WO2019107313A1 - Iron-based powder mixture and method for manufacturing iron-based sintered member - Google Patents

Iron-based powder mixture and method for manufacturing iron-based sintered member Download PDF

Info

Publication number
WO2019107313A1
WO2019107313A1 PCT/JP2018/043422 JP2018043422W WO2019107313A1 WO 2019107313 A1 WO2019107313 A1 WO 2019107313A1 JP 2018043422 W JP2018043422 W JP 2018043422W WO 2019107313 A1 WO2019107313 A1 WO 2019107313A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
powder
sintered body
cutting
sintered
Prior art date
Application number
PCT/JP2018/043422
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 山西
昌史 高橋
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2019107313A1 publication Critical patent/WO2019107313A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • Embodiments of the present invention relate to a method of manufacturing an iron-based powder mixture and an iron-based sintered member.
  • Iron-based sintered members produced by powder metallurgy are applied to various applications because they have special metallographic structures which can not be obtained by the melting method.
  • the iron-based sintered member is manufactured, for example, by press-forming and sintering a mixture containing iron powder, powder for an alloy such as copper powder, nickel powder, etc., graphite powder, a forming lubricant and the like. .
  • a sintered body may be subjected to cutting after sintering.
  • techniques for imparting good machinability to the sintered body have been studied.
  • MnS manganese sulfide
  • the machinability improvement effect brought about by manganese sulfide is believed to be due to the fact that manganese sulfide promotes chip division.
  • an iron-based powder mixture to which manganese sulfide powder is added as a raw material is used to obtain a sintered body.
  • Patent Document 1 a CaO-Al 2 O 3 -SiO 2 -based composite oxide mainly composed of iron powder in an iron-based mixed powder for powder metallurgy and having an anorsite phase and / or a galenite phase and having an average particle size of 50 ⁇ m or less
  • Patent Document 1 it is considered that a protective film of CaO-Al 2 O 3 -SiO 2 -based composite oxide is formed on the surface of a tool at the time of cutting, in the anorthite phase and / or the galenite phase, and the machinability is improved.
  • a protective film of CaO-Al 2 O 3 -SiO 2 -based composite oxide is formed on the surface of a tool at the time of cutting, in the anorthite phase and / or the galenite phase, and the machinability is improved.
  • the invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
  • One embodiment relates to an iron-based powder mixture containing a main raw material powder containing at least one selected from the group consisting of iron powder and iron alloy powder, an auxiliary raw material powder, and a calcium salt powder of a higher fatty acid.
  • the calcium salt powder of higher fatty acids comprises calcium behenate powder.
  • the content of the calcium salt powder of the higher fatty acid is 0.1 to 1.2% by mass with respect to the total mass of the main raw material powder.
  • the iron-based powder mixture according to any one of the above is molded to obtain a molded body, the sintered body is sintered to obtain a sintered body, and the sintered body is cut.
  • the present invention relates to a method of manufacturing an iron-based sintered member having a cutting process step of processing.
  • the iron-based powder mixture according to any one of the above is molded to obtain a molded body, the molded body is sintered to obtain a sintered body, the sintered body is heat-treated,
  • the present invention relates to a method for producing an iron-based sintered member, including a heat treatment step of obtaining a heat treatment body, and a cutting step of cutting the heat treatment body.
  • any iron-based powder mixture is molded to obtain a molded body, the molded body is sintered to obtain a sintered body, the sintered body is subjected to steam treatment
  • the present invention relates to a method for producing an iron-based sintered member, comprising: a steam treatment step of obtaining a steam treated body; and a cutting step of cutting the steam treated body.
  • cutting is performed using a cutting tool containing at least titanium on the surface.
  • an iron-based powder mixture capable of obtaining a sintered body with high machinability. Further, according to another embodiment of the present invention, it is possible to provide a manufacturing method capable of efficiently manufacturing an iron-based sintered member.
  • FIG. 1 is a schematic view showing a lathe machining process carried out in Example 2.
  • FIG. 2 is a schematic perspective view showing a cutting tool used in Example 2.
  • FIG. 3 is a digital microscope photograph showing a portion of the cutting tool used in Example 2.
  • FIG. 4 is a graph showing the evaluation results of the machinability of the sintered bodies in Example 2 and Comparative Example 2.
  • FIG. 5 is an electron micrograph showing a portion of the cutting tool used in Example 2 and Comparative Example 2.
  • the iron-based powder mixture comprises at least a main raw material powder comprising at least one selected from the group consisting of iron powder and iron alloy powder, an auxiliary raw material powder, and a calcium salt powder of a higher fatty acid. contains.
  • the main raw material powder contains at least one selected from the group consisting of iron (Fe) powder and iron alloy powder.
  • iron Fe
  • iron alloy powder As elements contained in the iron alloy, copper (Cu), nickel (Ni), chromium (Cr), molybdenum (Mo), vanadium (V), manganese (Mn), titanium (Ti), aluminum (Al), carbon ( C) etc.
  • the main raw material powder specifically, a known iron-based sintered material can be used.
  • the main raw material powder may be used alone or in combination of two or more.
  • the auxiliary material powder is powder other than iron powder, iron alloy powder, and calcium salt powder of higher fatty acid, and examples thereof include metal powder, metal alloy powder, carbon (C) powder, lubricant powder and the like. It is possible to modify, strengthen, etc. the sintered body by the auxiliary raw material powder.
  • the auxiliary raw material powder can be appropriately selected and used according to the desired characteristics of the sintered body.
  • metal powder and metal alloy powder for example, copper (Cu), nickel (Ni), molybdenum (Mo), chromium (Cr), vanadium (V), manganese (Mn), titanium (Ti), aluminum Metal elements other than iron (Fe) such as (Al) may be mentioned.
  • copper powder, copper alloy powder, nickel powder, nickel alloy powder, tungsten powder, molybdenum powder and the like can be mentioned.
  • the carbon powder include graphite powder, carbon black, fullerene and the like.
  • the lubricant powder include fatty acids, fatty acid amides, fatty acid salts, fatty acid alcohols and the like. Specific examples thereof include stearic acid, stearic acid amide, zinc stearate, lithium stearate and the like.
  • the auxiliary raw material powder may be used singly or in combination of two or more.
  • the calcium salt powder of higher fatty acid can improve the machinability of the sintered body.
  • a sintered body prepared using a raw material powder containing calcium salt powder of higher fatty acid is cut by a cutting tool, a deposit containing calcium adheres to the surface of the cutting tool, and the presence of the deposit improves the life of the cutting tool It is thought that.
  • the formation of the calcium-containing deposit on the surface of the cutting tool can be confirmed by surface observation with a scanning electron microscope (SEM) and elemental analysis with an electron probe microanalyzer (EPMA).
  • the calcium salt powder of higher fatty acids also has an effect as a lubricant, so the friction between the molded body and the mold when the molded body is pulled out from the mold is reduced, and the occurrence of defects such as galling and chipping is suppressed. be able to.
  • the powder since the powder is not a hard powder such as CaO-Al 2 O 3 -SiO 2 -based composite oxide, it is possible to maintain sufficient density of the compact.
  • calcium salt powder of higher fatty acid has sufficient mechanical strength without inhibiting diffusion bonding of iron powder and iron alloy powder during sintering because higher fatty acid is decomposed and removed when heated. The sintered body which has these is obtained.
  • calcium salt powder of higher fatty acids is inexpensive, and can suppress wear of cutting tools without significantly increasing the manufacturing cost by use, so the iron-based sintering is efficient and economical as a whole.
  • a member can be provided.
  • the carbon number of the higher fatty acid is preferably 12 or more, more preferably 15 or more, and still more preferably 18 or more, from the viewpoint of obtaining a sufficient effect as a lubricant.
  • the carbon number of the higher fatty acid is preferably 28 or less, more preferably 26 or less, and still more preferably 24 or less, from the viewpoint of improving the machinability and obtaining a high density of the shaped body.
  • the higher fatty acid may be a saturated fatty acid or an unsaturated fatty acid, preferably a saturated fatty acid.
  • higher fatty acids include stearic acid, ricinoleic acid, behenic acid, montanic acid, lauric acid, palmitic acid and the like, with preference given to behenic acid.
  • the calcium salt powder of higher fatty acid may be used alone or in combination of two or more.
  • the content of the auxiliary material powder in the iron-based powder mixture may be set according to the application of the iron-based sintered member, for example, 0.5 mass% or more based on the total mass of the main material powder Preferably it is 1.0 mass% or more, More preferably, it is 1.5 mass% or more.
  • the content of the auxiliary material powder in the iron-based powder mixture is preferably 4.0% by mass or less, more preferably 3.5% by mass or less, based on the total mass of the main raw material powder, and still more preferably It is 3.0 mass% or less.
  • the content of the calcium salt powder of higher fatty acid in the iron-based powder mixture is preferably 0.1% by mass or more, based on the total mass of the main raw material powder, from the viewpoint of improving machinability and lubricity. Preferably it is 0.2 mass% or more, More preferably, it is 0.3 mass% or more.
  • the content of the calcium salt powder of higher fatty acid in the iron-based powder mixture is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, from the viewpoint of improving the density of the molded body and the sintered body More preferably, it is 0.9 mass% or less.
  • the iron-based powder mixture does not contain a higher fatty acid and a compound containing the same, other than the calcium salt of a higher fatty acid, from the viewpoint of improving the density of the formed body and the machinability of the sintered body.
  • a compound containing the same other than the calcium salt of a higher fatty acid
  • the iron-based powder mixture does not contain a higher fatty acid and a compound containing the same, other than the calcium salt of a higher fatty acid, from the viewpoint of improving the density of the formed body and the machinability of the sintered body.
  • compounds containing higher fatty acids include salts of higher fatty acids, esters of higher fatty acids, and amides of higher fatty acids.
  • zinc stearate which is known as a lubricant, tends to lead to a reduction in the density of the molded body by containing it.
  • zinc since zinc is easily vaporized by heating at the time of firing, zinc
  • the iron-based powder mixture is a mixture comprising a main raw material powder, an auxiliary raw material powder, a calcium salt powder of a higher fatty acid, and an unavoidable impurity
  • an iron-based powder mixture The powder mixture is a mixture of at least one selected from the group consisting of iron powder and iron alloy powder, auxiliary material powder, calcium salt powder of higher fatty acid, and inevitable impurities.
  • the content of unavoidable impurities is, for example, 0.1 mass% or less, preferably 0.05 mass% or less, more preferably 0.03 mass% or less, based on the total mass of the iron-based powder mixture. is there.
