lowest O concentration. From these facts, it is assumed that the level of O concentration at the highest concentration site of Cr, W and Mo generated in the vicinity of the surface layer determines the difficulty of nitriding.

なお、V最高濃度部位におけるO濃度が試料Zで高いのは、試料Zでは最表面でV濃度が最も高く、他の試料は最表面よりも内部に入った箇所においてV濃度が高くなっており、これはO量の吸収差によって生じたもので、V量との直接的関係は薄いものと想定される。  Note that the O concentration at the V highest concentration site is higher in the sample Z because the V concentration is the highest on the outermost surface of the sample Z, and the V concentration is higher in other samples than the outermost surface. This is caused by the absorption difference of the O amount, and it is assumed that the direct relationship with the V amount is thin.

本実施例によれば、試料Zは試料Xと同様、窒化物の微細な析出粒子が表面を覆っており、その密度は一見すると試料X以上と思われる。このことが、極表層における硬さの序列を決定づけており、大気処理による表面形状変化によって生じた微細析出粒が窒素の吸収を担ったものと推定される。なお、試料X及びZの窒化後の焼結素材の表面のほぼ全面が0.1〜0.5μm程度の粒子あるいは突起に覆われているのが観察できた。  According to this example, the sample Z, like the sample X, has fine precipitate particles covering the surface, and the density seems to be higher than the sample X at first glance. This determines the order of hardness in the extreme surface layer, and it is presumed that fine precipitates generated by the surface shape change due to atmospheric treatment were responsible for nitrogen absorption. It was observed that almost the entire surface of the sintered material after nitriding of Samples X and Z was covered with particles or protrusions of about 0.1 to 0.5 μm.

以上のことから、試料X及びZは本発明にかかる耐摩耗部品の材料として好ましく使用できるのに対し、試料Yの使用は好ましくない。  From the above, the samples X and Z can be preferably used as the material of the wear-resistant part according to the present invention, but the use of the sample Y is not preferable.

また、以上のことから、次のように判断することができる。
(1)窒化後の材料の表面は素材の表面状態を継続しており、試料X及び試料Zは表面に微細析出物が多数認められるが、試料Yは析出物が少なく平面的である。
(2)窒化後の深さ0.01mm及び0.05mmの部位の硬さは、試料Z、X、Yの順に前者ほど高く、表層硬さは表面析出物の密度と関連している。
(3)窒化の難易は、表層に生じる合金元素の濃化、濃度分布状態及び微少酸化物粒子等の表面活性化現象が支配している。
From the above, it can be determined as follows.
(1) The surface of the material after nitriding continues the surface state of the material, and in Sample X and Sample Z, many fine precipitates are observed on the surface, but Sample Y is flat with few precipitates.
(2) The hardness of the portions having a depth of 0.01 mm and 0.05 mm after nitriding is higher in the former order of samples Z, X, and Y, and the surface hardness is related to the density of surface precipitates.
(3) The difficulty of nitriding is dominated by the concentration of alloy elements generated in the surface layer, the concentration distribution state, and surface activation phenomena such as fine oxide particles.

本発明にかかる耐摩耗部品は、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、油溜まりとなる微少な窪みが形成され、さらに、柔らかい基地部分に微少な摩耗が発生して油溜まりが形成されるので、耐摩耗性が向上して焼き付きを発生することがなく、エンジンあるいは圧縮機の摺動部品等に使用すると効果的である。  The wear-resistant part according to the present invention has a large amount of processing of the soft base portion when finishing, and a minute recess that becomes an oil sump is formed. Since the pool is formed, the wear resistance is improved and seizure does not occur, and it is effective when used for a sliding part of an engine or a compressor.

本発明は、窒化処理により硬さを増大させた耐摩耗部品及びその製作方法に関する。   The present invention relates to a wear-resistant component having increased hardness by nitriding and a method for manufacturing the wear-resistant component.

ロータリコンプレッサ等に設けられるベーンは、シリンダに形成されたベーン溝に摺動自在に取り付けられており、ベーンはその側面がベーン溝の側壁と摺接するとともに、その先端部がローラに摺接することから、耐摩耗性が要求される。そこで、母材としてクロムを含有した鋼、焼結合金あるいは鋳鉄を使用し、母材を軟窒化処理し、表面層にFe−Cr−Nの第1の化合物層を形成するとともに、第1の化合物層の下方に同じ成分からなる第2の化合物層を形成したものが提案されている(例えば、特許文献1参照。)。   A vane provided in a rotary compressor or the like is slidably attached to a vane groove formed in a cylinder, and the vane has a side surface in sliding contact with a side wall of the vane groove and a tip end portion in sliding contact with a roller. Wear resistance is required. Therefore, steel containing chromium, sintered alloy or cast iron is used as a base material, the base material is soft-nitrided, and a first compound layer of Fe—Cr—N is formed on the surface layer. A structure in which a second compound layer made of the same component is formed below the compound layer has been proposed (see, for example, Patent Document 1).

また、ステンレス鋼の母材の表面に窒化処理を施すことにより窒化層を形成したものも提案されている(例えば、特許文献2参照。)。   In addition, a material in which a nitrided layer is formed by nitriding the surface of a stainless steel base material has been proposed (see, for example, Patent Document 2).

さらに、鉄系粉末材の材料を使用して空孔率10%以下あるいは15%以下とした焼結鉄を焼き入れ焼戻し処理により基地をマルテンサイト組織とした後、表面に窒化あるいは軟窒化処理によりFe−Nからなる化合物層を形成し、その内側に窒素拡散層を形成するようにしたものもある(例えば、特許文献3あるいは4参照。)。   Furthermore, after the sintered iron having a porosity of 10% or less or 15% or less using a material of an iron-based powder material is quenched and tempered to make the base a martensite structure, the surface is subjected to nitriding or soft nitriding treatment Some have a compound layer made of Fe—N and a nitrogen diffusion layer formed inside (see, for example, Patent Document 3 or 4).

