JP4820490B2 - Method for producing ferrous sintered alloy - Google Patents

Method for producing ferrous sintered alloy Download PDF

Info

Publication number
JP4820490B2
JP4820490B2 JP2001042152A JP2001042152A JP4820490B2 JP 4820490 B2 JP4820490 B2 JP 4820490B2 JP 2001042152 A JP2001042152 A JP 2001042152A JP 2001042152 A JP2001042152 A JP 2001042152A JP 4820490 B2 JP4820490 B2 JP 4820490B2
Authority
JP
Japan
Prior art keywords
mass
less
sintered alloy
base material
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001042152A
Other languages
Japanese (ja)
Other versions
JP2002241908A (en
Inventor
直樹 本岡
圭一 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2001042152A priority Critical patent/JP4820490B2/en
Publication of JP2002241908A publication Critical patent/JP2002241908A/en
Application granted granted Critical
Publication of JP4820490B2 publication Critical patent/JP4820490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、表面に均一な窒化層を有し、強度、靭性および耐摩耗性に優れた鉄系焼結合金の製造方法に関する。
【0002】
【従来の技術】
従来から、鉄系焼結合金で形成される部材の一例として、ロータリコンプレッサに組込まれるブレードと呼ばれる部材は知られている。ブレードは、ロータリコンプレッサのシリンダに設けられたブレード溝内に摺動自在に設置され、シリンダ内に収容されるローラの外周面に当接される。このブレードの側面はブレード溝に摺接し、またブレードの先端はローラの外周面に摺接するので、ブレードは耐摩耗性に優れていなければならない。
【0003】
上記ブレードの耐摩耗性を向上するための手法が、たとえば特公平1−58356号に開示されている。
【0004】
上記公報には、クロム(Cr)を含有した鋼、焼結合金または鋳鉄のいずれかをブレードの母材とし、この母材を軟窒化処理し、その表層部にFe−Cr−Nの化合物を主成分とする第1の層を生成させ、この第1の層の下側に上記化合物と同じ成分の化合物を点在させた第2の層を生成し、少なくともシリンダに形成されたブレード溝に摺接する側面の第1の層を除去し、第2の層を露出させることによって第2の層に点在する化合物を介してブレードと相手材とを摺接させ、上記化合物によってブレードの耐摩耗性を向上させるようにした発明が記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、焼結合金は表面から内部に連続した空孔を有しており、焼結合金に単純に上記の窒化処理を施すと、空孔を通して内部にまで脆い窒化物が形成されてしまう。そのため、母材である焼結合金の強度等が低下してしまう。
【0006】
また、窒化処理を施して優れた耐摩耗性を得るには母材自体の硬度が高い方が望ましいが、上記公報には焼結合金として備えるべき特性が記載されていない。そのため、上記の公報に記載の発明では、ブレード(焼結合金)の耐摩耗性を効果的に向上することができるとは言えない。
【0007】
本発明は上記の課題を解決するためになされたものである。本発明の目的は、クロム(Cr)を含有し表面を窒化した鉄系焼結合金の強度、靭性および耐摩耗性を向上することにある。
【0009】
【課題を解決するための手段】
本願発明者等は、クロムを含有する鉄系焼結合金の表面に安定した窒化処理を施すための手法について鋭意検討を行ない、鉄系焼結合金の表面における空孔の面積率および鉄系焼結合金内部の水分量が上記窒化処理に影響を及ぼすことを知得した。
【0010】
そこで、種々の実験を行ない、母材表面の空孔の面積率を5%以下とし、母材内部に存在する水分量を0.1%以下とすることで、鉄系焼結合金の表面に安定した窒化処理を施すことができることを知得した。
【0011】
ここで、空孔の面積率を5%以下としたのは、空孔の面積率が5%を越えると窒化が母材内部にまで浸透して母材が脆くなり、鉄系焼結合金の強度が低下するからである。また、母材内部に存在する水分を0.1%以下と規定したのは、水分が0.1%を越えると窒化が阻害され、窒化層が形成され難くなるからである。なお、空孔の面積率および上記水分量は、0%であってもよい。
【0012】
上記母材は、好ましくは、質量比で12%以上25%以下のクロムと、質量比で0.5%以上1.5%以下の炭素(C)と、鉄および不可避的不純物で構成される残部とを含み、母材内部に炭化物が分散する。
【0013】
このように、母材がクロムを質量比で12%以上25%以下含有することにより、窒化処理が安定化する。また、クロムの含有量が12%未満の場合、炭化物分散量が少なくなるので耐摩耗性が低下し、クロムの含有量が25%を越えると耐摩耗性向上効果が少なくなり、残留オーステナイトの生成が増加するので、耐摩耗性が低下するおそれがある。そこで、母材におけるクロムの含有量を上記の範囲とした。
【0014】
炭素(C)は、母材内部に炭化物を生成するために不可欠の要素である。しかし、炭素の含有量が0.5%未満の場合、炭化物量が少なくなり耐摩耗性が低下し、炭素の含有量が1.5%を越えると、耐摩耗性向上の効果が少なくなり、粉末成形の密度アップが困難となる。そこで、母材における炭素の含有量を上記の範囲とした。
【0015】
また、上記母材は、好ましくは、質量比で3.0%以下のモリブデン(Mo)を含む。
【0016】
このようにモリブデンを含有することにより、耐食性が向上する。モリブデンの含有量が0.5%未満の場合、モリブデンを添加することによる効果が少なくなるが効果はある。しかしモリブデンの含有量が3.0%を越えた場合、耐食性向上の度合いが少なくなるとともにコストも上昇する。そこで、母材におけるモリブデンの含有量を上記の範囲とした。
【0017】
本発明に係る鉄系焼結合金の製造方法は、表面における空孔の面積率が5%以下となるようにブレードの表面に目潰し処理する工程と、表面から20〜120μmの深さまで窒化層が形成されるように表面窒化処理する工程とを含む。
【0018】
上記目潰し処理は、水溶液を使用したバレルまたは研磨加工であり、本発明に係る鉄系焼結合金の製造方法は、目潰し処理後に残水量が0.1質量%以下となるように乾燥させる工程をさらに含む。
【0019】
【発明の実施の形態】
以下、図1、表1〜表3を用いて、本発明の実施の形態について説明する。
【0020】
(実施の形態1)
Fe−17質量(mass)%Cr−1質量%C合金粉末に1質量%の潤滑剤を添加した混合粉末を成形圧882MPaで25×30×5mmの板材に成形した。得られた圧粉体を真空雰囲気中1250℃、1時間の条件で焼結した。焼結体の密度は6.63Mg/m3であった。
【0021】
この焼結体について下記の表1に示す条件にて表面の目潰し処理(焼結体表面における空孔の面積を減じる表面処理)を行なった。
【0022】
【表1】