  • the auxiliary material powder preferably contains at least one selected from the group consisting of metal powders other than iron-based powders, metal alloy powders other than iron alloy powders, carbon (C) powders, and lubricant powders, for example, It consists of at least 1 sort (s) selected from the group which consists of metal powder other than iron-type powder, metal alloy powder other than iron alloy powder, and carbon powder.
  • the iron-based powder mixture comprises the main raw material powder, the metal powder, the metal alloy powder, and carbon (C) It is a mixture comprising an auxiliary raw material powder selected from the group consisting of powders, a calcium salt powder of a higher fatty acid, and an unavoidable impurity.
  • the content of unavoidable impurities is, for example, 0.1 mass% or less, preferably 0.05 mass% or less, more preferably 0.03 mass% or less, based on the total mass of the iron-based powder mixture.
  • the auxiliary material powder may contain one powder selected from the group consisting of metal powder, metal alloy powder, and carbon powder, or may contain two or more powders.
  • iron-based powder mixture examples include iron powder, 1.0 to 2.0% by mass copper powder, 0.5 to 1.5% by mass graphite powder, 0.2 to 1.0% by mass behenic acid There may be mentioned calcium powder and a mixture consisting of 0.1% by mass or less of unavoidable impurities.
  • the content of the unavoidable impurities is a ratio (mass%) to the total mass of the iron-based powder mixture, and the content of the other components is a ratio (mass%) to the mass of the iron powder.
  • the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And cutting the sintered body to obtain an iron-based sintered member.
  • the method for producing an iron-based sintered member may further include optional steps such as a degreasing step, a heat treatment step, and a steam treatment step.
  • the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And heat-treating the sintered body to obtain a heat-treated body, and a cutting step of cutting the heat-treated body.
  • the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And a steaming step of steaming the sintered body to obtain a steamed body, and a cutting step of cutting the steamed body.
  • the heat-treated body is a sintered body to which at least heat treatment has been applied
  • the steam-treated body is a sintered body to which at least steam treatment has been applied. That is, examples of the sintered body include a sintered body not subjected to heat treatment and steam treatment; a heat treated body; a steam treated body and the like.
  • the iron-based powder mixture is filled in a desired mold and compression molded to obtain a molded body (green compact).
  • a lubricant may be applied to the mold and mold lubrication molding may be performed.
  • the iron-based powder mixture and the mold may be heated to perform warm molding.
  • the heating temperature is, for example, 100 to 140.degree.
  • the molding pressure is optional, for example, 500 to 900 MPa.
  • the compact is sintered in a sintering furnace under a predetermined atmosphere and temperature.
  • the sintering conditions can be appropriately set according to the iron-based powder mixture.
  • the sintering temperature is, for example, 1,000 to 1,400 ° C.
  • the sintering temperature is preferably 1,100 or more from the viewpoint of sufficiently advancing the sintering.
  • the sintering temperature is preferably 1,300 ° C. or less, more preferably 1,200 ° C. or less, from the viewpoint of obtaining calcium sufficiently in the sintered body and obtaining a sufficient effect of improving the machinability.
  • the sintering time is 5 to 150 minutes.
  • Sintering is usually preferably carried out in a non-oxidizing atmosphere such as nitrogen gas.
  • Heat treatment process heat is applied to the sintered body to impart desired properties to the sintered body according to the application.
  • heat treatment for example, properties such as strength, hardness, tenacity, and impact resistance can be improved.
  • the heat treatment includes quenching, tempering, annealing, normalizing and the like.
  • the heat treatment is performed by heating in the range of 600 to 900 ° C. and then cooling by, for example, standing to cool. After this, the material may be quenched by heating at the austenite region temperature of the iron-based material, and may be further tempered.
  • the gas atmosphere for the heat treatment may be the air, but a gas atmosphere in which the sintered body is difficult to oxidize is preferable.
  • non-oxidizing gas such as nitrogen gas, reducing gas such as decomposition ammonia gas, carburizing gas (for example, a mixture of hydrogen, nitrogen and carbon monoxide in the range of 0.1 to 1.2% carbon potential) Gas, etc. can be selected.
  • the sintered body is exposed to steam.
  • the water vapor is preferably at a high temperature, for example 370-580 ° C.
  • a method of steam treatment a method of injecting steam to a sintered body is mentioned.
  • the water vapor penetrates from the surface layer of the sintered body to the pores inside, and an iron oxide (Fe 3 O 4 ) phase is formed in the surface layer of the sintered body and the interface between the iron base and the pores.
  • the pores can be rounded to reduce notch sensitivity and improve fatigue strength.
  • a mesh belt furnace, a pot furnace capable of maintaining high pressure, or the like can be used to inject water vapor.
  • a pot furnace is preferred in that the iron oxide phase can be formed to a deep portion.
  • the sintered body (sintered body not subjected to heat treatment and steam treatment; heat treated body; steam treated body etc.) is cut into a desired shape.
  • the cutting may be turning, milling, or both. As a turning process, a lathe process etc. are mentioned, As a milling process, a milling process, a drilling process, etc. are mentioned.
  • the cutting tool may be a single-edged tool or a multi-edged tool. Examples of cutting tools include cutting tools, milling cutters, end mills, drills, reamers and the like. A machining center may be used when performing many types of processing.
  • the cutting tool may be a tool having a coating layer on the surface.
  • a layer containing titanium nitride, titanium carbide, aluminum oxide or the like can be mentioned.
  • a tool containing titanium at least on the surface in view of exhibiting particularly good durability when the sintered body is cut.
  • a cutting tool made of cermet or a cutting tool coated with a cermet by PVD Physical Vapor Deposition
  • the cermet is a material obtained by sintering and bonding ceramics such as carbides and nitrides with metal.
  • Optional step As an optional step which the method for producing an iron-based sintered member may have, a mixing step of mixing powder, a degreasing step of removing an organic substance and the like, a recompression step of compressing a sintered body, a surface of a sintered body The surface treatment process etc. which are processed are mentioned.
  • the iron-based sintered member obtained by the above manufacturing method can be preferably used as a bubble guide, a valve seat and the like which are components of a valve mechanism of an engine; a rotor core and the like which is a component of a motor;
  • Embodiments of the present invention will be specifically described by way of examples. Embodiments of the present invention are not limited to the following examples.
  • Example 1 Atomized iron powder with a maximum particle size of 180 ⁇ m or less, electrolytic copper powder with a maximum particle size of 150 ⁇ m or less, natural graphite powder with an average particle size of 10 ⁇ m, and calcium behenate powder with an average particle size of 20 ⁇ m are charged into a V-type mixer for 10 kg. Mix for 30 minutes to obtain an iron-based powder mixture. The mixing ratio (mass%) of each powder based on iron powder is shown in Table 1.
  • Comparative Example 1 An iron-based powder mixture was prepared in the same manner as in Example 1 except that the calcium behenate powder was changed to zinc stearate powder having an average particle diameter of 13 ⁇ m. The mixing ratio (mass%) of each powder based on iron powder is shown in Table 1.
  • Example 2 A sintered body was produced using the iron-based powder mixture obtained in Example 1 according to the following method. The machinability of the sintered body was evaluated by cutting the sintered body and confirming the wear amount and surface condition of the cutting tool.
  • Molding step The iron-based powder mixture was filled in a mold, and the pressure was adjusted so that the density of the molded body was 6.6 g / cm 3 to obtain a molded body with an outer diameter of 50 mm, an inner diameter of 30 mm, and a total length of 20 mm. .
  • the molding step the molded product can be extracted from the mold in a good state, and the molded product does not have defects such as galling and chipping.
  • the calcium behenate powder provided a sufficient lubricating effect.
  • the compact is preheated at 600 ° C. for 15 minutes in a non-oxidizing atmosphere (under N 2 +5 volume% H 2 atmosphere) in a sintering furnace, and subsequently at 1,130 ° C. The mixture was heated for 20 minutes to obtain a sintered body.
  • FIG. 1 is a schematic view showing a lathe process.
  • 1 indicates a cutting tool
  • 4 indicates a holder
  • 5 indicates a sintered body
  • FIG. 1 (a) is a schematic side view
  • FIG. 2 (b) is a schematic front view.
  • Cutting machine NC lathe (Numerical Control lathe), Cutting tool: Cermet indexable insert (material: NX2525, "TNMG160404” manufactured by Mitsubishi Materials Corporation) Cutting speed: 250 m / min Feeding: 0.10 mm / rev Removal cost: 0.15 mm
  • FIG. 2 is a schematic perspective view showing the cutting tool after it has been used for cutting.
  • 1 indicates a cutting tool
  • 2 indicates a rake face
  • 3 indicates a flank
  • 3a indicates a worn portion of the flank
  • 3b indicates a width of the worn portion. 2a is a deposit described later.
  • FIG. 3 is a photograph obtained by observing and photographing a part of the cutting tool after 3.75 km of cutting with a digital microscope.
  • FIG. 4 is a graph which shows the relationship between cutting distance and the abrasion loss of a flank.
  • the sintered body produced using the iron-based powder mixture containing calcium behenate powder can significantly suppress the wear of the cutting tool, and the machinability is excellent. . If an iron-based powder mixture containing calcium behenate powder is used, the deterioration of the cutting tool can be prevented, so that the manufacturing cost of the iron-based sintered member can be suppressed.
  • Comparative Example 2 A sintered body was produced in the same manner as in Example 2 except that the iron-based powder mixture obtained in Comparative Example 1 was used. Further, the machinability of the sintered body was evaluated in the same manner as in Example 2 except that the cutting distance was changed.
  • FIG. 4 shows the relationship between the cutting distance and the wear amount of the flanks. As a result of observation with a scanning electron microscope, no deposit could be confirmed on the cutting tool after 1.5 km of cutting.
  • the photograph on the right side of FIG. 5 is a scanning electron micrograph of a portion of the rake face of the cutting tool after 1.5 km of cutting.
  • the sinter produced using an iron-based powder mixture not containing calcium behenate powder was inferior in machinability. Poor machinability requires frequent replacement of the cutting tool, which increases the manufacturing cost of the iron-based sintered member.
  • an iron-based sintered member According to the iron-based powder mixture according to the embodiment of the present invention, a sintered body having high machinability can be obtained. Moreover, according to the method for manufacturing an iron-based sintered member that is an embodiment of the present invention, an iron-based sintered member can be efficiently manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Milling Processes (AREA)
  • Drilling And Boring (AREA)
  • Drilling Tools (AREA)
  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

An embodiment of the present invention relates to an iron-based powder mixture containing a main raw material powder including at least one type of powder selected from the group consisting of an iron powder and an iron alloy powder, a secondary raw material powder, and a powder of a calcium salt of a higher fatty acid.