特開昭60−26195号公報JP-A-60-26195 特開平11−101189号公報JP-A-11-101189 特開2001−140782号公報Japanese Patent Laid-Open No. 2001-140782 特開2001−342981号公報JP 2001-342981 A

しかしながら、上記従来の構成では、表面がFe−Cr−NあるいはFe−Nの化合物層あるいはFe−Cr−Nの拡散層で形成されており、表面が単一組成で硬さが均一であることから、コンプレッサを運転した時に発生するベーン等の耐摩耗部品の微少な摩耗も均一となっていた。その結果、表面に所定の保油性を維持することが難しく、焼き付きを生じるおそれがあった。   However, in the above conventional configuration, the surface is formed of an Fe—Cr—N or Fe—N compound layer or an Fe—Cr—N diffusion layer, and the surface has a single composition and a uniform hardness. Therefore, minute wear of wear-resistant parts such as vanes generated when the compressor is operated is uniform. As a result, it was difficult to maintain a predetermined oil retaining property on the surface, and there was a risk of seizing.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、耐摩耗部品の表面を硬さの異なる混合面とすることにより微少な油溜まりを形成して、耐摩耗部品を運転したときの保油性を向上することができ、焼き付きなどの不具合を解消することができる信頼性の高い耐摩耗部品を提供することを目的としている。   The present invention has been made in view of the above-described problems of the prior art. The wear-resistant component is formed by forming a small oil reservoir by making the surface of the wear-resistant component a mixed surface having different hardness. An object of the present invention is to provide a highly reliable wear-resistant component that can improve the oil retaining property when operating and can eliminate problems such as seizure.

上記目的を達成するために、本発明にかかる耐摩耗部品の製作方法は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。   In order to achieve the above-mentioned object, a method for manufacturing a wear-resistant part according to the present invention is a nitriding method in which a material is formed by compaction sintering using an iron-based alloy powder containing Cr, and carburizing components are eliminated. It is characterized in that the surface is made a mixed structure of Fe—Cr—N compound layer, Fe—Cr—N diffusion layer and matrix.

また、本発明にかかる耐摩耗部品の製作方法の別の形態は、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。   Another embodiment of the method for manufacturing a wear-resistant component according to the present invention is to use an iron-based alloy powder containing Cr and an alloy powder containing at least one metal element among Mn, Ti, and V. The material is formed by body sintering molding, nitriding treatment is performed to eliminate carburizing components, and the surface is a mixed structure of Fe—Cr—N compound layer, Fe—Cr—N diffusion layer, and matrix. To do.

好ましくは、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層と基地との混合組織であるのがよい。   Preferably, the surface has vacancies, and an Fe—Cr—N compound layer in the vicinity of the vacancies, and a mixed structure of the Fe—Cr—N diffusion layer and the base as the distance from the vacancies increases. Good.

本発明にかかる耐摩耗部品の製作方法のさらに別の形態は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層とソルバイトの基地組織の混合組織としたことを特徴とする。   Still another embodiment of the method for producing a wear-resistant part according to the present invention is to form a material by compaction sintering using iron-based alloy powder containing Cr, and to perform a nitriding treatment that eliminates carburizing components. The surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a sorbite base structure.

この場合、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層とソルバイト組織の基地との混合組織であるのがよい。   In this case, there are vacancies on the surface, and the vicinity of the vacancies is a compound layer of Fe-Cr-N, and as the distance from the vacancies, the mixed structure of the diffusion layer of Fe-Cr-N and the base of the sorbite structure There should be.

また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくともFe−Cr−Nの化合物層を含む混合組織とすることもできる。   Moreover, after forming the material by green compact sintering, quenching and tempering, it is subjected to nitriding treatment that excludes the carburizing component, removal processing is performed on a part of the surface, and the surface is at least Fe-Cr-N It can also be set as the mixed structure | tissue containing these compound layers.

窒化処理の前に軽微な酸化処理のための大気処理を行うようにしてもよく、大気処理は380℃の温度以上で行うのが好ましい。   An air treatment for a slight oxidation treatment may be performed before the nitriding treatment, and the air treatment is preferably performed at a temperature of 380 ° C. or higher.

耐摩耗部品は、表面にFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織とを有し、窒化後の焼結素材の表面のほぼ全面が0.1〜0.5μm程度の粒子あるいは突起に覆われているのがよい。   The wear-resistant part has an Fe—Cr—N compound layer, an Fe—Cr—N diffusion layer, and a matrix mixed structure on the surface, and almost the entire surface of the sintered material after nitriding is 0.1 to It is preferable to cover the particles or protrusions of about 0.5 μm.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
Crを含有する鉄系合金粉末あるいはCrを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形法で素材を成形し、浸炭成分の入っていない窒化処理を施し、表面を化合物層と拡散層と基地の混合層としたので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになり、さらに、耐摩耗部品を運転すると、柔らかい基地部分に微少な摩耗が発生して油溜まりを形成することになり、焼き付きのない信頼性の高い耐摩耗部品を実現することができる。
Since the present invention is configured as described above, the following effects can be obtained.
The raw material is formed by the green compact sintering method using an iron-based alloy powder containing Cr or an iron-based alloy powder containing Cr containing an alloy powder containing at least one metal element of Mn, Ti, and V. However, nitriding treatment that does not contain carburizing components is applied, and the surface is a compound layer / diffusion layer / base mixed layer. When a wear-resistant part is operated, a slight wear is generated in the soft base part to form an oil sump, and there is no seizure and high reliability. Wear-resistant parts can be realized.

また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用すると、化合物層と拡散層にはCr、Mn、Ti、Vのうち少なくとも一つの成分が含まれることになるので、Fe、Crで所定の硬さを確保した上で、Mnの存在によりさらに硬さを向上させたり、Tiの存在により窒化処理を促進させたり、あるいはVの存在により窒化深さを深くすることができるので、耐摩耗部品の信頼性がさらに向上する。   When an alloy powder containing at least one metal element of Mn, Ti, and V is used for the iron-based alloy powder containing Cr, at least one of Cr, Mn, Ti, and V is used for the compound layer and the diffusion layer. Since two components are contained, after ensuring a predetermined hardness with Fe and Cr, the hardness is further improved by the presence of Mn, the nitriding treatment is promoted by the presence of Ti, or V Since the nitriding depth can be increased due to the presence, the reliability of the wear-resistant parts is further improved.

