WO2005037469A1 - Wear-resistant parts and method for manufacture thereof - Google Patents

Wear-resistant parts and method for manufacture thereof Download PDF

Info

Publication number
WO2005037469A1
WO2005037469A1 PCT/JP2004/015429 JP2004015429W WO2005037469A1 WO 2005037469 A1 WO2005037469 A1 WO 2005037469A1 JP 2004015429 W JP2004015429 W JP 2004015429W WO 2005037469 A1 WO2005037469 A1 WO 2005037469A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
nitriding
sample
resistant part
layer
Prior art date
Application number
PCT/JP2004/015429
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Fukuhara
Kenji Sasaki
Kensuke Hirata
Toshihiko Homma
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Kawasaki Nitriding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Kawasaki Nitriding Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005514829A priority Critical patent/JP4668793B2/en
Priority to US10/576,479 priority patent/US20070071630A1/en
Publication of WO2005037469A1 publication Critical patent/WO2005037469A1/en
Priority to US12/124,501 priority patent/US20080216923A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface

Definitions

  • the present invention relates to a wear-resistant part whose hardness has been increased by nitriding and a method for producing the same.
  • a vane provided in a rotary compressor or the like is slidably mounted in a vane groove formed in a cylinder.
  • the vane has a side surface in sliding contact with a side wall of the vane groove and a tip end portion thereof. Abrasion resistance is required because of sliding contact with the roller. Therefore, chromium-containing steel, sintered alloy, or ferrous iron is used as the base material, and the base material is subjected to soft nitriding to form the first compound layer of FeCrN on the surface layer, A structure in which a second compound layer made of the same component is formed below one compound layer has been proposed (for example, see Patent Document 1).
  • Patent Document 1 JP-A-60-26195
  • Patent Document 2 JP-A-11-101189
  • Patent Document 3 JP 2001-140782A
  • Patent Document 4 JP 2001-342981 A
  • the surface is formed of FeCrN or a compound layer of FeN or a diffusion layer of FeCrN, and the surface has a single composition and uniform hardness.
  • the wear of wear-resistant parts such as vanes generated when the compressor was operated was uniform.
  • seizure which makes it difficult to maintain a predetermined oil retaining property on the surface, may occur.
  • the present invention has been made in view of such problems of the prior art, and forms a minute oil reservoir by forming a surface of a wear-resistant part with a mixed surface having different hardness.
  • An object of the present invention is to provide a highly wear-resistant part that can improve oil retention when the wear-resistant part is operated and that can eliminate defects such as image sticking. Means for solving the problem
  • a method of manufacturing a wear-resistant part that is effective in the present invention is to form a material by compacting and sintering using an iron-based alloy powder containing Cr to reduce a carburizing component. It is characterized by the fact that the surface is treated as a mixed structure of Fe-Cr-N compound layer, Fe-Cr-N diffusion layer and matrix by excluding nitriding treatment.
  • Another embodiment of the method of manufacturing a wear-resistant part according to the present invention is to use an alloy powder containing at least one metal element of Mn, Ti, and V as an iron-based alloy powder containing Cr. Then, the material was formed by green compact sintering, nitriding treatment was performed to eliminate the carburizing component, and the surface was made to have a mixed structure of Fe-CrN compound layer, Fe-CrN diffusion layer and matrix.
  • a vacancy on the surface there is a vacancy on the surface, a Fe-CrN compound layer in the vicinity of the vacancy, and a mixed structure of a Fe-CrN diffusion layer and a matrix as the distance from the vacancy increases. Is good.
  • Still another embodiment of the method of manufacturing a wear-resistant part according to the present invention is a method of forming a material by compacting and sintering using an iron-based alloy powder containing Cr and removing a carburized component.
  • the surface is treated as a mixed structure of a Fe-CrN compound layer, a Fe-Cr to N diffusion layer, and a sorbite matrix structure.
  • Air treatment for slight acid treatment before nitriding may be performed, but the air treatment is preferably performed at a temperature of 380 ° C or higher.
  • the wear-resistant part has a compound layer of Fe-Cr to N, a diffusion layer of Fe-CrN, and a mixed structure of matrix on the surface, and almost the entire surface of the sintered material after nitriding is 0.1%. 1-0.5 It is covered with particles or protrusions of about 5 m.
  • the present invention is configured as described above, and has the following effects.
  • the compound layer and the diffusion layer are made of Cr, Mn, Ti, and V. Since at least one component is contained, a predetermined hardness is secured by Fe and Cr, and further the hardness is further improved by the presence of Mn, and the nitriding treatment is promoted by the presence of Ti. Or the presence of V can increase the nitriding depth, further improving the reliability S of the wear-resistant parts.
  • a material is formed by compacting and sintering using an iron-based alloy powder containing Cr, and quenching and tempering are performed.
  • the wear-resistant parts are operated (relative frictional motion)
  • the base material that is softer than the compound layer or the diffusion layer undergoes minute wear and becomes an oil reservoir. More
  • the base structure is hardened by quenching and tempering, the compound layer and the diffusion layer are further hardened by nitriding, and it is possible to realize a highly reliable wear-resistant component that does not seize and has higher wear resistance.
  • the material is formed by green compact sintering, quenched and tempered, and then subjected to a nitriding treatment free of carburizing components, and a part of the surface is subjected to a removing force.
  • the surface has a variation in hardness that cannot be achieved by using only the compound layer of FeCrN. Therefore, when finishing the finish, the amount of processing of the soft base portion increases, and a minute depression is formed to form an oil reservoir.
  • the soft part generates a small amount of wear during the operation (frictional motion during operation), which becomes a pool of oil and improves lubricity, while the wear resistance can be maintained by other compound layer parts. Therefore, the reliability of the wear-resistant parts can be improved.
  • FIG. 1 is a cross-sectional etching photograph of a wear-resistant part according to the present invention.
  • FIG. 2 An etching photograph of the surface of the wear-resistant part shown in FIG.
  • FIG. 3 A photograph of a micro-Vickers hardness measurement indentation on the surface of the wear-resistant part in FIG.
  • FIG. 4 A hardness distribution curve of the wear-resistant part of FIG.
  • FIG. 5 is a chart showing a heat treatment pattern performed on the material of each sample.
  • FIG. 6 is a photograph showing a surface state of a sample X after nitriding at a magnification of 40.
  • FIG. 7 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 40.
  • FIG. 8 is a photograph showing the surface condition of the sample Z after nitriding at a magnification of 40.
  • FIG. 9 is a photograph showing a surface state of a sample X after nitriding at a magnification of 200.
  • FIG. 10 is a photograph showing a surface state of a sample X after nitriding at a magnification of 1,000.
  • FIG. 11 is a photograph showing a surface state of a sample X after nitriding at a magnification of 5,000.
  • FIG. 12 is a photograph showing a surface state of a sample X after nitriding at a magnification of 20,000.
  • FIG. 13 A photograph showing the surface state of a sample Y after nitriding at a magnification of 200.
  • FIG. 14 is a photograph showing the surface condition of a sample Y after nitriding at a magnification of 1,000.
  • FIG. 15 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 5,000.
  • FIG. 16 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 20,000.
  • FIG. 17 is a photograph showing a surface state of a sample after nitriding at a magnification of 200.
  • FIG. 18 is a photograph showing a surface state of a sample after nitriding at a magnification of 1,000.
  • FIG. 19 is a photograph showing a surface state of a sample after nitriding at a magnification of 5,000.
  • FIG. 20 is a photograph showing a surface state of a sample after nitriding at a magnification of 20,000.
  • FIG. 21 is a photograph showing a surface state of another portion of sample ⁇ ⁇ after nitriding at a magnification of 5,000.
  • FIG. 22 is a photograph showing a surface state at a magnification of 20,000 of another portion of sample No. 2 after nitriding.
  • FIG. 23 is a graph showing the maximum concentration of alloying elements in the vicinity of the surface layer of each sample.
  • FIG. 24 is a graph showing the ⁇ concentration at the highest concentration portion of the alloy element near the surface layer of each sample.
  • the wear-resistant parts to which the present invention is applied are used, for example, as vanes provided on a rolling piston or the like, and are used, for example, for a Cr-containing iron-based alloy powder such as powdered high-speed steel (powder high-speed steel).
  • a quenching treatment is performed to obtain a martensite structure
  • a tempering heat treatment is performed at 480 ° C-580 ° C to obtain a sorbite structure.
  • gas nitriding was performed at 400 ° C below the tempering temperature for about 6 hours with the carburizing component removed.
  • FIG. 1 shows a cross-sectional structure of the wear-resistant part according to the present invention manufactured as described above after nitriding.
  • the compound layer is etched after gas nitriding to make the compound layer easier to see. You. [0024] Since the material is manufactured by compacting and sintering, the density can only rise to about 80-90%, there are many vacancies 1, and the gas used for nitriding process After passing through, nitriding is performed to the back, and a white compound layer 2 is formed around the vacancy 1. Also, as the distance from the cavity 1 increases, the black portion 3 increases. This is a mixed structure of the diffusion layer and the base.