Description

鉄系粉末混合物及び鉄系焼結部材の製造方法Iron-based powder mixture and method for producing iron-based sintered member
 本発明の実施形態は、鉄系粉末混合物及び鉄系焼結部材の製造方法に関する。 Embodiments of the present invention relate to a method of manufacturing an iron-based powder mixture and an iron-based sintered member.
 粉末冶金法により製造される鉄系焼結部材は、溶製法では得ることができない特殊な金属組織を有することから、各種用途に適用されている。 Iron-based sintered members produced by powder metallurgy are applied to various applications because they have special metallographic structures which can not be obtained by the melting method.
 鉄系焼結部材は、例えば、鉄粉末と、銅粉末、ニッケル粉末等の合金用粉末と、黒鉛粉と、成形潤滑剤などを含有する混合物をプレス成形し、焼結することにより製造される。近年、部品形状の複雑化、厳しい寸法公差等の要求に対応するため、焼結後、焼結体に切削加工が施される場合がある。焼結体を円滑に切削加工できるようにするために、焼結体に良好な被削性を付与する技術が検討されている。 The iron-based sintered member is manufactured, for example, by press-forming and sintering a mixture containing iron powder, powder for an alloy such as copper powder, nickel powder, etc., graphite powder, a forming lubricant and the like. . In recent years, in order to meet requirements such as a complicated part shape and strict dimensional tolerances, a sintered body may be subjected to cutting after sintering. In order to enable the sintered body to be machined smoothly, techniques for imparting good machinability to the sintered body have been studied.
 焼結体の被削性を向上させる方策として、焼結体に硫化マンガン(MnS)を含有させる方法が知られている。硫化マンガンによってもたらされる被削性の改善効果は、硫化マンガンが切り屑の分断を促進することによるものであると考えられている。この方法では、焼結体を得るために、原料として硫化マンガン粉末が添加された鉄系粉末混合物が使用される。 As a measure for improving the machinability of a sintered body, a method is known in which manganese sulfide (MnS) is contained in the sintered body. The machinability improvement effect brought about by manganese sulfide is believed to be due to the fact that manganese sulfide promotes chip division. In this method, an iron-based powder mixture to which manganese sulfide powder is added as a raw material is used to obtain a sintered body.
 別の方法として、ゲーレナイト等の複合酸化物を添加することによって焼結体の被削性を高める方法が知られている(例えば、特許文献1参照)。特許文献1には、粉末冶金用鉄系混合粉末において、鉄粉を主体とし、アノールサイト相及び/又はゲーレナイト相を有する平均粒径50μm以下のCaO-Al-SiO系複合酸化物の粉末を0.02~0.3質量%含有することを特徴とする粉末冶金用鉄系混合粉末が開示されている。特許文献1では、切削時に、工具の表面にアノールサイト相及び/又はゲーレナイト相のCaO-Al-SiO系複合酸化物の保護皮膜が形成され、被削性が改善すると考えられている。 As another method, there is known a method of enhancing the machinability of a sintered body by adding a composite oxide such as ghalenite (see, for example, Patent Document 1). In Patent Document 1, a CaO-Al 2 O 3 -SiO 2 -based composite oxide mainly composed of iron powder in an iron-based mixed powder for powder metallurgy and having an anorsite phase and / or a galenite phase and having an average particle size of 50 μm or less An iron-based mixed powder for powder metallurgy characterized by containing 0.02 to 0.3% by mass of the powder of In Patent Document 1, it is considered that a protective film of CaO-Al 2 O 3 -SiO 2 -based composite oxide is formed on the surface of a tool at the time of cutting, in the anorthite phase and / or the galenite phase, and the machinability is improved. There is.
特開平9-279204号公報Japanese Patent Laid-Open No. 9-279204
 本発明の実施形態は、高い被削性を備えた焼結体を得ることができる鉄系粉末混合物を提供することを目的とする。また、本発明の他の実施形態は、鉄系焼結部材を効率よく製造できる製造方法を提供することを目的とする。 An embodiment of the present invention aims to provide an iron-based powder mixture from which a sintered body with high machinability can be obtained. Another object of the present invention is to provide a manufacturing method capable of efficiently manufacturing an iron-based sintered member.
 本発明には様々な実施形態が含まれる。実施形態の例を以下に列挙する。本発明は以下の実施形態に限定されない。 The invention includes various embodiments. Examples of embodiments are listed below. The present invention is not limited to the following embodiments.
 一実施形態は、鉄粉末及び鉄合金粉末からなる群から選択される少なくとも1種を含む主原料粉末と、副原料粉末と、高級脂肪酸のカルシウム塩粉末とを含有する、鉄系粉末混合物に関する。 One embodiment relates to an iron-based powder mixture containing a main raw material powder containing at least one selected from the group consisting of iron powder and iron alloy powder, an auxiliary raw material powder, and a calcium salt powder of a higher fatty acid.
 好ましい一実施形態によれば、前記高級脂肪酸のカルシウム塩粉末は、ベヘン酸カルシウム粉末を含む。 According to a preferred embodiment, the calcium salt powder of higher fatty acids comprises calcium behenate powder.
 好ましい一実施形態によれば、前記高級脂肪酸のカルシウム塩粉末の含有量は、前記主原料粉末の全質量に対し、0.1~1.2質量%である。 According to a preferred embodiment, the content of the calcium salt powder of the higher fatty acid is 0.1 to 1.2% by mass with respect to the total mass of the main raw material powder.
 他の実施形態は、前記いずれかの鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、及び、前記焼結体を切削加工する切削加工工程、を有する鉄系焼結部材の製造方法に関する。 In another embodiment, the iron-based powder mixture according to any one of the above is molded to obtain a molded body, the sintered body is sintered to obtain a sintered body, and the sintered body is cut. The present invention relates to a method of manufacturing an iron-based sintered member having a cutting process step of processing.
 他の実施形態は、前記いずれかの鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、前記焼結体を熱処理し、熱処理体を得る熱処理工程、及び、前記熱処理体を切削加工する切削加工工程、を有する鉄系焼結部材の製造方法に関する。 In another embodiment, the iron-based powder mixture according to any one of the above is molded to obtain a molded body, the molded body is sintered to obtain a sintered body, the sintered body is heat-treated, The present invention relates to a method for producing an iron-based sintered member, including a heat treatment step of obtaining a heat treatment body, and a cutting step of cutting the heat treatment body.
 他の実施形態は、前記いずれかの鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、前記焼結体を水蒸気処理し、水蒸気処理体を得る水蒸気処理工程、及び、前記水蒸気処理体を切削加工する切削加工工程、を有する鉄系焼結部材の製造方法に関する。 In another embodiment, any iron-based powder mixture is molded to obtain a molded body, the molded body is sintered to obtain a sintered body, the sintered body is subjected to steam treatment The present invention relates to a method for producing an iron-based sintered member, comprising: a steam treatment step of obtaining a steam treated body; and a cutting step of cutting the steam treated body.
 好ましい一実施形態によれば、前記切削加工工程において、チタンを少なくとも表面に含む切削工具を用いて切削加工を行う。 According to a preferred embodiment, in the cutting step, cutting is performed using a cutting tool containing at least titanium on the surface.
 本発明の実施形態によれば、高い被削性を備えた焼結体を得ることができる鉄系粉末混合物を提供することができる。また、本発明の他の実施形態によれば、鉄系焼結部材を効率よく製造できる製造方法を提供することができる。 According to an embodiment of the present invention, it is possible to provide an iron-based powder mixture capable of obtaining a sintered body with high machinability. Further, according to another embodiment of the present invention, it is possible to provide a manufacturing method capable of efficiently manufacturing an iron-based sintered member.
図1は、実施例2において実施した旋盤加工工程を示す模式図である。FIG. 1 is a schematic view showing a lathe machining process carried out in Example 2. 図2は、実施例2において使用した切削工具を示す斜視模式図である。FIG. 2 is a schematic perspective view showing a cutting tool used in Example 2. 図3は、実施例2において使用した切削工具の一部分を示すデジタルマイクロスコープ写真である。FIG. 3 is a digital microscope photograph showing a portion of the cutting tool used in Example 2. 図4は、実施例2及び比較例2における焼結体の被削性の評価結果を示すグラフである。FIG. 4 is a graph showing the evaluation results of the machinability of the sintered bodies in Example 2 and Comparative Example 2. 図5は、実施例2及び比較例2において使用した切削工具の一部分を示す電子顕微鏡写真である。FIG. 5 is an electron micrograph showing a portion of the cutting tool used in Example 2 and Comparative Example 2.
 本発明の実施形態について説明する。本発明は以下の実施形態に限定されない。
<鉄系粉末混合物>
 一実施形態によれば、鉄系粉末混合物は、鉄粉末及び鉄合金粉末からなる群から選択される少なくとも1種を含む主原料粉末と、副原料粉末と、高級脂肪酸のカルシウム塩粉末とを少なくとも含有する。
Embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<Iron-based powder mixture>
According to one embodiment, the iron-based powder mixture comprises at least a main raw material powder comprising at least one selected from the group consisting of iron powder and iron alloy powder, an auxiliary raw material powder, and a calcium salt powder of a higher fatty acid. contains.
(主原料粉末)
 主原料粉末は、鉄(Fe)粉末及び鉄合金粉末からなる群から選択される少なくとも1種を含む。鉄合金に含まれる元素として、銅(Cu)、ニッケル(Ni)、クロム(Cr)、モリブデン(Mo)、バナジウム(V)、マンガン(Mn)、チタン(Ti)、アルミニウム(Al)、炭素(C)等が挙げられる。
(Primary raw material powder)
The main raw material powder contains at least one selected from the group consisting of iron (Fe) powder and iron alloy powder. As elements contained in the iron alloy, copper (Cu), nickel (Ni), chromium (Cr), molybdenum (Mo), vanadium (V), manganese (Mn), titanium (Ti), aluminum (Al), carbon ( C) etc.
 主原料粉末として、具体的には、公知の鉄系焼結材料を用いることができる。例えば、日本工業規格(JIS)のZ2550に規定されているSMF1種(純鉄系)、SMF2種(鉄-銅系)、SMF3種(鉄-炭素系)、SMF4種(鉄-銅-炭素系)、SMF5種(鉄-ニッケル-銅-炭素系)、SMF6種(鉄-銅-炭素系)、SMF7種(鉄-ニッケル系)、SMF8種(鉄-ニッケル-炭素系)、SMS1種(オーステナイト系ステンレス鋼)、SMS2種(フェライト系ステンレス鋼)等;アメリカ鉄鋼協会規格(AISI)の4100種(鉄-ニッケル-モリブデン系)、4600種(鉄-クロム-マンガン系)等が挙げられる。主原料粉末は、1種を単独で用いても、2種以上を混合して用いてもよい。 As the main raw material powder, specifically, a known iron-based sintered material can be used. For example, one type of SMF (pure iron type), two types of SMF (iron-copper type), three types of SMF (iron-carbon type), four types of SMF (iron-copper-carbon type) defined in Z2550 of Japanese Industrial Standard (JIS) ), 5 types of SMF (iron-nickel-copper-carbon type), 6 types of SMF (iron-copper-carbon type), 7 types of SMF (iron-nickel type), 8 types of SMF (iron-nickel-carbon type), 1 type of SMS (austenite) Stainless steel), SMS 2 type (ferritic stainless steel) and the like; 4100 type (iron-nickel-molybdenum type) of the American Iron and Steel Institute standard (AISI), 4600 type (iron-chromium-manganese type) and the like. The main raw material powder may be used alone or in combination of two or more.
(副原料粉末)
 副原料粉末は、鉄粉末、鉄合金粉末、及び高級脂肪酸のカルシウム塩粉末以外の粉末であり、例えば、金属粉末、金属合金粉末、炭素(C)粉末、潤滑剤粉末等が挙げられる。副原料粉末により、焼結体を改質、強化等することが可能である。副原料粉末は、所望とする焼結体の特性に応じ、適宜選択して使用することができる。
(Additive material powder)
The auxiliary material powder is powder other than iron powder, iron alloy powder, and calcium salt powder of higher fatty acid, and examples thereof include metal powder, metal alloy powder, carbon (C) powder, lubricant powder and the like. It is possible to modify, strengthen, etc. the sintered body by the auxiliary raw material powder. The auxiliary raw material powder can be appropriately selected and used according to the desired characteristics of the sintered body.
 金属粉末及び金属合金粉末に含まれる元素として、例えば、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、クロム(Cr)、バナジウム(V)、マンガン(Mn)、チタン(Ti)、アルミニウム(Al)等の鉄(Fe)以外の金属元素が挙げられる。具体的には、銅粉末、銅合金粉末、ニッケル粉末、ニッケル合金粉末、タングステン粉末、モリブデン粉末等が挙げられる。炭素粉末としては、例えば、黒鉛粉末、カーボンブラック、フラーレン等が挙げられる。潤滑剤粉末としては、例えば、脂肪酸、脂肪酸アミド、脂肪酸塩、脂肪酸アルコール等が挙げられる。具体例を挙げると、ステアリン酸、ステアリン酸アミド、ステアリン酸亜鉛、ステアリン酸リチウム等である。副原料粉末は、1種を単独で用いても、2種以上を混合して用いてもよい。 As an element contained in metal powder and metal alloy powder, for example, copper (Cu), nickel (Ni), molybdenum (Mo), chromium (Cr), vanadium (V), manganese (Mn), titanium (Ti), aluminum Metal elements other than iron (Fe) such as (Al) may be mentioned. Specifically, copper powder, copper alloy powder, nickel powder, nickel alloy powder, tungsten powder, molybdenum powder and the like can be mentioned. Examples of the carbon powder include graphite powder, carbon black, fullerene and the like. Examples of the lubricant powder include fatty acids, fatty acid amides, fatty acid salts, fatty acid alcohols and the like. Specific examples thereof include stearic acid, stearic acid amide, zinc stearate, lithium stearate and the like. The auxiliary raw material powder may be used singly or in combination of two or more.
(高級脂肪酸のカルシウム塩粉末)
 高級脂肪酸のカルシウム塩粉末は、焼結体の被削性を向上させることができる。高級脂肪酸のカルシウム塩粉末を含む原料粉末を用いて作製した焼結体を切削工具により切削すると、切削工具の表面にカルシウムを含む付着物が付着し、付着物の存在によって切削工具の寿命が向上すると考えられる。切削工具の表面にカルシウムを含む付着物が形成されていることは、走査型電子顕微鏡(SEM)による表面観察及び電子線マイクロアナライザ(EPMA)による元素分析により確認できる。
(Calcium salt powder of higher fatty acid)
The calcium salt powder of higher fatty acid can improve the machinability of the sintered body. When a sintered body prepared using a raw material powder containing calcium salt powder of higher fatty acid is cut by a cutting tool, a deposit containing calcium adheres to the surface of the cutting tool, and the presence of the deposit improves the life of the cutting tool It is thought that. The formation of the calcium-containing deposit on the surface of the cutting tool can be confirmed by surface observation with a scanning electron microscope (SEM) and elemental analysis with an electron probe microanalyzer (EPMA).
 高級脂肪酸のカルシウム塩粉末を含む原料粉末を用いて作製した焼結体では、原料粉末及び副原料粉末に由来する結晶粒と気孔との界面に、カルシウムが濃化して存在していると推測される。結晶粒と気孔との界面にカルシウムが濃化して存在していることは、例えば、結晶粒の気孔と接する表面を、電子線マイクロアナライザ(EPMA)により分析することで確認できる。 In a sintered body prepared using a raw material powder containing a calcium salt powder of higher fatty acid, it is speculated that calcium is concentrated and present at the interface between the crystal grains derived from the raw material powder and the auxiliary raw material powder and the pores. Ru. The presence of concentrated calcium at the interface between the crystal grains and the pores can be confirmed, for example, by analyzing the surface in contact with the pores of the crystal grains with an electron probe microanalyzer (EPMA).
 高級脂肪酸のカルシウム塩粉末は、潤滑剤としての効果も奏するために、成形体を金型から抜出す際の成形体と金型との摩擦が低減され、かじり、欠け等の不良の発生を抑えることができる。また、CaO-Al-SiO系複合酸化物のような硬い粉末ではないことから、十分な成形体の密度を保つことができる。さらに、高級脂肪酸のカルシウム塩粉末は、加熱されると高級脂肪酸が分解し除去されるために、焼結時に鉄粉末及び鉄合金粉末の拡散接合が阻害されることがなく、十分な機械的強度を有する焼結体が得られる。加えて、高級脂肪酸のカルシウム塩粉末は安価であり、使用によって製造コストを大幅に上昇させることなく切削工具の摩耗を抑えることができるため、全体として効率よく、経済性に優れた鉄系焼結部材を提供できる。 The calcium salt powder of higher fatty acids also has an effect as a lubricant, so the friction between the molded body and the mold when the molded body is pulled out from the mold is reduced, and the occurrence of defects such as galling and chipping is suppressed. be able to. In addition, since the powder is not a hard powder such as CaO-Al 2 O 3 -SiO 2 -based composite oxide, it is possible to maintain sufficient density of the compact. Furthermore, calcium salt powder of higher fatty acid has sufficient mechanical strength without inhibiting diffusion bonding of iron powder and iron alloy powder during sintering because higher fatty acid is decomposed and removed when heated. The sintered body which has these is obtained. In addition, calcium salt powder of higher fatty acids is inexpensive, and can suppress wear of cutting tools without significantly increasing the manufacturing cost by use, so the iron-based sintering is efficient and economical as a whole. A member can be provided.
 高級脂肪酸の炭素数は、潤滑剤としての十分な効果を得る観点から、12以上が好ましく、15以上がより好ましく、18以上が更に好ましい。高級脂肪酸の炭素数は、被削性を向上させ、かつ、高い成形体の密度を得る観点から、28以下が好ましく、26以下がより好ましく、24以下が更に好ましい。高級脂肪酸は、飽和脂肪酸であっても、不飽和脂肪酸であってもよく、好ましくは飽和脂肪酸である。 The carbon number of the higher fatty acid is preferably 12 or more, more preferably 15 or more, and still more preferably 18 or more, from the viewpoint of obtaining a sufficient effect as a lubricant. The carbon number of the higher fatty acid is preferably 28 or less, more preferably 26 or less, and still more preferably 24 or less, from the viewpoint of improving the machinability and obtaining a high density of the shaped body. The higher fatty acid may be a saturated fatty acid or an unsaturated fatty acid, preferably a saturated fatty acid.
 高級脂肪酸としては、具体的には、ステアリン酸、リシノール酸、ベヘン酸、モンタン酸、ラウリン酸、パルミチン酸等が挙げられ、好ましくはベヘン酸である。高級脂肪酸のカルシウム塩粉末は、1種を単独で用いても、2種以上を混合して用いてもよい。 Specific examples of higher fatty acids include stearic acid, ricinoleic acid, behenic acid, montanic acid, lauric acid, palmitic acid and the like, with preference given to behenic acid. The calcium salt powder of higher fatty acid may be used alone or in combination of two or more.
(組成)
 鉄系粉末混合物における副原料粉末の含有量は、鉄系焼結部材の用途に応じて設定すればよく、例えば、主原料粉末の全質量を基準として、0.5質量%以上であることが好ましく、より好ましくは1.0質量%以上であり、更に好ましくは1.5質量%以上である。鉄系粉末混合物における副原料粉末の含有量は、主原料粉末の全質量を基準として、4.0質量%以下であることが好ましく、より好ましくは3.5質量%以下であり、更に好ましくは3.0質量%以下である。
(composition)
The content of the auxiliary material powder in the iron-based powder mixture may be set according to the application of the iron-based sintered member, for example, 0.5 mass% or more based on the total mass of the main material powder Preferably it is 1.0 mass% or more, More preferably, it is 1.5 mass% or more. The content of the auxiliary material powder in the iron-based powder mixture is preferably 4.0% by mass or less, more preferably 3.5% by mass or less, based on the total mass of the main raw material powder, and still more preferably It is 3.0 mass% or less.
 鉄系粉末混合物における高級脂肪酸のカルシウム塩粉末の含有量は、被削性及び潤滑性の向上の観点から、主原料粉末の全質量を基準として、好ましくは0.1質量%以上であり、より好ましくは0.2質量%以上であり、更に好ましくは0.3質量%以上である。鉄系粉末混合物における高級脂肪酸のカルシウム塩粉末の含有量は、成形体及び焼結体の密度の向上の観点から、好ましくは1.2質量%以下であり、より好ましくは1.0質量%以下であり、更に好ましくは0.9質量%以下である。 The content of the calcium salt powder of higher fatty acid in the iron-based powder mixture is preferably 0.1% by mass or more, based on the total mass of the main raw material powder, from the viewpoint of improving machinability and lubricity. Preferably it is 0.2 mass% or more, More preferably, it is 0.3 mass% or more. The content of the calcium salt powder of higher fatty acid in the iron-based powder mixture is preferably 1.2% by mass or less, more preferably 1.0% by mass or less, from the viewpoint of improving the density of the molded body and the sintered body More preferably, it is 0.9 mass% or less.
 一実施形態によれば、成形体の密度及び焼結体の被削性の向上の観点から、鉄系粉末混合物は、高級脂肪酸のカルシウム塩以外には、高級脂肪酸及びこれを含む化合物を含有しないことが好ましく、有機化合物を含有しないことがより好ましい。高級脂肪酸を含む化合物の例として、高級脂肪酸の塩、高級脂肪酸のエステル、高級脂肪酸のアミド等が挙げられる。例えば、潤滑剤として知られているステアリン酸亜鉛は、含有させることによって成形体の密度の低下に繋がる傾向がある。また、焼成時の加熱によって亜鉛が気化しやすいために、焼結後に焼結体内に亜鉛は残存しない。そのため、ステアリン酸亜鉛によって、被削性向上の効果を得ることはできない。 According to one embodiment, the iron-based powder mixture does not contain a higher fatty acid and a compound containing the same, other than the calcium salt of a higher fatty acid, from the viewpoint of improving the density of the formed body and the machinability of the sintered body. Is preferable, and it is more preferable not to contain an organic compound. Examples of compounds containing higher fatty acids include salts of higher fatty acids, esters of higher fatty acids, and amides of higher fatty acids. For example, zinc stearate, which is known as a lubricant, tends to lead to a reduction in the density of the molded body by containing it. In addition, since zinc is easily vaporized by heating at the time of firing, zinc does not remain in the sintered body after sintering. Therefore, zinc stearate can not obtain the effect of machinability improvement.
 好ましい実施形態によれば、鉄系粉末混合物は、主原料粉末と、副原料粉末と、高級脂肪酸のカルシウム塩粉末と、不可避不純物とからなる混合物であり、より好ましい実施形態によれば、鉄系粉末混合物は、鉄粉末及び鉄合金粉末からなる群から選択される少なくとも1種と、副原料粉末と、高級脂肪酸のカルシウム塩粉末と、不可避不純物とからなる混合物である。不可避不純物の含有量は、鉄系粉末混合物の全質量を基準として、例えば、0.1質量%以下であり、好ましくは0.05質量%以下であり、より好ましくは0.03質量%以下である。副原料粉末は、鉄系粉末以外の金属粉末、鉄合金粉末以外の金属合金粉末、炭素(C)粉末、及び潤滑剤粉末からなる群から選択される少なくとも1種を含むことが好ましく、例えば、鉄系粉末以外の金属粉末、鉄合金粉末以外の金属合金粉末、及び炭素粉末からなる群から選択される少なくとも1種からなる。 According to a preferred embodiment, the iron-based powder mixture is a mixture comprising a main raw material powder, an auxiliary raw material powder, a calcium salt powder of a higher fatty acid, and an unavoidable impurity, and according to a more preferred embodiment, an iron-based powder mixture The powder mixture is a mixture of at least one selected from the group consisting of iron powder and iron alloy powder, auxiliary material powder, calcium salt powder of higher fatty acid, and inevitable impurities. The content of unavoidable impurities is, for example, 0.1 mass% or less, preferably 0.05 mass% or less, more preferably 0.03 mass% or less, based on the total mass of the iron-based powder mixture. is there. The auxiliary material powder preferably contains at least one selected from the group consisting of metal powders other than iron-based powders, metal alloy powders other than iron alloy powders, carbon (C) powders, and lubricant powders, for example, It consists of at least 1 sort (s) selected from the group which consists of metal powder other than iron-type powder, metal alloy powder other than iron alloy powder, and carbon powder.