さらに、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、焼き入れ焼き戻しを行った後、浸炭成分の入ってない窒化処理を施し、表面は化合物層と拡散層とソルバイトの基地組織の混合組織としたので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。また、耐摩耗部品を運転(相対摩擦運動)すると、化合物層や拡散層に比べて柔らかい基地部分が微少な摩耗を起こして油溜まりとなる。さらに、基地組織が焼き入れ焼き戻しで硬くなっているので、化合物層と拡散層は窒化によりさらに硬くなり、焼き付くことが無くさらに高い耐摩耗性を持つ信頼性の高い耐摩耗部品を実現できる。   Furthermore, after forming the material by green compact sintering using iron-based alloy powder containing Cr, quenching and tempering, nitriding treatment without carburizing component is performed, and the surface is a compound layer In addition, since the mixed structure of the base structure of the diffusion layer and sorbite is used, when the wear-resistant parts are finished, the amount of processing of the soft base portion increases, and a small depression is formed to form an oil reservoir. In addition, when the wear-resistant parts are operated (relative frictional motion), the soft base portion is slightly worn compared to the compound layer and the diffusion layer and becomes an oil reservoir. Furthermore, since the matrix structure is hardened by quenching and tempering, the compound layer and the diffusion layer become harder due to nitriding, and it is possible to realize a highly reliable wear-resistant part having higher wear resistance without being seized.

また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分の入ってない窒化処理を施し、一部の表面に除去加工を行うことにより、表面がFe−Cr−Nの化合物層だけではなく、硬さのばらつきを持つ表面となる。したがって、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、稼動(相対摩擦運動)時に柔らかい部分が微少な摩耗を発生して、そこが油溜まりとなり潤滑性が向上するとともに、耐摩耗性はそのほかの化合物層部分で維持することができるので、耐摩耗部品の信頼性を向上することができる。   Also, after forming the material by green compact sintering, quenching and tempering, nitriding treatment without carburizing component is performed, and removal processing is performed on a part of the surface, so that the surface is Fe-Cr Not only the -N compound layer but also a surface with hardness variation. Therefore, when finishing, the amount of processing of the soft base portion is increased, and a minute depression is formed to form an oil reservoir. In addition, during operation (relative frictional motion), the soft part generates minute wear, which becomes an oil reservoir and improves lubricity, and the wear resistance can be maintained in the other compound layer part. The reliability of worn parts can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明にかかる耐摩耗部品は、例えばローリングピストン等に設けられているベーン等として使用されるもので、例えば粉末ハイス(粉末ハイスピード鋼)等のCrを含有する鉄系合金粉末に対し約1200℃の温度で真空焼結を行って素材を成形した後、焼き入れ処理を行ってマルテンサイト組織とし、さらに焼き戻しの熱処理を480℃〜580℃で行ってソルバイト組織にした後に、浸炭成分を排除した状態で焼戻し温度以下の400℃で約6時間のガス窒化処理を施したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The wear-resistant component according to the present invention is used as, for example, a vane provided in a rolling piston or the like, and is about 1200 for an iron-based alloy powder containing Cr such as powder high speed (powder high speed steel). After forming the material by vacuum sintering at a temperature of ℃, quenching treatment is performed to obtain a martensite structure, and further tempering heat treatment is performed at 480 ° C. to 580 ° C. to form a sorbite structure, In the excluded state, gas nitriding treatment was performed at 400 ° C. below the tempering temperature for about 6 hours.

図1は、このようにして製作した本発明にかかる耐摩耗部品の窒化処理後の断面組織を示しており、ガス窒化処理後、エッチングを施し、化合物層を見やすくしたものである。   FIG. 1 shows a cross-sectional structure after nitriding of the wear-resistant component according to the present invention manufactured as described above. After the gas nitriding treatment, etching is performed to make the compound layer easy to see.

素材が圧粉体焼結成形で製作されているので、密度は80〜90%程度までしか上がらず、空孔1が多数存在し、窒化処理に使用したガスが空孔1を通過して奥まで窒化が行われており、白い色の化合物層2が空孔1の周りに形成されている。また、空孔1から離れるにしたがって、黒い部分3が多くなっているが、これは拡散層と基地の混合組織である。   Since the material is manufactured by green compact molding, the density increases only to about 80-90%, there are many holes 1 and the gas used for the nitriding treatment passes through the holes 1 Nitriding is performed until a white compound layer 2 is formed around the pores 1. Further, as the distance from the hole 1 increases, the black portion 3 increases, which is a mixed structure of the diffusion layer and the base.

図2は、この耐摩耗部品を図1の面に対して直角方向に切断し(すなわち、表面から所定の深さで切断し)、切断面を研削したものの表面を450倍に拡大したものである。   FIG. 2 shows the wear-resistant part cut in a direction perpendicular to the plane of FIG. 1 (that is, cut at a predetermined depth from the surface), and the surface of the cut surface is magnified 450 times. is there.

図2に示されるように、研削面には圧粉体焼結成形品特有の空孔1が存在し、その周辺は窒化処理のガスが侵入して窒化が進行しているので、Fe−Cr−Nの化合物層2がエッチングされて白い色になっている。また、空孔1の表面から離れたところでは白い色が少なくなり、Fe−Cr−Nの拡散層と基地の混合組織3となっている。すなわち、空孔1のある耐摩耗品の表面は化合物層2と拡散層と基地組織の混合組織3となっている。   As shown in FIG. 2, there are pores 1 peculiar to a green compact molded product on the ground surface, and nitriding progresses in the periphery of the nitriding gas. Fe—Cr The -N compound layer 2 is etched to have a white color. In addition, the white color is reduced away from the surface of the hole 1, and the mixed structure 3 of the diffusion layer of Fe—Cr—N and the base is formed. That is, the surface of the wear-resistant article having the pores 1 is a mixed structure 3 of the compound layer 2, the diffusion layer, and the base structure.

図3は、その断面をマイクロビッカース硬さで測定した圧痕の写真であり、圧痕が小さいほどマイクロビッカース硬さが硬いことを示している。マイクロビッカースの圧痕の大きさから明らかなように、空孔1の周辺は比較的小さく、空孔1と空孔1の間8のマイクロビッカースの圧痕の大きさは空孔の周辺に比べて大きく、硬さが低下していることがわかる。これは、空孔1の周辺は窒化ガスが入り込んで化合物層2ができており、空孔1と空孔1の間8は拡散層と基地の混合組織3となっているため、硬さが空孔1の周辺に比べて低くなっていると考えられる。   FIG. 3 is a photograph of an indentation whose cross section is measured by micro Vickers hardness, and shows that the smaller the indentation, the harder the micro Vickers hardness. As apparent from the size of the micro Vickers indentation, the periphery of the hole 1 is relatively small, and the size of the micro Vickers indentation 8 between the holes 1 and 1 is larger than that of the periphery of the hole. It can be seen that the hardness has decreased. This is because the nitriding gas enters the periphery of the pores 1 to form the compound layer 2, and the space 8 between the pores 1 and 1 is the mixed structure 3 of the diffusion layer and the base. It is considered that it is lower than the periphery of the hole 1.