  • FIG. 2 shows that the wear-resistant part is cut in a direction perpendicular to the plane of FIG. 1 (that is, cut at a predetermined depth from the surface), and the cut surface is ground to 450 times. It is an enlargement.
  • a hole 1 peculiar to a green compact is present on the ground surface, and a nitriding gas invades around the hole 1 and nitriding proceeds.
  • the Fe Cr to N compound layer 2 is etched to have a white color. Further, the surface color of the pores 1 is reduced in white color where the surface force is distant, and a mixed structure 3 of a diffusion layer of FeCrN and a matrix is formed. That is, the surface of the wear-resistant article having the pores 1 has a compound layer 2 and a mixed structure 3 of a diffusion layer and a base structure.
  • FIG. 3 is a photograph of an indentation of the cross section measured by micro Vickers hardness. The smaller the indentation, the harder the micro Vickers hardness !! As is evident from the size of the micro Vickers indentations, the area around hole 1 is relatively small.Between holes 1 and 1, the size of the micro Vickers indentation 8 is smaller than that around the hole. It can be seen that the hardness is greatly reduced. This is because the nitride gas enters around the pores 1 to form the compound layer 2, and the gap 8 between the pores 1 is a mixed structure 3 of the diffusion layer and the matrix. It is considered that it is lower than the periphery of the void 1.
  • the amount of processing of the soft base portion is increased when finishing the wear-resistant parts, and a fine depression is formed to form an oil pool. Will do.
  • a small amount of wear is generated in the soft base structure portion to serve as an oil reservoir, which has a high wedge effect in addition to the pores of the sintered compact.
  • An oil sump is formed over the entire movable part. Therefore, the oil retentivity of the entire surface is enhanced and lubricity is improved, and the wear resistance can be ensured by the compound layer and the diffusion layer around the pores, so that the entire surface is better than a hard wear-resistant part. Reliability can be secured.
  • the material may be made of a general alloy powder.
  • the same effect can be obtained by manufacturing with an alloy powder containing at least one metal element among Mn, Ti, and V.
  • FIG. 4 shows a hardness distribution curve of the wear-resistant part of FIG. 1 after the nitriding treatment. Even at the position A exceeding 0.4 mm from the surface, the hardness is almost the same as the surface B. After the surface of the wear-resistant part is ground and removed by about 0.1 mm, the position C at a depth of 0.1 mm from the surface is etched to obtain the sectional structure shown in FIG.
  • the powder sintered compact of the powder noise can be deeply nitrided even if the nitriding treatment is performed for a short time because the material has pores and the nitriding gas easily permeates into the inside. Therefore, in the ordinary nitriding treatment, it is necessary to perform the nitriding treatment after the rough processing of the material, and then to perform a process such as finishing. The required hardness can be easily obtained even if the treatment is performed and the finish processing is performed directly. Furthermore, even if deformation due to quenching and tempering of the material occurs and the stock removal becomes uneven, the variation in surface hardness of the hardest compound layer of the finished product should be small because it is deeply nitrided. Can be.
  • the wear-resistant part according to the present invention can be manufactured at low cost because it can omit the first step while maintaining excellent wear resistance.
  • Three types of iron-based alloy powders containing Cr are first formed into a predetermined shape, and the formed body is vacuum-sintered at a predetermined temperature (for example, 1180 ° C) to produce a sintered body. After performing a predetermined heat treatment on the sintered body, the surface shape was examined.
  • the material of each sample is equivalent to SKH51, here samples X, ⁇ , Z and! ⁇ ⁇ .
  • Table 1 shows the results of composition analysis of Samples X, ⁇ , and Z after heat treatment.
  • FIG. 5 shows a heat treatment pattern performed on the material of each sample
  • Table 2 shows the material characteristics of each sample.
  • the samples X and Y were subjected to nitriding at a temperature of 400 ° C for 6 hours, whereas the samples Z were subjected to an air treatment at a temperature of 480 ° C for 3 hours (slight Oxidation treatment) and nitriding treatment at 400 ° C for 6 hours.
  • Figs. 6 to 8 show the surface states of the samples X, ⁇ , and Z after nitriding at a magnification of 40, respectively. Samples Y and Z show the same surface state, whereas samples Y and Z show the same surface state. X has a finer granularity than Samples Y and Z, and an active surface state is observed.
  • FIGS. 9 to 12 show the surface states of sample X at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. , 1,000, 5,000, and 20,000, respectively. 17 to 20 show the surface states of the sample Z at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. Surface conditions at magnifications of 5,000 and 20,000 are shown, respectively.
  • Figs. 9 to 12 on the surface of sample X, small grains were pressed and sintered, and countless fine convex precipitates were present on the surface of the sintered grain gap. Precipitation of nitride grains is observed. That is, it can be seen that the inside of the sample X is nitrided by performing the nitriding treatment at a temperature of 400 ° C. for 6 hours.
  • sample Y has a relatively large sintered particle size compared to sample X.
  • the surface state is exhibited, and even when observed at a magnification of 5,000 or more, the ratio of the fine convex precipitates observed in the sample X is small, and the surface state is stable (inactive).
  • the sintered particles on the surface of the sample Z are similar to the sample Y, and are in a larger state than the sample X.
  • magnification shown in FIGS. According to more than 1,000 observations, sample Z has fine precipitates on the surface and sintered grain gaps above sample X, and a microscopic surface condition similar to sample X is formed. .
  • sample Y and sample Z lies in the presence or absence of air treatment of the material after sintering.
  • the former is in an untreated state, while the latter is in an air-treated state.
  • the untreated material has a flat and stable state as described above.However, the surface of sample Z that has been treated in the air has an innumerable number of convex precipitates on its surface. I'm active.
  • the nitriding temperature should be increased (for example, about 430 ° C), or even if the nitriding temperature is 400 ° C, the nitriding time should be extended (for example, about 10 hours). In some cases, the hardness at a depth of 0.5 mm from the surface was increased to 900 Hv or more. Forced nitridation was unstable, and cracks sometimes occurred.
  • the sample Z was subjected to atmospheric treatment while changing the treatment temperature to 280 ° C, 380 ° C, 480 ° C, and 580 ° C while keeping the treatment time constant (3 hours).
  • the hardness at the site with a surface force depth of 1.5 mm is less than 900 Hv, but when the processing temperature is 380 ° C or more, the hardness from the surface to the depth of 1.5 mm must be 900 Hv or more.
  • the processing temperature is 380 ° C or more, the hardness from the surface to the depth of 1.5 mm must be 900 Hv or more.
  • Sample X was subjected to air treatment at a temperature of 380 ° C for 3 hours, followed by nitriding treatment at a temperature of 400 ° C for 6 hours. Similarly to the above, the nitriding property is improved.
  • Sample Z was formed at a depth of about 0.2 ⁇ m from the surface layer, with W and Mo concentrated to about 1.5 to 12 times the base material composition, and with the outermost layer. , About 6% O content was detected.
  • the behavior of Cr and V was similar to that of sample Y, and the former showed the phenomenon of deelementation and the latter showed the phenomenon of enrichment in the outermost layer.
  • the element concentration constituting the surface layer of sample Z has an intermediate aspect between sample X and sample Y. It is assumed that
  • FIG. 23 shows the maximum concentration of alloying elements in the surface layer of each sample.
  • Sample X has the highest amount of Cr, W, Mo and V in the surface layer.
  • the amount of Cr is almost the same, but other elements are higher in Sample Z than in Sample Y. From these facts, it is presumed that when nitridation occurs, the specimens X, Z, and Y are more likely to cure in the order of the former.
  • sample X fine precipitate particles of nitride cover the surface of sample Z, and the density of sample Z is apparently higher than that of sample X. This determines the order of hardness in the extreme surface layer, and it is presumed that fine precipitates generated by surface shape change due to atmospheric treatment were responsible for nitrogen absorption. In addition, it was observed that almost the entire surface of the sintered material after nitriding of Samples X and Z was covered with particles or projections of about 0.1-0.5 m.
  • samples X and Z can be preferably used as a material for wear-resistant parts according to the present invention, whereas sample Y is not preferable.
  • the hardness at the depth of 0.05 Olmm and 0.05 mm after nitriding is higher in the order of samples Z, X, and Y, and the surface hardness is related to the density of surface precipitates.
  • the difficulty of nitriding is dominated by the concentration and distribution of alloying elements generated in the surface layer and the surface activation phenomenon of minute oxide particles and the like.
  • the processing amount of the soft base portion is increased, and a minute depression serving as an oil reservoir is formed. Since a pool is formed, it is effective to use it for a sliding part of an engine or a compressor in which abrasion resistance is improved and seizure is not generated.

Abstract

A method for manufacturing wear-resistant parts which comprises the steps of molding a material from a powder of an iron-based alloy containing Cr by the compressed powder sintering molding, and subjecting the material to a nitriding treatment precluding a carburized component, to thereby form a surface having a mixed structure (3) comprising a compound layer (2) of Fe-Cr-N, a diffusion layer of Fe-Cr-N and a base material

Description

明 細 書  Specification
耐摩耗部品及びその製作方法  Wear-resistant parts and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、窒化処理により硬さを増大させた耐摩耗部品及びその製作方法に関す るものである。  The present invention relates to a wear-resistant part whose hardness has been increased by nitriding and a method for producing the same.
背景技術  Background art
[0002] ロータリコンプレッサ等に設けられるベーンは、シリンダに形成されたべーン溝に摺 動自在に取り付けられており、ベーンはその側面がベーン溝の側壁と摺接するととも に、その先端部がローラに摺接することから、耐摩耗性が要求される。そこで、母材と してクロムを含有した鋼、焼結合金あるいは铸鉄を使用し、母材を軟窒化処理し、表 面層に Fe Cr Nの第 1の化合物層を形成するとともに、第 1の化合物層の下方に同 じ成分カゝらなる第 2の化合物層を形成したものが提案されている (例えば、特許文献 1参照。)。  [0002] A vane provided in a rotary compressor or the like is slidably mounted in a vane groove formed in a cylinder. The vane has a side surface in sliding contact with a side wall of the vane groove and a tip end portion thereof. Abrasion resistance is required because of sliding contact with the roller. Therefore, chromium-containing steel, sintered alloy, or ferrous iron is used as the base material, and the base material is subjected to soft nitriding to form the first compound layer of FeCrN on the surface layer, A structure in which a second compound layer made of the same component is formed below one compound layer has been proposed (for example, see Patent Document 1).
[0003] また、ステンレス鋼の母材の表面に窒化処理を施すことにより窒化層を形成したも のも提案されている (例えば、特許文献 2参照。 )0 [0003] There is also proposed to be the formation of the nitrided layer by performing a nitriding treatment on the surface of the base material of stainless steel (e.g., see Patent Document 2.) 0
[0004] さらに、鉄系粉末材の材料を使用して空孔率 10%以下あるいは 15%以下とした焼 結鉄を焼き入れ焼戻し処理により基地をマルテンサイト組織とした後、表面に窒化ぁ るいは軟窒化処理により Fe— N力 なる化合物層を形成し、その内側に窒素拡散層 を形成するようにしたものもある(例えば、特許文献 3あるいは 4参照。;)。 [0004] Furthermore, after sintering iron having a porosity of 10% or less or 15% or less using a material of an iron-based powder material to form a martensite structure in the matrix by quenching and tempering, the surface is nitrided or hardened In some of them, a compound layer having an Fe—N force is formed by nitrocarburizing treatment, and a nitrogen diffusion layer is formed inside the compound layer (for example, see Patent Documents 3 and 4;).
[0005] 特許文献 1 :特開昭 60— 26195号公報 Patent Document 1: JP-A-60-26195
特許文献 2 :特開平 11— 101189号公報  Patent Document 2: JP-A-11-101189
特許文献 3:特開 2001— 140782号公報  Patent Document 3: JP 2001-140782A
特許文献 4:特開 2001—342981号公報  Patent Document 4: JP 2001-342981 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、上記従来の構成では、表面が Fe Cr Nあるいは Fe Nの化合物層 あるいは Fe Cr Nの拡散層で形成されており、表面が単一組成で硬さが均一であ ることから、コンプレッサを運転した時に発生するべーン等の耐摩耗部品の微少な摩 耗も均一となっていた。その結果、表面に所定の保油性を維持することが難しぐ焼 き付きを生じるおそれがあった。 However, in the above-described conventional configuration, the surface is formed of FeCrN or a compound layer of FeN or a diffusion layer of FeCrN, and the surface has a single composition and uniform hardness. As a result, the wear of wear-resistant parts such as vanes generated when the compressor was operated was uniform. As a result, there is a possibility that seizure, which makes it difficult to maintain a predetermined oil retaining property on the surface, may occur.
[0007] 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、耐摩 耗部品の表面を硬さの異なる混合面とすることにより微少な油溜まりを形成して、耐 摩耗部品を運転したときの保油性を向上することができ、焼き付きなどの不具合を解 消することができる信頼性の高い耐摩耗部品を提供することを目的としている。 課題を解決するための手段  [0007] The present invention has been made in view of such problems of the prior art, and forms a minute oil reservoir by forming a surface of a wear-resistant part with a mixed surface having different hardness. An object of the present invention is to provide a highly wear-resistant part that can improve oil retention when the wear-resistant part is operated and that can eliminate defects such as image sticking. Means for solving the problem
[0008] 上記目的を達成するため、本発明に力かる耐摩耗部品の製作方法は、 Crを含有 する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除し た窒化処理を施し、表面を Fe - Cr - Nの化合物層と Fe - Cr - Nの拡散層と基地の混 合組織としたことを特徴とする。  [0008] In order to achieve the above object, a method of manufacturing a wear-resistant part that is effective in the present invention is to form a material by compacting and sintering using an iron-based alloy powder containing Cr to reduce a carburizing component. It is characterized by the fact that the surface is treated as a mixed structure of Fe-Cr-N compound layer, Fe-Cr-N diffusion layer and matrix by excluding nitriding treatment.
[0009] また、本発明に力かる耐摩耗部品の製作方法の別の形態は、 Crを含有する鉄系 合金粉末に Mn、 Ti、 Vのうち少なくとも一種の金属元素を含有する合金粉末を使用 して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処理を施し、表面を Fe— Cr Nの化合物層と Fe— Cr Nの拡散層と基地の混合組織としたことを特徴とす る。  [0009] Another embodiment of the method of manufacturing a wear-resistant part according to the present invention is to use an alloy powder containing at least one metal element of Mn, Ti, and V as an iron-based alloy powder containing Cr. Then, the material was formed by green compact sintering, nitriding treatment was performed to eliminate the carburizing component, and the surface was made to have a mixed structure of Fe-CrN compound layer, Fe-CrN diffusion layer and matrix. Features.
[0010] 好ましくは、表面に空孔が存在し、空孔の近傍を Fe— Cr Nの化合物層で、空孔か ら離れるにしたがい Fe— Cr Nの拡散層と基地との混合組織であるのがよい。  [0010] Preferably, there is a vacancy on the surface, a Fe-CrN compound layer in the vicinity of the vacancy, and a mixed structure of a Fe-CrN diffusion layer and a matrix as the distance from the vacancy increases. Is good.
[0011] 本発明にかかる耐摩耗部品の製作方法のさらに別の形態は、 Crを含有する鉄系 合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化処 理を施し、表面を Fe— Cr Nの化合物層と Fe—Cr~Nの拡散層とソルバイトの基地組 織の混合組織としたことを特徴とする。  [0011] Still another embodiment of the method of manufacturing a wear-resistant part according to the present invention is a method of forming a material by compacting and sintering using an iron-based alloy powder containing Cr and removing a carburized component. The surface is treated as a mixed structure of a Fe-CrN compound layer, a Fe-Cr to N diffusion layer, and a sorbite matrix structure.
[0012] この場合、表面に空孔が存在し、空孔の近傍を Fe— Cr Nの化合物層で、空孔か ら離れるにしたが!ヽ Fe— Cr Nの拡散層とソルバイト組織の基地との混合組織である のがよい。  In this case, vacancies exist on the surface, and the vicinity of the vacancies is separated from the vacancies by a Fe—CrN compound layer! ヽ The diffusion layer of Fe—CrN and the base of the sorbite structure It is better to have a mixed structure with.
[0013] また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除 した窒化処理を施し、一部の表面に除去加工を行い、表面を少なくとも Fe— Cr Nの 化合物層を含む混合組織とすることもできる。 [0013] In addition, after the material is formed by green compact sintering, quenched, and tempered, a nitriding treatment that excludes a carburizing component is performed, a part of the surface is removed, and at least the surface is made of Fe— Cr N A mixed structure including a compound layer can also be used.
[0014] 窒化処理の前に軽微な酸ィヒ処理のための大気処理を行うようにしてもよぐ大気処 理は 380°Cの温度以上で行うのが好ましい。  [0014] Air treatment for slight acid treatment before nitriding may be performed, but the air treatment is preferably performed at a temperature of 380 ° C or higher.
[0015] 耐摩耗部品は、表面に Fe— Cr~Nの化合物層と Fe— Cr Nの拡散層と基地の混合 組織とを有し、窒化後の焼結素材の表面のほぼ全面が 0. 1-0. 5 m程度の粒子 あるいは突起に覆われて 、るのがよ 、。 [0015] The wear-resistant part has a compound layer of Fe-Cr to N, a diffusion layer of Fe-CrN, and a mixed structure of matrix on the surface, and almost the entire surface of the sintered material after nitriding is 0.1%. 1-0.5 It is covered with particles or protrusions of about 5 m.
発明の効果  The invention's effect
[0016] 本発明は、以上説明したように構成されているので、以下に記載されるような効果を 奏する。  [0016] The present invention is configured as described above, and has the following effects.
Crを含有する鉄系合金粉末あるいは Crを含有する鉄系合金粉末に Mn、 Ti、 Vの うち少なくとも一種の金属元素を含有する合金粉末を使用して圧粉体焼結成形法で 素材を成形し、浸炭成分の入っていない窒化処理を施し、表面を化合物層と拡散層 と基地の混合層としたので、耐摩耗部品を仕上げ加工する際に、柔らかい基地部分 の加工量が多くなり、微少な窪みが形成され油溜まりを形成することになり、さらに、 耐摩耗部品を運転すると、柔らかい基地部分に微少な摩耗が発生して油溜まりを形 成することになり、焼き付きのない信頼性の高い耐摩耗部品を実現することができる。  Using a powder compact sintering molding method using Cr-containing iron alloy powder or Cr-containing iron alloy powder containing an alloy powder containing at least one metal element of Mn, Ti, and V In addition, since the surface is treated as a mixed layer of a compound layer, a diffusion layer, and a matrix, the surface is treated as a mixed layer of a compound layer, a diffusion layer, and a matrix. Pits are formed and oil pools are formed.In addition, when the wear-resistant parts are operated, a small amount of wear is generated on the soft base portion to form oil pools, and reliability without seizure is improved. High wear parts can be realized.
[0017] また、 Crを含有する鉄系合金粉末に Mn、 Ti、 Vのうち少なくとも一種の金属元素を 含有する合金粉末を使用すると、化合物層と拡散層には Cr、 Mn、 Ti、 Vのうち少な くとも一つの成分が含まれることになるので、 Fe、 Crで所定の硬さを確保した上で、 Mnの存在によりさらに硬さを向上させたり、 Tiの存在により窒化処理を促進させたり 、あるいは Vの存在により窒化深さを深くすることができるので、耐摩耗部品の信頼性 力 Sさらに向上する。 [0017] Further, when an alloy powder containing at least one metal element of Mn, Ti, and V is used as the iron-based alloy powder containing Cr, the compound layer and the diffusion layer are made of Cr, Mn, Ti, and V. Since at least one component is contained, a predetermined hardness is secured by Fe and Cr, and further the hardness is further improved by the presence of Mn, and the nitriding treatment is promoted by the presence of Ti. Or the presence of V can increase the nitriding depth, further improving the reliability S of the wear-resistant parts.
[0018] さらに、 Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、 焼き入れ焼き戻しを行った後、浸炭成分の入ってない窒化処理を施し、表面は化合 物層と拡散層とソルバイトの基地組織の混合組織としたので、耐摩耗部品を仕上げ 加工する際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜 まりを形成することになる。また、耐摩耗部品を運転 (相対摩擦運動)すると、化合物 層や拡散層に比べて柔らかい基地部分が微少な摩耗を起こして油溜まりとなる。さら に、基地組織が焼き入れ焼き戻しで硬くなつているので、化合物層と拡散層は窒化 によりさらに硬くなり、焼き付くことが無くさらに高い耐摩耗性を持つ信頼性の高い耐 摩耗部品を実現できる。 [0018] Furthermore, a material is formed by compacting and sintering using an iron-based alloy powder containing Cr, and quenching and tempering are performed. Has a mixed structure of a compound layer, a diffusion layer, and a sorbite base structure, so when finishing abrasion-resistant parts, the amount of processing in the soft base part increases, and fine depressions are formed and oil pools are formed. Will do. In addition, when the wear-resistant parts are operated (relative frictional motion), the base material that is softer than the compound layer or the diffusion layer undergoes minute wear and becomes an oil reservoir. More In addition, since the base structure is hardened by quenching and tempering, the compound layer and the diffusion layer are further hardened by nitriding, and it is possible to realize a highly reliable wear-resistant component that does not seize and has higher wear resistance.
[0019] また、圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分の入つ てない窒化処理を施し、一部の表面に除去力卩ェを行うことにより、表面が Fe Cr N の化合物層だけではなぐ硬さのばらつきを持つ表面となる。したがって、仕上げカロ ェする際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まり を形成すること〖こなる。さら〖こ、稼動湘対摩擦運動)時に柔らかい部分が微少な摩 耗を発生して、そこが油溜まりとなり潤滑性が向上するとともに、耐摩耗性はそのほか の化合物層部分で維持することができるので、耐摩耗部品の信頼性を向上すること ができる。  [0019] In addition, the material is formed by green compact sintering, quenched and tempered, and then subjected to a nitriding treatment free of carburizing components, and a part of the surface is subjected to a removing force. On the other hand, the surface has a variation in hardness that cannot be achieved by using only the compound layer of FeCrN. Therefore, when finishing the finish, the amount of processing of the soft base portion increases, and a minute depression is formed to form an oil reservoir. In addition, the soft part generates a small amount of wear during the operation (frictional motion during operation), which becomes a pool of oil and improves lubricity, while the wear resistance can be maintained by other compound layer parts. Therefore, the reliability of the wear-resistant parts can be improved.
図面の簡単な説明  Brief Description of Drawings
[0020] 図 1]本発明にかかる耐摩耗部品の断面エッチング写真である。  FIG. 1 is a cross-sectional etching photograph of a wear-resistant part according to the present invention.
図 2]図 1の耐摩耗部品の表面を研削加工して削り取った表面のエッチング写真であ る。  FIG. 2] An etching photograph of the surface of the wear-resistant part shown in FIG.
図 3]図 1の耐摩耗部品の表面のマイクロビッカース硬さ測定圧痕の写真である。 図 4]図 1の耐摩耗部品の硬さ分布曲線である。  FIG. 3] A photograph of a micro-Vickers hardness measurement indentation on the surface of the wear-resistant part in FIG. FIG. 4] A hardness distribution curve of the wear-resistant part of FIG.
図 5]各試料の素材に対して行った熱処理パターンを示す図表である。  FIG. 5 is a chart showing a heat treatment pattern performed on the material of each sample.
図 6]窒化後の試料 Xの倍率 40のときの表面状態を示す写真である。  FIG. 6 is a photograph showing a surface state of a sample X after nitriding at a magnification of 40.
図 7]窒化後の試料 Yの倍率 40のときの表面状態を示す写真である。  FIG. 7 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 40.
図 8]窒化後の試料 Zの倍率 40のときの表面状態を示す写真である。  FIG. 8 is a photograph showing the surface condition of the sample Z after nitriding at a magnification of 40.
図 9]窒化後の試料 Xの倍率 200のときの表面状態を示す写真である。  FIG. 9 is a photograph showing a surface state of a sample X after nitriding at a magnification of 200.
図 10]窒化後の試料 Xの倍率 1, 000のときの表面状態を示す写真である。  FIG. 10 is a photograph showing a surface state of a sample X after nitriding at a magnification of 1,000.
図 11]窒化後の試料 Xの倍率 5, 000のときの表面状態を示す写真である。  FIG. 11 is a photograph showing a surface state of a sample X after nitriding at a magnification of 5,000.
図 12]窒化後の試料 Xの倍率 20, 000のときの表面状態を示す写真である。  FIG. 12 is a photograph showing a surface state of a sample X after nitriding at a magnification of 20,000.
図 13]窒化後の試料 Yの倍率 200のときの表面状態を示す写真である。  FIG. 13] A photograph showing the surface state of a sample Y after nitriding at a magnification of 200.
図 14]窒化後の試料 Yの倍率 1, 000のときの表面状態を示す写真である。  FIG. 14 is a photograph showing the surface condition of a sample Y after nitriding at a magnification of 1,000.
図 15]窒化後の試料 Yの倍率 5, 000のときの表面状態を示す写真である。 [図 16]窒化後の試料 Yの倍率 20, 000のときの表面状態を示す写真である。 FIG. 15 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 5,000. FIG. 16 is a photograph showing a surface state of a sample Y after nitriding at a magnification of 20,000.
[図 17]窒化後の試料 Ζの倍率 200のときの表面状態を示す写真である。  FIG. 17 is a photograph showing a surface state of a sample after nitriding at a magnification of 200.
[図 18]窒化後の試料 Ζの倍率 1, 000のときの表面状態を示す写真である。  FIG. 18 is a photograph showing a surface state of a sample after nitriding at a magnification of 1,000.
[図 19]窒化後の試料 Ζの倍率 5, 000のときの表面状態を示す写真である。  FIG. 19 is a photograph showing a surface state of a sample after nitriding at a magnification of 5,000.
[図 20]窒化後の試料 Ζの倍率 20, 000のときの表面状態を示す写真である。  FIG. 20 is a photograph showing a surface state of a sample after nitriding at a magnification of 20,000.
[図 21]窒化後の試料 Ζの別の部位の倍率 5, 000のときの表面状態を示す写真であ る。  FIG. 21 is a photograph showing a surface state of another portion of sample 窒 化 after nitriding at a magnification of 5,000.
[図 22]窒化後の試料 Ζの別の部位の倍率 20, 000のときの表面状態を示す写真であ る。  FIG. 22 is a photograph showing a surface state at a magnification of 20,000 of another portion of sample No. 2 after nitriding.
[図 23]各試料の表層近傍における合金元素の最高濃度を示すグラフである。  FIG. 23 is a graph showing the maximum concentration of alloying elements in the vicinity of the surface layer of each sample.
[図 24]各試料の表層近傍における合金元素の最高濃度部位における Ο濃度を示す グラフである。  FIG. 24 is a graph showing the Ο concentration at the highest concentration portion of the alloy element near the surface layer of each sample.
符号の説明  Explanation of symbols
[0021] 1 空孔 [0021] 1 hole
2 化合物層  2 Compound layer
3 混合組織  3 Mixed tissue
8 空孔と空孔の間のマイクロビッカースの圧痕  8 Micro-Vickers indentation between holes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明に力かる耐摩耗部品は、例えばローリングピストン等に設けられているベー ン等として使用されるもので、例えば粉末ハイス (粉末ハイスピード鋼)等の Crを含有 する鉄系合金粉末に対し約 1200°Cの温度で真空焼結を行って素材を成形した後、 焼き入れ処理を行ってマルテンサイト組織とし、さらに焼き戻しの熱処理を 480°C— 5 80°Cで行ってソルバイト組織にした後に、浸炭成分を排除した状態で焼戻し温度以 下の 400°Cで約 6時間のガス窒化処理を施したものである。  The wear-resistant parts to which the present invention is applied are used, for example, as vanes provided on a rolling piston or the like, and are used, for example, for a Cr-containing iron-based alloy powder such as powdered high-speed steel (powder high-speed steel). After forming the material by vacuum sintering at a temperature of about 1200 ° C, a quenching treatment is performed to obtain a martensite structure, and a tempering heat treatment is performed at 480 ° C-580 ° C to obtain a sorbite structure. After that, gas nitriding was performed at 400 ° C below the tempering temperature for about 6 hours with the carburizing component removed.
[0023] 図 1は、このようにして製作した本発明にかかる耐摩耗部品の窒化処理後の断面組 織を示しており、ガス窒化処理後、エッチングを施し、化合物層を見やすくしたもので める。 [0024] 素材が圧粉体焼結成形で製作されているので、密度は 80— 90%程度までしか上 がらず、空孔 1が多数存在し、窒化処理に使用したガスが空孔 1を通過して奥まで窒 化が行われており、白い色の化合物層 2が空孔 1の周りに形成されている。また、空 孔 1から離れるにしたがって、黒い部分 3が多くなつている力 これは拡散層と基地の 混合組織である。 FIG. 1 shows a cross-sectional structure of the wear-resistant part according to the present invention manufactured as described above after nitriding. The compound layer is etched after gas nitriding to make the compound layer easier to see. You. [0024] Since the material is manufactured by compacting and sintering, the density can only rise to about 80-90%, there are many vacancies 1, and the gas used for nitriding process After passing through, nitriding is performed to the back, and a white compound layer 2 is formed around the vacancy 1. Also, as the distance from the cavity 1 increases, the black portion 3 increases. This is a mixed structure of the diffusion layer and the base.
[0025] 図 2は、この耐摩耗部品を図 1の面に対して直角方向に切断し (すなわち、表面か ら所定の深さで切断し)、切断面を研削したものの表面を 450倍に拡大したものであ る。  FIG. 2 shows that the wear-resistant part is cut in a direction perpendicular to the plane of FIG. 1 (that is, cut at a predetermined depth from the surface), and the cut surface is ground to 450 times. It is an enlargement.
[0026] 図 2に示されるように、研削面には圧粉体焼結成形品特有の空孔 1が存在し、その 周辺は窒化処理のガスが侵入して窒化が進行して 、るので、 Fe Cr~Nの化合物層 2がエッチングされて白い色になっている。また、空孔 1の表面力も離れたところでは 白い色が少なくなり、 Fe Cr Nの拡散層と基地の混合組織 3となっている。すなわ ち、空孔 1のある耐摩耗品の表面は化合物層 2と拡散層と基地組織の混合組織 3とな つている。  [0026] As shown in Fig. 2, a hole 1 peculiar to a green compact is present on the ground surface, and a nitriding gas invades around the hole 1 and nitriding proceeds. The Fe Cr to N compound layer 2 is etched to have a white color. Further, the surface color of the pores 1 is reduced in white color where the surface force is distant, and a mixed structure 3 of a diffusion layer of FeCrN and a matrix is formed. That is, the surface of the wear-resistant article having the pores 1 has a compound layer 2 and a mixed structure 3 of a diffusion layer and a base structure.
[0027] 図 3は、その断面をマイクロビッカース硬さで測定した圧痕の写真であり、圧痕が小 さ!ヽほどマイクロビッカース硬さが硬!、ことを示して!/、る。マイクロビッカースの圧痕の 大きさから明らかなように、空孔 1の周辺は比較的小さぐ空孔 1と空孔 1の間 8のマイ クロビッカースの圧痕の大きさは空孔の周辺に比べて大きぐ硬さが低下して 、ること がわかる。これは、空孔 1の周辺は窒化ガスが入り込んで化合物層 2ができており、空 孔 1と空孔 1の間 8は拡散層と基地の混合組織 3となっているため、硬さが空孔 1の周 辺に比べて低くなつていると考えられる。  FIG. 3 is a photograph of an indentation of the cross section measured by micro Vickers hardness. The smaller the indentation, the harder the micro Vickers hardness !! As is evident from the size of the micro Vickers indentations, the area around hole 1 is relatively small.Between holes 1 and 1, the size of the micro Vickers indentation 8 is smaller than that around the hole. It can be seen that the hardness is greatly reduced. This is because the nitride gas enters around the pores 1 to form the compound layer 2, and the gap 8 between the pores 1 is a mixed structure 3 of the diffusion layer and the matrix. It is considered that it is lower than the periphery of the void 1.
[0028] このように表面の硬さが適度にばらついているので、耐摩耗部品を仕上げカ卩ェする 際に、柔らかい基地部分の加工量が多くなり、微少な窪みが形成され油溜まりを形成 することになる。さらに、耐摩耗部品が作動すると、柔らかい基地組織の部分には微 少な摩耗が発生して油溜まりの役目を果たすようになり、圧粉体焼結成形品の空孔 に加えてくさび効果の高い油溜まりが可動部全面にわたって形成される。したがって 、表面全体としては保油性が高まって潤滑性が良好となり、耐摩耗性は空孔の周辺 の化合物層と拡散層で確保できるので、表面全体が硬い耐摩耗部品に比べて良好 な信頼性を確保することができる。 [0028] Since the hardness of the surface is moderately varied as described above, the amount of processing of the soft base portion is increased when finishing the wear-resistant parts, and a fine depression is formed to form an oil pool. Will do. In addition, when the wear-resistant parts are activated, a small amount of wear is generated in the soft base structure portion to serve as an oil reservoir, which has a high wedge effect in addition to the pores of the sintered compact. An oil sump is formed over the entire movable part. Therefore, the oil retentivity of the entire surface is enhanced and lubricity is improved, and the wear resistance can be ensured by the compound layer and the diffusion layer around the pores, so that the entire surface is better than a hard wear-resistant part. Reliability can be secured.
[0029] なお、本実施の形態は、粉末ハイスの焼き入れ、焼き戻し品で説明したが、素材を 一般的な合金粉で製作しても良ぐまた、 Crを含有する鉄系合金粉末に Mn、 Ti、 V のうち少なくとも一種の金属元素を含有する合金粉で製作しても同様な効果を得るこ とがでさる。  Although the present embodiment has been described with reference to a quenched and tempered product of powdered high-speed steel, the material may be made of a general alloy powder. The same effect can be obtained by manufacturing with an alloy powder containing at least one metal element among Mn, Ti, and V.
[0030] 図 4は、図 1の耐摩耗部品の窒化処理後の硬さ分布曲線を示しており、表面から 0 . 4mmを越えた位置 Aでも、硬さは表面 Bとほとんど変わっていない。この耐摩耗部 品の表面を 0. 1mm程度研削して除去加工した後の、表面からの深さ 0. 1mmの位 置 Cをエッチングすると図 2の断面組織のようになる。  FIG. 4 shows a hardness distribution curve of the wear-resistant part of FIG. 1 after the nitriding treatment. Even at the position A exceeding 0.4 mm from the surface, the hardness is almost the same as the surface B. After the surface of the wear-resistant part is ground and removed by about 0.1 mm, the position C at a depth of 0.1 mm from the surface is etched to obtain the sectional structure shown in FIG.
[0031] このように粉末ノヽイスの圧粉体焼結品は短時間の窒化処理でも、素材に空孔がぁ るため窒化のガスが内部まで浸透しやすく深く窒化される。したがって、通常の窒化 処理では、素材の粗加工後、窒化処理を行い、更に仕上げカ卩ェといった工程を踏む 必要があるのに対し、粉末ノヽイスの圧粉体焼結品は、素材に窒化処理を行い、直接 仕上げ加工を行っても、必要な硬さを容易に得ることができる。さらに、素材の焼き入 れ焼き戻しによる変形が発生して取り代が不均一となっても、深く窒化されているの で完成品の一番硬い化合物層の表面硬さのばらつきは小さくすることができる。  [0031] As described above, the powder sintered compact of the powder noise can be deeply nitrided even if the nitriding treatment is performed for a short time because the material has pores and the nitriding gas easily permeates into the inside. Therefore, in the ordinary nitriding treatment, it is necessary to perform the nitriding treatment after the rough processing of the material, and then to perform a process such as finishing. The required hardness can be easily obtained even if the treatment is performed and the finish processing is performed directly. Furthermore, even if deformation due to quenching and tempering of the material occurs and the stock removal becomes uneven, the variation in surface hardness of the hardest compound layer of the finished product should be small because it is deeply nitrided. Can be.
[0032] さらに、表面を除去加工することにより、 Fe Cr~Nの化合物層だけでなぐ Fe-Cr  [0032] Furthermore, by removing the surface, the Fe-Cr
Nの拡散層及び基地の混合組織が表れるが、これは、表面に近い場所でも硬さが 低い部分が存在することからも理解できることである。すなわち、本発明にかかる耐摩 耗部品は、優れた耐摩耗性を保持しつつ、 ェ工程を省略することができるので、 安価に製作することができる。  A mixed structure of the N diffusion layer and the matrix appears, which can be understood from the fact that there are low hardness parts even near the surface. In other words, the wear-resistant part according to the present invention can be manufactured at low cost because it can omit the first step while maintaining excellent wear resistance.
実施例 1  Example 1
[0033] 3種類の Crを含有する鉄系合金粉末を所定の形状にまず成形し、この成形体を所 定の温度 (例えば、 1180°C)で真空焼結して焼結体を作製し、焼結体に所定の熱処 理を行った後、表面形状を調査した。各試料の材料は SKH51に相当し、ここでは試 料 X, Υ, Zと!ヽぅ。  [0033] Three types of iron-based alloy powders containing Cr are first formed into a predetermined shape, and the formed body is vacuum-sintered at a predetermined temperature (for example, 1180 ° C) to produce a sintered body. After performing a predetermined heat treatment on the sintered body, the surface shape was examined. The material of each sample is equivalent to SKH51, here samples X, Υ, Z and! ヽ ぅ.
[0034] 表 1は、試料 X, Υ, Zの熱処理後の組成分析結果を示している。  [0034] Table 1 shows the results of composition analysis of Samples X, Υ, and Z after heat treatment.
[表 1] 単位: wt% W M o し r V l し その 丰才 [Table 1] Unit: wt% WM o then r v l then that genius
r e寻リ 試料 X 5. 5〜 4. 0〜 3. 5〜 1. 4〜 0. 4〜 1. 2〜 ≤ 1. 0  r e 寻 Sample X5.5 ~ 4.0 ~ 3.5 ~ 1.4 ~ 0.4 ~ 1.2 ~ ≤1.0
6. 7 6. 0 5. 0 2. 4 0. 9 1. 8  6.7 6.0 5.0 5.0 2.4 0.9.1.8
試料 Y 5. 5〜 4. 0〜 3. 5〜 1. 4 ~ 0. 4〜 0. 9〜 ≤ L 0  Sample Y 5.5 to 4.0 to 3.5 to 1.4 to 0.4 to 0.9 to ≤ L 0
6. 7 6. 0 5. 0 2. 4 0. 9 1. 4  6.7 6.0 5.0 5.0 2.4 0.9.1.4
試料 ζ 5. 5〜 4. 0〜 3. 5〜 1. 4 ~ 0. 4〜 0. 9〜 ≤ L 0  Sample ζ 5.5 to 4.0 to 3.5 to 1.4 to 0.4 to 0.9 to ≤ L 0
6. 7 6. 0 5. 0 2. 4 0. 9 1. 4  6.7 6.0.0 5.0 2.4 0.9.1.4
[0035] また、図 5は各試料の素材に対して行った熱処理パターンを示しており、表 2は各 試料の材質特性を示して 、る。 FIG. 5 shows a heat treatment pattern performed on the material of each sample, and Table 2 shows the material characteristics of each sample.
[表 2]  [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
[0036] その後、試料 X及び Yに対しては 400°Cの温度で 6時間窒化処理を行ったのに対 し、試料 Zに対しては 480°Cの温度で 3時間の大気処理 (軽微な酸化処理)を行!、、 さらに 400°Cの温度で 6時間の窒化処理を行った。 [0036] Thereafter, the samples X and Y were subjected to nitriding at a temperature of 400 ° C for 6 hours, whereas the samples Z were subjected to an air treatment at a temperature of 480 ° C for 3 hours (slight Oxidation treatment) and nitriding treatment at 400 ° C for 6 hours.
[0037] 次に、倍率 40— 20, 000の走査型電子顕微鏡を用いて、各試料の表面形状及び 表面性状を調査、評価した。  Next, the surface shape and surface properties of each sample were investigated and evaluated using a scanning electron microscope with a magnification of 40 to 20,000.
[0038] 図 6乃至 8は、窒化後の試料 X, Υ, Zの倍率 40のときの表面状態をそれぞれ示して おり、試料 Y及び Zは同様の表面状態を呈しているのに対し、試料 Xは試料 Y及び Z に比べて微少粒状を呈しており、活性な表面状態が認められる。  [0038] Figs. 6 to 8 show the surface states of the samples X, Υ, and Z after nitriding at a magnification of 40, respectively. Samples Y and Z show the same surface state, whereas samples Y and Z show the same surface state. X has a finer granularity than Samples Y and Z, and an active surface state is observed.
[0039] また、図 9乃至 12は、試料 Xの倍率 200、 1, 000、 5, 000、 20, 000のときの表面 状態をそれぞれ示しており、図 13乃至 16は、試料 Yの倍率 200、 1, 000、 5, 000、 20, 000のときの表面状態をそれぞれ示している。また、図 17乃至 20は、試料 Zの 倍率 200、 1, 000、 5, 000、 20, 000のときの表面状態をそれぞれ示しており、図 2 1及び 22は、試料 Zの別の部位の倍率 5, 000、 20, 000のときの表面状態をそれぞ れ示している。 [0040] 図 9乃至 12によれば、試料 Xの表面は小粒が圧着焼結され焼結粒間隙の表面に 微細な凸状析出物が無数に存在しており、これらの微少析出物回りに窒化物粒の析 出が認められる。すなわち、試料 Xは、 400°Cの温度で 6時間窒化処理を行うことによ り内部まで窒化されて 、ることが分かる。 9 to 12 show the surface states of sample X at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. , 1,000, 5,000, and 20,000, respectively. 17 to 20 show the surface states of the sample Z at magnifications of 200, 1,000, 5,000, and 20,000, respectively, and FIGS. Surface conditions at magnifications of 5,000 and 20,000 are shown, respectively. [0040] According to Figs. 9 to 12, on the surface of sample X, small grains were pressed and sintered, and countless fine convex precipitates were present on the surface of the sintered grain gap. Precipitation of nitride grains is observed. That is, it can be seen that the inside of the sample X is nitrided by performing the nitriding treatment at a temperature of 400 ° C. for 6 hours.
[0041] 図 13乃至 16によれば、試料 Yは試料 Xに比べて焼結粒子が大きぐ図 9及び 10と 図 13及び 14を比較すると分力るように、試料 Yは比較的平らな表面状態を呈してお り、倍率 5, 000以上の観察においても、試料 Xに認められる微細凸状析出物の割合 が少なぐ安定した (不活性な)表面状態にある。  According to FIGS. 13 to 16, sample Y has a relatively large sintered particle size compared to sample X. As shown in FIGS. 9 and 10 and FIGS. The surface state is exhibited, and even when observed at a magnification of 5,000 or more, the ratio of the fine convex precipitates observed in the sample X is small, and the surface state is stable (inactive).
[0042] また、図 17 (倍率 200)によれば、試料 Z表面の焼結粒子は試料 Yに類似しており、 試料 Xに比べて大きい状態にあるが、図 18乃至 22に示される倍率 1, 000以上の観 察によれば、試料 Zは表面及び焼結粒間隙に微細な析出物が試料 X以上に存在し、 微視的には試料 Xに類似した表面状態が形成されている。  According to FIG. 17 (magnification 200), the sintered particles on the surface of the sample Z are similar to the sample Y, and are in a larger state than the sample X. However, the magnification shown in FIGS. According to more than 1,000 observations, sample Z has fine precipitates on the surface and sintered grain gaps above sample X, and a microscopic surface condition similar to sample X is formed. .
[0043] 試料 Yと試料 Zの相違点は、焼結後の素材の大気処理の有無にあり、前者は非処 理状態にあるのに対し、後者は大気処理した状態にある。非処理材は、上述したよう に表面が平らで安定な状態を呈しているが、大気処理した試料 Zは表面に凸状析出 物が無数に生じていることから、試料 Xと同様、表面が活性ィ匕している。  The difference between sample Y and sample Z lies in the presence or absence of air treatment of the material after sintering. The former is in an untreated state, while the latter is in an air-treated state. The untreated material has a flat and stable state as described above.However, the surface of sample Z that has been treated in the air has an innumerable number of convex precipitates on its surface. I'm active.
[0044] 一方、窒化後の各試料の硬さは表 3のとおりであった。  On the other hand, the hardness of each sample after nitriding was as shown in Table 3.
[表 3]  [Table 3]
Figure imgf000011_0001
Figure imgf000011_0001
[0045] 表 3力ら分力るように、表面から深さ 0. Olmm及び 0. 05mmの部位における硬さ は、試料 ζ、 X、 Yの順に前者ほど高い。 [0045] As shown in Table 3, the hardness at the depths of 0.0 Olmm and 0.05 mm from the surface is higher in the sample ζ, X, and Y in the order of the hardness.
[0046] 表 3に示される硬さと上述した表面形状とを比較すると、窒化後の表面に存在する 微細析出粒は、図 9乃至 22に示されるように、試料 Z、 Y、 Xの順に前者ほど密度が 高い。試料 Ζは試料 Υを窒化処理する前に大気処理することにより試料表面に微細 な酸化物粒子が形成されて ヽることから、試料 Zは微細析出した酸ィ匕物粒子が表面 を活性化させることにより窒化反応が容易になったものと想定される。 When comparing the hardness shown in Table 3 with the above-mentioned surface shape, the fine precipitates present on the surface after nitriding show the former in the order of samples Z, Y and X as shown in FIGS. 9 to 22. The higher the density. Sample Ζ is treated with air before nitriding the sample It is presumed that the sample Z had a finely precipitated oxide particle particle that activated the surface, thereby facilitating the nitridation reaction.
[0047] また、試料 Yの場合、窒化温度を上昇するか (例えば、約 430°C)、あるいは窒化温 度は 400°Cであっても窒化時間を長くする(例えば、約 10時間)ことにより、表面から の深さ 0. 5mmの部位における硬さが 900Hv以上まで高くなる場合もあった力 窒 化が不安定で、割れが発生することがあった。  [0047] In the case of sample Y, the nitriding temperature should be increased (for example, about 430 ° C), or even if the nitriding temperature is 400 ° C, the nitriding time should be extended (for example, about 10 hours). In some cases, the hardness at a depth of 0.5 mm from the surface was increased to 900 Hv or more. Forced nitridation was unstable, and cracks sometimes occurred.
[0048] さらに、試料 Zに対し、処理時間を一定(3時間)にして処理温度を 280°C、 380°C、 480°C、 580°Cに変えて大気処理を行ったところ、 280°Cでは表面力 深さ 1. 5mm の部位における硬さが 900Hvを下回ったものの、処理温度が 380°C以上の場合、表 面から深さ 1. 5mmまでの硬さがすべて 900Hv以上であることが確認された。  [0048] Further, the sample Z was subjected to atmospheric treatment while changing the treatment temperature to 280 ° C, 380 ° C, 480 ° C, and 580 ° C while keeping the treatment time constant (3 hours). In C, the hardness at the site with a surface force depth of 1.5 mm is less than 900 Hv, but when the processing temperature is 380 ° C or more, the hardness from the surface to the depth of 1.5 mm must be 900 Hv or more. Was confirmed.
[0049] すなわち、試料 Y及び Zは窒化性が悪いが、 380°Cの温度で 3時間の大気処理を 行った後、 400°Cの温度で 6時間の窒化処理を行うことで、試料 Xと同様、窒化性が 向上する。  [0049] That is, although Samples Y and Z have poor nitridation properties, Sample X was subjected to air treatment at a temperature of 380 ° C for 3 hours, followed by nitriding treatment at a temperature of 400 ° C for 6 hours. Similarly to the above, the nitriding property is improved.
[0050] なお、各試料は表層近傍における合金元素(Cr, W, Mo, V)及び O濃度に相違 が認められ、これら元素濃度分布の相違が窒化反応に影響を与えている。  [0050] In each of the samples, differences were found in the alloying elements (Cr, W, Mo, V) and O concentrations near the surface layer, and the differences in these element concentration distributions affected the nitriding reaction.
[0051] さらに詳述すると、各試料の表層組成調査を約 50 μ mの深さまで実施したところ、 Vヽずれの材料も 3 μ m以上の深度部分の濃度は殆ど同じ値を示したので、 3 mの 深さまでのデータを基に表層を構成する元素の濃度分布を解析した。  [0051] More specifically, when the surface composition of each sample was investigated to a depth of about 50 μm, the material having a V ヽ deviation showed almost the same concentration at a depth of 3 μm or more. Based on the data up to a depth of 3 m, the concentration distribution of the elements constituting the surface layer was analyzed.
[0052] その結果、試料 Xは表層から約 0. 2 μ mの深さに、基材部組成の約 2— 3倍に濃化 した Cr, W, Mo及び Vの濃化域が認められ、最表層において約 30%に達する O量 が検出された。また、試料 Yの表層近傍における W, Mo及び V濃度は基材部組成の 約 1. 5倍程度に濃化していたが、 Crは脱元素化現象を呈していた。さらに、最表層 における O濃度は約 6%程度であり、試料 Xに較べると低い。  [0052] As a result, in Sample X, at a depth of about 0.2 µm from the surface layer, a concentrated region of Cr, W, Mo, and V, which was concentrated about 2-3 times the composition of the base material, was observed. In the outermost layer, O content reaching about 30% was detected. The concentration of W, Mo and V in the vicinity of the surface layer of sample Y was about 1.5 times the composition of the base material, but Cr exhibited a deelementization phenomenon. Furthermore, the O concentration in the outermost layer is about 6%, which is lower than that of sample X.
[0053] また、試料 Zは試料 Xと同様に表層から約 0. 2 μ mの深さに、基材部組成の約 1. 5 一 2倍に濃化した W及びと Moと、最表層において約 6%程度の O量が検出された。 一方、 Cr及び Vの挙動は試料 Yに類似しており、前者は脱元素挙動を後者は最表 層にお 、て濃化する現象を示して ヽた。  [0053] Similarly to Sample X, Sample Z was formed at a depth of about 0.2 µm from the surface layer, with W and Mo concentrated to about 1.5 to 12 times the base material composition, and with the outermost layer. , About 6% O content was detected. On the other hand, the behavior of Cr and V was similar to that of sample Y, and the former showed the phenomenon of deelementation and the latter showed the phenomenon of enrichment in the outermost layer.
[0054] 以上より、試料 Z表層を構成する元素濃度は、試料 Xと試料 Yの中間的様相を有し ているものと想定される。 [0054] As described above, the element concentration constituting the surface layer of sample Z has an intermediate aspect between sample X and sample Y. It is assumed that
[0055] 図 23は、各試料の表層における合金元素の最高濃度を示しており、表層における Cr, W, Mo及び V量は試料 Xが最も高い。また、試料 Yと試料 Zにおいては、 Cr量は 略等量であるが、その他の元素は試料 Yに較べて試料 Zが高い。これらの事から、窒 化した場合、試料 X, Z, Yの順に前者ほど硬化し易い状態にあるものと推察される。  FIG. 23 shows the maximum concentration of alloying elements in the surface layer of each sample. Sample X has the highest amount of Cr, W, Mo and V in the surface layer. In Samples Y and Z, the amount of Cr is almost the same, but other elements are higher in Sample Z than in Sample Y. From these facts, it is presumed that when nitridation occurs, the specimens X, Z, and Y are more likely to cure in the order of the former.
[0056] 各試料は大気加熱処理することにより窒化が容易になることから、各合金元素の最 高濃度部位における O濃度に着目すると図 24のグラフが得られた。このグラフによれ ば、 Vの最高濃度部位における O濃度の挙動を除くと、試料 Xは他の試料に比較して 高濃度の O量が検出される。一方、窒化し難い試料 Yは O濃度が最も低い。これらの ことから、表層近傍に生じる Cr, W及び Moの最高濃度部位における O濃度の高低 が窒化の難易を決定づけているものと想定される。  [0056] Since nitriding of each sample is facilitated by air heating, focusing on the O concentration at the highest concentration site of each alloy element, the graph of Fig. 24 was obtained. According to this graph, excluding the behavior of O concentration at the highest concentration site of V, sample X has a higher concentration of O compared to other samples. On the other hand, sample Y, which is hard to nitride, has the lowest O concentration. From these facts, it is assumed that the level of O concentration at the highest concentration site of Cr, W and Mo generated near the surface layer determines the difficulty of nitriding.
[0057] なお、 V最高濃度部位における O濃度が試料 Zで高 ヽのは、試料 Zでは最表面で V 濃度が最も高ぐ他の試料は最表面よりも内部に入った箇所において V濃度が高くな つており、これは O量の吸収差によって生じたもので、 V量との直接的関係は薄いも のと想定される。  [0057] Note that the O concentration at the highest V concentration site is high in Sample Z because the Z concentration of Sample Z is the highest at the outermost surface, and the other samples have the V concentration higher at the inside than the outermost surface. It is caused by the difference in the absorption of O, and it is assumed that the direct relationship with V is weak.
[0058] 本実施例によれば、試料 Zは試料 Xと同様、窒化物の微細な析出粒子が表面を覆 つており、その密度は一見すると試料 X以上と思われる。このことが、極表層における 硬さの序列を決定づけており、大気処理による表面形状変化によって生じた微細析 出粒が窒素の吸収を担ったものと推定される。なお、試料 X及び Zの窒化後の焼結 素材の表面のほぼ全面が 0. 1-0. 5 m程度の粒子あるいは突起に覆われている のが観察できた。  [0058] According to the present example, as in sample X, fine precipitate particles of nitride cover the surface of sample Z, and the density of sample Z is apparently higher than that of sample X. This determines the order of hardness in the extreme surface layer, and it is presumed that fine precipitates generated by surface shape change due to atmospheric treatment were responsible for nitrogen absorption. In addition, it was observed that almost the entire surface of the sintered material after nitriding of Samples X and Z was covered with particles or projections of about 0.1-0.5 m.
[0059] 以上のことから、試料 X及び Zは本発明にカゝかる耐摩耗部品の材料として好ましく 使用できるのに対し、試料 Yの使用は好ましくない。  [0059] From the above, samples X and Z can be preferably used as a material for wear-resistant parts according to the present invention, whereas sample Y is not preferable.
[0060] また、以上のことから、次のように判断することができる。 Further, from the above, it can be determined as follows.
(1)窒化後の材料の表面は素材の表面状態を継続しており、試料 X及び試料 Zは表 面に微細析出物が多数認められる力 試料 Yは析出物が少なく平面的である。 (1) The surface of the material after nitriding keeps the surface state of the material. Sample X and sample Z have many fine precipitates on the surface. Sample Y has few precipitates and is planar.
(2)窒化後の深さ 0. Olmm及び 0. 05mmの部位の硬さは、試料 Z、 X、 Yの順に前 者ほど高ぐ表層硬さは表面析出物の密度と関連している。 (3)窒化の難易は、表層に生じる合金元素の濃化、濃度分布状態及び微少酸化物 粒子等の表面活性ィ匕現象が支配して 、る。 (2) The hardness at the depth of 0.05 Olmm and 0.05 mm after nitriding is higher in the order of samples Z, X, and Y, and the surface hardness is related to the density of surface precipitates. (3) The difficulty of nitriding is dominated by the concentration and distribution of alloying elements generated in the surface layer and the surface activation phenomenon of minute oxide particles and the like.
産業上の利用可能性 Industrial applicability
本発明にかかる耐摩耗部品は、仕上げ加工する際に、柔らかい基地部分の加工量 が多くなり、油溜まりとなる微少な窪みが形成され、さらに、柔らかい基地部分に微少 な摩耗が発生して油溜まりが形成されるので、耐摩耗性が向上して焼き付きを発生 することがなぐエンジンあるいは圧縮機の摺動部品等に使用すると効果的である。  In the wear-resistant part according to the present invention, when finishing, the processing amount of the soft base portion is increased, and a minute depression serving as an oil reservoir is formed. Since a pool is formed, it is effective to use it for a sliding part of an engine or a compressor in which abrasion resistance is improved and seizure is not generated.

Claims

請求の範囲 The scope of the claims
[1] Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分 を排除した窒化処理を施し、表面を Fe— Cr Nの化合物層と Fe— Cr~Nの拡散層と 基地の混合組織としたことを特徴とする耐摩耗部品の製作方法。  [1] Using a Cr-containing iron-based alloy powder, the material is formed by compacting and sintering, nitriding is performed to eliminate the carburizing component, and the surface is made of a Fe—CrN compound layer and a Fe—Cr A method for producing a wear-resistant part, characterized by having a mixed structure of a diffusion layer of N and a base.
[2] Crを含有する鉄系合金粉末に Mn、 Ti、 Vのうち少なくとも一種の金属元素を含有す る合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分を排除した窒化 処理を施し、表面を Fe - Cr - Nの化合物層と Fe - Cr~Nの拡散層と基地の混合組織 としたことを特徴とする耐摩耗部品の製作方法。 [2] A material is formed by compacting and sintering using an alloy powder containing at least one metal element of Mn, Ti, and V as an iron-based alloy powder containing Cr to eliminate carburizing components A method for producing a wear-resistant part, characterized in that a nitrided treatment is performed and the surface has a mixed structure of a Fe-Cr-N compound layer, a Fe-Cr ~ N diffusion layer and a matrix.
[3] 表面に空孔が存在し、空孔の近傍を Fe— Cr~Nの化合物層で、空孔カゝら離れるにし た力 Sい Fe— Cr Nの拡散層と基地との混合組織としたことを特徴とする請求項 1ある いは 2に記載の耐摩耗部品の製作方法。 [3] A vacancy exists on the surface, and a force layer that separates the vacancy from the vacancy is a compound structure of Fe—Cr to N near the vacancy. The method for producing a wear-resistant part according to claim 1 or 2, wherein:
[4] Crを含有する鉄系合金粉末を使用して圧粉体焼結成形で素材を成形し、浸炭成分 を排除した窒化処理を施し、表面を Fe— Cr Nの化合物層と Fe— Cr~Nの拡散層とソ ルバイトの基地組織の混合組織としたことを特徴とする耐摩耗部品の製作方法。 [4] Using a ferrous alloy powder containing Cr, the material is formed by compacting and sintering, and nitriding is performed to eliminate carburizing components. A method for producing a wear-resistant part, comprising a mixed structure of a diffusion layer of ~ N and a base structure of solvite.
[5] 表面に空孔が存在し、空孔の近傍を Fe— Cr~Nの化合物層で、空孔カゝら離れるにし たカ^ヽ Fe— Cr Nの拡散層とソルバイト組織の基地との混合組織としたことを特徴と する請求項 4に記載の耐摩耗部品の製作方法。 [5] There are vacancies on the surface, and the vicinity of the vacancies is a Fe-Cr to N compound layer. 5. The method for producing a wear-resistant part according to claim 4, wherein a mixed structure is used.
[6] 圧粉体焼結成形で素材を成形し、焼き入れ、焼き戻した後、浸炭成分を排除した窒 化処理を施し、一部の表面に除去加工を行い、表面を少なくとも Fe - Cr - Nの化合 物層を含む混合組織としたことを特徴とする耐摩耗部品の製作方法。 [6] The material is formed by green compact sintering, quenched and tempered, then subjected to a nitriding treatment that excludes carburizing components, and a part of the surface is removed, and the surface is treated with at least Fe-Cr. -A method for producing a wear-resistant part, characterized by having a mixed structure including a N compound layer.
[7] 前記窒化処理の前に大気処理を行うようにしたことを特徴とする請求項 1乃至 6のい ずれ力 1項に記載の耐摩耗部品の製作方法。 7. The method for producing a wear-resistant part according to claim 1, wherein an atmospheric treatment is performed before the nitriding treatment.
[8] 前記大気処理を 380°Cの温度以上で行うようにしたことを特徴とする請求項 7に記載 の耐摩耗部品の製作方法。 [8] The method for producing a wear-resistant part according to claim 7, wherein the atmospheric treatment is performed at a temperature of 380 ° C or higher.
[9] 表面に Fe— Cr Nの化合物層と Fe— Cr Nの拡散層と基地の混合組織とを有し、窒 化後の焼結素材の表面のほぼ全面が 0. 1-0. 5 m程度の粒子あるいは突起に覆 われて 、ることを特徴とする耐摩耗部品。 [9] The surface has a Fe-CrN compound layer, a Fe-CrN diffusion layer and a mixed structure of matrix, and almost the entire surface of the sintered material after nitriding is 0.1-0.5. A wear-resistant part characterized by being covered with particles or protrusions of about m.
PCT/JP2004/015429 2003-10-21 2004-10-19 Wear-resistant parts and method for manufacture thereof WO2005037469A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514829A JP4668793B2 (en) 2003-10-21 2004-10-19 Abrasion resistant parts and method of manufacturing
US10/576,479 US20070071630A1 (en) 2003-10-21 2004-10-19 Wear-resistant elements and method of making same
US12/124,501 US20080216923A1 (en) 2003-10-21 2008-05-21 Wear-resistant elements and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003361003 2003-10-21
JP2003-361003 2003-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/124,501 Division US20080216923A1 (en) 2003-10-21 2008-05-21 Wear-resistant elements and method of making same

Publications (1)

Publication Number Publication Date
WO2005037469A1 true WO2005037469A1 (en) 2005-04-28

Family

ID=34463425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015429 WO2005037469A1 (en) 2003-10-21 2004-10-19 Wear-resistant parts and method for manufacture thereof

Country Status (5)

Country Link
US (2) US20070071630A1 (en)
JP (1) JP4668793B2 (en)
KR (1) KR20060126962A (en)
CN (1) CN1871084A (en)
WO (1) WO2005037469A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117414A (en) * 2013-12-19 2015-06-25 住友電工焼結合金株式会社 Cr-CONTAINING IRON-BASED SINTERED COMPACT, AND METHOD FOR PRODUCING THE SINTERED COMPACT

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025008B4 (en) * 2006-05-30 2022-09-15 Schaeffler Technologies AG & Co. KG Process for hardening running surfaces of roller bearing components
US10867730B2 (en) 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
CN107253703B (en) * 2011-12-15 2021-08-10 卡斯西部储备大学 Rare earth-free nitride magnet capable of transformation and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279814A (en) * 1992-03-31 1993-10-26 Sumitomo Electric Ind Ltd Sintered alloy and its production
JPH06299284A (en) * 1993-04-12 1994-10-25 Fuji Oozx Inc High strength nitrided sintered member excellent in wear resistance and its production
JP2002098077A (en) * 2000-09-25 2002-04-05 Matsushita Electric Ind Co Ltd Rotary compressor and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2629728A (en) * 1949-08-22 1953-02-24 Robert B Anderson Iron nitride catalysts in carbon oxide hydrogenations
US3368882A (en) * 1965-04-06 1968-02-13 Chromalloy American Corp Surface hardened composite metal article of manufacture
KR100398563B1 (en) * 1999-11-15 2003-09-19 마츠시타 덴끼 산교 가부시키가이샤 Rotary compressor and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279814A (en) * 1992-03-31 1993-10-26 Sumitomo Electric Ind Ltd Sintered alloy and its production
JPH06299284A (en) * 1993-04-12 1994-10-25 Fuji Oozx Inc High strength nitrided sintered member excellent in wear resistance and its production
JP2002098077A (en) * 2000-09-25 2002-04-05 Matsushita Electric Ind Co Ltd Rotary compressor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117414A (en) * 2013-12-19 2015-06-25 住友電工焼結合金株式会社 Cr-CONTAINING IRON-BASED SINTERED COMPACT, AND METHOD FOR PRODUCING THE SINTERED COMPACT

Also Published As

Publication number Publication date
US20080216923A1 (en) 2008-09-11
US20070071630A1 (en) 2007-03-29
KR20060126962A (en) 2006-12-11
JPWO2005037469A1 (en) 2007-11-22
CN1871084A (en) 2006-11-29
JP4668793B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
Karaoğlu Structural characterization and wear behavior of plasma-nitrided AISI 5140 low-alloy steel
Foerster et al. AISI 304 nitrocarburized at low temperature: Mechanical and tribological properties
US8414710B2 (en) Method for surface treatment of metal material
KR100966753B1 (en) Method of fabricating iron nano powder sintered part
US20080216923A1 (en) Wear-resistant elements and method of making same
WO2004081252A1 (en) Nitrided valve lifter and method for manufacture thereof
Riofano et al. Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding
CN112969873A (en) Piston ring
De Mello et al. Effect of nature of nitride phases on microabrasion of plasma nitrided sintered iron
Gonzalez-Moran et al. Improved mechanical and wear properties of H13 tool steel by nitrogen-expanded martensite using current-controlled plasma nitriding
Çelik et al. Microstructure and structural behavior of ion-nitrided AISI 8620 steel
Barcelos et al. Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing
JP4327781B2 (en) Manufacturing method of carburized parts
CN110629155A (en) Preparation method of hard wear-resistant coating for mechanical chemical carburization treatment on surface of nickel-chromium-molybdenum steel
King et al. Ferritic nitrocarburising of tool steels
CN108150379B (en) Method for producing a swash plate
Lee et al. Duplex plasma surface treatment process on mild steel and high alloyed tool steel
Riofano et al. Study of the wear behavior of ion nitrided steels with different vanadium contents
Hai-Dou et al. Comparative investigation on tribological properties of ion-sulfuration layers under dry friction
JP2004256831A (en) Steel material for nitriding excellent in magnetic property after nitriding, and its formed body
JP4405781B2 (en) Wear-resistant parts and method for manufacturing the same
JP2005127151A (en) Component for compressor and its manufacturing method
CN114286872B (en) Sintered component and method for producing sintered component
Rosso et al. Mechanical properties and microstructural characteristic of sinter-hardened steels
Engstrom et al. Efficient Low-Alloy Steels for High-Performance Structural Applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030667.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514829

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067007485

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007071630

Country of ref document: US

Ref document number: 10576479

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067007485

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10576479

Country of ref document: US