 また、一実施形態によれば、成形体の密度及び焼結体の被削性の向上の観点から、鉄系粉末混合物は、主原料粉末と、金属粉末、金属合金粉末、及び炭素(C)粉末からなる群から選択される副原料粉末と、高級脂肪酸のカルシウム塩粉末と、不可避不純物とからなる混合物である。不可避不純物の含有量は、鉄系粉末混合物の全質量を基準として、例えば、0.1質量%以下であり、好ましくは0.05質量%以下であり、より好ましくは0.03質量%以下である。副原料粉末は、金属粉末、金属合金粉末、及び炭素粉末からなる群から選択される1種の粉末を含んでも、2種以上の粉末を含んでもよい。 Further, according to one embodiment, from the viewpoint of improving the density of the molded body and the machinability of the sintered body, the iron-based powder mixture comprises the main raw material powder, the metal powder, the metal alloy powder, and carbon (C) It is a mixture comprising an auxiliary raw material powder selected from the group consisting of powders, a calcium salt powder of a higher fatty acid, and an unavoidable impurity. The content of unavoidable impurities is, for example, 0.1 mass% or less, preferably 0.05 mass% or less, more preferably 0.03 mass% or less, based on the total mass of the iron-based powder mixture. is there. The auxiliary material powder may contain one powder selected from the group consisting of metal powder, metal alloy powder, and carbon powder, or may contain two or more powders.
 鉄系粉末混合物の具体例として、鉄粉末、1.0~2.0質量%の銅粉末、0.5~1.5質量%の黒鉛粉末、0.2~1.0質量%のベヘン酸カルシウム粉末、及び0.1質量%以下の不可避不純物とからなる混合物が挙げられる。不可避不純物の含有量は、鉄系粉末混合物の全質量に対する割合(質量%)であり、それ以外の成分の含有量は、いずれも鉄粉末の質量に対する割合(質量%)である。 Specific examples of the iron-based powder mixture include iron powder, 1.0 to 2.0% by mass copper powder, 0.5 to 1.5% by mass graphite powder, 0.2 to 1.0% by mass behenic acid There may be mentioned calcium powder and a mixture consisting of 0.1% by mass or less of unavoidable impurities. The content of the unavoidable impurities is a ratio (mass%) to the total mass of the iron-based powder mixture, and the content of the other components is a ratio (mass%) to the mass of the iron powder.
<鉄系焼結部材の製造方法>
 一実施形態によれば、鉄系焼結部材の製造方法は、上述の鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、及び、前記焼結体を切削加工し、鉄系焼結部材を得る切削加工工程、を有する。鉄系焼結部材の製造方法は、脱脂工程、熱処理工程、水蒸気処理工程等の任意の工程を更に有してもよい。
<Method of manufacturing iron-based sintered member>
According to one embodiment, the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And cutting the sintered body to obtain an iron-based sintered member. The method for producing an iron-based sintered member may further include optional steps such as a degreasing step, a heat treatment step, and a steam treatment step.
 任意の工程を更に有する製造方法として、例えば、以下の製造方法が挙げられる。
 一実施形態によれば、鉄系焼結部材の製造方法は、上述の鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、前記焼結体を熱処理し、熱処理体を得る熱処理工程、及び、前記熱処理体を切削加工する切削加工工程、を有する。
 一実施形態によれば、鉄系焼結部材の製造方法は、上述の鉄系粉末混合物を成形し、成形体を得る成形工程、前記成形体を焼結し、焼結体を得る焼結工程、前記焼結体を水蒸気処理し、水蒸気処理体を得る水蒸気処理工程、及び、前記水蒸気処理体を切削加工する切削加工工程、を有する。
As a manufacturing method which further has an arbitrary process, the following manufacturing methods are mentioned, for example.
According to one embodiment, the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And heat-treating the sintered body to obtain a heat-treated body, and a cutting step of cutting the heat-treated body.
According to one embodiment, the method of manufacturing an iron-based sintered member comprises: forming the above-mentioned iron-based powder mixture to obtain a compact; sintering the compact; and obtaining a sintered body And a steaming step of steaming the sintered body to obtain a steamed body, and a cutting step of cutting the steamed body.
 熱処理体は少なくとも熱処理が施された焼結体であり、水蒸気処理体は少なくとも水蒸気処理が施された焼結体である。すなわち、焼結体の例には、熱処理及び水蒸気処理が行われていない焼結体;熱処理体;水蒸気処理体等が含まれる。 The heat-treated body is a sintered body to which at least heat treatment has been applied, and the steam-treated body is a sintered body to which at least steam treatment has been applied. That is, examples of the sintered body include a sintered body not subjected to heat treatment and steam treatment; a heat treated body; a steam treated body and the like.
(成形工程)
 成形工程では、鉄系粉末混合物を所望の金型に充填し、圧縮成形し、成形体(圧粉体)を得る。成形方法に特に制限はなく、ウイズドロアル法、フローティングダイ法等を適用できる。成形の際に、金型に潤滑剤を塗布し、金型潤滑成形を行ってもよい。成形の際に、鉄系粉末混合物及び金型を加熱し、温間成形を行ってもよい。加熱の温度は、例えば100~140℃である。成形圧力は任意であるが、例えば500~900MPaである。
(Molding process)
In the molding step, the iron-based powder mixture is filled in a desired mold and compression molded to obtain a molded body (green compact). There is no particular limitation on the molding method, and the method of wizdrowal, floating die, etc. can be applied. At the time of molding, a lubricant may be applied to the mold and mold lubrication molding may be performed. During molding, the iron-based powder mixture and the mold may be heated to perform warm molding. The heating temperature is, for example, 100 to 140.degree. The molding pressure is optional, for example, 500 to 900 MPa.
(焼結工程)
 焼結工程では、成形体を焼結炉にて所定の雰囲気と温度により焼結する。焼結条件は、鉄系粉末混合物に応じ、適宜設定することができる。焼結温度は、例えば、1,000~1,400℃である。焼結を十分に進行させるという観点から、焼結温度は1,100以上であることが好ましい。一方、焼結体内にカルシウムを残存させ、切削性向上の十分な効果を得る観点から、焼結温度は、1,300℃以下であることが好ましく、1,200℃以下であることがより好ましい。例えば、焼結時間は、5~150分である。焼結は、通常は、窒素ガス等の非酸化性の雰囲気下で行うことが好ましい。
(Sintering process)
In the sintering step, the compact is sintered in a sintering furnace under a predetermined atmosphere and temperature. The sintering conditions can be appropriately set according to the iron-based powder mixture. The sintering temperature is, for example, 1,000 to 1,400 ° C. The sintering temperature is preferably 1,100 or more from the viewpoint of sufficiently advancing the sintering. On the other hand, the sintering temperature is preferably 1,300 ° C. or less, more preferably 1,200 ° C. or less, from the viewpoint of obtaining calcium sufficiently in the sintered body and obtaining a sufficient effect of improving the machinability. . For example, the sintering time is 5 to 150 minutes. Sintering is usually preferably carried out in a non-oxidizing atmosphere such as nitrogen gas.
(熱処理工程)
 熱処理工程では、焼結体に熱を加え、用途に応じて焼結体に所望の性質を付与する。熱処理によって、例えば、強さ、硬さ、粘り、耐衝撃性等の性質を向上させることができる。熱処理には、焼入れ、焼き戻し、焼きなまし、焼きならし等がある。例えば、熱処理は、600~900℃の範囲で加熱した後、放冷などによって冷却するプロセスが採られる。この後に、鉄系材料のオーステナイト領域温度で加熱して焼入れし、更に焼戻ししてもよい。
(Heat treatment process)
In the heat treatment step, heat is applied to the sintered body to impart desired properties to the sintered body according to the application. By heat treatment, for example, properties such as strength, hardness, tenacity, and impact resistance can be improved. The heat treatment includes quenching, tempering, annealing, normalizing and the like. For example, the heat treatment is performed by heating in the range of 600 to 900 ° C. and then cooling by, for example, standing to cool. After this, the material may be quenched by heating at the austenite region temperature of the iron-based material, and may be further tempered.
 熱処理のガス雰囲気は、大気でもよいが、焼結体が酸化しにくいガス雰囲気が好ましい。例えば、窒素ガス等の非酸化性ガス、分解アンモニアガス等の還元性ガス、浸炭性ガス(例えば、カーボンポテンシャルが0.1~1.2%の範囲内の水素、窒素、一酸化炭素の混合ガス)等から選択することができる。 The gas atmosphere for the heat treatment may be the air, but a gas atmosphere in which the sintered body is difficult to oxidize is preferable. For example, non-oxidizing gas such as nitrogen gas, reducing gas such as decomposition ammonia gas, carburizing gas (for example, a mixture of hydrogen, nitrogen and carbon monoxide in the range of 0.1 to 1.2% carbon potential) Gas, etc. can be selected.
(水蒸気処理工程)
 水蒸気処理工程では、焼結体を水蒸気に曝す。水蒸気は高温であることが好ましく、例えば、370~580℃である。水蒸気処理の方法として、焼結体に水蒸気を噴射する方法が挙げられる。水蒸気は焼結体の表層部から内部の気孔に浸透し、焼結体の表層部及び鉄基地と気孔の界面部分に酸化鉄(Fe)相が形成される。酸化鉄相により、気孔に丸みを生じさせて切欠き感受性を鈍化させ、疲れ強さを向上させることができる。水蒸気の噴射には、メッシュベルト炉、高気圧が維持できるポット型炉等を利用することができる。酸化鉄相を深い部分まで形成することができる点で、ポット型炉が好ましい。
(Steam treatment process)
In the steam treatment step, the sintered body is exposed to steam. The water vapor is preferably at a high temperature, for example 370-580 ° C. As a method of steam treatment, a method of injecting steam to a sintered body is mentioned. The water vapor penetrates from the surface layer of the sintered body to the pores inside, and an iron oxide (Fe 3 O 4 ) phase is formed in the surface layer of the sintered body and the interface between the iron base and the pores. By the iron oxide phase, the pores can be rounded to reduce notch sensitivity and improve fatigue strength. A mesh belt furnace, a pot furnace capable of maintaining high pressure, or the like can be used to inject water vapor. A pot furnace is preferred in that the iron oxide phase can be formed to a deep portion.
(切削加工工程)
 切削加工工程では、焼結体(熱処理及び水蒸気処理が行われていない焼結体;熱処理体;水蒸気処理体等)を所望の形状に切削加工する。切削加工は、旋削加工、転削加工、又はこれらの両方であってよい。旋削加工としては、旋盤加工等が挙げられ、転削加工としては、フライス加工、穴あけ加工等が挙げられる。切削工具は、単刃工具であっても、又は、多刃工具であってもよい。切削工具の例として、バイト、フライス、エンドミル、ドリル、リーマ等が挙げられる。多数種の加工を行う場合、マシニングセンタを使用してもよい。
(Cutting process)
In the cutting process, the sintered body (sintered body not subjected to heat treatment and steam treatment; heat treated body; steam treated body etc.) is cut into a desired shape. The cutting may be turning, milling, or both. As a turning process, a lathe process etc. are mentioned, As a milling process, a milling process, a drilling process, etc. are mentioned. The cutting tool may be a single-edged tool or a multi-edged tool. Examples of cutting tools include cutting tools, milling cutters, end mills, drills, reamers and the like. A machining center may be used when performing many types of processing.
 切削工具の材料として、サーメット、セラミックス、超硬合金、高速度工具鋼、ダイヤモンド焼結体、cBN焼結体等が挙げられる。切削工具は、表面にコーティング層を有する工具であってもよい。コーティング層として、窒化チタン、炭化チタン、酸化アルミニウム等を含む層が挙げられる。 Materials for the cutting tool include cermet, ceramics, cemented carbide, high-speed tool steel, diamond sintered body, cBN sintered body and the like. The cutting tool may be a tool having a coating layer on the surface. As the coating layer, a layer containing titanium nitride, titanium carbide, aluminum oxide or the like can be mentioned.
 焼結体を切削した際に、特に良好な耐久性を示すという点で、少なくとも表面にチタンを含有する工具を用いることが好ましい。耐摩耗性、耐熱性等に優れるという観点から、サーメット製の切削工具又はPVD(Physical Vapor Deposition)によりサーメットがコーティングされた切削工具を特に好ましく使用することができる。サーメットは、炭化物、窒化物等のセラミックスを金属で焼結結合して得られる材料である。 It is preferable to use a tool containing titanium at least on the surface, in view of exhibiting particularly good durability when the sintered body is cut. From the viewpoint of excellent wear resistance, heat resistance and the like, a cutting tool made of cermet or a cutting tool coated with a cermet by PVD (Physical Vapor Deposition) can be particularly preferably used. The cermet is a material obtained by sintering and bonding ceramics such as carbides and nitrides with metal.
(任意の工程)
 鉄系焼結部材の製造方法が有してもよい任意の工程として、粉末を混合する混合工程、有機物等を除去する脱脂工程、焼結体を圧縮する再圧縮工程、焼結体の表面を処理する表面処理工程等が挙げられる。
(Optional step)
As an optional step which the method for producing an iron-based sintered member may have, a mixing step of mixing powder, a degreasing step of removing an organic substance and the like, a recompression step of compressing a sintered body, a surface of a sintered body The surface treatment process etc. which are processed are mentioned.
(鉄系焼結部材)
 前記製造方法により得られる鉄系焼結部材は、エンジンの動弁系機構の構成部品であるバブルガイド、バルブシート等;モーターの構成部品であるロータコア等;各種スプロケット等として好ましく使用できる。
(Iron-based sintered member)
The iron-based sintered member obtained by the above manufacturing method can be preferably used as a bubble guide, a valve seat and the like which are components of a valve mechanism of an engine; a rotor core and the like which is a component of a motor;
 本発明の実施形態について実施例により具体的に説明する。本発明の実施形態は以下の実施例に限定されない。 Embodiments of the present invention will be specifically described by way of examples. Embodiments of the present invention are not limited to the following examples.
<鉄系粉末混合物の作製>
[実施例1]
 最大粒径180μm以下のアトマイズ鉄粉、最大粒径150μm以下の電解銅粉、平均粒径10μmの天然黒鉛粉末、及び平均粒径20μmのベヘン酸カルシウム粉末を、10kg用V型混合機に投入し、30分間混合し、鉄系粉末混合物を得た。鉄粉を基準とする各粉末の混合割合(質量%)を表1に示す。
<Preparation of iron-based powder mixture>
Example 1
Atomized iron powder with a maximum particle size of 180 μm or less, electrolytic copper powder with a maximum particle size of 150 μm or less, natural graphite powder with an average particle size of 10 μm, and calcium behenate powder with an average particle size of 20 μm are charged into a V-type mixer for 10 kg. Mix for 30 minutes to obtain an iron-based powder mixture. The mixing ratio (mass%) of each powder based on iron powder is shown in Table 1.
[比較例1]
 ベヘン酸カルシウム粉末を平均粒径13μmのステアリン酸亜鉛粉末に変更した以外は、実施例1と同様に鉄系粉末混合物を調製した。鉄粉を基準とする各粉末の混合割合(質量%)を表1に示す。
Comparative Example 1
An iron-based powder mixture was prepared in the same manner as in Example 1 except that the calcium behenate powder was changed to zinc stearate powder having an average particle diameter of 13 μm. The mixing ratio (mass%) of each powder based on iron powder is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<焼結体の被削性の評価>
[実施例2]
 以下の方法に従い、実施例1で得た鉄系粉末混合物を用い、焼結体を作製した。焼結体を切削し、切削工具の摩耗量及び表面状態を確認することによって、焼結体の被削性を評価した。
<Evaluation of machinability of sintered body>
Example 2
A sintered body was produced using the iron-based powder mixture obtained in Example 1 according to the following method. The machinability of the sintered body was evaluated by cutting the sintered body and confirming the wear amount and surface condition of the cutting tool.
(焼結体の作製)
 成形工程
 鉄系粉末混合物を、金型に充填し、成形体の密度が6.6g/cmになるように圧力を調節して、外径50mm、内径30mm、全長20mmの成形体を得た。
 成形工程では、成形体を良好な状態で金型から抜出すことができ、成形体には、かじり、欠け等の不良が生じなかった。ベヘン酸カルシウム粉末により十分な潤滑効果が得られた。
(Production of sintered body)
Molding step The iron-based powder mixture was filled in a mold, and the pressure was adjusted so that the density of the molded body was 6.6 g / cm 3 to obtain a molded body with an outer diameter of 50 mm, an inner diameter of 30 mm, and a total length of 20 mm. .
In the molding step, the molded product can be extracted from the mold in a good state, and the molded product does not have defects such as galling and chipping. The calcium behenate powder provided a sufficient lubricating effect.
 焼結工程
 成形体を、焼結炉内にて、非酸化雰囲気下(N+5体積%H雰囲気下)で、600℃にて15分間の予備加熱を行い、続いて1,130℃にて20分間加熱して、焼結体を得た。
Sintering Step The compact is preheated at 600 ° C. for 15 minutes in a non-oxidizing atmosphere (under N 2 +5 volume% H 2 atmosphere) in a sintering furnace, and subsequently at 1,130 ° C. The mixture was heated for 20 minutes to obtain a sintered body.
(切削工具の摩耗量の評価)
 焼結体の端面を、旋盤加工により切削距離が3.8kmとなるまで切削した。旋盤加工は以下の条件に従って実施した。図1は、旋盤加工工程を示す模式図である。図1中、1は切削工具を、4はホルダを、5は焼結体を示し、図1(a)は側面模式図であり、図2(b)は正面模式図である。
(Evaluation of wear amount of cutting tool)
The end face of the sintered body was cut by lathing until the cutting distance became 3.8 km. Lathe processing was performed according to the following conditions. FIG. 1 is a schematic view showing a lathe process. In FIG. 1, 1 indicates a cutting tool, 4 indicates a holder, 5 indicates a sintered body, FIG. 1 (a) is a schematic side view, and FIG. 2 (b) is a schematic front view.
  切削機械:NC旋盤(Numerical Control旋盤)、
  切削工具:サーメット製スローアウェイチップ(材質:NX2525、三菱マテリアル株式会社製「TNMG160404」)
  切削速度:250m/min
  送り  :0.10mm/rev
  取り代 :0.15mm
Cutting machine: NC lathe (Numerical Control lathe),
Cutting tool: Cermet indexable insert (material: NX2525, "TNMG160404" manufactured by Mitsubishi Materials Corporation)
Cutting speed: 250 m / min
Feeding: 0.10 mm / rev
Removal cost: 0.15 mm
 所定の切削距離(0.75、1.50、2.25、3.00、3.75km)に達した時点で、切削工具をデジタルマイクロスコープ(株式会社キーエンス製「VHX-1000」)により観察し、切削工具の逃げ面の摩耗部の幅を測定し、測定値を摩耗量とした。図2は、切削に使用した後の切削工具を示す斜視模式図である。図2中、1は切削工具を、2はすくい面を、3は逃げ面を、3aは逃げ面の摩耗部を、3bは摩耗部の幅を示す。2aは、後述する付着物である。図3は、3.75kmの切削を行った後の切削工具の一部分を、デジタルマイクロスコープにより観察し撮影して得た写真である。また、図4は、切削距離と逃げ面の摩耗量との関係を示すグラフである。 When a predetermined cutting distance (0.75, 1.50, 2.25, 3.00, 3.75 km) is reached, the cutting tool is observed with a digital microscope ("VHX-1000" manufactured by Keyence Corporation) The width of the wear portion on the flank of the cutting tool was measured, and the measured value was taken as the amount of wear. FIG. 2 is a schematic perspective view showing the cutting tool after it has been used for cutting. In FIG. 2, 1 indicates a cutting tool, 2 indicates a rake face, 3 indicates a flank, 3a indicates a worn portion of the flank, and 3b indicates a width of the worn portion. 2a is a deposit described later. FIG. 3 is a photograph obtained by observing and photographing a part of the cutting tool after 3.75 km of cutting with a digital microscope. Moreover, FIG. 4 is a graph which shows the relationship between cutting distance and the abrasion loss of a flank.
 図4に示されるように、ベヘン酸カルシウム粉末を含有する鉄系粉末混合物を使用して作製された焼結体は、切削工具の摩耗を大幅に抑えることができ、被削性が優れていた。ベヘン酸カルシウム粉末を含有する鉄系粉末混合物を用いれば、切削工具の劣化を防止できるために、鉄系焼結部材の製造コストを抑えることができる。 As shown in FIG. 4, the sintered body produced using the iron-based powder mixture containing calcium behenate powder can significantly suppress the wear of the cutting tool, and the machinability is excellent. . If an iron-based powder mixture containing calcium behenate powder is used, the deterioration of the cutting tool can be prevented, so that the manufacturing cost of the iron-based sintered member can be suppressed.
(切削工具の表面状態の評価)
 1.5km及び3.75kmの切削を行った後の切削工具のすくい面を走査型電子顕微鏡(株式会社島津製作所製「EPMA-1600W」、倍率200倍)により観察したところ、付着物が確認された。図5の左側の写真は、3.75kmの切削を行った後の切削工具のすくい面の一部分の走査型電子顕微鏡写真であり、写真中、矢印により付着物を示す。また、電子線マイクロアナライザ(株式会社島津製作所製「EPMA-1600W」、測定条件:加速電圧15kV、試料電流100nA)により元素分析を行った結果、付着物にはカルシウムが含まれることが確認された。
(Evaluation of surface condition of cutting tool)
The scooped surface of the cutting tool after 1.5 km and 3.75 km of cutting was observed with a scanning electron microscope ("EPMA-1600 W" manufactured by Shimadzu Corporation, magnification 200 times), and deposits were observed. The The photograph on the left side of FIG. 5 is a scanning electron micrograph of a portion of the rake face of the cutting tool after 3.75 km of cutting, and the deposits are indicated by arrows in the photograph. In addition, as a result of performing elemental analysis with an electron beam microanalyzer (“EPMA-1600W” manufactured by Shimadzu Corporation, measurement conditions: acceleration voltage 15 kV, sample current 100 nA), it was confirmed that the deposit contains calcium. .
 図5に示されるように、ベヘン酸カルシウム粉末を含有する鉄系粉末混合物を使用して作製された焼結体を切削加工すると、切削工具の表面にはカルシウムを含む付着物が形成された。カルシウムを含む付着物によって、切削工具の摩耗が抑えられたと考えられる。 As shown in FIG. 5, when a sintered body produced using an iron-based powder mixture containing calcium behenate powder was cut, a deposit containing calcium was formed on the surface of the cutting tool. The deposit containing calcium is considered to have reduced the wear of the cutting tool.
[比較例2]
 比較例1で得た鉄系粉末混合物を使用した以外は実施例2と同様に、焼結体を作製した。また、切削距離を変更した以外は実施例2と同様に、焼結体の被削性を評価した。図4に、切削距離と逃げ面の摩耗量との関係を示す。走査型電子顕微鏡による観察の結果、1.5kmの切削を行った後の切削工具に付着物は確認できなかった。図5の右側の写真は、1.5kmの切削を行った後の切削工具のすくい面の一部分の走査型電子顕微鏡写真である。
Comparative Example 2
A sintered body was produced in the same manner as in Example 2 except that the iron-based powder mixture obtained in Comparative Example 1 was used. Further, the machinability of the sintered body was evaluated in the same manner as in Example 2 except that the cutting distance was changed. FIG. 4 shows the relationship between the cutting distance and the wear amount of the flanks. As a result of observation with a scanning electron microscope, no deposit could be confirmed on the cutting tool after 1.5 km of cutting. The photograph on the right side of FIG. 5 is a scanning electron micrograph of a portion of the rake face of the cutting tool after 1.5 km of cutting.
 図4に示されるように、ベヘン酸カルシウム粉末を含有しない鉄系粉末混合物を使用して作製された焼結体は、被削性が劣っていた。被削性が劣ると切削工具の頻繁な交換が必要となり、鉄系焼結部材の製造コストが上昇する。 As shown in FIG. 4, the sinter produced using an iron-based powder mixture not containing calcium behenate powder was inferior in machinability. Poor machinability requires frequent replacement of the cutting tool, which increases the manufacturing cost of the iron-based sintered member.
 本発明の実施形態である鉄系粉末混合物によれば、高い被削性を備えた焼結体を得ることができる。また、本発明の実施形態である鉄系焼結部材の製造方法によれば、鉄系焼結部材を効率よく製造することができる。 According to the iron-based powder mixture according to the embodiment of the present invention, a sintered body having high machinability can be obtained. Moreover, according to the method for manufacturing an iron-based sintered member that is an embodiment of the present invention, an iron-based sintered member can be efficiently manufactured.
 本願の開示は、2017年12月1日に出願された特願2017-231624号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2017-231624 filed on Dec. 1, 2017, the entire disclosure of which is incorporated herein by reference.
1  切削工具
2  すくい面
2a 付着物
3  逃げ面
3a 摩耗部
3b 摩耗部の幅
4  ホルダ
5  焼結体
1 cutting tool 2 rake face 2a deposit 3 flank face 3a wear part 3b wear part width 4 holder 5 sintered body

Claims (7)

  1.  鉄粉末及び鉄合金粉末からなる群から選択される少なくとも1種を含む主原料粉末と、副原料粉末と、高級脂肪酸のカルシウム塩粉末とを含有する、鉄系粉末混合物。 An iron-based powder mixture comprising a main raw material powder containing at least one selected from the group consisting of iron powder and iron alloy powder, an auxiliary raw material powder, and a calcium salt powder of a higher fatty acid.
  2.  前記高級脂肪酸のカルシウム塩粉末が、ベヘン酸カルシウム粉末を含む、請求項1に記載の鉄系粉末混合物。 The iron-based powder mixture according to claim 1, wherein the calcium salt powder of higher fatty acid comprises calcium behenate powder.
  3.  前記高級脂肪酸のカルシウム塩粉末の含有量が、前記主原料粉末の全質量に対し、0.1~1.2質量%である、請求項1又は2に記載の鉄系粉末混合物。 The iron-based powder mixture according to claim 1 or 2, wherein the content of the calcium salt powder of the higher fatty acid is 0.1 to 1.2% by mass with respect to the total mass of the main raw material powder.
  4.  請求項1~3のいずれかに記載の鉄系粉末混合物を成形し、成形体を得る成形工程、
     前記成形体を焼結し、焼結体を得る焼結工程、及び、
     前記焼結体を切削加工する切削加工工程、
     を有する鉄系焼結部材の製造方法。
    A forming step of forming the iron-based powder mixture according to any one of claims 1 to 3 to obtain a formed body,
    A sintering step of sintering the molded body to obtain a sintered body;
    A cutting process for cutting the sintered body;
    The manufacturing method of the iron-type sintered member which has.
  5.  請求項1~3のいずれかに記載の鉄系粉末混合物を成形し、成形体を得る成形工程、
     前記成形体を焼結し、焼結体を得る焼結工程、
     前記焼結体を熱処理し、熱処理体を得る熱処理工程、及び、
     前記熱処理体を切削加工する切削加工工程、
     を有する鉄系焼結部材の製造方法。
    A forming step of forming the iron-based powder mixture according to any one of claims 1 to 3 to obtain a formed body,
    A sintering step of sintering the compact to obtain a sintered body,
    A heat treatment step of heat-treating the sintered body to obtain a heat-treated body;
    A cutting process for cutting the heat-treated body,
    The manufacturing method of the iron-type sintered member which has.
  6.  請求項1~3のいずれかに記載の鉄系粉末混合物を成形し、成形体を得る成形工程、
     前記成形体を焼結し、焼結体を得る焼結工程、
     前記焼結体を水蒸気処理し、水蒸気処理体を得る水蒸気処理工程、及び、
     前記水蒸気処理体を切削加工する切削加工工程、
     を有する鉄系焼結部材の製造方法。
    A forming step of forming the iron-based powder mixture according to any one of claims 1 to 3 to obtain a formed body,
    A sintering step of sintering the compact to obtain a sintered body,
    A steam treatment step of subjecting the sintered body to steam treatment to obtain a steam treated body;
    A cutting process for cutting the steam treated body;
    The manufacturing method of the iron-type sintered member which has.
  7.  前記切削加工工程において、チタンを少なくとも表面に含む切削工具を用いて切削加工を行う、請求項4~6のいずれかに記載の鉄系焼結部材の製造方法。 The method of manufacturing an iron-based sintered member according to any one of claims 4 to 6, wherein the cutting process is performed using a cutting tool containing at least titanium on the surface.
PCT/JP2018/043422 2017-12-01 2018-11-26 Iron-based powder mixture and method for manufacturing iron-based sintered member WO2019107313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017231624A JP6969330B2 (en) 2017-12-01 2017-12-01 Method for manufacturing iron-based powder mixture and iron-based sintered member
JP2017-231624 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019107313A1 true WO2019107313A1 (en) 2019-06-06

Family

ID=66664906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043422 WO2019107313A1 (en) 2017-12-01 2018-11-26 Iron-based powder mixture and method for manufacturing iron-based sintered member

Country Status (2)

Country Link
JP (1) JP6969330B2 (en)
WO (1) WO2019107313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733218B (en) * 2019-10-16 2021-07-11 台灣鑽石工業股份有限公司 Powder composition for reinforcing component of wire drawing die using in low temperature sintering, and reinforcing component of wire drawing die

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021944A (en) * 1973-06-28 1975-03-08
JPS50140308A (en) * 1974-04-28 1975-11-11
JPH10317001A (en) * 1997-03-19 1998-12-02 Kawasaki Steel Corp Iron-base powder mixture for powder metallurgy, excellent in flowability and compactibility, its production, and production of green compact
JPH11141461A (en) * 1997-11-04 1999-05-25 Mitsubishi Materials Corp Manufacture of rotor for internal gear pump
JPH11229002A (en) * 1998-02-19 1999-08-24 Kobe Steel Ltd Composite lubricant for powder metallurgy, powdery mixture for powder metallurgy excellent in dimensional stability and production of sintered product using the powdery mixture
JP2006328520A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp Sintered alloy having high fatigue limit ratio, and method for producing the same
JP2007291437A (en) * 2006-04-24 2007-11-08 Hitachi Metals Ltd Sintered compact for magnetic refrigeration working bed, and its manufacturing method
JP2009062614A (en) * 2007-09-04 2009-03-26 Burgess Norton Manufacturing Co Inc Method of manufacturing crankshaft bushing
WO2017029921A1 (en) * 2015-08-17 2017-02-23 Ntn株式会社 Sliding member and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021944A (en) * 1973-06-28 1975-03-08
JPS50140308A (en) * 1974-04-28 1975-11-11
JPH10317001A (en) * 1997-03-19 1998-12-02 Kawasaki Steel Corp Iron-base powder mixture for powder metallurgy, excellent in flowability and compactibility, its production, and production of green compact
JPH11141461A (en) * 1997-11-04 1999-05-25 Mitsubishi Materials Corp Manufacture of rotor for internal gear pump
JPH11229002A (en) * 1998-02-19 1999-08-24 Kobe Steel Ltd Composite lubricant for powder metallurgy, powdery mixture for powder metallurgy excellent in dimensional stability and production of sintered product using the powdery mixture
JP2006328520A (en) * 2005-05-30 2006-12-07 Mitsubishi Materials Pmg Corp Sintered alloy having high fatigue limit ratio, and method for producing the same
JP2007291437A (en) * 2006-04-24 2007-11-08 Hitachi Metals Ltd Sintered compact for magnetic refrigeration working bed, and its manufacturing method
JP2009062614A (en) * 2007-09-04 2009-03-26 Burgess Norton Manufacturing Co Inc Method of manufacturing crankshaft bushing
WO2017029921A1 (en) * 2015-08-17 2017-02-23 Ntn株式会社 Sliding member and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733218B (en) * 2019-10-16 2021-07-11 台灣鑽石工業股份有限公司 Powder composition for reinforcing component of wire drawing die using in low temperature sintering, and reinforcing component of wire drawing die

Also Published As

Publication number Publication date
JP6969330B2 (en) 2021-11-24
JP2019099867A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
EP1985393B1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
US5729822A (en) Gears
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
KR20190077033A (en) Softening steel and parts
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP6098769B2 (en) Soft nitriding steel and parts and methods for producing them
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP5741649B2 (en) Iron-based powder mixture
CN111788025B (en) Sintered valve guide and method for manufacturing same
WO2019107313A1 (en) Iron-based powder mixture and method for manufacturing iron-based sintered member
JP2019512604A (en) Metal powder composition easy to cut
US9950369B2 (en) Manufacturing method of sintered alloy, compact for sintering, and sintered alloy
WO2020241087A1 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JP3572078B2 (en) Method of manufacturing sintered parts
JP5200768B2 (en) Iron-based mixed powder, and powder molded body and powder sintered body manufacturing method using the same
JP2009242887A (en) Iron-based powdery mixture
CN112955571B (en) Steel for nitrocarburizing, nitrocarburized part, and method for producing same
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2020172698A (en) Manufacturing method of sintered component, and sintered component
JP6842345B2 (en) Abrasion-resistant iron-based sintered alloy manufacturing method
JP2020172697A (en) Manufacturing method of sintered component, and sintered component
CN112639150A (en) Modified high speed steel particles, powder metallurgy process using same, and sintered parts therefrom
CN112368408B (en) Iron-based sintered member, iron-based powder mixture, and method for producing iron-based sintered member
JP5310074B2 (en) Iron-based powder mixture for high-strength sintered parts of automobiles
JPH0321621B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883732

Country of ref document: EP

Kind code of ref document: A1