このように表面の硬さが適度にばらついているので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、耐摩耗部品が作動すると、柔らかい基地組織の部分には微少な摩耗が発生して油溜まりの役目を果たすようになり、圧粉体焼結成形品の空孔に加えてくさび効果の高い油溜まりが可動部全面にわたって形成される。したがって、表面全体としては保油性が高まって潤滑性が良好となり、耐摩耗性は空孔の周辺の化合物層と拡散層で確保できるので、表面全体が硬い耐摩耗部品に比べて良好な信頼性を確保することができる。   As described above, since the hardness of the surface varies moderately, when the wear-resistant part is finished, the amount of processing of the soft base portion increases, and a minute recess is formed to form an oil reservoir. In addition, when the wear-resistant parts are activated, a slight wear is generated in the soft base structure, which acts as an oil reservoir, and has a high wedge effect in addition to the pores of the green compact. An oil sump is formed over the entire movable portion. Therefore, the entire surface has improved oil retention and improved lubricity, and wear resistance can be ensured with the compound layer and diffusion layer around the pores, so it has better reliability than wear resistant parts with a hard entire surface Can be secured.

なお、本実施の形態は、粉末ハイスの焼き入れ、焼き戻し品で説明したが、素材を一般的な合金粉で製作しても良く、また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉で製作しても同様な効果を得ることができる。   Although the present embodiment has been described with the quenching and tempering of powder high speed steel, the material may be manufactured with a general alloy powder, and Mn, Ti may be added to the iron-based alloy powder containing Cr. The same effect can be obtained even when manufactured with an alloy powder containing at least one metal element of V.

図4は、図1の耐摩耗部品の窒化処理後の硬さ分布曲線を示しており、表面から0.4mmを越えた位置Aでも、硬さは表面Bとほとんど変わっていない。この耐摩耗部品の表面を0.1mm程度研削して除去加工した後の、表面からの深さ0.1mmの位置Cをエッチングすると図2の断面組織のようになる。   FIG. 4 shows a hardness distribution curve of the wear-resistant part of FIG. 1 after nitriding treatment, and the hardness is hardly different from the surface B even at a position A exceeding 0.4 mm from the surface. When the surface C of the wear-resistant component is ground and removed by about 0.1 mm and the position C having a depth of 0.1 mm from the surface is etched, the cross-sectional structure of FIG. 2 is obtained.

このように粉末ハイスの圧粉体焼結品は短時間の窒化処理でも、素材に空孔があるため窒化のガスが内部まで浸透しやすく深く窒化される。したがって、通常の窒化処理では、素材の粗加工後、窒化処理を行い、更に仕上げ加工といった工程を踏む必要があるのに対し、粉末ハイスの圧粉体焼結品は、素材に窒化処理を行い、直接仕上げ加工を行っても、必要な硬さを容易に得ることができる。さらに、素材の焼き入れ焼き戻しによる変形が発生して取り代が不均一となっても、深く窒化されているので完成品の一番硬い化合物層の表面硬さのばらつきは小さくすることができる。   In this way, even if the powdered high-speed green compact is subjected to nitriding for a short time, since the material has pores, the nitriding gas easily penetrates into the inside and is deeply nitrided. Therefore, in the normal nitriding treatment, it is necessary to perform a nitriding treatment after roughing the material, and then to perform a finishing process. On the other hand, in the powder high-speed sintered compact, the material is subjected to nitriding treatment. Even if direct finishing is performed, the required hardness can be easily obtained. Furthermore, even if deformation due to quenching and tempering of the material occurs and the machining allowance becomes non-uniform, variation in the surface hardness of the hardest compound layer of the finished product can be reduced because it is deeply nitrided. .

さらに、表面を除去加工することにより、Fe−Cr−Nの化合物層だけでなく、Fe−Cr−Nの拡散層及び基地の混合組織が表れるが、これは、表面に近い場所でも硬さが低い部分が存在することからも理解できることである。すなわち、本発明にかかる耐摩耗部品は、優れた耐摩耗性を保持しつつ、粗加工工程を省略することができるので、安価に製作することができる。   Furthermore, by removing the surface, not only the compound layer of Fe—Cr—N but also the diffusion layer of Fe—Cr—N and the mixed structure of the matrix appear. It can be understood from the existence of the low part. That is, the wear-resistant component according to the present invention can be manufactured at low cost because the rough machining process can be omitted while maintaining excellent wear resistance.

3種類のCrを含有する鉄系合金粉末を所定の形状にまず成形し、この成形体を所定の温度(例えば、1180℃)で真空焼結して焼結体を作製し、焼結体に所定の熱処理を行った後、表面形状を調査した。各試料の材料はSKH51に相当し、ここでは試料X,Y,Zという。   First, an iron-based alloy powder containing three types of Cr is formed into a predetermined shape, and this formed body is vacuum-sintered at a predetermined temperature (eg, 1180 ° C.) to produce a sintered body. After performing a predetermined heat treatment, the surface shape was examined. The material of each sample corresponds to SKH51, and is referred to as sample X, Y, Z here.

表1は、試料X,Y,Zの熱処理後の組成分析結果を示している。

Figure 2005037469
Table 1 shows the composition analysis results after heat treatment of samples X, Y, and Z.
Figure 2005037469

また、図5は各試料の素材に対して行った熱処理パターンを示しており、表2は各試料の材質特性を示している。

Figure 2005037469
FIG. 5 shows the heat treatment pattern performed on the material of each sample, and Table 2 shows the material characteristics of each sample.
Figure 2005037469

その後、試料X及びYに対しては400℃の温度で6時間窒化処理を行ったのに対し、試料Zに対しては480℃の温度で3時間の大気処理(軽微な酸化処理)を行い、さらに400℃の温度で6時間の窒化処理を行った。   After that, the samples X and Y were subjected to nitriding treatment at a temperature of 400 ° C. for 6 hours, while the sample Z was subjected to atmospheric treatment (light oxidation treatment) at a temperature of 480 ° C. for 3 hours. Further, nitriding treatment was performed at a temperature of 400 ° C. for 6 hours.

次に、倍率40〜20,000の走査型電子顕微鏡を用いて、各試料の表面形状及び表面性状を調査、評価した。   Next, the surface shape and surface properties of each sample were investigated and evaluated using a scanning electron microscope with a magnification of 40 to 20,000.