Figure 0004820490
【0023】
上記の目潰し処理の後、焼結体表面の空孔率を観察し、ガス窒化処理を行なった。このとき、比較例として目潰し処理を行なわない焼結体を準備し、これにも同様のガス窒化処理を行なった。該窒化処理は、図1に示す条件で行なった。
【0024】
表1の条件の中で水溶液を使うバレルおよび研磨加工したサンプルについては、処理後に120℃、1時間の条件で乾燥を行ない、サンプル中に浸透した水分を除去した。表1のサンプルにおける残水量は、いずれも0.1質量%以下である。
【0025】
表1に、上記の目潰し処理後のサンプル表面における空孔の面積比(面積率)と、窒化処理後の抗折力と、窒化処理後のサンプル中央部を切断し窒化状況を観察した結果とを示す。
【0026】
なお、サンプル表面における空孔率は、サンプル表面を100倍で写真撮影し、空孔部を黒く塗りつぶし、画像解析により空孔の面積比率を測定した。また、残水量は、次のようにして測定する。すなわち、各サンプルについて乾燥前重量を電子天秤にて1/10000gまで測定し、重量測定済みサンプルについて恒温槽にて所定の温度・時間で乾燥し、サンプルを常温まで自然冷却した後に乾燥後の重量を電子天秤にて再度1/10000gまで測定し、下記算出式(1)にて製品における残水率を算出する。
残水率(%)=((乾燥前重量―乾燥後重量)/乾燥後重量)×100…(1)
また抗折力は、次のようにして測定する。すなわち、試験片として28×24×4mmのブレード形状のサンプル(試験片)を用い、国際規格ISO3325に規定されている抗折力測定装置を基礎とした標点間距離を10mmにした専用装置を作製し、この試験治具を用い荷重を付加した後に試験片の破壊した荷重を測定し、下記の計算式(2)にて抗折力R(MPa)を算出した。
【0027】
R=(3Fl)/(2bh2)…(2)
計算式(2)において、Fは試験片が破断したときの荷重(N)、lは支点間距離(mm)、bは試験片の厚みに対して直角方向の幅(mm)、hは試験片の荷重方向に対して平行な高さ(厚み)(mm)である。
【0028】
表1に示すように、サンプルに表面処理を施さなかったものは、窒化層が内部にまで浸透したため、抗折力が極めて低くなっているのが分かる。表面処理を施したサンプルであっても、表面における空孔率が5%を越えるものは、窒化層が安定していないため、全体的に窒化層の厚みが大きくなっていると同時に部分的に深くまで窒化された部分が多く存在していた。そのため、抗折力が低くなっている。
【0029】
それに対し、表面における空孔率が5%以下のサンプルは、窒化層の厚みが小さく、サンプル表層のみ窒化されていた。つまり、サンプル内部はほとんど窒化されず、そのため抗折力が高くなっている。したがって、サンプル表面における空孔率は、0%以上5%以下であることが必要である。
【0030】
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態2では、実施の形態1で作製したサンプルの中で研磨加工品について乾燥条件を変え、残水量の異なるサンプルを作製し、実施の形態1と同様の条件で窒化処理を行なった。ここで、ショット品は目潰し処理の際に水を使用しないため、水分率が0.001%より小さい値となっている。
【0031】
そして、各サンプル表面における窒化層の形成状況を評価した。その結果を表2に示す。
【0032】
【表2】
Figure 0004820490
【0033】
表2に示すように、残水量と窒化層の形成状況との間に相関があることがわかる。具体的には、残水量が0.1質量%を越えると、窒化層が形成されなくなるかあるいは不均一に形成されることがわかる。したがって、残水量は0質量%以上0.1質量%以下であることが必要である。
【0034】
(実施の形態3)
次に、本発明の実施の形態3について説明する。本実施の形態では、Fe−Cr合金粉、Fe−Cr―Mo合金粉、Fe−Cr―C合金粉、Fe−Cr―Mo―C合金粉および黒鉛粉を準備し、これらの1種あるいは2種以上を所定の割合で混合し、下記の表3に示す組成になるように混合粉末を作製した。そして、いずれにも潤滑剤を1質量%添加した。
【0035】
【表3】
Figure 0004820490
【0036】
上記各粉末を800〜1000MPaでコンプレッサのベーン(ブレード)形状に成形し、焼結体の密度が6.6〜6.7Mg/m3となるように真空中1180℃〜1250℃で1時間の焼結を行なった。その結果、得られた焼結体の密度は、6.6〜6.7Mg/m3であった。その後、5分のショットブラストを行なって焼結体表面の目潰しを行なった。
【0037】
このサンプルを真空中1050℃で1時間加熱して焼入れし、その後200℃で1.5時間の焼戻しを行なった。次に、サンプルに研磨加工を行ない、150℃で3時間の乾燥を行ない、その後図1の条件で窒化処理を行なった。
【0038】
上記窒化処理によりサンプル表面に形成された窒化層の厚みは、50〜100μm程度であった。また、比較のために窒化しないサンプルも作製した。
【0039】
上記の各サンプルに表3に示す条件で耐摩耗試験を行なった。その結果を表3に示す。表3に示すように、本発明の組成を有するものは、良好な耐摩耗性を示しているのがわかる。
【0040】
具体的には、サンプルにおけるクロムの含有量が12質量%未満の場合は硬質粒子となるクロム炭化物の生成量が少なくなり、耐摩耗性が低下する。該含有量が25質量%を越えると、フェライト相が安定化され易く、焼入れによる硬さ向上が期待されなくなり、耐摩耗性が低下する。したがって、クロムの含有量は、好ましくは13質量%以上25質量%以下であり、より好ましくは16質量%以上20質量%以下である。
【0041】
また、サンプルにおける炭素(C)の含有量が0.5質量%未満の場合,炭化物生成量が少なくなり耐摩耗性が低下し、該含有量が1.5%を越えると、残留オーステナイトの生成量が増加し耐摩耗性が低下する。したがって、炭素の含有量は、好ましくは0.6質量%以上1.5質量%以下であり、より好ましくは0.8質量%以上1.0質量%以下である。
【0042】
なお、サンプルにモリブデン(Mo)を添加した場合にも、耐摩耗性は高く維持されており、耐食性を向上させる効果がある。しかし、モリブデンの含有量が0.5質量%未満の場合、モリブデンを添加することによる効果が少なく、モリブデンの含有量が3.0質量%を越えると粉末の硬化が大きく圧縮性が低下するだけでなくコストも上昇する。したがって、サンプルにおけるモリブデンの含有量は、0.5質量%以上3.0質量%以下とした。しかし、モリブデンを添加することによる効果は少なくなるが、モリブデンの含有量を、0.5質量%未満としてもよい。
【0043】
下記の表4に、原料組成と腐食速度の関係を示す。表4に示すように、モリブデンを所定量添加することにより、耐食性が向上しているのがわかる。
【0044】
【表4】
Figure 0004820490
【0045】
以上のように、この発明の実施の形態について説明を行なったが、今回開示した実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0046】
【発明の効果】
以上説明したように、本発明によれば、母材表面における空孔の面積比と母材内部に存在する水分量を適切に規定したので、クロムを含有する鉄系焼結合金の内部が窒化されるのを抑制しながら鉄系焼結合金の表面に均一な窒化層を形成することができる。それにより、鉄系焼結合金の強度、靭性および耐摩耗性を向上することができる。
【0047】
また、クロムを含有する鉄系焼結合金の基地中に炭化物を分散させることにより母材の強度を上げることができ、この母材表面に本発明の窒化処理を施すことで耐摩耗性をより効果的に向上することができる。なお、母材中に炭化物を均一に分散させることにより、さらに効果的に耐摩耗性を向上することができる。
【0048】
また、鉄系焼結合金の母材にモリブデンを添加することにより、高温での硬度向上を期待でき、このことも耐摩耗性の向上に寄与し得る。
【図面の簡単な説明】
【図1】 本発明の窒化処理条件を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an iron-based sintered alloy having a uniform nitride layer on the surface and excellent in strength, toughness and wear resistance.
[0002]
[Prior art]
Conventionally, a member called a blade incorporated in a rotary compressor is known as an example of a member formed of an iron-based sintered alloy. The blade is slidably installed in a blade groove provided in a cylinder of the rotary compressor, and is brought into contact with an outer peripheral surface of a roller accommodated in the cylinder. Since the side surface of the blade is in sliding contact with the blade groove and the tip of the blade is in sliding contact with the outer peripheral surface of the roller, the blade must have excellent wear resistance.
[0003]
A technique for improving the wear resistance of the blade is disclosed in, for example, Japanese Patent Publication No. 1-58356.
[0004]
In the above publication, either a steel containing chromium (Cr), a sintered alloy or cast iron is used as a base material of a blade, and this base material is subjected to soft nitriding treatment, and a Fe—Cr—N compound is formed on the surface layer portion thereof. A first layer having a main component is generated, and a second layer in which a compound having the same component as the above compound is scattered below the first layer is generated, and at least in a blade groove formed in the cylinder By removing the first layer on the side surface in sliding contact and exposing the second layer, the blade and the mating member are slidably contacted with each other through the compound interspersed in the second layer. An invention for improving the performance is described.
[0005]
[Problems to be solved by the invention]
However, the sintered alloy has continuous pores from the surface to the inside, and when the above nitriding treatment is simply performed on the sintered alloy, brittle nitrides are formed through the pores to the inside. Therefore, the strength and the like of the sintered alloy that is the base material are reduced.
[0006]
Further, in order to obtain excellent wear resistance by performing nitriding treatment, it is desirable that the base material itself has a higher hardness, but the above publication does not describe characteristics to be provided as a sintered alloy. Therefore, in the invention described in the above publication, it cannot be said that the wear resistance of the blade (sintered alloy) can be effectively improved.
[0007]
The present invention has been made to solve the above problems. An object of the present invention is to improve the strength, toughness and wear resistance of an iron-based sintered alloy containing chromium (Cr) and nitrided on its surface.
[0009]
[Means for Solving the Problems]
The inventors of the present application have made extensive studies on a technique for performing stable nitriding treatment on the surface of the iron-based sintered alloy containing chromium, and the area ratio of pores on the surface of the iron-based sintered alloy and the iron-based sintered alloy. It has been found that the amount of water inside the bond gold affects the nitriding treatment.
[0010]
Therefore, various experiments were conducted, and the area ratio of the pores on the surface of the base material was set to 5% or less, and the amount of moisture existing in the base material was set to 0.1% or less, so that the surface of the iron-based sintered alloy was It has been found that a stable nitriding treatment can be performed.
[0011]
Here, the area ratio of the pores was set to 5% or less because if the area ratio of the pores exceeds 5%, nitriding penetrates into the base material and the base material becomes brittle. This is because the strength decreases. The reason why the moisture present in the base material is defined as 0.1% or less is that when the moisture exceeds 0.1%, nitriding is inhibited and a nitrided layer is hardly formed. The hole area ratio and the water content may be 0%.
[0012]
The base material is preferably composed of chromium in a mass ratio of 12% to 25%, carbon (C) in a mass ratio of 0.5% to 1.5%, iron, and inevitable impurities. The carbide is dispersed inside the base material.
[0013]
Thus, the nitriding treatment is stabilized when the base material contains chromium in a mass ratio of 12% to 25%. In addition, when the chromium content is less than 12%, the carbide dispersion amount decreases, so the wear resistance decreases. When the chromium content exceeds 25%, the effect of improving the wear resistance decreases and the formation of retained austenite. Increases the wear resistance. Therefore, the chromium content in the base material is set to the above range.
[0014]
Carbon (C) is an indispensable element for generating carbide inside the base material. However, if the carbon content is less than 0.5%, the amount of carbide decreases and wear resistance decreases, and if the carbon content exceeds 1.5%, the effect of improving wear resistance decreases, It becomes difficult to increase the density of powder molding. Therefore, the carbon content in the base material is set to the above range.
[0015]
The base material preferably contains molybdenum (Mo) of 3.0% or less by mass ratio.
[0016]
Thus, by containing molybdenum, corrosion resistance improves. When the content of molybdenum is less than 0.5%, the effect of adding molybdenum is reduced, but there is an effect. However, if the molybdenum content exceeds 3.0%, the degree of improvement in corrosion resistance decreases and the cost also increases. Therefore, the content of molybdenum in the base material is set to the above range.
[0017]
The method for producing an iron-based sintered alloy according to the present invention includes a step of crushing the surface of the blade so that the area ratio of pores on the surface is 5% or less, and a nitride layer from the surface to a depth of 20 to 120 μm. And surface nitriding so as to be formed.
[0018]
The crushing process is a barrel or polishing process using an aqueous solution, and the method for producing an iron-based sintered alloy according to the present invention includes a step of drying so that the residual water amount is 0.1 mass% or less after the crushing process. In addition.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIG. 1 and Tables 1 to 3.
[0020]
(Embodiment 1)
A mixed powder obtained by adding 1% by mass of a lubricant to Fe-17% (mass)% Cr-1% by mass C alloy powder was molded into a plate of 25 × 30 × 5 mm at a molding pressure of 882 MPa. The obtained green compact was sintered in a vacuum atmosphere at 1250 ° C. for 1 hour. The density of the sintered body was 6.63 Mg / m 3 .
[0021]
The sintered body was subjected to surface crushing treatment (surface treatment for reducing the area of pores on the surface of the sintered body) under the conditions shown in Table 1 below.
[0022]
[Table 1]
Figure 0004820490
[0023]
After the above crushing treatment, the porosity of the sintered body surface was observed and gas nitriding treatment was performed. At this time, a sintered body that was not subjected to the crushing process was prepared as a comparative example, and a similar gas nitriding process was performed on the sintered body. The nitriding treatment was performed under the conditions shown in FIG.
[0024]
The barrel using an aqueous solution under the conditions shown in Table 1 and the polished sample were dried at 120 ° C. for 1 hour after the treatment to remove moisture permeated into the sample. The amount of residual water in the samples in Table 1 is 0.1% by mass or less.
[0025]
Table 1 shows the area ratio (area ratio) of vacancies on the sample surface after the above-mentioned crushing treatment, the bending strength after nitriding treatment, and the results of observing the nitriding situation by cutting the center portion of the sample after nitriding treatment. Indicates.
[0026]
The porosity of the sample surface was measured by taking a photograph of the sample surface at a magnification of 100 times, painting the pores black, and measuring the area ratio of the pores by image analysis. Moreover, the amount of residual water is measured as follows. That is, the weight before drying of each sample is measured with an electronic balance to 1/10000 g, the weight-measured sample is dried in a constant temperature bath at a predetermined temperature and time, the sample is naturally cooled to room temperature, and then the weight after drying. Is again measured with an electronic balance to 1/10000 g, and the residual water rate in the product is calculated by the following calculation formula (1).
Residual water ratio (%) = ((weight before drying−weight after drying) / weight after drying) × 100 (1)
The bending strength is measured as follows. In other words, a 28 x 24 x 4 mm blade-shaped sample (test piece) was used as a test piece, and a dedicated device with a distance between gauge points of 10 mm based on a bending strength measuring device stipulated in international standard ISO 3325 was used. After producing and applying a load using this test jig, the load at which the test piece was broken was measured, and the bending force R (MPa) was calculated by the following formula (2).
[0027]
R = (3Fl) / (2bh 2 ) (2)
In the calculation formula (2), F is the load (N) when the specimen is broken, l is the distance between supporting points (mm), b is the width (mm) in the direction perpendicular to the thickness of the specimen, and h is the test. The height (thickness) (mm) is parallel to the load direction of the piece.
[0028]
As shown in Table 1, it can be seen that in the case where the sample was not subjected to the surface treatment, the bending strength was extremely low because the nitride layer penetrated into the inside. Even in the case of a surface-treated sample, if the porosity on the surface exceeds 5%, since the nitride layer is not stable, the thickness of the nitride layer is increased as a whole and partially Many portions were deeply nitrided. Therefore, the bending strength is low.
[0029]
On the other hand, in the sample having a porosity of 5% or less on the surface, the thickness of the nitride layer was small, and only the sample surface layer was nitrided. That is, the inside of the sample is hardly nitrided, so that the bending strength is high. Therefore, the porosity on the sample surface needs to be 0% or more and 5% or less.
[0030]
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the second embodiment, among the samples produced in the first embodiment, the dry conditions were changed for the polished product, samples having different residual water amounts were produced, and nitriding was performed under the same conditions as in the first embodiment. . Here, since the shot product does not use water in the crushing process, the moisture content is less than 0.001%.
[0031]
And the formation condition of the nitride layer in each sample surface was evaluated. The results are shown in Table 2.
[0032]
[Table 2]
Figure 0004820490
[0033]
As shown in Table 2, it can be seen that there is a correlation between the amount of residual water and the formation state of the nitride layer. Specifically, it can be seen that when the amount of residual water exceeds 0.1% by mass, the nitrided layer is not formed or formed unevenly. Therefore, the amount of residual water needs to be 0 mass% or more and 0.1 mass% or less.
[0034]
(Embodiment 3)
Next, a third embodiment of the present invention will be described. In the present embodiment, Fe—Cr alloy powder, Fe—Cr—Mo alloy powder, Fe—Cr—C alloy powder, Fe—Cr—Mo—C alloy powder and graphite powder are prepared, and one or two of these are prepared. More than the seeds were mixed at a predetermined ratio, and a mixed powder was prepared so as to have the composition shown in Table 3 below. And 1 mass% of lubricant was added to all.
[0035]
[Table 3]
Figure 0004820490
[0036]
Each of the above powders is molded into a vane shape of a compressor at 800 to 1000 MPa, and the sintered compact has a density of 6.6 to 6.7 Mg / m 3 for 1 hour at 1180 ° C. to 1250 ° C. in a vacuum. Sintering was performed. As a result, the density of the obtained sintered body was 6.6 to 6.7 Mg / m 3 . Thereafter, the surface of the sintered body was crushed by performing shot blasting for 5 minutes.
[0037]
The sample was quenched in a vacuum at 1050 ° C. for 1 hour and then tempered at 200 ° C. for 1.5 hours. Next, the sample was polished, dried at 150 ° C. for 3 hours, and then subjected to nitriding under the conditions shown in FIG.
[0038]
The thickness of the nitride layer formed on the sample surface by the nitriding treatment was about 50 to 100 μm. For comparison, a sample that was not nitrided was also produced.
[0039]
Each of the above samples was subjected to an abrasion resistance test under the conditions shown in Table 3. The results are shown in Table 3. As shown in Table 3, it can be seen that those having the composition of the present invention exhibit good wear resistance.
[0040]
Specifically, when the chromium content in the sample is less than 12% by mass, the amount of chromium carbide that forms hard particles decreases, and the wear resistance decreases. When the content exceeds 25% by mass, the ferrite phase is easily stabilized, and the improvement in hardness by quenching is not expected, and the wear resistance is lowered. Accordingly, the chromium content is preferably 13% by mass or more and 25% by mass or less, and more preferably 16% by mass or more and 20% by mass or less.
[0041]
In addition, when the carbon (C) content in the sample is less than 0.5% by mass, the amount of carbide produced is reduced and the wear resistance is reduced, and when the content exceeds 1.5%, residual austenite is produced. The amount increases and wear resistance decreases. Therefore, the carbon content is preferably 0.6% by mass or more and 1.5% by mass or less, and more preferably 0.8% by mass or more and 1.0% by mass or less.
[0042]
In addition, even when molybdenum (Mo) is added to the sample, the wear resistance is maintained high, and there is an effect of improving the corrosion resistance. However, when the molybdenum content is less than 0.5% by mass, the effect of adding molybdenum is small, and when the molybdenum content exceeds 3.0% by mass, the powder is hardened and the compressibility is reduced. Not only will the cost increase. Therefore, the content of molybdenum in the sample is set to 0.5% by mass or more and 3.0% by mass or less. However, the effect of adding molybdenum is reduced, but the molybdenum content may be less than 0.5% by mass.
[0043]
Table 4 below shows the relationship between the raw material composition and the corrosion rate. As shown in Table 4, it can be seen that the corrosion resistance is improved by adding a predetermined amount of molybdenum.
[0044]
[Table 4]
Figure 0004820490
[0045]
As described above, the embodiment of the present invention has been described. However, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.
[0046]
【The invention's effect】
As described above, according to the present invention, the area ratio of pores on the surface of the base material and the amount of moisture present in the base material are appropriately defined, so that the inside of the iron-based sintered alloy containing chromium is nitrided. Thus, a uniform nitride layer can be formed on the surface of the iron-based sintered alloy while suppressing this. Thereby, the strength, toughness, and wear resistance of the iron-based sintered alloy can be improved.
[0047]
Moreover, the strength of the base material can be increased by dispersing carbide in the base of the iron-based sintered alloy containing chromium, and the wear resistance can be further improved by applying the nitriding treatment of the present invention to the surface of the base material. It can be effectively improved. Note that the wear resistance can be further effectively improved by uniformly dispersing carbide in the base material.
[0048]
Further, by adding molybdenum to the base material of the iron-based sintered alloy, an improvement in hardness at high temperatures can be expected, which can also contribute to an improvement in wear resistance.
[Brief description of the drawings]
FIG. 1 is a diagram showing nitriding conditions of the present invention.

Claims (1)

内部に、炭化物が分散し、質量比で12%以上25%以下のクロムと、質量比で0.5%以上1.5%以下の炭素と、質量比で3.0%以下のモリブデンと、鉄および不可避的不純物で構成される残部とを含む母材の表面における空孔の面積率が5%以下となるように、水溶液を使用したバレルまたは研磨加工により前記表面に目潰し処理する工程と、
前記表面から20〜120μmの深さまで窒化層が形成されるように表面窒化処理する工程とを含み
前記目潰し処理後に、残水量が0.1質量%以下となるように乾燥させる、鉄系焼結合金の製造方法。
Inside, carbide is dispersed, chromium in a mass ratio of 12% to 25%, carbon in a mass ratio of 0.5% to 1.5%, molybdenum in a mass ratio of 3.0% or less, Crushing the surface by barrel or polishing using an aqueous solution so that the area ratio of vacancies in the surface of the base material containing the balance composed of iron and inevitable impurities is 5% or less;
And a step of surface nitriding treatment as the nitride layer to a depth of 20~120μm from the surface is formed,
A method for producing an iron-based sintered alloy, which is dried so that a residual water amount is 0.1% by mass or less after the crushing treatment .
JP2001042152A 2001-02-19 2001-02-19 Method for producing ferrous sintered alloy Expired - Fee Related JP4820490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042152A JP4820490B2 (en) 2001-02-19 2001-02-19 Method for producing ferrous sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042152A JP4820490B2 (en) 2001-02-19 2001-02-19 Method for producing ferrous sintered alloy

Publications (2)

Publication Number Publication Date
JP2002241908A JP2002241908A (en) 2002-08-28
JP4820490B2 true JP4820490B2 (en) 2011-11-24

Family

ID=18904491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042152A Expired - Fee Related JP4820490B2 (en) 2001-02-19 2001-02-19 Method for producing ferrous sintered alloy

Country Status (1)

Country Link
JP (1) JP4820490B2 (en)

Also Published As

Publication number Publication date
JP2002241908A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US5466276A (en) Valve seat made of secondary hardening-type high temperature wear-resistant sintered alloy
JP4580984B2 (en) Stainless steel powder
JP4825200B2 (en) Powder metallurgy parts and manufacturing method thereof
KR100613942B1 (en) Iron powder
JP2004522860A (en) Highly machinable iron-based sintered alloy for valve seat inserts
KR20040070318A (en) Method for producing sintered components from a sinterable material
JP2007046166A (en) Use of mixture composed of iron based powder, graphite and solid lubricant particle
JP2018508660A (en) Powder metal composition for easy machining
KR101085777B1 (en) Hard-particle powder for sintered body and sintered body
JP2004027357A (en) Wear resistant sintered alloy for valve seat and method of producing the same
JP4820490B2 (en) Method for producing ferrous sintered alloy
JPH01134093A (en) Roller for compressor
Trabadelo et al. Development of powder metallurgy T42 high speed steel for structural applications
Molinari et al. Surface durability of steam treated sintered iron alloys
Yılmaz Abrasive wear of FeCr (M7C3–M23C6) reinforced iron based metal matrix composites
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
JPH06192784A (en) Wear resistant sintered sliding member
Candela et al. Mechanical properties and wear behaviour of nitrided Fe–3· 5Mo base sintered steels
WO2005037469A1 (en) Wear-resistant parts and method for manufacture thereof
JP2600245B2 (en) Vane lumber
JPH0742558B2 (en) Abrasion resistant iron-based sintered alloy and its manufacturing method
JPH0319282B2 (en)
AU589441B2 (en) Powder metal part
JPS62202058A (en) Iron-base sintered alloy for valve seat
JPH1182515A (en) Sliding member

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees