JP2005127151A - Component for compressor and its manufacturing method - Google Patents

Component for compressor and its manufacturing method Download PDF

Info

Publication number
JP2005127151A
JP2005127151A JP2003360613A JP2003360613A JP2005127151A JP 2005127151 A JP2005127151 A JP 2005127151A JP 2003360613 A JP2003360613 A JP 2003360613A JP 2003360613 A JP2003360613 A JP 2003360613A JP 2005127151 A JP2005127151 A JP 2005127151A
Authority
JP
Japan
Prior art keywords
compressor
component
compound layer
layer
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360613A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuhara
弘之 福原
Kenji Sasaki
健二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003360613A priority Critical patent/JP2005127151A/en
Publication of JP2005127151A publication Critical patent/JP2005127151A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Powder Metallurgy (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a component for a compressor capable of forming a minute oil sump by forming the surface of the component for the compressor into a mixing face having different hardness to improve oil holding property when operating the component for the compressor and eliminate troubles such as seizure and achieving reduction of input and long service life and having high reliability. <P>SOLUTION: A raw material is molded by pressure fine particle sintering molding using iron alloy powders containing Cr, and nitriding treatment excluding carburized component is applied to form the surface having a mixing texture 3 composed of a compound layer 2 of Fe-Cr-N, a diffusion layer of Fe-Cr-N, and a base. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化処理により硬さを増大させた圧縮機用部品及びその製作方法に関する。   The present invention relates to a compressor component having increased hardness by nitriding and a method for manufacturing the same.

ロータリコンプレッサ等に設けられるベーンは、シリンダに形成されたベーン溝に摺動自在に取り付けられており、ベーンはその側面がベーン溝の側壁と摺接するとともに、その先端部がローラに摺接することから、耐摩耗性が要求される。そこで、母材としてクロムを含有した鋼、焼結合金あるいは鋳鉄を使用し、母材を軟窒化処理し、表面層にFe−Cr−Nの第1の化合物層を形成するとともに、第1の化合物層の下方に同じ成分からなる第2の化合物層を形成したものが提案されている(例えば、特許文献1参照。)。   A vane provided in a rotary compressor or the like is slidably attached to a vane groove formed in a cylinder, and the side surface of the vane is in sliding contact with the side wall of the vane groove and the tip of the vane is in sliding contact with the roller. Wear resistance is required. Therefore, steel containing chromium, sintered alloy or cast iron is used as a base material, the base material is soft-nitrided, and a first compound layer of Fe—Cr—N is formed on the surface layer. A structure in which a second compound layer made of the same component is formed below the compound layer has been proposed (see, for example, Patent Document 1).

また、ステンレス鋼の母材の表面に窒化処理を施すことにより窒化層を形成したものも提案されている(例えば、特許文献2参照。)。   In addition, a material in which a nitrided layer is formed by nitriding the surface of a stainless steel base material has been proposed (see, for example, Patent Document 2).

さらに、鉄系粉末材の材料を使用して空孔率10%以下あるいは15%以下とした焼結鉄を焼き入れ焼戻し処理により基地をマルテンサイト組織とした後、表面に窒化あるいは軟窒化処理によりFe−Nからなる化合物層を形成し、その内側に窒素拡散層を形成するようにしたものもある(例えば、特許文献3あるいは4参照。)。   Furthermore, after the sintered iron having a porosity of 10% or less or 15% or less using a material of an iron-based powder material is quenched and tempered to make the base a martensite structure, the surface is subjected to nitriding or soft nitriding treatment Some have a compound layer made of Fe—N and a nitrogen diffusion layer formed inside (see, for example, Patent Document 3 or 4).

特開昭60−26195号公報JP-A-60-26195 特開平11−101189号公報JP-A-11-101189 特開2001−140782号公報Japanese Patent Laid-Open No. 2001-140782 特開2001−342981号公報JP 2001-342981 A

しかしながら、上記従来の構成では、表面がFe−Cr−NあるいはFe−Nの化合物層あるいはFe−Cr−Nの拡散層で形成されており、表面が単一組成で硬さが均一であることから、コンプレッサを運転した時に発生するベーン等の耐摩耗部品の微少な摩耗も均一となっていた。その結果、表面に所定の保油性を維持することが難しく、焼き付きを生じるおそれがあった。   However, in the above conventional configuration, the surface is formed of an Fe—Cr—N or Fe—N compound layer or an Fe—Cr—N diffusion layer, and the surface has a single composition and a uniform hardness. Therefore, minute wear of wear-resistant parts such as vanes generated when the compressor is operated is uniform. As a result, it was difficult to maintain a predetermined oil retaining property on the surface, and there was a risk of seizing.

また、潤滑性の確保(油保持・油膜の確保)の観点から、従来は、ある程度粘度の高い潤滑油を選択することが一般的であったが、粘度の高い潤滑油を選択すると、機械的には潤滑油の粘性が逆に流動抵抗負荷となり、圧縮機の入力に影響があった(入力が大きくなった)。   In addition, from the viewpoint of securing lubricity (securing oil retention and oil film), conventionally, it has been common to select lubricating oil with a certain degree of viscosity. However, if lubricating oil with a high viscosity is selected, On the other hand, the viscosity of the lubricating oil, on the other hand, became a flow resistance load, affecting the input of the compressor (the input increased).

さらに、粘度の高い潤滑油を使用すると、冬季等における圧縮機の初期起動においては、潤滑油の「寝込み(潤滑油の粘性が常温時より高く(流れ難く)なって摺動部に十分行き渡らない)」の問題が発生しやすいものでもあった。   In addition, if a high-viscosity lubricating oil is used, during the initial start-up of the compressor in winter, etc., the lubricating oil will stagnate (the viscosity of the lubricating oil will be higher than at normal temperature (difficult to flow) and will not reach the sliding part sufficiently. ) ”Is likely to occur.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、圧縮機用部品の表面を硬さの異なる混合面とすることにより微少な油溜まりを形成して、圧縮機用部品を運転したときの保油性を向上することができ、焼き付きなどの不具合を解消することができるとともに、低入力化、長寿命化を達成することができる信頼性の高い圧縮機用部品を提供することを目的としている。   The present invention has been made in view of the above-described problems of the prior art, and forms a small oil sump by making the surface of a compressor component a mixed surface having different hardness, and the compressor Highly reliable compressor parts that can improve oil retention when operating parts, eliminate defects such as seizure, and achieve low input and long service life. It is intended to provide.

上記目的を達成するために、本発明のうちで請求項1に記載の圧縮機用部品は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。   In order to achieve the above object, the compressor part according to claim 1 of the present invention is formed by compacting a material by compaction sintering using an iron-based alloy powder containing Cr, and carburizing. A nitriding treatment is applied to remove components, and the surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix.

また、請求項2に記載の発明は、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする。   Further, the invention according to claim 2 is a method in which a raw material is formed by compaction sintering using an alloy powder containing at least one metal element of Mn, Ti, and V as an iron-based alloy powder containing Cr. It is formed and subjected to nitriding treatment excluding the carburized component, and the surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix.

さらに、請求項3に記載の発明は、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層と基地との混合組織としたことを特徴とする。   Furthermore, the invention according to claim 3 is characterized in that there are holes on the surface, the Fe—Cr—N compound layer in the vicinity of the holes, and the Fe—Cr—N diffusion layer and the base as the distance from the holes increases. It is characterized by having a mixed structure.

また、請求項4に記載の発明は、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層とソルバイトの基地組織の混合組織としたことを特徴とする。   According to a fourth aspect of the present invention, a material is formed by compaction sintering using an iron-based alloy powder containing Cr, a nitriding treatment is performed to eliminate carburizing components, and the surface is Fe-Cr. It is characterized by being a mixed structure of a -N compound layer, a Fe-Cr-N diffusion layer, and a sorbite base structure.

また、請求項5に記載の発明は、表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層とソルバイト組織の基地との混合組織としたことを特徴とする。   Further, the invention according to claim 5 is characterized in that there are vacancies on the surface, an Fe—Cr—N compound layer in the vicinity of the vacancies, and an Fe—Cr—N diffusion layer and sorbite as they move away from the vacancies It is a mixed organization with the organization base.

また、請求項6に記載の発明は、圧縮機用部品がベーンであることを特徴とする。   The invention according to claim 6 is characterized in that the compressor component is a vane.

また、請求項7に記載の圧縮機用部品の製作方法は、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくともFe−Cr−Nの化合物層を含む混合組織としたことを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for manufacturing a compressor component, comprising forming a material by compacted green compacting, quenching and tempering, and then performing nitriding treatment to remove a carburizing component. The surface is subjected to removal processing, and the surface has a mixed structure including at least a Fe—Cr—N compound layer.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
Crを含有する鉄系合金粉末あるいはCrを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形法で素材を成形し、浸炭成分の入っていない窒化処理を施し、表面を化合物層と拡散層と基地の混合層としたので、圧縮機用部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになり、さらに、圧縮機用部品を運転すると、柔らかい基地部分に微少な摩耗が発生して油溜まりを形成することになり、焼き付きのない信頼性の高い圧縮機用部品を実現することができる。
Since the present invention is configured as described above, the following effects can be obtained.
The raw material is formed by the green compact sintering method using an iron-based alloy powder containing Cr or an iron-based alloy powder containing Cr containing an alloy powder containing at least one metal element of Mn, Ti, and V. However, the nitriding treatment that does not contain carburizing components is applied, and the surface is a mixed layer of compound layer, diffusion layer, and base, so when finishing the compressor parts, the processing amount of the soft base part increases, A small dent will be formed to form an oil reservoir, and further operation of the compressor parts will cause a slight wear on the soft base and form an oil reservoir. High compressor parts can be realized.

また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用すると、化合物層と拡散層にはCr、Mn、Ti、Vのうち少なくとも一つの成分が含まれることになるので、Fe、Crで所定の硬さを確保した上で、Mnの存在によりさらに硬さを向上させたり、Tiの存在により窒化処理を促進させたり、あるいはVの存在により窒化深さを深くすることができるので、圧縮機用部品の信頼性がさらに向上する。   When an alloy powder containing at least one metal element of Mn, Ti, and V is used for the iron-based alloy powder containing Cr, at least one of Cr, Mn, Ti, and V is used for the compound layer and the diffusion layer. Since two components are contained, after ensuring a predetermined hardness with Fe and Cr, the hardness is further improved by the presence of Mn, the nitriding treatment is promoted by the presence of Ti, or V Since the nitriding depth can be increased by the presence, the reliability of the compressor component is further improved.

さらに、Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、焼き入れ焼き戻しを行った後、浸炭成分の入ってない窒化処理を施し、表面は化合物層と拡散層とソルバイトの基地組織の混合組織としたので、圧縮機用部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。また、圧縮機用部品を運転(相対摩擦運動)すると、化合物層や拡散層に比べて柔らかい基地部分が微少な摩耗を起こして油溜まりとなる。さらに、基地組織が焼き入れ焼き戻しで硬くなっているので、化合物層と拡散層は窒化によりさらに硬くなり、焼き付くことが無くさらに高い耐摩耗性を持つ信頼性の高い圧縮機用部品を実現できる。   Furthermore, after forming the material by green compact sintering using iron-based alloy powder containing Cr, quenching and tempering, nitriding treatment without carburizing component is performed, and the surface is a compound layer Because of the mixed structure of the base structure of the diffusion layer and sorbite, when finishing the compressor parts, the processing amount of the soft base part increases, and a small depression is formed to form an oil reservoir. . Further, when the compressor parts are operated (relative frictional motion), the soft base portion is slightly worn compared to the compound layer and the diffusion layer, and becomes an oil reservoir. Furthermore, since the base structure is hardened by quenching and tempering, the compound layer and the diffusion layer become harder due to nitriding, and it is possible to realize a highly reliable compressor part with higher wear resistance without seizing. .

また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分の入ってない窒化処理を施し、一部の表面に除去加工を行うことにより、表面がFe−Cr−Nの化合物層だけではなく、硬さのばらつきを持つ表面となる。したがって、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、稼動(相対摩擦運動)時に柔らかい部分が微少な摩耗を発生して、そこが油溜まりとなり潤滑性が向上するとともに、耐摩耗性はそのほかの化合物層部分で維持することができるので、圧縮機用部品の信頼性を向上することができる。   Also, after forming the material by green compact sintering, quenching and tempering, nitriding treatment without carburizing component is performed, and removal processing is performed on a part of the surface, so that the surface is Fe-Cr Not only the -N compound layer but also a surface with hardness variation. Therefore, when finishing, the amount of processing of the soft base portion is increased, and a minute depression is formed to form an oil reservoir. In addition, during operation (relative frictional motion), the soft part generates minute wear, which becomes an oil reservoir and improves lubricity, and the wear resistance can be maintained in the other compound layer part. The reliability of machine parts can be improved.

さらに、圧縮機用部品に潤滑油溜まりができ、摺動部の潤滑性が向上すると、圧縮機に注入する潤滑油(冷凍機油)の種類の選択肢が増大する。また、圧縮機用部品材料に潤滑油溜まりがランダムかつ無数に形成されるため、潤滑性(油保持・油膜)が良好に確保され易く、粘度の低い(サラサラ)潤滑油の採用が可能となる。したがって、潤滑油の粘性による流動抵抗負荷も小さくなり、圧縮機の低入力化を達成することができる。   Furthermore, if a lubricating oil pool is formed in the compressor part and the lubricity of the sliding portion is improved, the choice of the type of lubricating oil (refrigerating machine oil) to be injected into the compressor increases. In addition, since the reservoir of compressor oil is randomly and innumerably formed, the lubricity (oil retention and oil film) is easily secured, and low viscosity (smooth) lubricating oil can be used. . Therefore, the flow resistance load due to the viscosity of the lubricating oil is also reduced, and a low input of the compressor can be achieved.

また、潤滑油の循環が円滑に行われることから、冬季の圧縮機の初期起動等における「寝込み」の問題も解消しやすくなる。   Further, since the lubricating oil is smoothly circulated, the problem of “sleeping” at the initial start-up of the compressor in winter can be easily solved.

さらに、圧縮機の長期使用により摺動部の摺動が進むにつれて、潤滑油溜まりは徐々に形成され、上述した機能が徐々に増大するので、圧縮機の長寿命化、信頼性の向上に繋がるものである。   Furthermore, as the sliding of the sliding portion progresses due to the long-term use of the compressor, the lubricating oil pool is gradually formed and the above-described functions gradually increase, leading to longer life and improved reliability of the compressor. Is.

以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明にかかる圧縮機用部品は、例えばローリングピストン式圧縮機等に設けられているベーン等の摺動部材として使用されるもので、例えば粉末ハイス(粉末ハイスピード鋼)等のCrを含有する鉄系合金粉末に対し約1200℃の温度で真空焼結を行った後、焼き入れ処理を行ってマルテンサイト組織とし、さらに焼き戻しの熱処理を480℃〜580℃で行ってソルバイト組織にした後に、焼戻し温度以下の400℃で約6時間のガス窒化処理を施したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The compressor component according to the present invention is used as a sliding member such as a vane provided in a rolling piston compressor, for example, and contains Cr such as powder high speed (powder high speed steel). After performing vacuum sintering on the iron-based alloy powder at a temperature of about 1200 ° C., quenching is performed to obtain a martensite structure, and tempering heat treatment is performed at 480 ° C. to 580 ° C. to form a sorbite structure. The gas nitriding treatment was performed at 400 ° C., which is equal to or lower than the tempering temperature, for about 6 hours.

図1は、このようにして製作した本発明にかかる圧縮機用部品の窒化処理後の断面組織を示しており、ガス窒化処理後、エッチングを施し、化合物層を見やすくしたものである。   FIG. 1 shows a cross-sectional structure after nitriding of a compressor component according to the present invention manufactured as described above. After gas nitriding, etching is performed to make the compound layer easy to see.

素材が圧粉体焼結成形で製作されているので、密度は80〜90%程度までしか上がらず、空孔1が多数存在し、窒化処理に使用したガスが空孔1を通過して奥まで窒化が行われており、白い色の化合物層2が空孔1の周りに形成されている。また、空孔1から離れるにしたがって、黒い部分3が多くなっているが、これは拡散層と基地の混合組織である。   Since the material is manufactured by green compact molding, the density increases only to about 80-90%, there are many holes 1 and the gas used for the nitriding treatment passes through the holes 1 Nitriding is performed until a white compound layer 2 is formed around the pores 1. Further, as the distance from the hole 1 increases, the black portion 3 increases, which is a mixed structure of the diffusion layer and the base.

図2は、この圧縮機用部品を図1の面に対して直角方向に切断し(すなわち、表面から所定の深さで切断し)、切断面を研削したものの表面を450倍に拡大したものである。   FIG. 2 shows the compressor part cut in a direction perpendicular to the plane of FIG. 1 (that is, cut at a predetermined depth from the surface), and the surface of the cut surface is magnified 450 times. It is.

図2に示されるように、研削面には圧粉体焼結成型品特有の空孔1が存在し、その周辺は窒化処理のガスが侵入して窒化が進行しているので、Fe−Cr−Nの化合物層2がエッチングされて白い色になっている。また、空孔1の表面から離れたところでは白い色が少なくなり、Fe−Cr−Nの拡散層と基地の混合組織3となっている。すなわち、空孔1のある圧縮機用部品の表面は化合物層2と拡散層と基地組織の混合組織3となっている。   As shown in FIG. 2, there is a hole 1 peculiar to a green compact molded product on the ground surface, and nitriding proceeds in the periphery of the hole 1. The -N compound layer 2 is etched to have a white color. In addition, the white color is reduced away from the surface of the hole 1, and the mixed structure 3 of the diffusion layer of Fe—Cr—N and the base is formed. That is, the surface of the compressor part having the pores 1 is a mixed structure 3 of the compound layer 2, the diffusion layer, and the base structure.

図3は、その断面をマイクロビッカース硬さで測定した圧痕の写真であり、圧痕が小さいほどマイクロビッカース硬さが硬いことを示している。マイクロビッカースの圧痕の大きさから明らかなように、空孔1の周辺は比較的小さく、空孔1と空孔1の間8のマイクロビッカースの圧痕の大きさは空孔の周辺に比べて大きく、硬さが低下していることがわかる。これは、空孔1の周辺は窒化ガスが入り込んで化合物層2ができており、空孔1と空孔1の間8は拡散層と基地の混合組織3となっているため、硬さが空孔1の周辺に比べて低くなっていると考えられる。   FIG. 3 is a photograph of an indentation whose cross section was measured by micro Vickers hardness, and shows that the smaller the indentation, the harder the micro Vickers hardness. As apparent from the size of the micro Vickers indentation, the periphery of the hole 1 is relatively small, and the size of the micro Vickers indentation 8 between the holes 1 and 1 is larger than that of the periphery of the hole. It can be seen that the hardness is reduced. This is because the nitriding gas enters the periphery of the pores 1 to form the compound layer 2, and the space 8 between the pores 1 and 1 is the mixed structure 3 of the diffusion layer and the base. It is considered that it is lower than the periphery of the hole 1.

このように表面の硬さが適度にばらついているので、圧縮機用部品を仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになる。さらに、圧縮機用部品が作動すると、柔らかい基地組織の部分には微少な摩耗が発生して油溜まりの役目を果たすようになり、圧粉体焼結成型品の空孔に加えてくさび効果の高い油溜まりが可動部全面にわたって形成される。したがって、表面全体としては保油性が高まって潤滑性が良好となり、耐摩耗性は空孔の周辺の化合物層と拡散層で確保できるので、表面全体が硬い圧縮機用部品に比べて良好な信頼性を確保することができる。   Since the hardness of the surface varies moderately in this way, when finishing the compressor parts, the amount of processing of the soft base portion increases, and a small depression is formed to form an oil reservoir. . In addition, when the compressor parts are activated, a slight wear occurs in the soft base tissue part, which acts as a sump, and in addition to the pores of the green compact, the wedge effect A high oil sump is formed over the entire movable part. Therefore, the entire surface has improved oil retention and good lubricity, and wear resistance can be ensured by the compound layer and diffusion layer around the pores, so it has better reliability compared to compressor parts with a hard entire surface. Sex can be secured.

なお、本実施の形態は、粉末ハイスの焼き入れ、焼き戻し品で説明したが、素材を一般的な合金粉で製作しても良く、また、Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉で製作しても同様な効果を得ることができる。   Although the present embodiment has been described with the quenching and tempering of powder high speed steel, the material may be manufactured with a general alloy powder, and Mn, Ti may be added to the iron-based alloy powder containing Cr. The same effect can be obtained even when manufactured with an alloy powder containing at least one metal element of V.

図4は、図1の圧縮機用部品の窒化処理後の硬さ分布曲線を示しており、表面から0.4mmを越えた位置Aでも、硬さは表面Bとほとんど変わっていない。この圧縮機用部品の表面を0.1mm程度研削して除去加工した後の、表面からの深さ0.1mmの位置Cをエッチングすると図2の断面組織のようになる。   FIG. 4 shows a hardness distribution curve of the compressor component of FIG. 1 after nitriding, and the hardness is almost the same as the surface B even at a position A exceeding 0.4 mm from the surface. When the surface C of the compressor part is ground and removed by about 0.1 mm and the position C having a depth of 0.1 mm from the surface is etched, the cross-sectional structure of FIG. 2 is obtained.

このように粉末ハイスの圧粉体焼結品は短時間の窒化処理でも、素材に空孔があるため窒化のガスが内部まで浸透しやすく深く窒化される。したがって、通常の窒化処理では、素材の粗加工後、窒化処理を行い、更に仕上げ加工といった工程を踏む必要があるのに対し、粉末ハイスの圧粉体焼結品は、素材に窒化処理を行い、直接仕上げ加工を行っても、必要な硬さを容易に得ることができる。さらに、素材の焼き入れ焼き戻しによる変形が発生して取り代が不均一となっても、深く窒化されているので完成品の一番硬い化合物層の表面硬さのばらつきは小さくすることができる。   In this way, even if the powdered high-speed green compact is subjected to nitriding for a short time, since the material has pores, the nitriding gas easily penetrates into the inside and is deeply nitrided. Therefore, in the normal nitriding treatment, it is necessary to perform a nitriding treatment after roughing the material, and then to perform a finishing process. On the other hand, in the powder high-speed sintered compact, the material is subjected to nitriding treatment. Even if direct finishing is performed, the required hardness can be easily obtained. Furthermore, even if deformation due to quenching and tempering of the material occurs and the machining allowance becomes non-uniform, variation in the surface hardness of the hardest compound layer of the finished product can be reduced because it is deeply nitrided. .

さらに、表面を除去加工することにより、Fe−Cr−Nの化合物層だけでなく、Fe−Cr−Nの拡散層及び基地の混合組織が表れるが、これは、表面に近い場所でも硬さが低い部分が存在することからも理解できることである。すなわち、本発明にかかる圧縮機用部品は、優れた耐摩耗性を保持しつつ、粗加工工程を省略することができるので、安価に製作することができる。   Furthermore, by removing the surface, not only the compound layer of Fe—Cr—N but also the diffusion layer of Fe—Cr—N and the mixed structure of the matrix appear. It can be understood from the existence of the low part. That is, the compressor component according to the present invention can be manufactured at low cost because the rough machining step can be omitted while maintaining excellent wear resistance.

図5は、本発明にかかる圧縮機用部品の一例であるローリングピストン式圧縮機のベーン9の斜視図である。   FIG. 5 is a perspective view of a vane 9 of a rolling piston compressor that is an example of a compressor component according to the present invention.

このベーン9は、粉末ハイスを使用して圧粉体焼結成型法で製作し、素材の状態で焼き入れ、焼き戻し熱処理を行ったもので、基地はソルバイト組織となっていた。この素材に浸炭成分を排除した(COが全く存在しない雰囲気中で)窒化処理を施し、圧粉体焼結成型法の特徴である空孔を通して窒化ガスを中まで侵入させたところ、表面から0.4mmを越えても、表面と同様な硬さ分布であった。   The vane 9 was manufactured by a green compact molding method using powder high speed steel, and was subjected to quenching and tempering heat treatment in a raw material state, and the base had a sorbite structure. This material was subjected to nitriding treatment (in an atmosphere in which no CO was present) excluding carburizing components, and when nitriding gas was infiltrated into the inside through the pores characteristic of the green compact sintering method, Even when the thickness exceeded 4 mm, the hardness distribution was the same as that on the surface.

なお、圧粉体焼結成型法で製作し、真空焼結、焼き入れ、焼戻しの熱処理を行ったベーン素材の寸法公差は±0.05mm以下であり、その範囲で平行度、平面度、輪郭度などの形状精度がばらついている。このような素材に、400℃の温度で4時間の窒化処理を行っても、各寸法、形状精度の変化は0.02mm程度なので、加工の取り代は0.08mmに設定すれば十分である。   In addition, the dimensional tolerance of the vane material manufactured by the green compact sintering method and subjected to heat treatment such as vacuum sintering, quenching, and tempering is ± 0.05mm or less, and the parallelism, flatness, contour in the range Shape accuracy such as degrees varies. Even if a nitriding treatment is performed on such a material at a temperature of 400 ° C. for 4 hours, since the change of each dimension and shape accuracy is about 0.02 mm, it is sufficient to set the machining allowance to 0.08 mm. .

そこで、窒化処理後のベーン素材の表面を0.08mm程度研削加工して、表面に現れている空孔の周辺の化合物層と拡散層と基地組織の3種を露出させた。これらの化合物層、拡散層、基地組織は硬さがそれぞれmHv1100、950、800程度であり、耐摩耗性はmHv1100の化合物層の部分で保持することができる。その他の拡散層及び基地組織の部分は、運転開始の初期に微少に摩耗が発生し、その空孔が潤滑油溜まりとなるので、非常に高い信頼性を得ることができ、また、窒化処理前に粗加工を行う必要が無いので、安価で信頼性の高いベーンを提供することができる。   Therefore, the surface of the vane material after nitriding was ground by about 0.08 mm to expose the compound layer, the diffusion layer, and the base structure around the voids appearing on the surface. These compound layers, diffusion layers, and matrix structures have hardnesses of about mHv 1100, 950, and 800, respectively, and wear resistance can be maintained in the mHv 1100 compound layer portion. The other diffusion layers and the matrix structure are slightly worn at the beginning of operation, and the pores become a reservoir of lubricating oil, so that very high reliability can be obtained. In addition, since it is not necessary to perform roughing, an inexpensive and highly reliable vane can be provided.

本実施例では、ローリングピストン式圧縮機のベーンを使用したが、他の部品に使用しても良く、スクロール式等の種々の圧縮機の摺動部品に使用することもできる。   In this embodiment, the vane of the rolling piston compressor is used, but it may be used for other parts, and it can also be used for sliding parts of various compressors such as a scroll type.

本発明にかかる圧縮機用部品は、仕上げ加工する際に、柔らかい基地部分の加工量が多くなり、油溜まりとなる微少な窪みが形成され、さらに、柔らかい基地部分に微少な摩耗が発生して油溜まりが形成されるので、耐摩耗性が向上して焼き付きを発生することがなく、圧縮機の摺動部品等に使用すると効果的である。   When finishing the compressor component according to the present invention, the amount of processing of the soft base portion is increased, and a minute recess that becomes an oil reservoir is formed, and further, the soft base portion is slightly worn. Since an oil reservoir is formed, wear resistance is improved and seizure does not occur, and it is effective when used for a sliding part of a compressor.

本発明にかかる圧縮機用部品の断面エッチング写真である。It is a cross-sectional etching photograph of the components for compressors concerning this invention. 図1の圧縮機用部品の表面を研削加工して削り取った表面のエッチング写真である。It is the etching photograph of the surface which grinded off the surface of the components for compressors of FIG. 図1の圧縮機用部品の表面のマイクロビッカース硬さ測定圧痕の写真である。It is a photograph of the micro Vickers hardness measurement impression of the surface of the components for compressors of FIG. 図1の圧縮機用部品の硬さ分布曲線である。It is a hardness distribution curve of the components for compressors of FIG. 本発明にかかる圧縮機用部品の1例であるベーンの斜視図である。It is a perspective view of the vane which is an example of the components for compressors concerning the present invention.

符号の説明Explanation of symbols

1 空孔
2 化合物層
3 混合組織
8 空孔と空孔の間のマイクロビッカースの圧痕
9 ベーン
DESCRIPTION OF SYMBOLS 1 Hole 2 Compound layer 3 Mixed structure 8 Micro Vickers indentation between holes 9 Vane

Claims (7)

Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする圧縮機用部品。 A raw material is formed by compacting by using green-based alloy powder containing Cr, nitriding treatment is performed to eliminate carburizing components, and the surface is formed of a Fe—Cr—N compound layer and Fe—Cr—N. A component for a compressor characterized by having a mixed structure of a diffusion layer and a base. Crを含有する鉄系合金粉末にMn、Ti、Vのうち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層と基地の混合組織としたことを特徴とする圧縮機用部品。 A material is formed by compaction sintering using an alloy powder containing at least one metal element of Mn, Ti, and V in an iron-based alloy powder containing Cr, and nitriding treatment is performed by eliminating carburizing components. A component for a compressor, wherein the surface is a mixed structure of a Fe—Cr—N compound layer, a Fe—Cr—N diffusion layer, and a matrix. 表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層と基地との混合組織としたことを特徴とする請求項1あるいは2に記載の圧縮機用部品。 There are vacancies on the surface, and the vicinity of the vacancies is an Fe—Cr—N compound layer, and as the distance from the vacancies, the mixed structure of the Fe—Cr—N diffusion layer and the base is formed. The compressor part according to claim 1 or 2. Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面をFe−Cr−Nの化合物層とFe−Cr−Nの拡散層とソルバイトの基地組織の混合組織としたことを特徴とする圧縮機用部品。 A raw material is formed by compacting by using green-based alloy powder containing Cr, nitriding treatment is performed to eliminate carburizing components, and the surface is formed of a Fe—Cr—N compound layer and Fe—Cr—N. A component for a compressor characterized in that it is a mixed structure of a base layer of sorbite and a sorbite diffusion layer. 表面に空孔が存在し、空孔の近傍をFe−Cr−Nの化合物層で、空孔から離れるにしたがいFe−Cr−Nの拡散層とソルバイト組織の基地との混合組織としたことを特徴とする請求項4に記載の圧縮機用部品。 There are vacancies on the surface, and the vicinity of the vacancies is an Fe—Cr—N compound layer, and as it is away from the vacancies, the mixed structure of the Fe—Cr—N diffusion layer and the base of the sorbite structure is used. The compressor component according to claim 4, wherein the compressor component is a compressor component. 圧縮機用部品がベーンである請求項1乃至5のいずれか1項に記載の圧縮機用部品。 The compressor part according to any one of claims 1 to 5, wherein the compressor part is a vane. 圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくともFe−Cr−Nの化合物層を含む混合組織としたことを特徴とする請求項1乃至6のいずれか1項に記載の圧縮機用部品の製作方法。
After forming the material by green compact sintering, quenching and tempering, it is subjected to nitriding treatment that excludes carburizing components, and removal processing is performed on a part of the surface, and the surface is a compound of at least Fe-Cr-N The method for manufacturing a compressor part according to any one of claims 1 to 6, wherein the mixed structure includes a layer.
JP2003360613A 2003-10-21 2003-10-21 Component for compressor and its manufacturing method Pending JP2005127151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360613A JP2005127151A (en) 2003-10-21 2003-10-21 Component for compressor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360613A JP2005127151A (en) 2003-10-21 2003-10-21 Component for compressor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005127151A true JP2005127151A (en) 2005-05-19

Family

ID=34640873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360613A Pending JP2005127151A (en) 2003-10-21 2003-10-21 Component for compressor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005127151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817848A (en) * 2011-06-08 2012-12-12 广东美芝制冷设备有限公司 Sliding plate of rotary compressor, and manufacturing method thereof
CN102878078A (en) * 2011-07-12 2013-01-16 日立空调·家用电器株式会社 Scroll compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102817848A (en) * 2011-06-08 2012-12-12 广东美芝制冷设备有限公司 Sliding plate of rotary compressor, and manufacturing method thereof
CN102817848B (en) * 2011-06-08 2015-05-06 广东美芝制冷设备有限公司 Sliding plate of rotary compressor, and manufacturing method thereof
CN102878078A (en) * 2011-07-12 2013-01-16 日立空调·家用电器株式会社 Scroll compressor
JP2013019322A (en) * 2011-07-12 2013-01-31 Hitachi Appliances Inc Scroll compressor
CN102878078B (en) * 2011-07-12 2015-09-09 日立空调·家用电器株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
US6413061B1 (en) Rotary compressor and method of manufacturing the same
US7892656B2 (en) Sliding device
CN103635705B (en) Slide unit
JP6367235B2 (en) Rotor blade type pump blade manufacturing method, rotor blade pump blade, and rotor blade pump
JP4141473B2 (en) Nitriding valve lifter and manufacturing method thereof
WO2020095807A1 (en) Piston ring
JP2005127151A (en) Component for compressor and its manufacturing method
US20080216923A1 (en) Wear-resistant elements and method of making same
KR100769411B1 (en) Reciprocating compressor and manufacturing method thereof
EP1457284A2 (en) Manufacturing a sliding part for a compressor
EP3088106A1 (en) Machine component using powder compact and method for producing same
JPS63159685A (en) Vane
JP5338647B2 (en) Sliding member manufacturing method and sliding member
JP2001342981A (en) Rotary compressor
JP2004340128A (en) Valve train for internal combustion engine
JP2005147137A (en) Slide part and its manufacturing method
JP4405781B2 (en) Wear-resistant parts and method for manufacturing the same
JPH0151909B2 (en)
JP3770066B2 (en) Compressor and method of manufacturing compressor parts
JP5024788B2 (en) Sliding device, sliding member and manufacturing method thereof
JP2002098052A (en) Hermetically closed type electric compressor and its manufacturing method
JP2000087891A (en) Sliding member and compressor therewith
JPH03179191A (en) Rotary compressor
JP2005098257A (en) Hermetic electric compressor
JP2001020003A (en) Sliding material