図6乃至8は、窒化後の試料X,Y,Zの倍率40のときの表面状態をそれぞれ示しており、試料Y及びZは同様の表面状態を呈しているのに対し、試料Xは試料Y及びZに比べて微少粒状を呈しており、活性な表面状態が認められる。   FIGS. 6 to 8 show the surface states of the samples X, Y, and Z after nitriding at a magnification of 40, respectively. Samples Y and Z exhibit the same surface state, whereas sample X is the sample. Compared to Y and Z, it is finer and shows an active surface state.

また、図9乃至12は、試料Xの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示しており、図13乃至16は、試料Yの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示している。また、図17乃至20は、試料Zの倍率200、1,000、5,000、20,000のときの表面状態をそれぞれ示しており、図21及び22は、試料Zの別の部位の倍率5,000、20,000のときの表面状態をそれぞれ示している。   9 to 12 show the surface states of the sample X when the magnification is 200, 1,000, 5,000, and 20,000, respectively, and FIGS. Surface states at 000, 5,000, and 20,000 are shown, respectively. FIGS. 17 to 20 show the surface states of the sample Z at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. The surface states at 5,000 and 20,000 are shown, respectively.

図9乃至12によれば、試料Xの表面は小粒が圧着焼結され焼結粒間隙の表面に微細な凸状析出物が無数に存在しており、これらの微少析出物回りに窒化物粒の析出が認められる。すなわち、試料Xは、400℃の温度で6時間窒化処理を行うことにより内部まで窒化されていることが分かる。   According to FIGS. 9 to 12, the surface of the sample X is pressure-sintered with small grains, and countless fine convex precipitates exist on the surface of the gap between the sintered grains, and the nitride grains around these fine precipitates. Is observed. That is, it can be seen that the sample X is nitrided to the inside by performing nitriding treatment at a temperature of 400 ° C. for 6 hours.

図13乃至16によれば、試料Yは試料Xに比べて焼結粒子が大きく、図9及び10と図13及び14を比較すると分かるように、試料Yは比較的平らな表面状態を呈しており、倍率5,000以上の観察においても、試料Xに認められる微細凸状析出物の割合が少なく、安定した(不活性な)表面状態にある。   According to FIGS. 13 to 16, sample Y has larger sintered particles than sample X, and sample Y exhibits a relatively flat surface state as can be seen by comparing FIGS. 9 and 10 with FIGS. Even in the observation at a magnification of 5,000 or more, the proportion of fine convex precipitates observed in the sample X is small, and the surface state is stable (inactive).

また、図17(倍率200)によれば、試料Z表面の焼結粒子は試料Yに類似しており、試料Xに比べて大きい状態にあるが、図18乃至22に示される倍率1,000以上の観察によれば、試料Zは表面及び焼結粒間隙に微細な析出物が試料X以上に存在し、微視的には試料Xに類似した表面状態が形成されている。   17 (magnification 200), the sintered particles on the surface of the sample Z are similar to the sample Y and are larger than the sample X, but the magnification 1,000 shown in FIGS. According to the above observation, the sample Z has fine precipitates on the surface and the gap between the sintered grains more than the sample X, and a surface state microscopically similar to the sample X is formed.

試料Yと試料Zの相違点は、焼結後の素材の大気処理の有無にあり、前者は非処理状態にあるのに対し、後者は大気処理した状態にある。非処理材は、上述したように表面が平らで安定な状態を呈しているが、大気処理した試料Zは表面に凸状析出物が無数に生じていることから、試料Xと同様、表面が活性化している。   The difference between the sample Y and the sample Z is the presence or absence of atmospheric treatment of the sintered material. The former is in an untreated state, while the latter is in an air-treated state. As described above, the non-treated material has a flat and stable surface. However, the sample Z treated with the air has numerous surface-shaped precipitates on the surface. It is activated.

一方、窒化後の各試料の硬さは表3のとおりであった。

Figure 2005037469
On the other hand, the hardness of each sample after nitriding was as shown in Table 3.
Figure 2005037469

表3から分かるように、表面から深さ0.01mm及び0.05mmの部位における硬さは、試料Z、X、Yの順に前者ほど高い。   As can be seen from Table 3, the hardness of the parts having a depth of 0.01 mm and 0.05 mm from the surface is higher in the order of samples Z, X, and Y.

表3に示される硬さと上述した表面形状とを比較すると、窒化後の表面に存在する微細析出粒は、図9乃至22に示されるように、試料Z、Y、Xの順に前者ほど密度が高い。試料Zは試料Yを窒化処理する前に大気処理することにより試料表面に微細な酸化物粒子が形成されていることから、試料Zは微細析出した酸化物粒子が表面を活性化させることにより窒化反応が容易になったものと想定される。   When the hardness shown in Table 3 is compared with the surface shape described above, the fine precipitates existing on the surface after nitriding have a density in the order of samples Z, Y, and X as shown in FIGS. 9 to 22. high. In sample Z, fine oxide particles are formed on the sample surface by subjecting sample Y to air treatment before nitriding, so sample Z is nitrided by activating the surface with finely precipitated oxide particles. It is assumed that the reaction has become easier.

また、試料Yの場合、窒化温度を上昇するか(例えば、約430℃)、あるいは窒化温度は400℃であっても窒化時間を長くする(例えば、約10時間)ことにより、表面からの深さ0.5mmの部位における硬さが900Hv以上まで高くなる場合もあったが、窒化が不安定で、割れが発生することがあった。   In the case of sample Y, the nitridation temperature is increased (for example, about 430 ° C.), or even if the nitridation temperature is 400 ° C., the nitridation time is increased (for example, about 10 hours). In some cases, the hardness at a 0.5 mm portion was increased to 900 Hv or more, but nitriding was unstable and cracking sometimes occurred.

さらに、試料Zに対し、処理時間を一定(3時間)にして処理温度を280℃、380℃、480℃、580℃に変えて大気処理を行ったところ、280℃では表面から深さ1.5mmの部位における硬さが900Hvを下回ったものの、処理温度が380℃以上の場合、表面から深さ1.5mmまでの硬さがすべて900Hv以上であることが確認された。   Furthermore, when the sample Z was subjected to atmospheric treatment with a constant treatment time (3 hours) and a treatment temperature changed to 280 ° C., 380 ° C., 480 ° C., and 580 ° C., a depth of 1. Although the hardness at the 5 mm portion was lower than 900 Hv, it was confirmed that when the processing temperature was 380 ° C. or higher, the hardness from the surface to a depth of 1.5 mm was all 900 Hv or higher.

すなわち、試料Y及びZは窒化性が悪いが、380℃の温度で3時間の大気処理を行った後、400℃の温度で6時間の窒化処理を行うことで、試料Xと同様、窒化性が向上する。   That is, samples Y and Z have poor nitriding properties, but after nitriding for 6 hours at a temperature of 400 ° C. after performing atmospheric treatment for 3 hours at a temperature of 380 ° C., as in sample X, Will improve.

なお、各試料は表層近傍における合金元素(Cr,W,Mo,V)及びO濃度に相違が認められ、これら元素濃度分布の相違が窒化反応に影響を与えている。   Each sample has a difference in alloy elements (Cr, W, Mo, V) and O concentration in the vicinity of the surface layer, and the difference in these element concentration distributions affects the nitriding reaction.

さらに詳述すると、各試料の表層組成調査を約50μmの深さまで実施したところ、いずれの材料も3μm以上の深度部分の濃度は殆ど同じ値を示したので、3μmの深さまでのデータを基に表層を構成する元素の濃度分布を解析した。   More specifically, when the surface layer composition survey of each sample was carried out to a depth of about 50 μm, all the materials showed almost the same concentration in the depth portion of 3 μm or more, so the data up to a depth of 3 μm was used. The concentration distribution of elements constituting the surface layer was analyzed.

その結果、試料Xは表層から約0.2μmの深さに、基材部組成の約2〜3倍に濃化したCr,W,Mo及びVの濃化域が認められ、最表層において約30%に達するO量が検出された。また、試料Yの表層近傍におけるW,Mo及びV濃度は基材部組成の約1.5倍程度に濃化していたが、Crは脱元素化現象を呈していた。さらに、最表層におけるO濃度は約6%程度であり、試料Xに較べると低い。   As a result, in Sample X, a concentrated region of Cr, W, Mo, and V concentrated to a depth of about 0.2 μm from the surface layer to a concentration of about 2 to 3 times the base material composition was recognized, and about X in the outermost layer. An amount of O reaching 30% was detected. Further, the W, Mo, and V concentrations in the vicinity of the surface layer of the sample Y were concentrated to about 1.5 times the base material composition, but Cr exhibited a deelementization phenomenon. Further, the O concentration in the outermost layer is about 6%, which is lower than that of the sample X.

また、試料Zは試料Xと同様に表層から約0.2μmの深さに、基材部組成の約1.5〜2倍に濃化したW及びとMoと、最表層において約6%程度のO量が検出された。一方、Cr及びVの挙動は試料Yに類似しており、前者は脱元素挙動を後者は最表層において濃化する現象を示していた。   Sample Z, like Sample X, has a depth of about 0.2 μm from the surface layer, W and Mo concentrated to about 1.5 to 2 times the base material composition, and about 6% in the outermost layer. The amount of O was detected. On the other hand, the behaviors of Cr and V are similar to those of the sample Y, and the former showed a de-elemental behavior and the latter showed a phenomenon of concentration in the outermost layer.

以上より、試料Z表層を構成する元素濃度は、試料Xと試料Yの中間的様相を有しているものと想定される。   From the above, it is assumed that the element concentration constituting the sample Z surface layer has an intermediate aspect between the sample X and the sample Y.

図23は、各試料の表層における合金元素の最高濃度を示しており、表層におけるCr,W,Mo及びV量は試料Xが最も高い。また、試料Yと試料Zにおいては、Cr量は略等量であるが、その他の元素は試料Yに較べて試料Zが高い。これらの事から、窒化した場合、試料X,Z,Yの順に前者ほど硬化し易い状態にあるものと推察される。   FIG. 23 shows the maximum concentration of alloy elements in the surface layer of each sample, and the amount of Cr, W, Mo, and V in the surface layer is the highest in sample X. Further, in the sample Y and the sample Z, the Cr amount is substantially equal, but the other elements are higher in the sample Z than in the sample Y. From these things, when nitriding, it is guessed that it is in the state where it hardens as the former in the order of samples X, Z, and Y.

各試料は大気加熱処理することにより窒化が容易になることから、各合金元素の最高濃度部位におけるO濃度に着目すると図24のグラフが得られた。このグラフによれば、Vの最高濃度部位におけるO濃度の挙動を除くと、試料Xは他の試料に比較して高濃度のO量が検出される。一方、窒化し難い試料YはO濃度が最も低い。これらのことから、表層近傍に生じるCr,W及びMoの最高濃度部位におけるO濃度の高低が窒化の難易を決定づけているものと想定される。   Since each sample can be easily nitrided by heating in the atmosphere, the graph of FIG. 24 is obtained by paying attention to the O concentration at the highest concentration site of each alloy element. According to this graph, excluding the behavior of the O concentration at the highest concentration site of V, the sample X detects a higher concentration of O than the other samples. On the other hand, the sample Y which is not easily nitrided has the lowest O concentration. From these facts, it is assumed that the level of O concentration at the highest concentration site of Cr, W and Mo generated in the vicinity of the surface layer determines the difficulty of nitriding.

なお、V最高濃度部位におけるO濃度が試料Zで高いのは、試料Zでは最表面でV濃度が最も高く、他の試料は最表面よりも内部に入った箇所においてV濃度が高くなっており、これはO量の吸収差によって生じたもので、V量との直接的関係は薄いものと想定される。   Note that the O concentration at the V highest concentration site is higher in the sample Z because the V concentration is the highest on the outermost surface of the sample Z, and the V concentration is higher in other samples than the outermost surface. This is caused by the absorption difference of the O amount, and it is assumed that the direct relationship with the V amount is thin.

本実施例によれば、試料Zは試料Xと同様、窒化物の微細な析出粒子が表面を覆っており、その密度は一見すると試料X以上と思われる。このことが、極表層における硬さの序列を決定づけており、大気処理による表面形状変化によって生じた微細析出粒が窒素の吸収を担ったものと推定される。なお、試料X及びZの窒化後の焼結素材の表面のほぼ全面が0.1〜0.5μm程度の粒子あるいは突起に覆われているのが観察できた。   According to this example, the sample Z, like the sample X, has fine precipitate particles covering the surface, and the density seems to be higher than the sample X at first glance. This determines the order of hardness in the extreme surface layer, and it is presumed that fine precipitates generated by the surface shape change due to atmospheric treatment were responsible for nitrogen absorption. It was observed that almost the entire surface of the sintered material after nitriding of Samples X and Z was covered with particles or protrusions of about 0.1 to 0.5 μm.

以上のことから、試料X及びZは本発明にかかる耐摩耗部品の材料として好ましく使用できるのに対し、試料Yの使用は好ましくない。   From the above, the samples X and Z can be preferably used as the material of the wear-resistant part according to the present invention, but the use of the sample Y is not preferable.

また、以上のことから、次のように判断することができる。
(1)窒化後の材料の表面は素材の表面状態を継続しており、試料X及び試料Zは表面に微細析出物が多数認められるが、試料Yは析出物が少なく平面的である。
(2)窒化後の深さ0.01mm及び0.05mmの部位の硬さは、試料Z、X、Yの順に前者ほど高く、表層硬さは表面析出物の密度と関連している。
(3)窒化の難易は、表層に生じる合金元素の濃化、濃度分布状態及び微少酸化物粒子等の表面活性化現象が支配している。
From the above, it can be determined as follows.
(1) The surface of the material after nitriding continues the surface state of the material, and in Sample X and Sample Z, many fine precipitates are observed on the surface, but Sample Y is flat with few precipitates.
(2) The hardness of the portions having a depth of 0.01 mm and 0.05 mm after nitriding is higher in the former order of samples Z, X, and Y, and the surface hardness is related to the density of surface precipitates.
(3) The difficulty of nitriding is dominated by the concentration of alloy elements generated in the surface layer, the concentration distribution state, and surface activation phenomena such as fine oxide particles.

本発明にかかる耐摩耗部品は、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、油溜まりとなる微少な窪みが形成され、さらに、柔らかい基地部分に微少な摩耗が発生して油溜まりが形成されるので、耐摩耗性が向上して焼き付きを発生することがなく、エンジンあるいは圧縮機の摺動部品等に使用すると効果的である。   The wear-resistant part according to the present invention has a large amount of processing of the soft base portion when finishing, and a minute recess that becomes an oil sump is formed. Since the pool is formed, the wear resistance is improved and seizure does not occur, and it is effective when used for a sliding part of an engine or a compressor.

本発明にかかる耐摩耗部品の断面エッチング写真である。It is a cross-sectional etching photograph of the abrasion-resistant component concerning this invention. 図1の耐摩耗部品の表面を研削加工して削り取った表面のエッチング写真である。FIG. 2 is an etching photograph of the surface of the wear-resistant component of FIG. 図1の耐摩耗部品の表面のマイクロビッカース硬さ測定圧痕の写真である。It is a photograph of the micro Vickers hardness measurement impression of the surface of the wear-resistant component of FIG. 図1の耐摩耗部品の硬さ分布曲線である。2 is a hardness distribution curve of the wear-resistant part of FIG. 1. 各試料の素材に対して行った熱処理パターンを示す図表である。It is a graph which shows the heat processing pattern performed with respect to the raw material of each sample. 窒化後の試料Xの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample X after nitriding. 窒化後の試料Yの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample Y after nitriding. 窒化後の試料Zの倍率40のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of the magnification 40 of the sample Z after nitriding. 窒化後の試料Xの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of 200 magnification of the sample X after nitriding. 窒化後の試料Xの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample X after nitriding is 1,000. 窒化後の試料Xの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample X after nitriding is 5,000. 窒化後の試料Xの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 20,000 of the sample X after nitriding. 窒化後の試料Yの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 200 of the sample Y after nitriding. 窒化後の試料Yの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Y after nitriding is 1,000. 窒化後の試料Yの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of Sample Y after nitriding is 5,000. 窒化後の試料Yの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Y after nitriding is 20,000. 窒化後の試料Zの倍率200のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of 200 magnifications of the sample Z after nitriding. 窒化後の試料Zの倍率1,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 1,000. 窒化後の試料Zの倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 5,000. 窒化後の試料Zの倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state when the magnification of the sample Z after nitriding is 20,000. 窒化後の試料Zの別の部位の倍率5,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification of 5,000 of another site | part of the sample Z after nitriding. 窒化後の試料Zの別の部位の倍率20,000のときの表面状態を示す写真である。It is a photograph which shows the surface state at the time of magnification 20,000 of another site | part of the sample Z after nitriding. 各試料の表層近傍における合金元素の最高濃度を示すグラフである。It is a graph which shows the highest density | concentration of the alloy element in the surface layer vicinity of each sample. 各試料の表層近傍における合金元素の最高濃度部位におけるO濃度を示すグラフである。It is a graph which shows O concentration in the highest concentration site | part of the alloy element in the surface layer vicinity of each sample.

符号の説明Explanation of symbols

1 空孔
2 化合物層
3 混合組織
8 空孔と空孔の間のマイクロビッカースの圧痕
1 Hole 2 Compound Layer 3 Mixed Structure 8 Micro Vickers Indentation Between Holes

Claims (9)

Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする耐摩耗部品の製作方法。A raw material is formed by compacting by using green-based alloy powder containing Cr, nitriding treatment is performed to eliminate carburizing components, and the surface is formed of a Fe—Cr—N compound layer and Fe—Cr—N. A method of manufacturing a wear-resistant part, characterized by having a mixed structure of a diffusion layer and a base. Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする耐摩耗部品の製作方法。A material is formed by compaction sintering using an alloy powder containing at least one metal element of Mn, Ti, and V in an iron-based alloy powder containing Cr, and nitriding treatment is performed by eliminating carburizing components. A method for producing a wear-resistant part, characterized in that the surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix. 表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層と基地との混合組織としたことを特徴とする請求項1あるいは2に記載の耐摩耗部品の製作方法。There are vacancies on the surface, and the vicinity of the vacancies is an Fe—Cr—N compound layer, and as the distance from the vacancies, the mixed structure of the Fe—Cr—N diffusion layer and the base is formed. A method for manufacturing a wear-resistant part according to claim 1 or 2. Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層とソルバイトの基地組織の混合組織としたことを特徴とする耐摩耗部品の製作方法。A raw material is formed by compacting by using green-based alloy powder containing Cr, nitriding treatment is performed to eliminate carburizing components, and the surface is formed of a Fe—Cr—N compound layer and Fe—Cr—N. A method of manufacturing a wear-resistant part, characterized in that it is a mixed structure of a base layer structure of sorbite and a sorbite diffusion layer. 表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層とソルバイト組織の基地との混合組織としたことを特徴とする請求項4に記載の耐摩耗部品の製作方法。There are vacancies on the surface, and the vicinity of the vacancies is an Fe—Cr—N compound layer, and as the distance from the vacancies, the mixed structure of the Fe—Cr—N diffusion layer and the base of the sorbite structure is used. The method for manufacturing a wear-resistant part according to claim 4. 圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくともFe−Cr−Nの化合物層を含む混合組織としたことを特徴とする耐摩耗部品の製作方法。After forming the material by green compact sintering, quenching and tempering, it is subjected to nitriding treatment that excludes carburizing components, and removal processing is performed on a part of the surface, and the surface is a compound of at least Fe-Cr-N A method for producing a wear-resistant part, characterized in that a mixed structure including a layer is formed. 前記窒化処理の前に大気処理を行うようにしたことを特徴とする請求項1乃至6のいずれか1項に記載の耐摩耗部品の製作方法。The method for manufacturing a wear-resistant part according to any one of claims 1 to 6, wherein atmospheric treatment is performed before the nitriding treatment. 前記大気処理を380℃の温度以上で行うようにしたことを特徴とする請求項7に記載の耐摩耗部品の製作方法。The method for manufacturing a wear-resistant component according to claim 7, wherein the atmospheric treatment is performed at a temperature of 380 ° C. or higher. 表面にFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織とを有し、窒化後の焼結素材の表面のほぼ全面が0.1〜0.5μm程度の粒子あるいは突起に覆われていることを特徴とする耐摩耗部品。It has a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix mixed structure on the surface, and the entire surface of the sintered material after nitriding is about 0.1 to 0.5 μm. A wear-resistant part characterized by being covered with particles or protrusions.
JP2005514829A 2003-10-21 2004-10-19 Abrasion resistant parts and method of manufacturing Expired - Fee Related JP4668793B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003361003 2003-10-21
JP2003361003 2003-10-21
PCT/JP2004/015429 WO2005037469A1 (en) 2003-10-21 2004-10-19 Wear-resistant parts and method for manufacture thereof

Publications (2)

Publication Number Publication Date
JPWO2005037469A1 true JPWO2005037469A1 (en) 2007-11-22
JP4668793B2 JP4668793B2 (en) 2011-04-13

Family

ID=34463425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514829A Expired - Fee Related JP4668793B2 (en) 2003-10-21 2004-10-19 Abrasion resistant parts and method of manufacturing

Country Status (5)

Country Link
US (2) US20070071630A1 (en)
JP (1) JP4668793B2 (en)
KR (1) KR20060126962A (en)
CN (1) CN1871084A (en)
WO (1) WO2005037469A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025008B4 (en) * 2006-05-30 2022-09-15 Schaeffler Technologies AG & Co. KG Process for hardening running surfaces of roller bearing components
EP2791055A4 (en) * 2011-12-15 2015-06-03 Univ Case Western Reserve Transformation enabled nitride magnets absent rare earths and a process of making the same
US10867730B2 (en) 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
JP6213213B2 (en) * 2013-12-19 2017-10-18 住友電工焼結合金株式会社 Cr-containing iron-based sintered body and method for producing the sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279814A (en) * 1992-03-31 1993-10-26 Sumitomo Electric Ind Ltd Sintered alloy and its production
JPH06299284A (en) * 1993-04-12 1994-10-25 Fuji Oozx Inc High strength nitrided sintered member excellent in wear resistance and its production
JP2002098077A (en) * 2000-09-25 2002-04-05 Matsushita Electric Ind Co Ltd Rotary compressor and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629728A (en) * 1949-08-22 1953-02-24 Robert B Anderson Iron nitride catalysts in carbon oxide hydrogenations
US3368882A (en) * 1965-04-06 1968-02-13 Chromalloy American Corp Surface hardened composite metal article of manufacture
KR100398563B1 (en) * 1999-11-15 2003-09-19 마츠시타 덴끼 산교 가부시키가이샤 Rotary compressor and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279814A (en) * 1992-03-31 1993-10-26 Sumitomo Electric Ind Ltd Sintered alloy and its production
JPH06299284A (en) * 1993-04-12 1994-10-25 Fuji Oozx Inc High strength nitrided sintered member excellent in wear resistance and its production
JP2002098077A (en) * 2000-09-25 2002-04-05 Matsushita Electric Ind Co Ltd Rotary compressor and its manufacturing method

Also Published As

Publication number Publication date
US20070071630A1 (en) 2007-03-29
CN1871084A (en) 2006-11-29
KR20060126962A (en) 2006-12-11
US20080216923A1 (en) 2008-09-11
JP4668793B2 (en) 2011-04-13
WO2005037469A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
Karaoğlu Structural characterization and wear behavior of plasma-nitrided AISI 5140 low-alloy steel
Angelini et al. Dry sliding behavior (block-on-ring tests) of AISI 420 martensitic stainless steel, surface hardened by low temperature plasma-assisted carburizing
KR20010051674A (en) Rotary compressor and method for manufacturing same
JP4668793B2 (en) Abrasion resistant parts and method of manufacturing
JP4141473B2 (en) Nitriding valve lifter and manufacturing method thereof
WO2005100810A1 (en) Process for finishing critical surfaces of a bearing
CN110629155A (en) Preparation method of hard wear-resistant coating for mechanical chemical carburization treatment on surface of nickel-chromium-molybdenum steel
WO2020095807A1 (en) Piston ring
Gonzalez-Moran et al. Improved mechanical and wear properties of H13 tool steel by nitrogen-expanded martensite using current-controlled plasma nitriding
Emami et al. High temperature tribological behaviour of 31CrMoV9 gas nitrided steel
KR20100002194A (en) Thread rolling die
King et al. Ferritic nitrocarburising of tool steels
CN108150379B (en) Method for producing a swash plate
US20050241159A1 (en) Wear-resistant stainless cutting element of an electric shaver, electric shaver, and method of producing such a cutting element
JP2004269973A (en) Method of producing sliding component, and compressor provided with the sliding component
Damin et al. AISI 1005 steel plasma treated by different thermochemical surface treatments
JP2007197822A (en) Method for nitriding metal and vane member
JP2005127151A (en) Component for compressor and its manufacturing method
Riofano et al. Study of the wear behavior of ion nitrided steels with different vanadium contents
JP4405781B2 (en) Wear-resistant parts and method for manufacturing the same
WO2019107313A1 (en) Iron-based powder mixture and method for manufacturing iron-based sintered member
JPS5924241B2 (en) Combination of side housing and side seal in rotary piston engine
JP2005147137A (en) Slide part and its manufacturing method
JP4820490B2 (en) Method for producing ferrous sintered alloy
KR101466221B1 (en) Method for enhancement of wear resistance of a cutting tool, and the a cutting tool having enhanced wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees