JPWO2005021744A1 - デジタル細胞 - Google Patents

デジタル細胞 Download PDF

Info

Publication number
JPWO2005021744A1
JPWO2005021744A1 JP2005513404A JP2005513404A JPWO2005021744A1 JP WO2005021744 A1 JPWO2005021744 A1 JP WO2005021744A1 JP 2005513404 A JP2005513404 A JP 2005513404A JP 2005513404 A JP2005513404 A JP 2005513404A JP WO2005021744 A1 JPWO2005021744 A1 JP WO2005021744A1
Authority
JP
Japan
Prior art keywords
cell
cells
profile
parameter
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005513404A
Other languages
English (en)
Inventor
三宅 正人
正人 三宅
智啓 吉川
智啓 吉川
三宅 淳
淳 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
CytoPathfinder Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
CytoPathfinder Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, CytoPathfinder Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2005021744A1 publication Critical patent/JPWO2005021744A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、細胞の実際の状態をプロファイルとしてデータ生成するための方法およびシステムを提供することを課題とする。経時的および/またはリアルタイムで細胞内の情報を、複雑系という観点でそのままあるいは直接的に提示するシステムおよび方法を提供することもまた課題とする。本発明はまた、デジタル細胞を提示する方法を提供することを課題とする。従って、本発明は、細胞の情報に関するプロファイルデータを生成する方法であって、a)細胞を支持体上に固定して配置する工程;およびb)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;を包含する、方法、この方法を用いて実験データを取得し、デジタル細胞を生産する方法を提供する。

Description

本発明は、細胞の解析技術の分野にある。より詳細には、同一の環境にある細胞のプロファイルを提供する方法およびそのためのシステム、ならびにそのような技術によって得られたデータおよびデータ配列技術ならびにデジタル細胞技術に関する。以下に発明の詳細な説明を説明する。
生物の生存は、細胞外シグナルを認知し、そしてその細胞外シグナルに応答するそれらの能力に依存する。分子レベルにおいて、シグナルは、細胞のホメオスタシスを維持するように協同して作用し、そして増殖、分裂および分化のような活性を調節する相互作用タンパク質のネットワークを介して、認知され、そして伝達される。生物学的シグナル伝達ネットワークを通した情報伝達は、主に、シグナルに応答して動的に集合および分解し得るタンパク質−タンパク質相互作用によって媒介され、外部事象を遺伝子発現における変化のような特定の結果に連結させる一過性の回路を作製する。これらのネットワークの基礎となるタンパク質−タンパク質相互作用をマップするために、多数の戦略が開発されている、そしてこれらの研究は、集合的に、Saccharomyces cervisiaeおよび他の生物について、ゲノム全体にわたるタンパク質−タンパク質相互作用の輪郭を描く豊富なデータを提供している。これらの手段は、非常に強力であるが、部分的に完成した像を提供するだけであって、おそらく、微妙な状況にある多くの相互作用(その相互作用は、それらの適切なシグナルが存在する場合にのみ、形成される)を見過ごしている。
変異または低分子によるタンパク質−タンパク質相互作用の崩壊は、細胞表現型における大きな変化を誘発するシグナル伝達ネットワークの小さな混乱を可能にする生物学的な支柱を作製し得るが、所定のシグナル伝達経路における全てのタンパク質−タンパク質相互作用がこの力を保有するわけではないようである。従って、調節性タンパク質−タンパク質相互作用を同定することを目的とする補完的な戦略が、シグナル伝達研究および先導する開発の両方において、特別な役割を果たす。この点からして、タンパク質−タンパク質相互作用を規定し、そしてその相互作用に混乱を起こす相補的な手段とは、細胞中へタンパク質またはペプチドを人工的に導入し(これは、目的の内因性調節相互作用と競合し、そしてその関係を崩す(titrate−out)。それによって外部シグナルを細胞応答に連結させる正常な回路を破壊することである。機能的なアッセイ(例えば、シグナルに応答した遺伝子の活性化)とこの戦略を合わせることによって、機能的な妨害についてのスクリーニングは、調節性タンパク質−タンパク質相互作用を混乱させるペプチドを同定するために使用され得る。この戦略(しばしば、ドミナント妨害遺伝学またはドミナントネガティブ遺伝学と称される)は、いくつかのモデル生物において好首尾に使用され(ここで、高スループットのスクリーニング方法が、容易に適用されている、そして哺乳動物においてより少ない程度で使用されている(旧来、哺乳動物は、この型のスクリーニングの対象となりにくい)。ドミナントネガティブ戦略の1つの能力は、この戦略が機能的に関連するタンパク質−タンパク質相互作用の「支柱の点」の位置を正確に示し、それによって、外部の因子による機能的な調節を受けやすいタンパク質ネットワークの大きな網の中で、少ない数の中心点をあらわにすることである。従って、ドミナントネガティブ戦略の結果は、特定の経路を規定する調節成分に関する極めて重大な情報を提供し得、そして薬物スクリーニングプログラムによって標的化するのに適した重要なタンパク質−タンパク質相互作用を解明し得る。
哺乳動物においてドミナントネガティブスクリーニングを開発する際の進行を妨げるもののうちの1つは、トランスフェクト細胞またはトランスジェニック生物の作製である。この問題に取り組むための1つの手段として高効率のレトロウイルストランスフェクションが開発されている。このレトロウイルストランスフェクションは、強力であるが、ウイルス中間体にパッケージングされるDNAの作製を必要とし、全ての適用に適切な戦略ではない。相補的な手段として、高密度トランスフェクションアレイすなわち細胞アレイの使用が提唱されている。
Rosetta Inpharmaticsは、種々の特許出願において、細胞の情報をプロファイルとして提供することを提案している(特表2003−505038号;特表2003−505022号;特表2002−533701号;特表2002−533700号;特表2002−533699号;特表2002−528095号;特表2002−526757号;特表2002−518021号;特表2002−518003号;特表2002−514804号;特表2002−514773号;特表2002−514437号)。しかし、このようなプロファイルは、いずれも、環境の異なる別々の細胞からの情報を連続情報としてではなく、別個の情報の集合として処理しており、真の意味で、同一条件で、一個の(同じ)細胞に注目した情報解析を行っていないという点で限界がある。特に、このような技術では、ある変化の前後の特定の各一時点のみに注目して解析がなされており、ある一点(遺伝子)がとる時間的変化のプロセスを解析するものではない。
プロファイルまたはプロファイリングについては、近年の技術の進歩により、細胞の構成要素を正確に測定すること、それゆえにプロファイルを導出することが可能になってきている((例えば、Schenaら,1995,Quantitative monitoring of gene expression patterns with a complementary DNA micro−array,Science 270:467−470;Lockhartら,1996,Expression monitoring by hybridization to high−density oligonucleotide arrays,Nature Biotechnology 14:1675−1680;Blanchardら,1996,Sequence to array:Probing the qenome’s Secrets,Nature Biotechnology 14:1649;米国特許第5,569,588号)。ゲノム全体が知られている生物では、その細胞内の全遺伝子の転写産物を分析することが可能である。ゲノムの情報が増えつつあるヒトのような他の生物の場合には、細胞内の多数の遺伝子を同時にモニタリングすることが可能である。
アレイ技術の進展により、薬物探索の分野などでもアレイが使用されている(例えば、Martonら,1998,Drug target validation and identification of secondary drug target effects using Microarrays,Nat Med.1998 Nov;4(11):1293−301;Grayら,1998,Exploiting chemical libralies,structure,and qenomics in the search for kinase inhibitors,Science 281:533−538)。プロファイルを用いた解析(例えば、米国特許第5,777,888号を参照)およびプロファイルのクラスター化は、細胞の状態の詳細な解析、移植、薬物の分子標的ならびに薬物候補および/または薬物の関連機能、効力および毒性に関する情報を与える。このような比較は理想的な薬物活性または疾病状態を表す共通のプロファイルを誘導するためにも使用できる。さらに、プロファイルの比較は、患者の疾病を初期段階で検出するのに役立ち、病気があると診断された患者のための改善された臨床結果の予測を提供することができる。
しかし、真の意味で同一条件下で同じ細胞に関する情報を提供した例はいまだなく、上述の技術では、ヘテロな細胞集団の平均値としてデータが提示されることから、そのようなデータに基づく種々の解析および評価は、正確性に欠けるという欠点が存在する。従って、真の意味での細胞レベルでの状態を提示するための方法への需要が高まっている。
本発明は、細胞の情報(プロファイル)・データを得る方法を提供することを課題とする。本発明はまた、同一の環境条件下で、細胞の状態に関する情報・データを得る方法、およびそのようなデータを正確に提示するための方法およびシステムを提供することを課題とする。特に、同一環境条件で細胞レベルでの情報を、複雑系という観点でそのままあるいは直接的に提示するシステムおよび方法ならびにそのようなデータおよびデータ配列技術そのものを提供することを課題とする。本発明はさらに、デジタル細胞およびその利用法を提供することを課題とする。
発明の要旨
上記課題は、細胞を支持体上に固定して、細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成することによって解決された。これにより、細胞のプロファイルを連続的に収集することが可能になる。また、このデータ生成により、細胞の連続状態を再現することが可能となり、デジタル細胞を生成することが可能となった。
上記課題はまた、複数の細胞を同一環境下に配置することができる支持体を提供することによって解決された。そのような支持体は、例えば、塩またはアクチン作用物質、好ましくは塩およびアクチン作用物質の両方を使用して細胞を固定することによって達成された。これにより、同一環境下に配置された同一種の細胞のプロファイルを同時にかつ同一条件下で収集することが可能になった。
従って、本発明は、以下の発明を提供する。
(1) 同一環境にある細胞の情報に関するプロファイルデータを生成する方法であって、
a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;および
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルのデータを生成する工程;
を包含する、方法。
(2) 上記生物学的因子は、核酸分子または上記核酸分子に由来する分子である、項目1に記載の方法。
(3) 上記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、上記支持体に固定される、項目1に記載の方法。
(4) 上記細胞には、アクチン作用物質が提供される、項目1に記載の方法。
(5) 上記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、上記支持体に固定され、かつ、アクチン作用物質が提供される、項目1に記載の方法。
(6) 上記生物学的因子は、核酸分子、タンパク質、糖鎖、脂質、低分子、それらの複合分子からなる群より選択される、項目1に記載の方法。
(7) 上記細胞は、モニター前に少なくとも約3日間培養される、項目1に記載の方法。
(8) 上記生物学的因子は、遺伝子をコードする核酸分子を含む、項目1に記載の方法。
(9) 上記プロファイルは、遺伝子発現のプロファイルを含む、項目1に記載の方法。
(10) 上記プロファイルは、アポトーシスシグナルのプロファイルを含む、項目1に記載の方法。
(11) 上記プロファイルは、ストレスシグナルのプロファイルである、項目1に記載の方法。
(12) 上記プロファイルは、分子の局在化に関するプロファイルである、項目1に記載の方法。
(13) 上記分子は、蛍光、燐光、放射性物質またはその組み合わせにて標識される、項目12に記載の方法。
(14) 上記プロファイルは、細胞形態の変化を含む、項目1に記載の方法。
(15) 上記プロファイルは、プロモーターのプロファイルを含む、項目1に記載の方法。
(16) 上記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含む、項目1に記載の方法。
(17) 上記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含み、上記特定薬剤を投与するさらに工程を含む、項目1に記載の方法。
(18) 外来因子が上記細胞に提供される工程をさらに包含する、項目1に記載の方法。
(19) 上記外来因子は、RNAiを含む、項目18に記載の方法。
(20) 上記外来因子は、生体に存在しない化学物質を含む、項目18に記載の方法。
(21) 上記プロファイルは、分子間相互作用のプロファイルを含む、項目1に記載の方法。
(22) 上記外来因子は、上記細胞のレセプターに対するリガンドを含む、項目18に記載の方法。
(23) 上記プロファイルは、レセプターリガンド相互作用のプロファイルを含む、項目1に記載の方法。
(24) 上記プロファイルは細胞形態であり、上記方法は、遺伝子の過剰発現、過小発現もしくはノックダウン、外来因子の添加および環境の変化からなる群より選択される、刺激を上記細胞に与える工程をさらに包含する、項目1に記載の方法。
(25) 上記プロファイルは、上記細胞内に存在する分子間の相互作用のプロファイルを含む、項目1に記載の方法。
(26) 上記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、項目1に記載の方法。
(27) 上記プロファイルは、上記細胞内に存在する分子間の相互作用のプロファイルを含み、上記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、項目1に記載の方法。
(28) 上記細胞は、上記支持体上にアレイ状に配置される、項目1に記載の方法。
(29) 上記細胞は、上記支持体上にアレイ状に配置され、上記複数の細胞は、各々が最大1mmの間隔をあけて配置される、項目1に記載の方法。
(30) 上記プロファイルはリアルタイムに得られる、項目1に記載の方法。
(31) 上記細胞を固相支持体に固定する工程をさらに包含する、項目1に記載の方法。
(32) 上記データは、上記プロファイルに関する情報を含む、項目1に記載の方法。
(33) 上記データは、上記モニターにおける条件に関する情報を含む、項目1に記載の方法。
(34) 上記データは、上記細胞の状態に関する情報を含む、項目1に記載の方法。
(35) 上記モニターされる生物学的因子は、少なくとも2種の生物学的因子を含む、項目1に記載の方法。
(36) 上記モニターされる生物学的因子は、少なくとも3種の生物学的因子を含む、項目1に記載の方法。
(37) 上記モニターされる生物学的因子は、少なくとも8種の生物学的因子を含む、項目1に記載の方法。
(38) 生物学的因子を任意に選択する工程をさらに包含する、項目1に記載の方法。
(39) 上記細胞は、幹細胞および体細胞からなる群より選択される、項目1に記載の方法。
(40) 上記支持体は、固相支持体を含む、項目1に記載の方法。
(41) 上記支持体は、基板を含む、項目1に記載の方法。
(42) 上記生物学的因子は核酸分子であり、上記細胞は、上記核酸分子でトランスフェクトされる、項目1に記載の方法。
(43) 上記トランスフェクトは固相上または液相中で行われる、項目42に記載の方法。
(44) 上記トランスフェクトは固相上で行われる、項目42に記載の方法。
(45) 上記プロファイルの位相を比較する工程を包含する、項目1に記載の方法。
(46) 上記細胞のプロファイルとコントロールプロファイルとの差分をとる工程を包含する、項目1に記載の方法。
(47) 上記プロファイルは、信号処理法および多変量解析からなる群より選択される数学処理により処理される工程をさらに包含する、項目1に記載の方法。
(48) 同一環境にある細胞の情報に関するプロファイルデータを提示方法であって、
a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルのデータを生成する工程;および
c)上記データを提示する工程、
を包含する、方法。
(49) 上記提示はリアルタイムである、項目48に記載の提示方法。
(50) 上記提示は、視覚で感知されるように行われる、項目48に記載の方法。
(51) 上記提示は、聴覚で感知されるように行われる、項目48に記載の方法。
(52) 同一環境にある細胞の状態を判定する方法であって、
a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルのデータを生成する工程;および
c)上記データから上記細胞の状態を判定する工程、
を包含する、方法。
(53) 上記プロファイルと上記細胞の状態とを予め相関付ける工程をさらに包含する、項目52に記載の方法。
(54) 上記細胞は、状態が既知の細胞を含む、項目52に記載の方法。
(55) 上記生物学的因子は、少なくとも2種存在する、項目52に記載の方法。
(56) 上記生物学的因子を任意に選択する工程をさらに包含する、項目52に記載の方法。
(57) 上記データは、リアルタイムで生成される、項目52に記載の方法。
(58) 上記状態は、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期および増殖状態からなる群より選択される、項目52に記載の方法。
(59) 上記細胞は、幹細胞および体細胞からなる群より選択される、項目52に記載の方法。
(60) 上記固相支持体は、基板を含む、項目52に記載の方法。
(61) 上記生物学的因子は核酸分子であり、上記細胞は上記核酸分子でトランスフェクトされる、項目52に記載の方法。
(62) 上記トランスフェクトは固相上または液相中で行われる、項目61に記載の方法。
(63) 上記生物学的因子は、他の生物学的因子に結合する能力を有する、項目52に記載の方法。
(64) 上記判定工程c)は、上記プロファイルの位相を比較することを包含する、項目52に記載の方法。
(65) 上記判定工程c)は、上記プロファイルとコントロールプロファイルとの差分をとる工程を包含する、項目52に記載の方法。
(66) 上記判定工程c)は、信号処理法および多変量解析からなる群より選択される数学処理を包含する、項目52に記載の方法。
(67) 外来因子と、上記外来因子に対する細胞の応答とを相関付ける方法であって、
a)細胞を、複数の細胞を同一環境を保つことができる支持体上で、外来因子に曝露する工程;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルのデータを生成する工程;および
c)上記外来因子と、上記プロファイルとを相関付ける工程;
を包含する、方法。
(68) 上記細胞は、上記支持体に固定される、項目67に記載の方法。
(69) 少なくとも2つの上記外来因子を使用して、各外来因子に対するプロファイルを得る工程をさらに包含する、項目67に記載の方法。
(70) 少なくとも2つの上記プロファイルを類別することにより、上記プロファイルに対応する外来因子を類別する工程をさらに包含する、項目67に記載の方法。
(71) 上記プロファイルは、リアルタイムで提示される、項目70に記載の方法。
(72) 上記細胞は、アレイ上で培養される、項目67に記載の方法。
(73) 上記工程(b)におけるプロファイルのモニターは、上記アレイから画像データを得ることを包含する、項目67に記載の方法。
(74) 上記(c)における上記外来因子と上記プロファイルとを相関付ける工程は、上記プロファイルの位相の異同を識別する工程である、項目67に記載の方法。
(75) 上記外来因子は、温度変化、湿度変化、電磁波、電位差、可視光線、赤外線、紫外線、X線、化学物質、圧力、重力変化、ガス分圧および浸透圧からなる群から選択される、項目67に記載の方法。
(76) 上記化学物質は、生体分子、化学合成物または培地である、項目75に記載の方法。
(77) 上記生体分子は、核酸分子、タンパク質、脂質、糖、プロテオリピッド、リポプロテイン、糖タンパク質およびプロテオグリカンからなる群から選択される、項目76に記載の方法。
(78) 上記生体分子は、ホルモン、サイトカイン、細胞接着因子および細胞外マトリクスからなる群より選択される少なくとも1つの生体分子を含む、項目76に記載の方法。
(79) 上記化学物質は、レセプターのアゴニストまたはアンタゴニストである、項目75に記載の方法。
(80) 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法であって、
a)細胞に、同一環境を保つことができる支持体上で、複数の既知の外来因子を曝露する工程;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターし、既知の外来因子の各々に対する上記細胞のプロファイルを得て上記細胞のプロファイルのデータを生成する工程;
c)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける工程;
d)上記細胞を未同定の外来因子に曝露する工程;
e)外来因子に曝露された上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして、未同定の外来因子に関する上記細胞のプロファイルを得る工程;
f)上記工程(b)で得られたプロファイルの中から、上記工程(e)で得られたプロファイルに対応するプロファイルを決定する工程;および
g)上記未同定の外来因子は、上記工程(f)において決定されたプロファイルに対応する上記既知の外来因子であることを決定する工程;
を包含する、方法。
(81) 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法であって、
a)上記細胞上または上記細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータを提供する工程;
b)上記細胞を未同定の外来因子に曝露する工程;
c)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして、上記細胞のプロファイルを得る工程;
d)上記工程(a)において提供された、上記プロファイルの中から、上記工程(c)において得られたプロファイルに対応するプロファイルを決定する工程;および
e)上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子であることを決定する工程;
を包含する、方法。
(82) 同一環境にある細胞の情報に関するプロファイルを得る方法であって、
a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;および
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルを得る工程、
を包含する、方法。
(83) 項目1に記載の方法によっ生成されたデータが格納される記録媒体。
(84) 上記記録媒体は、上記モニターにおける条件に関する情報、上記プロファイルに関する情報、上記細胞の状態に関する情報および上記生物学的因子に関する情報からなる群より選択される、少なくとも1つの情報に関するデータをさらに含む、項目83に記載の記録媒体。
(85) 上記データは、互いにリンクされた形態で格納される、項目84に記載の記録媒体。
(86) 上記データは、上記細胞ごとにリンクされて格納される、項目84に記載の記録媒体。
(87) 項目1に記載された方法によって生成されたデータ。
(88) 項目1に記載された方法によって生成されたデータを含む伝送媒体。
(89) 同一環境にある複数の細胞の情報に関するプロファイルデータを生成するシステムであって、
a)複数の細胞を同一環境を保つことができる支持体;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;および
c)上記モニター手段から得られた信号から上記細胞のプロファイルのデータを生成する手段;
を備える、システム。
(90) 複数の細胞をさらに含み、上記複数の細胞は上記支持体に固定される、項目89に記載のシステム。
(91) 上記支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着される、項目90に記載のシステム。
(92) 上記モニター手段は、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段、放射光、共焦点顕微鏡、非共焦点顕微鏡、微分干渉顕微鏡、実体顕微鏡、ビデオモニターおよび赤外線カメラからなる群より選択される少なくともひとつの手段を含む、項目89に記載のシステム。
(93) 同一環境にある細胞の情報に関するプロファイルを提示するシステムであって、
a)複数の細胞を同一環境を保つことができる支持体;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
c)上記モニター手段から得られた信号から上記細胞のプロファイルのデータを生成する手段;および
d)上記データを提示する手段、
を備える、システム。
(94) 複数の細胞をさらに含み、上記複数の細胞は上記支持体に固定される、項目93に記載のシステム。
(95) 上記支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着される、項目93に記載のシステム。
(96) 上記モニター手段は、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段、放射光、共焦点顕微鏡、非共焦点顕微鏡、微分干渉顕微鏡、実体顕微鏡、ビデオモニターおよび赤外線カメラからなる群より選択される少なくともひとつの手段を含む、項目93に記載のシステム。
(97) 上記データを提示する手段は、ディスプレイである、項目93に記載のシステム。
(98) 上記データを提示する手段は、スピーカである、項目93に記載のシステム。
(99) 細胞の状態を判定するシステムであって、
a)複数の細胞を同一環境を保つことができる支持体;
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
c)上記モニター手段から得られた信号からデータを生成する手段;および
d)上記データから上記細胞の状態を外挿する手段、
を備える、システム。
(100) 外来因子と、上記外来因子に対する細胞の応答とを相関付けるシステムであって、
a)複数の細胞を同一環境を保つことができる支持体;
b)外来因子を曝露する手段;
c)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
d)上記モニター手段からの信号から、上記細胞のプロファイルのデータを生成する工程;および
e)上記外来因子と、上記プロファイルとを相関付ける手段;
を備える、システム。
(101) 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムであって、
a)複数の細胞を同一環境を保つことができる支持体;
b)既知の外来因子を曝露する手段;
c)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
d)外来因子の各々に対する上記細胞のプロファイルを得て上記細胞のプロファイルのデータを生成する手段;
e)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける手段;
f)上記細胞を未同定の外来因子に曝露する手段;
g)上記手段(d)で得られた既知の外来因子のプロファイルと、未知の外来因子のプロファイルとを比較し、既知の外来因子のプロファイルの中から、未知の外来因子のプロファイルに対応するプロファイルを決定する手段であって、上記決定された未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子である、手段、
を備える、システム。
(102) 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムであって、
a)上記細胞上または上記細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータが格納された記録媒体;
b)上記細胞を未同定の外来因子に曝露する手段;
c)複数の細胞を同一環境を保つことができる支持体;
d)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
e)上記モニター手段から得られた信号から、上記細胞のプロファイルを得る手段;
f)上記記録媒体(a)において格納される上記プロファイルの中から、未知の外来因子に関して得られたプロファイルに対応するプロファイルを決定する手段であって、上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子である、手段;
を備える、システム。
(103) 複数の細胞を固定し得、かつ、上記細胞の環境を同一に維持し得る支持体。
(104) 上記支持体上の細胞は、アレイ状に配置され得る、項目103に記載の支持体。
(105) 塩および正に荷電した物質と負に荷電した物質との複合体、またはアクチン作用物質を含む、項目103に記載の支持体。
(106) 塩および正に荷電した物質と負に荷電した物質との複合体、ならびにアクチン作用物質を含む、項目103に記載の支持体。
(107) 上記細胞は、最大1mm以下の間隔で配置され得る、項目103に記載の支持体。
(108) 固定された細胞をさらに含む、項目103に記載の支持体。
(109) 固定された生物学的因子をさらに含む、項目104に記載の支持体。
(110) 上記生物学的因子は2種類以上固定される、項目109に記載の支持体。
(111) 細胞および生物学的因子が固定される、項目103に記載の支持体。
(112) 塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともに固定される、項目103に記載の支持体。
(113) 塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともにアレイ状に固定される、項目103に記載の支持体。
(114) 塩と、遺伝子導入試薬と、アクチン作用物質と、核酸分子と、細胞とがアレイ状に固定される、項目104に記載の支持体。
(115) 上記塩は、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸およびビタミンからなる群より選択される塩を含む、項目114に記載の支持体。
(116) 上記遺伝子導入試薬は、カチオン性高分子、カチオン性脂質、ポリアミン系試薬、ポリイミン系試薬、リン酸カルシウム、オリゴフェクタミンおよびオリゴフェクターからなる群より選択される少なくともひとつの試薬を含む、項目114に記載の支持体。
(117) 上記アクチン作用物質は、フィブロネクチン、ラミニンおよびビトロネクチンからなる群より選択される少なくとも1つのタンパク質またはその改変体もしくはフラグメントを含む、項目114に記載の支持体。
(118) 上記核酸分子は、サイトカイン、ホルモン、細胞接着因子、細胞骨格タンパク質および酵素からなる群より選択されるタンパク質をコードする配列を含む、項目114に記載の支持体。
(119) 上記細胞は、動物細胞、昆虫細胞、植物細胞、細菌細胞および真菌細胞からなる群より選択される細胞を含む、項目114に記載の支持体。
(120) 上記支持体の材料は、ガラス、シリカ、およびプラスチックからなる群より選択される材料を含む、項目114に記載の支持体。
(121) 固定された複数の細胞を含み、かつ、上記細胞の環境を同一に維持し得る支持体を生産する方法であって、
A)支持体を提供する工程;および
B)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて上記支持体上に固定する工程、
を含む、方法。
(122) 上記固定工程は、上記塩と、上記正に荷電した物質としての遺伝子導入試薬と、アクチン作用物質と、上記負に荷電した物質としての核酸分子と、上記細胞との混合物を、アレイ状に固定することを含む、項目121に記載の方法。
(123) 上記固定工程は、プリント工程を含む、項目121に記載の方法。
(124) 上記支持体の提供は、支持体材料から上記支持体を作製する工程を包含する、項目121に記載の方法、。
(125) 固定された複数の細胞を含み、かつ、上記細胞の環境を同一に維持し得る支持体を生産する装置であって、
A)支持体を提供する手段;および
B)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて上記支持体上に固定する手段
を備える、装置。
(126) 上記固定手段は、プリント手段を含む、項目125に記載の装置。
(127) 上記支持体提供手段は、支持体材料から上記支持体を成型する手段を含む、項目125に記載の装置。
本発明の他の実施形態、好ましい形態は、添付の図面を参酌しながら、本明細書の好ましい実施形態を理解することによって達成され得ることが認識され得る。
(128) デジタル細胞を生産する方法であって、
a)実験対象の細胞を特定する細胞パラメータを取得する工程;
b)上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータを取得する工程;
c)上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータを取得する工程;
d)上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果を取得する工程;
e)上記細胞パラメータと上記環境パラメータと上記刺激パラメータと上記刺激応答結果とを関連づけることにより、上記細胞に対する1つの実験データを生成する工程;および
f)工程a)〜工程e)を必要に応じて繰り返すことにより、上記細胞に対する少なくとも1つの実験データの集合を生成し、上記少なくとも1つの実験データの集合をデジタル細胞として提供する工程;
を包含する、方法。
(129) 上記環境パラメータは、上記細胞を培養する培地を示すパラメータと、上記培地の条件を示すパラメータとを含む、項目128に記載の方法。
(130) 上記刺激パラメータは、レポーターを示すパラメータと、化学刺激を示すパラメータとを含む、項目128に記載の方法。
(131) 上記刺激応答結果は、上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターすることによって得られる上記細胞のプロファイルのデータを含む、項目128に記載の方法。
(132) 上記方法は、上記デジタル細胞をデータベースに格納する工程をさらに包含する、項目128に記載の方法。
(133) デジタル細胞を生産する装置であって、
a)実験対象の細胞を特定する細胞パラメータを取得する手段;
b)上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータを取得する手段;
c)上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータを取得する手段;
d)上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果を取得する手段;
e)上記細胞パラメータと上記環境パラメータと上記刺激パラメータと上記刺激応答結果とを関連づけることにより、上記細胞に対する1つの実験データを生成する手段;および
f)工程a)〜工程e)を必要に応じて繰り返すことにより、上記細胞に対する少なくとも1つの実験データの集合を生成し、上記少なくとも1つの実験データの集合をデジタル細胞として提供する手段;
を備えた、装置。
(134) サービスリクエスタとサービスプロバイダとを含むコンピュータシステムを用いて、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する方法であって、
少なくとも1つのデジタル細胞を格納したデータベースを用意する工程であって、上記少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、上記少なくとも1つの実験データのそれぞれは、上記細胞を特定する細胞パラメータと、上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータと、上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータと、上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果とを含む、工程;
上記サービスリクエスタが、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを受け取り、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを含むリクエストを生成する工程;
上記サービスリクエスタが、上記リクエストを上記サービスプロバイダに提供する工程;
上記サービスプロバイダが、上記リクエストに応答して上記データベースを検索し、上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在するか否かを決定する工程;
上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在すると決定された場合には、上記サービスプロバイダが、上記刺激応答結果を上記サービスリクエスタに提供する工程;および
上記サービスリクエスタが、上記刺激応答結果を表示する工程;
を包含する、方法。
(135) サービスリクエスタと複数のサービスプロバイダとを含むコンピュータシステムを用いて、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する方法であって、
少なくとも1つのデジタル細胞をそれぞれ格納した複数のデータベースを用意する工程であって、上記少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、上記少なくとも1つの実験データのそれぞれは、上記細胞を特定する細胞パラメータと、上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータと、上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータと、上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果とを含む、工程;
上記複数のサービスプロバイダが提供可能な少なくとも1つのサービスを登録したサービスレジストリを用意する工程;
上記サービスリクエスタが、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを受け取り、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを含むリクエストを生成する工程;
上記サービスリクエスタが、上記リクエストに応答して上記サービスレジストリを検索し、上記複数のサービスプロバイダの中に上記リクエストのサービスを提供可能なサービスプロバイダが存在するか否かを決定する工程;
上記複数のサービスプロバイダの中に上記リクエストのサービスを提供可能なサービスプロバイダが存在すると決定された場合には、上記サービスリクエスタが、上記リクエストを上記サービスプロバイダに提供する工程;
上記サービスプロバイダが、上記リクエストに応答して上記データベースを検索し、上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在するか否かを決定する工程;
上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在すると決定された場合には、上記サービスプロバイダが、上記刺激応答結果を上記サービスリクエスタに提供する工程;および
上記サービスリクエスタが、上記刺激応答結果を表示する工程;
を包含する、方法。
(136) デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステムであって、
少なくとも1つのデジタル細胞を格納したデータベースにアクセス可能なように構成されたサービスプロバイダであって、上記少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、上記少なくとも1つの実験データのそれぞれは、上記細胞を特定する細胞パラメータと、上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータと、上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータと、上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果とを含む、サービスプロバイダ;および
ユーザが所望するサービスをリクエストするサービスリクエスタ;
を備え、
上記サービスリクエスタは、
上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを受け取り、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを含むリクエストを生成する手段;および
上記リクエストを上記サービスプロバイダに提供する手段;
を含み、
上記サービスプロバイダは、
上記リクエストに応答して上記データベースを検索し、上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在するか否かを決定する手段;および
上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在すると決定された場合には、上記刺激応答結果を上記サービスリクエスタに提供する手段;
を含み、
上記サービスリクエスタは、
上記刺激応答結果を表示する手段;
をさらに含む、コンピュータシステム。
(137) 上記サービスリクエスタは、上記ユーザが操作するWebブラウザであり、上記サービスプロバイダは、インターネットを介して上記サービスリクエスタに接続されるWebサーバーである、項目136に記載のコンピュータシステム。
(138) 上記サービスリクエスタは、XMLで記述した形式で上記リクエストを上記サービスプロバイダに提供する、項目136に記載のコンピュータシステム。
(139) 上記サービスプロバイダは、XMLで記述した形式で上記刺激応答結果を上記サービスリクエスタに提供する、項目136に記載のコンピュータシステム。
(140) デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステムであって、
複数のサービスプロバイダであって、上記複数のサービスプロバイダのそれぞれは、少なくとも1つのデジタル細胞を格納したデータベースにアクセス可能なように構成されており、上記少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、上記少なくとも1つの実験データのそれぞれは、上記細胞を特定する細胞パラメータと、上記細胞パラメータによって特定された上記細胞を培養する環境を特定する環境パラメータと、上記細胞パラメータによって特定された上記細胞に与える刺激を特定する刺激パラメータと、上記環境パラメータによって特定された上記環境下で上記細胞パラメータによって特定された上記細胞が上記刺激パラメータによって特定された上記刺激に対して応答した結果を示す刺激応答結果とを含む、複数のサービスプロバイダ;
上記複数のサービスプロバイダが提供可能な少なくとも1つのサービスを登録したサービスレジストリ;および
ユーザが所望するサービスをリクエストするサービスリクエスタ;
を備え、
上記サービスリクエスタは、
上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを受け取り、上記細胞パラメータと上記環境パラメータと上記刺激パラメータとを含むリクエストを生成する手段;
上記リクエストに応答して上記サービスレジストリを検索し、上記複数のサービスプロバイダの中に上記リクエストのサービスを提供可能なサービスプロバイダが存在するか否かを決定する手段;および
上記複数のサービスプロバイダの中に上記リクエストのサービスを提供可能なサービスプロバイダが存在すると決定された場合には、上記リクエストを上記サービスプロバイダに提供する手段;
を含み、
上記複数のサービスプロバイダのそれぞれは、
上記リクエストに応答して上記データベースを検索し、上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在するか否かを決定する手段;および
上記データベース内に上記リクエストに含まれる上記細胞パラメータと上記環境パラメータと上記刺激パラメータとに関連する上記刺激応答結果が存在すると決定された場合には、上記刺激応答結果を上記サービスリクエスタに提供する手段;
を含み、
上記サービスリクエスタは、
上記刺激応答結果を表示する手段;
をさらに含む、コンピュータシステム。
(141) 上記サービスリクエスタは、インターネットを介して上記ユーザが操作するWebブラウザに接続されるWebサーバーであり、上記複数のサービスプロバイダのそれぞれは、上記インターネットを介して上記サービスリクエスタに接続されるWebサーバーである、項目140に記載のコンピュータシステム。
(142) 上記サービスリクエスタは、XMLで記述した形式で上記リクエストを上記サービスプロバイダに提供する、項目140に記載のコンピュータシステム。
(143) 上記サービスプロバイダは、XMLで記述した形式で上記刺激応答結果を上記サービスリクエスタに提供する、項目140に記載のコンピュータシステム。
(144) 細胞の情報に関するプロファイルデータを生成する方法であって、
a)細胞を支持体上に固定して配置する工程;および
b)上記細胞上または上記細胞内の生物学的因子またはその集合体を経時的にモニターして上記細胞のプロファイルのデータを生成する工程;
を包含する、方法。
(145) 上記生物学的因子は、核酸分子または上記核酸分子に由来する分子である、項目144に記載の方法。
(146) 上記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、上記支持体に固定される、項目144に記載の方法。
(147) 上記細胞には、アクチン作用物質が提供される、項目144に記載の方法。
(148) 上記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、上記支持体に固定され、かつ、アクチン作用物質が提供される、項目144に記載の方法。
(149) 上記生物学的因子は、核酸分子、タンパク質、糖鎖、脂質、低分子、それらの複合分子からなる群より選択される、項目144に記載の方法。
(150) 上記細胞は、モニター前に少なくとも約3日間培養される、項目144に記載の方法。
(151) 上記生物学的因子は、遺伝子をコードする核酸分子を含む、項目144に記載の方法。
(152) 上記プロファイルは、遺伝子発現のプロファイルを含む、項目144に記載の方法。
(153) 上記プロファイルは、アポトーシスシグナルのプロファイルを含む、項目144に記載の方法。
(154) 上記プロファイルは、ストレスシグナルのプロファイルである、項目144に記載の方法。
(155) 上記プロファイルは、分子の局在化に関するプロファイルである、項目144に記載の方法。
(156) 上記分子は、蛍光、燐光、放射性物質またはその組み合わせにて標識される、項目139に記載の方法。
(157) 上記プロファイルは、細胞形態の変化を含む、項目144に記載の方法。
(158) 上記プロファイルは、プロモーターのプロファイルを含む、項目144に記載の方法。
(159) 上記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含む、項目144に記載の方法。
(160) 上記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含み、上記特定薬剤を投与するさらに工程を含む、項目144に記載の方法。
(161) 外来因子が上記細胞に提供される工程をさらに包含する、項目144に記載の方法。
(162) 上記外来因子は、RNAiを含む、項目161に記載の方法。
(163) 上記外来因子は、生体に存在しない化学物質を含む、項目161に記載の方法。
(164) 上記プロファイルは、分子間相互作用のプロファイルを含む、項目144に記載の方法。
(165) 上記外来因子は、上記細胞のレセプターに対するリガンドを含む、項目161に記載の方法。
(166) 上記プロファイルは、レセプターリガンド相互作用のプロファイルを含む、項目144に記載の方法。
(167) 上記プロファイルは細胞形態であり、上記方法は、遺伝子の過剰発現、過小発現もしくはノックダウン、外来因子の添加および環境の変化からなる群より選択される、刺激を上記細胞に与える工程をさらに包含する、項目144に記載の方法。
(168) 上記プロファイルは、上記細胞内に存在する分子間の相互作用のプロファイルを含む、項目144に記載の方法。
(169) 上記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、項目144に記載の方法。
(170) 上記プロファイルは、上記細胞内に存在する分子間の相互作用のプロファイルを含み、上記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、項目144に記載の方法。
(171) 上記細胞は、上記支持体上にアレイ状に配置される、項目144に記載の方法。
(172) 上記細胞は、上記支持体上にアレイ状に配置され、上記複数の細胞は、各々が最大1mmの間隔をあけて配置される、項目144に記載の方法。
(173) 上記プロファイルはリアルタイムに得られる、項目144に記載の方法。
(174) 上記細胞を固相支持体に固定する工程をさらに包含する、項目144に記載の方法。
(175) 上記データは、上記プロファイルに関する情報を含む、項目144に記載の方法。
(176) 上記データは、上記モニターにおける条件に関する情報を含む、項目144に記載の方法。
(177) 上記データは、上記細胞の状態に関する情報を含む、項目144に記載の方法。
(178) 上記モニターされる生物学的因子は、少なくとも2種の生物学的因子を含む、項目144に記載の方法。
(179) 上記モニターされる生物学的因子は、少なくとも3種の生物学的因子を含む、項目144に記載の方法。
(180) 上記モニターされる生物学的因子は、少なくとも8種の生物学的因子を含む、項目144に記載の方法。
(181) 生物学的因子を任意に選択する工程をさらに包含する、項目144に記載の方法。
(182) 上記細胞は、幹細胞および体細胞からなる群より選択される、項目144に記載の方法。
(183) 上記支持体は、固相支持体を含む、項目144に記載の方法。
(184) 上記支持体は、基板を含む、項目144に記載の方法。
(185) 上記生物学的因子は核酸分子であり、上記細胞は、上記核酸分子でトランスフェクトされる、項目144に記載の方法。
(186) 上記トランスフェクトは固相上または液相中で行われる、項目185に記載の方法。
(187) 上記トランスフェクトは固相上で行われる、項目185に記載の方法。
(188) 上記プロファイルの位相を比較する工程を包含する、項目144に記載の方法。
(189) 上記細胞のプロファイルとコントロールプロファイルとの差分をとる工程を包含する、項目144に記載の方法。
(190) 上記プロファイルは、信号処理法および多変量解析からなる群より選択される数学処理により処理される工程をさらに包含する、項目144に記載の方法。
以下に、本発明の好ましい実施形態を示すが、当業者は本発明の説明および当該分野における周知慣用技術からその実施形態などを適宜実施することができ、本発明が奏する作用および効果を容易に理解することが認識されるべきである。
本発明によって、細胞の状態に関する連続情報(プロファイル)・データが得られる。同一の環境条件における細胞の状態に関する情報・データ(特に連続情報・連続プロファイル)が再現性よく得られる。本発明によって、そのようなデータを正確に提示するための方法およびシステムが提供される。特に、同一環境条件で細胞レベルでの情報を、複雑系という観点でそのままあるいは直接的に提示するシステムおよび方法ならびにそのようなデータおよびデータ配列技術そのものが提供されたことは驚くべき効果である。本発明はさらに、従来不可能であった、実際の生のデータの基づくデジタル細胞およびその利用法を提供するという効果を奏する。
このように、本発明により、驚くべきほど少ない因子を観察することによって、細胞の状態を判定し、試験し、研究することが可能になった。このような判定により、診断、予防、治療に応用することが可能となり、その応用範囲は医療のみならず、食品、化粧品、農業、環境など種々の分野に及ぶ。また、コンピュータ上で生実験を再現できることから、バイオテクノロジーにおける教育および研究を行うことができるようになったという効果も奏する。
図1は、HEK293細胞を用いた場合の種々のアクチン作用物質およびコントロールとしてのゼラチンを用いた結果の一例を示す。トランスフェクション効率に対する、付着した分子の効果を示す。HEKK293細胞に対してEffecttene試薬を用いて、pEGFP−N1をトランスフェクションした。
図2は、フィブロネクチンのフラグメントを用いた場合のトランスフェクション効率の結果の一例を示す。
図3は、フィブロネクチンのフラグメントを用いた場合のトランスフェクション効率の結果の一例を示す。
図4は、図2および図3からまとめたフィブロネクチンのフラグメントを用いた場合のトランスフェクション効率の結果の一例を示す。
図5は、種々の細胞におけるトランスフェクション効率を調べた結果の一例を示す。
図6は、種々のプレートを用いた場合のトランスフェクションの状態を示す結果の一例を示す。
図7は、フィブロネクチンの濃度を0、0.27、0.53、0.8、1.07および1.33(それぞれμg/μL)として種々のプレート上でトランスフェクションを行った場合の結果を示す。
図8は、フィブロネクチンの有無での、細胞接着プロファイルを示す写真の一例を示す。
図9は、フィブロネクチンの有無での、細胞接着プロファイルを示す切片写真の一例を示す。共焦点レーザー走査顕微鏡によるヒト間葉系幹細胞(hMSC)の切片観察である。hMSCを、4%のPFAを用い、数回インキュベートして固定した。青色蛍光(核:SYT061)および赤色蛍光(核:テキサスレッド−Xファロイジン)を、共焦点レーザー走査顕微鏡(LSM510,Carl Zeiss Co.,Ltd,ピンホールサイズ=1・0;画像間隔=0.4)を用いて得た。
図10は、核の表面積の推移を示す。共焦点レーザー走査顕微鏡画像の切片観察によって決定された相対的な核の表面積。ヒト間葉系幹細胞を、4%のPFAを用いて、数回インキュベートして固定した。
図11は、トランスフェクションアレイチップとして構築した場合のトランスフェクション実験の結果の一例を示す。
図12は、アレイ上での各スポット間の夾雑の様子を示す一例である。
図13は、実施例4における本発明の固相トランスフェクションによって、空間的に分離したDNAの細胞内への取り込みを示す図である。
図13Aは、固相系トランスフェクションアレイ(SPTA)作製方法を模式的に示した図である。この図は、固相トランスフェクションの方法論を示す。
図13Bは、固相トランスフェクションの結果を示す。HEK293細胞株を用いてSPTAを作製した結果を示す。緑色の部分は、トランスフェクションされた付着細胞を示す。この結果から、本発明の方法によって、空間的に分離された、異なる遺伝子によってトランスフェクトされた細胞の集団を調製することが可能となった。このように図13ABは全体としてトランスフェクション(SPTA)のスキームを示す。図13AはSPTA判定のアウトラインを示し、図13BはHEK293細胞株でのSPTAの結果を示す。バーは3mmである。
図13Cは、固相系でのトランスフェクションの方法論を示す。
図14Aおよび図14Bは、液相トランスフェクションとSPTAの比較を示す結果である。
図14Aは、実験に用いた5つの細胞株について、GFP強度/mm2を測定した結果を示す。図14Aは、トランスフェクション効率を、単位面積あたりの総蛍光強度として決定する方法を示す。
図14Bは、図14Aの示すデータに対応する、EGFPを発現する細胞の蛍光画像である。図14Bにおいて、白丸で示された領域は、プラスミドDNAを固定化した領域を示す。プラスミドDNAを固定化した領域以外の領域では、細胞が固相に固定化されたにもかかわらず、EGFPを発現する細胞は観察されなかった。白棒は、500μmを示す。
測定された蛍光/mm5種の細胞株についての図14Aに対応する。EGFP発現細胞の蛍光写真である。白色の円状のものは、プラスミドDNAプリント領域にあたる。この領域の外の領域の細胞はEGFPを発現しているが、プリント領域の以外の領域にも細胞は付着している。
図14Cは、本発明のトランスフェクション法の一例を示す。
図14Dは、本発明のトランスフェクション法の一例を示す。
図15は、チップのコーティングによって相互夾雑が低減された結果を示す。
図15は、HEK293細胞、HeLa細胞、NIT3T3細胞(「3T3」として示す)、HepG2細胞、およびhMSCを用いて、液相トランスフェクション法およびSPTAを行った結果を示す。トランスフェクション効率を、GFP強度で示す。
使用するN/P比率によるhMSCのトランスフェクション効率が図15Aに示される。従来の液相トランスフェクションの場合には(図15B上)、hMSC細胞は死滅し、SPTAの場合は細胞系対は正常である(図15B下)。
図16は、各スポット間の相互夾雑に関する様子を示す図である。APSまたはPLL(ポリ−L−リジン)でコーティングしたチップに対して、所定の濃度のフィブロネクチンを含む核酸混合物を固定化し、その固定化したチップを用いて細胞トランスフェクションした結果、相互夾雑は観察されなかった(上段および中断)。これに対して、チップをコーティングしなかった場合、固定化核酸の有意な相互夾雑が観察された(下段)。
pEGFP−N1およびpDsRed2−N1を市松模様にプリントし、そしてhMSC(パネルA)またはHEK293(パネルB)を培養した。
図16Cは、核酸の固定化において使用する混合物中に使用される物質の種類と、細胞接着速度との相関関係を示す。このグラフは、時間経過に伴う、接着細胞の割合の増加を示す。グラフの傾きが緩やかな場合は、グラフの傾き急な場合と比較して、より多くの時間が細胞接着に必要なことを示す。
図16Dは、図16C中のグラフを拡大して示したものである。
図17は、本発明の方法をコンピュータにおいて実行したときの一構成例を示す。
図18Aは、本発明の数理的解析法の一例を示す。図18A(pNEFAT−d2EGFP/ネガティブコントロールの平均)および図18B(pERE−d2EGFP/ネガティブコントロールの平均)のようなプロモーターのプロファイルを蛍光強度の経時変化を測定することによって取得する。なお、このプロファイルは、細胞または培地の自己蛍光を用いて正規化してある。この後に、レポーター発現変動の振幅を比較するために、振幅幅=5以上(TH≧5)の発現変動を状態が変化したと判断した。また、分化誘導開始初期(0−17.5時間)および後期(17.5−31.5時間)ならびにトータル(0−31.5時間)の区間に区切って、振幅幅=5以上(TH≧5)の発現変動を観察したものを(+)、それ以下の変動であったものを(−)と定義した。この定義から、AおよびBのプロファイルは、図18Aおよび図18Bの下の表のように評価された。この表中では、任意のレポーターの抽出時(A+B+・・・・n)では、n個の波形を積算し、これをnで割った平均の波形を作成し、閾値以上の変動を変化とみなした。
図18Bは、本発明の数理的解析法の別の一例を示す。任意のレポーターの抽出時(A+B+・・・・n)では、n個の波型を積算し、これをnで割った平均の波型を作成し、閾値以上の変動を変化とみなした。図18B左は、2つのレポータープロファイルを積算し、その平均波形を赤線(黒四角)で描いたものである。平均プロファイルの変動が5以上になったものを、発現変動とみなして評価した。すると、以下の表のように、抽出された2レポーターの変動を評価することができる。
図19は、本発明で用いたプロモーター含有プラスミド例および本発明の解析の一例を示す。間葉系幹細胞の骨芽細胞分化および未分化維持条件において図19左に示した17種類の転写因子をレポーターとし、これらの発現プロファイルを経時的に取得した(図19右)。この17種類のプロファイルから、任意の数のプロファイルを抽出し、前述(図18)の方法によって、各転写因子の応答プロファイルの変動幅を基準としてとして評価した。
図20は、分化誘導初期における数理的解析結果の一例を示す。分化誘導初期において任意に抽出される組み合わせを変化させたとき、図20のような結果を得た。抽出数は、17のレポーター群から任意のその数のレポーターを抽出し、図18に示した方法によって平均プロファイルを算出後、変動幅≧5の変動を示したものを、誘導開始から0−31.5、0−17.5、17.5−31.5時間の区間で評価した結果である。書く抽出条件において、その抽出数は、17通りである。ただし抽出数17は1通りである。この組み合わせのうち、いくつかの組み合わせで、変動があると判断された割合を図20中の表に示し、図20のグラフに示した。この解析により、分化のごく初期に関しては、分化誘導を把握できないが、約15時間後以降においては、確認できる。なお、変化が認められる割合が100%となった任意の抽出数は、この場合において8以上であった。
図21は、未分化維持における数理的解析結果の一例を示す。図20と同様に、未分化維持条件において任意の抽出される組み合わせを変化させたときにグラフに表されるような結果を得た。図20に前述の分化誘導時の結果と比べると、大きく異なる。この比較によって、細胞が分化誘導に向かっているのか未分化を維持しているのかを判断することができると考えられる。
図22は、カクテルパーティープロセスの模式図を示す。
図23は、遺伝子転写スイッチレポーター(本発明において使用されるトランスフェクションプラスミド)の構築例を示す。
図24は、転写因子レポーターセットの構築例を示す。
図25は、転写因子レポーターのアッセイ例を示す。
図26は、骨分化過程における転写因子活性の時系列測定例を示す。
図27は、転写因子活性の振動現象および位相解析の例を示す。
図28は、siRNA実験のプロトコルを示す。
図29Aは、siRNA実験の結果を示す。上はhMSCでの結果を示し、下はHeLa細胞での結果を示す。数字は、siRNAの濃度(μg/μL)を示す。抗GFPsiRNAでの結果を左に示し、右にはスクランブルsiRNAでの結果を示す。
図29Bは、固相トランスフェクション(PC12)をコラーゲンIVコーティング上で行った場合のsiRNAの効果を示す。図29B(A)は、EGFPベクターおよび抗EGFP siRNAを共トランスフェクションしたPC12細胞を示す。示されるように、HcRedのみが発色し、pEGFP−N1に由来する緑色信号が抑制されていたことが判明した。他方、図29B(B)は、スクランブルsiRNAを用いた例を示す。示されるように、緑色の蛍光が観察され、図29B(A)における効果は、RNAiの効果であることが確認された。図29B(A)および図29B(B)における蛍光の強度を相対的に示した図を図29B(C)に示す。y軸は相対輝度により示す。EGFPによる効果は、ほぼ完全に抑えられていることが分かる。
図29Cには、これらをまとめた結果およびグラフを示す。左のパネルは、RNAiとpDNAとの比率を変動させた場合の、EGFPのRNAiとスクランブル(Mock)RNAiとを比較した写真である。示されるように、EGFPのRNAiでは阻害効果が示されているのに対してスクランブルでは、変化がなかった。こrを、DsRed2とともに示したものを右パネルに示す。実験条件は、上述のものに準じた。その結果、赤(DsRed由来のシグナル)および緑(EGFP由来のシグナル)は、RNAiの効果に比例して示された。
図29Dには、RNAiレポーターを用いたチップの模式図を示す。インプットシグナルとしてRNAiを使用した場合、そのアウトプットとしてEGFなどのシグナル発信が可能な遺伝子産物と目的となる遺伝子(プロモーターを含む)をコードする核酸を共に導入した場合、アウトプットとしてそのシグナル発信を観察することによって、細胞情報を取り出すことが可能である。
図29Eには、種々のレポーター(pAP1−EGFP,pAP1(PMA)−EGFP,pCRE−EGFP,pE2F−EGFP,pERE−EGFP,pGAS−EGFP,pGRE−EGFP,pHSE−EGFP,pISRE−EGFP,pMyc−EGFP,pNFAT−EGFP,pNFkB−EGFP,pRARE−EGFP,pRb−EGFP,pSTST3−EGFP,pSRE−EGFP,pTRE−EGFP,pp53−EGFP,pCREB−sensor,pIkB−sensor,pp53−sensor,pCasapase3−sensor;シスエレメント配列は、クロンテックより購入。蛍光蛋白質遺伝子を組み換えて作成したプラスミドベクター)を用いた実験例を示す。
図30は、テトラサイクリン依存性プロモーターを使用したときの変化の様子を示す。
図31は、テトラサイクリン依存性プロモーターおよびテトラサイクリン非依存性プロモーターを用いたときの、発現の様子を示す図である。
図31Bは、ニューロンをチロシンキナーゼのRNAiの影響をトランスフェクションマイクロアレイを用いて分析した模式図を示す。
図31Cには、種々のチロシンキナーゼによるレチノイン酸(RA)および神経成長因子(NGF)の応答を示す。siRNAでの阻害%を示した。
図31Dは、解析の結果得られたシグナル伝達経路の模式図を示す。
図31Eは、上記の解析により得られた結果を示す。ヒトニューロン分化を担うチロシンキナーゼの総合分析である。ドパミン作動性ニューロンであるか、コリン作動性ニューロンであるか、その両方であるか、その両方でないかで分類してある。両方に関与するものが神経突起形成に関与する可能性が高いと分析できる。
図31Fは、HeLa細胞でのアポトーシスの転写調節のリアルタイムモニタリングを示す一例である。左のパネルは、経時的解析結果および右はその解析に基づいて得られたシグナル伝達経路解析結果である。
図32は、システム構成例を示す。
図33Aは、本発明のデジタル細胞の一例である。
図33Bは、本発明のデジタル細胞の別の例である。
図34は、本発明のデジタル細胞の生産方法の一例を示す。
図35は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステム3501の構成の一例を示す。
図36は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する処理の手順の一例を示す。
図37は、サービスリクエスタ3510に細胞パラメータと環境パラメータと刺激パラメータとを入力する入力画面の一例を示す。
図38は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステム3801の構成の一例を示す。
図39は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する処理の手順の一例を示す。
配列表の説明
配列番号1:フィブロネクチンの核酸配列(ヒト)
配列番号2:フィブロネクチンのアミノ酸配列(ヒト)
配列番号3:ビトロネクチンの核酸配列(マウス)
配列番号4:ビトロネクチンのアミノ酸配列(マウス)
配列番号5:ラミニンの核酸配列(マウスα鎖)
配列番号6:ラミニンのアミノ酸配列(マウスα鎖)
配列番号7:ラミニンの核酸配列(マウスβ鎖)
配列番号8:ラミニンのアミノ酸配列(マウスβ鎖)
配列番号9:ラミニンの核酸配列(マウスγ鎖)
配列番号10:ラミニンのアミノ酸配列(マウスγ鎖)
配列番号11:フィブロネクチンのアミノ酸配列(ウシ)
配列番号12:実施例で使用したsiRNA
配列番号13:マウスの嗅覚レセプターI7(heptanal−sensitive)の核酸(Genbank登録番号(Accession Number)AF106007)。
配列番号14:配列番号13に記載の核酸にコードされるタンパク質。
配列番号15:マウスの嗅覚レセプターS1(mc9/bc9−equi−sensitive)の核酸(Genbank登録番号AF121972)。
配列番号16:配列番号15に記載の核酸にコードされるタンパク質。
配列番号17:マウスの嗅覚レセプターS50(cc9−sensitive)の核酸(Genbank登録番号AF121980)。
配列番号18:配列番号17に記載の核酸にコードされるタンパク質。
配列番号19:マウスの嗅覚レセプターS19(mc9/mh9/bc9−equi−sensitive)の核酸(Genbank登録番号AF121976)。
配列番号20:配列番号19に記載の核酸にコードされるタンパク質。
配列番号21:マウスのOR23(lyral−sensitive)(Genbank登録番号X92969のコード領域のみ)の核酸。
配列番号22:配列番号21に記載の核酸にコードされるタンパク質。
配列番号23:マウスの嗅覚レセプターについてのmOR−EV(vanillin−sensitive)の核酸(Genbank登録番号AB061229)。
配列番号24:配列番号23に記載の核酸にコードされるタンパク質。
配列番号25:マウスのor37aの核酸(Genbank登録番号AJ133424)。
配列番号26:配列番号25に記載の核酸にコードされるタンパク質。
配列番号27:マウスの嗅覚レセプターC6の核酸(Genbank登録番号AF102523)。
配列番号28:配列番号27に記載の核酸にコードされるタンパク質。
配列番号29:マウスの嗅覚レセプターF5の核酸(Genbank登録番号AF102531)。
配列番号30:配列番号29に記載の核酸にコードされるタンパク質。
配列番号31:マウスの嗅覚レセプターS6の核酸(Genbank登録番号AF121974)。
配列番号32:配列番号31に記載の核酸にコードされるタンパク質。
配列番号33:マウスの嗅覚レセプターS18の核酸(Genbank登録番号AF121975)。
配列番号34:配列番号33に記載の核酸にコードされるタンパク質。
配列番号35:マウスの嗅覚レセプターS25の核酸(Genbank登録番号AF121977)。
配列番号36:配列番号35に記載の核酸にコードされるタンパク質。
配列番号37:マウスの嗅覚レセプターS46の核酸(Genbank登録番号AF121979)。
配列番号38:配列番号37に記載の核酸にコードされるタンパク質。
配列番号39:マウスのGタンパク質αサブユニットの核酸(Genbank登録番号M36778)。
配列番号40:配列番号39に記載の核酸にコードされるタンパク質。
配列番号41:マウスのGタンパク質βサブユニットの核酸(Genbank登録番号M87286)。
配列番号42:配列番号41に記載の核酸にコードされるタンパク質。
配列番号43:マウスのGタンパク質γサブユニットの核酸(Genbank登録番号U37527)。
配列番号44:配列番号43に記載の核酸にコードされるタンパク質。
配列番号45:マウスの上皮増殖因子(EGF)レセプターの核酸(Genbank登録番号BC023729)。
配列番号46:配列番号45に記載の核酸にコードされるタンパク質。
配列番号47:実施例9で使用したsiRNAの配列。
配列番号48:実施例9で使用したスクランブルRNAの配列。
以下、本発明の実施の形態を説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞または形容詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
(用語の定義)
以下に本明細書において特に使用される用語の定義を列挙する。
(細胞生物学)
本明細書において使用される「細胞」は、当該分野において用いられる最も広義の意味と同様に定義され、多細胞生物の組織の構成単位であって、外界を隔離する膜構造に包まれ、内部に自己再生能を備え、遺伝情報およびその発現機構を有する生命体をいう。本明細書において使用される細胞は、天然に存在する細胞であっても、人工的に改変された細胞(例えば、融合細胞、遺伝子改変細胞)であってもよい。細胞の供給源としては、例えば、単一の細胞培養物であり得、あるいは、正常に成長したトランスジェニック動物の胚、血液、または体組織、または正常に成長した細胞株由来の細胞のような細胞混合物が挙げられるがそれらに限定されない。
本明細書において使用される「デジタル細胞」とは、実験対象の細胞に対する少なくとも1つの実験データの集合をいう。これらの実験データは、現実の細胞に対して行った実験の実験条件と実験結果とを関連づけたものである。デジタル細胞は、実験条件が与えられると、その実験条件に関連する実験結果を再現可能なように構成されている。本明細書において想定されるデジタル細胞は、実験可能な細胞すべてを包含する。従って、木明細書において説明されるすべての細胞に関する記載は、適用可能である限り、デジタル細胞にも適用されることが理解されるべきである。
デジタル細胞を用いると、現実の細胞に対して行った実験の実験結果をコンピュータシステム上で再現することができる。これにより、実験設備を持たない研究機関、教育機関および個人においても、細胞に関する教育および最先端の研究を行うことが可能になる。その結果、従来はこの分野に参入することが不可能であった異業種からもこの分野に参入することが可能になる。
本発明で用いられる細胞は、どの生物由来の細胞(たとえば、任意の種類の単細胞生物(例えば、細菌、酵母)または多細胞生物(例えば、動物(たとえば、脊椎動物、無脊椎動物)、植物(たとえば、単子葉植物、双子葉植物など)など))でもよい。例えば、脊椎動物(たとえば、メクラウナギ類、ヤツメウナギ類、軟骨魚類、硬骨魚類、両生類、爬虫類、鳥類、哺乳動物など)由来の細胞が用いられ、より詳細には、哺乳動物(例えば、単孔類、有袋類、貧歯類、皮翼類、翼手類、食肉類、食虫類、長鼻類、奇蹄類、偶蹄類、管歯類、有鱗類、海牛類、クジラ目、霊長類、齧歯類、ウサギ目など)由来の細胞が用いられる。1つの実施形態では、霊長類(たとえば、チンパンジー、ニホンザル、ヒト)由来の細胞、特にヒト由来の細胞が用いられるがそれに限定されない。本発明において用いられる細胞は、上記細胞は、幹細胞であってもよく体細胞であってもよい。また、そのような細胞は、付着細胞、浮遊細胞、組織形成細胞およびそれらの混合物などであり得る。そのような細胞は、移植目的に使用されるものであってもよい。
本発明において、臓器が対象とされる場合、そのような臓器はどのような臓器でもよく、また本発明が対象とする組織または細胞は、生物のどの臓器または器官に由来するものでもよい。本明細書において「臓器」または「器官」とは、互換可能に用いられ、生物個体のある機能が個体内の特定の部分に局在して営まれ,かつその部分が形態的に独立性をもっている構造体をいう。一般に多細胞生物(例えば、動物、植物)では器官は特定の空間的配置をもついくつかの組織からなり、組織は多数の細胞からなる。そのような臓器または器官としては、血管系に関連する臓器または器官が挙げられる。1つの実施形態では、本発明が対象とする臓器は、皮膚、血管、角膜、腎臓、心臓、肝臓、臍帯、腸、神経、肺、胎盤、膵臓、脳、四肢末梢、網膜などが挙げられるがそれらに限定されない。本明細書において、本発明の多能性細胞から分化した細胞としては、表皮細胞、膵実質細胞、膵管細胞、肝細胞、血液細胞、心筋細胞、骨格筋細胞、骨芽細胞、骨格筋芽細胞、神経細胞、血管内皮細胞、色素細胞、平滑筋細胞、脂肪細胞、骨細胞、軟骨細胞などが挙げられるがそれらに限定されない。
本明細書において「組織」(tissue)とは、多細胞生物において、実質的に同一の機能および/または形態をもつ細胞集団をいう。通常「組織」は、同じ起源を有するが、異なる起源を持つ細胞集団であっても、同一の機能および/または形態を有するのであれば、組織と呼ばれ得る。従って、本発明の幹細胞を用いて組織を再生する場合、2以上の異なる起源を有する細胞集団が一つの組織を構成し得る。通常、組織は、臓器の一部を構成する。動物の組織は,形態的、機能的または発生的根拠に基づき、上皮組織、結合組織、筋肉組織、神経組織などに区別される。植物では、構成細胞の発達段階によって分裂組織と永久組織とに大別され、また構成細胞の種類によって単一組織と複合組織とに分けるなど、いろいろな分類が行われている。
本明細書において「幹細胞」とは、自己複製能を有し、多分化能(すなわち多能性)(「pluripotency」)を有する細胞をいう。幹細胞は通常、組織が傷害を受けたときにその組織を再生することができる。本明細書では幹細胞は、胚性幹(ES)細胞または組織幹細胞(組織性幹細胞、組織特異的幹細胞または体性幹細胞ともいう)であり得るがそれらに限定されない。また、上述の能力を有している限り、人工的に作製した細胞)もまた、幹細胞であり得る。胚性幹細胞とは初期胚に由来する多能性幹細胞をいう。胚性幹細胞は、1981年に初めて樹立され、1989年以降ノックアウトマウス作製にも応用されている。1998年にはヒト胚性幹細胞が樹立されており、再生医学にも利用されつつある。組織幹細胞は、胚性幹細胞とは異なり、分化の方向が限定されている細胞であり、組織中の特定の位置に存在し、未分化な細胞内構造をしている。従って、組織幹細胞は多能性のレベルが低い。組織幹細胞は、核/細胞質比が高く、細胞内小器官が乏しい。組織幹細胞は、概して、多分化能を有し、細胞周期が遅く、個体の一生以上に増殖能を維持する。本明細書において使用される場合は、幹細胞は胚性幹細胞であっても、組織幹細胞であってもよい。
由来する部位により分類すると、組織幹細胞は、例えば、皮膚系、消化器系、骨髄系、神経系などに分けられる。皮膚系の組織幹細胞としては、表皮幹細胞、毛嚢幹細胞などが挙げられる。消化器系の組織幹細胞としては、膵(共通)幹細胞、肝幹細胞などが挙げられる。骨髄系の組織幹細胞としては、造血幹細胞、間葉系幹細胞などが挙げられる。神経系の組織幹細胞としては、神経幹細胞、網膜幹細胞などが挙げられる。
本明細書において「体細胞」とは、卵子、精子などの生殖細胞以外の細胞であり、そのDNAを次世代に直接引き渡さない全ての細胞をいう。体細胞は通常、多能性が限定されているかまたは消失している。本明細書において使用される体細胞は、天然に存在するものであってもよく、遺伝子改変されたものであってもよい。
細胞は、由来により、外胚葉、中胚葉および内胚葉に由来する幹細胞に分類され得る。外胚葉由来の細胞は、主に脳に存在し、神経幹細胞などが含まれる。中胚葉由来の細胞は、主に骨髄に存在し、血管幹細胞、造血幹細胞および間葉系幹細胞などが含まれる。内胚葉由来の細胞は主に臓器に存在し、肝幹細胞、膵幹細胞などが含まれる。本明細書では、体細胞はどのような胚葉由来でもよい。好ましくは、体細胞は、リンパ球、脾臓細胞または精巣由来の細胞が使用され得る。
本明細書において「単離された」とは、通常の環境において天然に付随する物質が少なくとも低減されていること、好ましくは実質的に含まないをいう。従って、単離された細胞とは、天然の環境において付随する他の物質(たとえば、他の細胞、タンパク質、核酸分子など)を実質的に含まない細胞をいう。核酸分子またはポリペプチドについていう場合、「単離された」とは、たとえば、組換えDNA技術により作製された場合には細胞物質または培養培地を実質的に含まず、化学合成された場合には前駆体化学物質またはその他の化学物質を実質的に含まない、核酸分子またはポリペプチドを指す。単離された核酸分子は、好ましくは、その核酸分子が由来する生物において天然に該核酸分子に隣接している(flanking)配列(即ち、該核酸の5’末端および3’末端に位置する配列)を含まない。
本明細書において、「樹立された」または「確立された」細胞とは、特定の性質(例えば、多分化能)を維持し、かつ、細胞が培養条件下で安定に増殖し続けるようになった状態をいう。したがって、樹立された幹細胞は、多分化能を維持する。
本明細書において「分化(した)細胞」とは、機能および形態が特殊化した細胞(例えば、筋細胞、神経細胞など)をいい、幹細胞とは異なり、多能性はないか、またはほとんどない。分化した細胞としては、例えば、表皮細胞、膵実質細胞、膵管細胞、肝細胞、血液細胞、心筋細胞、骨格筋細胞、骨芽細胞、骨格筋芽細胞、神経細胞、血管内皮細胞、色素細胞、平滑筋細胞、脂肪細胞、骨細胞、軟骨細胞などが挙げられる。
本明細書において細胞の「状態」とは、細胞の種々のパラメータ(例えば、細胞周期、外来因子に対する応答、シグナル伝達、遺伝子発現、遺伝子の転写など)に関する状況をさす。そのような状態としては、例えば、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期、増殖状態などが挙げられるがそれらに限定されない。
本明細書において、「分化」または「細胞分化」とは、1個の細胞の分裂によって由来した娘細胞集団の中で形態的および/または機能的に質的な差をもった二つ以上のタイプの細胞が生じてくる現象をいう。従って、元来特別な特徴を検出できない細胞に由来する細胞集団(細胞系譜)が、特定のタンパク質の産生などはっきりした特徴を示すに至る過程も分化に包含される。現在では細胞分化を,ゲノム中の特定の遺伝子群が発現した状態と考えることが一般的であり、このような遺伝子発現状態をもたらす細胞内あるいは細胞外の因子または条件を探索することにより細胞分化を同定することができる。細胞分化の結果は原則として安定であって、特に動物細胞では,別のタイプの細胞に分化することは例外的にしか起こらない。
本明細書において「多能性」または「多分化能」とは、互換可能に用いられ、細胞の性質をいい、1以上、好ましくは2以上の種々の組織または臓器に分化し得る能力をいう。従って、「多能性」および「多分化能」は、本明細書においては特に言及しない限り「未分化」と互換可能に用いられる。通常、細胞の多能性は発生が進むにつれて制限され、成体では一つの組織または器官の構成細胞が別のものの細胞に変化することは少ない。従って多能性は通常失われている。とくに上皮性の細胞は他の上皮性細胞に変化しにくい。これが起きる場合通常病的な状態であり、化生(metaplasia)と呼ばれる。しかし間葉系細胞では比較的単純な刺激で他の間葉性細胞にかわり化生を起こしやすいので多能性の程度は高い。胚性幹細胞は、多能性を有する。組織幹細胞は、多能性を有する。本明細書において、多能性のうち、受精卵のように生体を構成する全ての種類の細胞に分化する能力は全能性といい、多能性は全能性の概念を包含し得る。ある細胞が多能性を有するかどうかは、たとえば、体外培養系における、胚様体(Embryoid Body)の形成、分化誘導条件下での培養等が挙げられるがそれらに限定されない。また、生体を用いた多能性の有無についてのアッセイ法としては、免疫不全マウスへの移植による奇形種(テラトーマ)の形成、胚盤胞への注入によるキメラ胚の形成、生体組織への移植、腹水への注入による増殖等が挙げられるがそれらに限定されない。本明細書において、多能性のうち、受精卵のように生体を構成する全ての種類の細胞に分化する能力は「全能性」といい、多能性は全能性の概念を包含し得る。また、1つの方向にのみ分化する能力は、単能性ともいう。
(生化学・分子生物学)
本明細書において「因子」(agent)としては、意図する目的を達成することができる限りどのような物質または他の要素(例えば、光、放射能、熱、電気などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(例えば、低分子リガンドなど)など)、これらの複合分子が挙げられるがそれらに限定されない。ポリヌクレオチドに対して特異的な因子としては、代表的には、そのポリヌクレオチドの配列に対して一定の配列相同性を(例えば、70%以上の配列同一性)もって相補性を有するポリヌクレオチド、プロモーター領域に結合する転写因子のようなポリペプチドなどが挙げられるがそれらに限定されない。ポリペプチドに対して特異的な因子としては、代表的には、そのポリペプチドに対して特異的に指向された抗体またはその誘導体あるいはその類似物(例えば、単鎖抗体)、そのポリペプチドがレセプターまたはリガンドである場合の特異的なリガンドまたはレセプター、そのポリペプチドが酵素である場合、その基質などが挙げられるがそれらに限定されない。
本明細書において「生物学的因子」とは、生命体(例えば、細胞)に関連する因子をいう。好ましくは、通常の状態で細胞に存在する因子を生物学的因子という。そのような生物学的因子としては、例えば、核酸分子、タンパク質、糖、脂肪、代謝物、低分子、それらの複合体など、ならびに時間的要素が入った因子などが挙げられるがそれらに限定されない。あるいは、生物学的因子としては、電流、電位(例えば、膜電位など)、pH、浸透圧なども本発明に包含されることが理解される。本明細書において有用な生物学的因子としては、例えば、転写制御配列(例えば、プロモーターなど)、構造遺伝子またはそれをコードする核酸分子挙げられる。「生物学的因子」の「集合体」とは、本明細書において使用される場合、複数の生物学的因子(同種または異種)をいう。好ましくは、協働している生物学的因子をさす。
本明細書において、「遺伝子」とは、遺伝形質を規定する因子をいう。通常染色体上に一定の順序に配列している。タンパク質の一次構造を規定するものを構造遺伝子といい、その発現を左右するものを調節遺伝子(たとえば、プロモーター)という。本明細書では、遺伝子は、特に言及しない限り、構造遺伝子および調節遺伝子を包含する。近年では、ゲノムが解析され、配列自体はすべて判明している。その機能は必ずしも判明しているわけではないが、タンパク質もRNAもコードしない配列も存在する。そのような配列もまた、遺伝形質に影響を有していることが充分理解され、したがって、そのような配列もまた、本明細書の最も広義な定義においては遺伝子の概念に入ることが理解される。したがって、例えば、サイクリン遺伝子というときは、通常、サイクリンの構造遺伝子およびサイクリンのプロモーターの両方を包含する。本明細書では、「遺伝子」は、「ポリヌクレオチド」、「オリゴヌクレオチド」、「核酸分子」および「核酸」ならびに/または「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」を指すことがある。本明細書においてはまた、「遺伝子産物」は、遺伝子によって発現された「ポリヌクレオチド」、「オリゴヌクレオチド」、「核酸分子」および「核酸」ならびに/または「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」を包含する。当業者であれば、遺伝子産物が何たるかはその状況に応じて理解することができる。
本明細書において配列(例えば、核酸配列、アミノ酸配列など)の「相同性」とは、2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、ある2つの遺伝子の相同性が高いほど、それらの配列の同一性または類似性は高い。2種類の遺伝子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べられ得る。2つの遺伝子配列を直接比較する場合、その遺伝子配列間でDNA配列が、代表的には少なくとも50%同一である場合、好ましくは少なくとも70%同一である場合、より好ましくは少なくとも80%、90%、95%、96%、97%、98%または99%同一である場合、それらの遺伝子は相同性を有する。本明細書において、配列(例えば、核酸配列、アミノ酸配列など)の「類似性」とは、上記相同性において、保存的置換をポジティブ(同一)とみなした場合の、2以上の遺伝子配列の、互いに対する同一性の程度をいう。従って、保存的置換がある場合は、その保存的置換の存在に応じて同一性と類似性とは異なる。また、保存的置換がない場合は、同一性と類似性とは同じ数値を示す。
本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるFASTAを用いてデフォルトパラメータを用いて算出される。
本明細書において使用される用語「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされたものを包含し得る。この用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)。この定義にはまた、例えば、アミノ酸の1または2以上のアナログを含むポリペプチド(例えば、非天然のアミノ酸などを含む)、ペプチド様化合物(例えば、ペプトイド)および当該分野において公知の他の改変が包含される。フィブロネクチンのような細胞外マトリクスタンパク質の遺伝子産物は、通常ポリペプチド形態をとる。
本明細書において使用される用語「ポリヌクレオチド」、「オリゴヌクレオチド」、「核酸分子」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。この用語はまた、「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオチド」を含む。「誘導体オリゴヌクレオチド」または「誘導体ポリヌクレオチド」とは、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌクレオチドとして具体的には、例えば、2’−O−メチル−リボヌクレオチド、オリゴヌクレオチド中のリン酸ジエステル結合がホスホロチオエート結合に変換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のリン酸ジエステル結合がN3’−P5’ホスホロアミデート結合に変換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のリボースとリン酸ジエステル結合とがペプチド核酸結合に変換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のウラシルがC−5プロピニルウラシルで置換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のウラシルがC−5チアゾールウラシルで置換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のシトシンがC−5プロピニルシトシンで置換された誘導体オリゴヌクレオチド、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン(phenoxazine−modified cytosine)で置換された誘導体オリゴヌクレオチド、DNA中のリボースが2’−O−プロピルリボースで置換された誘導体オリゴヌクレオチドおよびオリゴヌクレオチド中のリボースが2’−メトキシエトキシリボースで置換された誘導体オリゴヌクレオチドなどが例示される。他にそうではないと示されなければ、特定の核酸配列はまた、明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重コドン置換体)および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列を作成することにより達成され得る(Batzerら、Nucleic Acid Res.19:5081(1991);Ohtsukaら、J.Biol.Chem.260:2605−2608(1985);Rossoliniら、Mol.Cell.Probes 8:91−98(1994))。フィブロネクチンのような細胞外マトリクスタンパク質などの遺伝子は、通常、このポリヌクレオチド形態をとる。また、トランスフェクションの対象となる分子もこのポリヌクレオチドである。
本明細書において、「対応する」アミノ酸または核酸とは、それぞれあるポリペプチド分子またはポリヌクレオチド分子において、比較の基準となるポリペプチドまたはポリヌクレオチドにおける所定のアミノ酸と同様の作用を有するか、あるいは有することが予測されるアミノ酸または核酸をいい、特に酵素分子にあっては、活性部位中の同様の位置に存在し触媒活性に同様の寄与をするアミノ酸をいう。例えば、あるポリヌクレオチドの転写制御配列であれば、その転写制御配列の特定の部分に対応するオルソログにおける同様の部分であり得る。
本明細書において、「対応する」遺伝子(例えば、ポリペプチドまたは核酸分子)とは、ある種において、比較の基準となる種における所定の遺伝子と同様の作用を有するか、または有することが予測される遺伝子をいい、そのような作用を有する遺伝子が複数存在する場合、進化学的に同じ起源を有するものをいう。従って、ある遺伝子の対応する遺伝子は、その遺伝子のオルソログあるいは種相同体であり得る。したがって、マウスサイクリン遺伝子に対応する遺伝子は、他の動物においても見出すことができる。そのような対応する遺伝子は、当該分野において周知の技術を用いて同定することができる。したがって、例えば、ある動物における対応する遺伝子は、対応する遺伝子の基準となる遺伝子(例えば、マウスサイクリン遺伝子)の配列をクエリ配列として用いてその動物(例えばヒト、ラット)の配列データベースを検索することによって見出すことができる。
本明細書において、「フラグメント」とは、全長のポリペプチドまたはポリヌクレオチド(長さがn)に対して、1〜n−1までの配列長さを有するポリペプチドまたはポリヌクレオチドをいう。フラグメントの長さは、その目的に応じて、適宜変更することができ、例えば、その長さの下限としては、ポリペプチドの場合、3、4、5、6、7、8、9、10、15,20、25、30、40、50およびそれ以上のアミノ酸が挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。また、ポリヌクレオチドの場合、5、6、7、8、9、10、15,20、25、30、40、50、75、100およびそれ以上のヌクレオチドが挙げられ、ここの具体的に列挙していない整数で表される長さ(例えば、11など)もまた、下限として適切であり得る。本明細書において、ポリペプチドおよびポリヌクレオチドの長さは、上述のようにそれぞれアミノ酸または核酸の個数で表すことができるが、上述の個数は絶対的なものではなく、同じ機能を有する限り、上限または加減としての上述の個数は、その個数の上下数個(または例えば上下10%)のものも含むことが意図される。そのような意図を表現するために、本明細書では、個数の前に「約」を付けて表現することがある。しかし、本明細書では、「約」のあるなしはその数値の解釈に影響を与えないことが理解されるべきである。
本明細書において「生物学的活性」とは、ある因子(例えば、ポリペプチドまたは核酸分子など)が、生体内において有し得る活性のことをいい、種々の機能(例えば、転写促進活性)を発揮する活性が包含される。例えば、ある因子がアンチセンス分子である場合、その生物学的活性は、対象となる核酸分子への結合、それによる発現抑制などを包含する。例えば、ある因子が酵素である場合、その生物学的活性は、その酵素活性を包含する。別の例では、ある因子がリガンドである場合、そのリガンドが対応するレセプターへの結合を包含する。その生物学的活性が転写調節活性である場合は、転写レベルまたはその変動を調節する活性をいう。そのような生物学的活性は、当該分野において周知の技術によって測定することができる。
本明細書において、「ストリンジェントな条件でハイブリダイズするポリヌクレオチド」とは、当該分野で慣用される周知の条件をいう。本発明のポリヌクレオチド中から選択されたポリヌクレオチドをプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法等を用いることにより、そのようなポリヌクレオチドを得ることができる。具体的には、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7〜1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1〜2倍濃度のSSC(saline−sodium citrate)溶液(1倍濃度のSSC溶液の組成は、150mM 塩化ナトリウム、15mM クエン酸ナトリウムである)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを意味する。ハイブリダイゼーションは、Molecular Cloning 2nd ed.,Current Protocols in Molecular Biology,Supplement 1〜38、DNA Cloning 1:Core Techniques,A Practical Approach,Second Edition,Oxford University Press(1995)等の実験書に記載されている方法に準じて行うことができる。ここで、ストリンジェントな条件下でハイブリダイズする配列からは、好ましくは、A配列のみまたはT配列のみを含む配列が除外される。「ハイブリダイズ可能なポリヌクレオチド」とは、上記ハイブリダイズ条件下で別のポリヌクレオチドにハイブリダイズすることができるポリヌクレオチドをいう。ハイブリダイズ可能なポリヌクレオチドとして具体的には、本発明で具体的に示されるアミノ酸配列を有するポリペプチドをコードするDNAの塩基配列と少なくとも60%以上の相同性を有するポリヌクレオチド、好ましくは80%以上の相同性を有するポリヌクレオチド、さらに好ましくは95%以上の相同性を有するポリヌクレオチドを挙げることができる。
本明細書において「塩」は、当該分野において通常用いられる最も広い意味と同じ意味で用いられ、無機塩および有機塩の両方を含む。塩は、通常、酸と塩基との中和反応によって生成する。塩には中和反応で生成するNaCl、KSOなどといったもののほかに、金属と酸との反応で生成するPbSO、ZnClなど種々の種類があり、これらは、直接中和反応によって生成したものでなくても、酸と塩基との中和反応から生成したとみなすことができる。塩としては、正塩(酸のHや塩基のOHが塩に含まれていないもの、例えば、NaCl、NHCl、CHCOONa、NaCO)、酸性塩(酸のHが塩に残っているもの、例えば、NaHCO、KHSO、CaHPO)、塩基性塩(塩基のOHが塩の中に残っているもの、例えば、MgCl(OH)、CuCl(OH))などに分類することができるがそれらの分類は、本発明においてはそれほど重要ではない。好ましい塩としては、培地を構成する塩(例えば、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸、ビタミン、緩衝液を構成する塩(例えば、塩化カルウム、塩化マグネシウム、リン酸水素ナトリウム、塩化ナトリウム)などが好ましい。細胞に対する親和性を保持または改善する効果がより高いからである。これらの塩は、単独で用いてもよいし、複数用いてもよい。複数用いることが好ましい。細胞に対する親和性が高くなる傾向があるからである。従って、NaClなどを単独で用いるよりも、培地中に含まれる塩(例えば、塩化カルシウム、塩化マグネシウム、リン酸水素ナトリウム、塩化ナトリウム)を複数を用いることが好ましく、より好ましくは、培地中に含まれる塩全部をそのまま使用することが有利であり得る。別の好ましい実施形態では、グルコースを加えてもよい。
本明細書において使用される用語「物質」は、当該分野において用いられる最も広義な意味と同じ意味で含まれ、正または負に荷電することができるものを含む。
本明細書において「正に荷電した物質」は、正荷電を有するすべての物質を包含する。そのような物質としては、例えば、カチオン性ポリマー、カチオン性脂質などのカチオン性物質が含まれるがそれらに限定されない。好ましくは、そのような正に荷電した物質は、複合体を形成することができる物質であることが有利である。そのような複合体を形成することができる正に荷電した物質としては、例えば、カチオン性ポリマーのようにある程度の分子量を有する物質、あるいは、カチオン性脂質のように特定の溶媒(例えば、水、水溶液など)中においてある程度溶解せずに残存することができる物質などが挙げられるがそれらに限定されない。そのような好ましい正に荷電した物質としては、例えば、ポリエチレンイミン、ポリLリシン、合成ポリペプチドもしくはそれらの誘導体などが挙げられるがそれらに限定されない。あるいは、正に荷電した物質としては、ヒストン、合成ポリペプチドなどのような生体分子が挙げられるがそれらに限定されない。そのような好ましい正に荷電した物質の種類は、複合体を形成するパートナーである負に荷電した物質の種類に応じて変動する。好ましい複合体形成パートナーを選択することは、当業者には容易であり、そのような選択は、当該分野において周知の技術を用いて行うことができる。そのような好ましい複合体形成パートナーの選択においては、種々のパラメータを考慮することができる。そのようなパラメータとしては、例えば、電荷、分子量、疎水性、親水性、置換基の性質、pH、温度、塩濃度、圧力などの種々の物理的パラメータ、化学的パラメータなどが挙げられるがそれらに限定されない。
本明細書において「カチオン性ポリマー」は、カチオン性の官能基を有するポリマーをいい、例えば、ポリエチレンイミン、ポリLリシン、合成ポリペプチドもしくはそれらの誘導体が挙げられるがそれらに限定されない。
本明細書において「カチオン性脂質」は、カチオン性の官能基を有する脂質をいい、例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、及びその誘導体が挙げられるがそれらに限定されない。
ここで、カチオン性の官能基としては、例えば、一級アミン、二級アミン、三級アミンが挙げられるがそれらに限定されない。
本明細書において「負に荷電した物質」は、負荷電を有するすべての物質を包含する。そのような物質としては、例えば、DNAなどの生体分子ポリマー、アニオン性脂質などのアニオン性物質が含まれるがそれらに限定されない。好ましくは、そのような負に荷電した物質は、複合体を形成することができる物質であることが有利である。そのような複合体を形成することができる負に荷電した物質としては、例えば、DNAのようなアニオン性ポリマーのようにある程度の分子量を有する物質、あるいは、アニオン性脂質のように特定の溶媒(例えば、水、水溶液など)中においてある程度溶解せずに残存することができる物質などが挙げられるがそれらに限定されない。そのような好ましい負に荷電した物質としては、例えば、DNA、RNA、PNA、ポリペプチド、化合物、及びその複合体などが挙げられるがそれらに限定されない。あるいは、負に荷電した物質としては、DNA、RNA、PNA、ポリペプチド、化合物、及びその複合体などのような生物学的因子または生体分子が挙げられるがそれらに限定されない。そのような好ましい負に荷電した物質の種類は、複合体を形成するパートナーである正に荷電した物質の種類に応じて変動する。好ましい複合体形成パートナーを選択することは、当業者には容易であり、そのような選択は、当該分野において周知の技術を用いて行うことができる。そのような好ましい複合体形成パートナーの選択においては、種々のパラメータを考慮することができる。そのようなパラメータもまた、上述の正に荷電した物質において考慮すべきパラメータと同様、種々のものを包含する。
本明細書において「アニオン性ポリマー」は、アニオン性の官能基を有するポリマーをいい、例えば、DNA、RNA、PNA、ポリペプチド、化合物、及びその複合体が挙げられるがそれらに限定されない。
本明細書において「アニオン性脂質」は、アニオン性の官能基を有する脂質をいい、例えば、ホスファチジン酸、ホスファチジルセリンが挙げられるがそれらに限定されない。
ここで、アニオン性の官能基としては、例えば、カルボキシル基、リン酸基が挙げられるがそれらに限定されない。
また、目的の物質に対して、正電荷または負電荷を有する置換基などの部分を付加することによって、その目的の物質の電荷を変換することも可能である。好ましい複合体パートナーが固定を目的とする物質と同じ電荷を有している場合に、いずれかの電荷を変換することによって複合体形成を促進することが可能である。
本明細書において「複合体」とは、二つ以上の物質が互いに直接的または間接的に相互作用する結果、それらの物質の総体があたかも1つの物質のように挙動するものをいう。
本明細書において「複合体パートナー」とは、複合体を形成するあるメンバーについて言及するとき、そのメンバーと直接的または間接的に相互作用する別のメンバーをいう。
本明細書において複合体を形成する条件は、複合体パートナーの種類に応じて変動する。そのような条件は、当業者は容易に理解することができ、当該分野において周知の技法を用いて任意の複合体パートナー(例えば、正に荷電した物質および負に荷電した物質)から複合体を形成させることができる。
本明細書において、正に荷電した物質と負に荷電した物質との複合体が使用されるとき、そのいずれかまたは両方は、生物学的因子と同一であってもよい。
本明細書において「固定」とは、固相支持体について用いられるとき、その対象となる物質(例えば、生体分子)がその支持体において少なくともある一定の時間の間保持される状態またはそのような状態にさせることをいう。従って、物質が固相支持体上で固定された後、条件が変化する(例えば、別の溶媒中に浸される)場合は、その固定状態が解除されてもよい。
本明細書において用いられる「細胞親和性」とは、ある物質が細胞(例えば、細菌細胞、動物細胞、酵母、植物細胞など)または細胞を含む物体(例えば、組織、臓器、生体など)と相互作用が可能な状態に置かれたときに、その細胞または細胞を含む物体に対して有害な影響を与えない性質をいう。好ましくは、細胞親和性を有する物質は、細胞が優先的に相互作用する物質であり得るがそれに限定されない。本発明では、固定されるべき物質(例えば、正に荷電した物質および/または負に荷電した物質)は、細胞親和性を有することが好ましいがそれに限定されない。固定されるべき物質が細胞親和性を有する場合、その物質が本発明にしたがって固定されると、細胞親和性が保持または改善されることが予想外に見いだされた。通常、細胞親和性を有する物質が固相支持体に固定される場合は、必ずしも細胞親和性が保持されるとは限らなかったことに鑑みると、本発明の効果は計り知れない。
本明細書において「プローブ」とは、インビトロおよび/またはインビボなどのスクリーニングなどの生物学的実験において用いられる、検索の対象となる物質をいい、例えば、特定の塩基配列を含む核酸分子または特定のアミノ酸配列を含むペプチドなどが挙げられるがそれに限定されない。
通常プローブとして用いられる核酸分子としては、目的とする遺伝子の核酸配列と相同なまたは相補的な、少なくとも8の連続するヌクレオチド長の核酸配列を有するものが挙げられる。そのような核酸配列は、好ましくは、少なくとも9の連続するヌクレオチド長の、より好ましく10の連続するヌクレオチド長の、さらに好ましくは11の連続するヌクレオチド長の、12の連続するヌクレオチド長の、13の連続するヌクレオチド長の、14の連続するヌクレオチド長の、15の連続するヌクレオチド長の、20の連続するヌクレオチド長の、25の連続するヌクレオチド長の、30の連続するヌクレオチド長の、40の連続するヌクレオチド長の、50の連続するヌクレオチド長の、核酸配列であり得る。プローブとして使用される核酸配列には、上述の配列に対して、少なくとも70%相同な、より好ましくは、少なくとも80%相同な、さらに好ましくは、90%相同な、95%相同な核酸配列が含まれる。
本明細書において、「検索」とは、電子的にまたは生物学的あるいは他の方法により、ある核酸塩基配列を利用して、特定の機能および/または性質を有する他の核酸塩基配列を見出すことをいう。電子的な検索としては、BLAST(Altschul et al.,J.Mol.Biol.215:403−410(1990))、FASTA(Pearson & Lipman,Proc.Natl.Acad.Sci.,USA 85:2444−2448(1988))、Smith and Waterman法(Smith and Waterman,J.Mol.Biol.147:195−197(1981))、およびNeedleman and Wunsch法(Needleman and Wunsch,J.Mol.Biol.48:443−453(1970))などが挙げられるがそれらに限定されない。生物学的な検索としては、ストリンジェントハイブリダイゼーション、ゲノムDNAをナイロンメンブレン等に貼り付けたマクロアレイまたはガラス板に貼り付けたマイクロアレイ(マイクロアレイアッセイ)、PCRおよび in situハイブリグイゼーションなどが挙げられるがそれらに限定されない。
本明細書における「プライマー」とは、高分子合成酵素反応において、合成される高分子化合物の反応の開始に必要な物質をいう。核酸分子の合成反応では、合成されるべき高分子化合物の一部の配列に相補的な核酸分子(例えば、DNAまたはRNAなど)が用いられ得る。
通常プライマーとして用いられる核酸分子としては、目的とする遺伝子の核酸配列と相補的な、少なくとも8の連続するヌクレオチド長の核酸配列を有するものが挙げられる。そのような核酸配列は、好ましくは、少なくとも9の連続するヌクレオチド長の、より好ましく10の連続するヌクレオチド長の、さらに好ましくは11の連続するヌクレオチド長の、12の連続するヌクレオチド長の、13の連続するヌクレオチド長の、14の連続するヌクレオチド長の、15の連続するヌクレオチド長の、16の連続するヌクレオチド長の、17の連続するヌクレオチド長の、18の連続するヌクレオチド長の、19の連続するヌクレオチド長の、20の連続するヌクレオチド長の、25の連続するヌクレオチド長の、30の連続するヌクレオチド長の、40の連続するヌクレオチド長の、50の連続するヌクレオチド長の、核酸配列であり得る。プローブとして使用される核酸配列には、上述の配列に対して、少なくとも70%相同な、より好ましくは、少なくとも80%相同な、さらに好ましくは、90%相同な、95%相同な核酸配列が含まれる。プライマーとして適切な配列は、合成(増幅)が意図される配列の性質によって変動し得るが、当業者は、意図される配列に応じて適宜プライマーを設計することができる。そのようなプライマーの設計は当該分野において周知であり、手動でおこなってもよくコンピュータプログラム(例えば、LASERGENE,PrimerSelect,DNA Star)を用いて行ってもよい。
本明細書において、「エピトープ」とは、構造の明らかな抗原決定基をいう。従って、エピトープには特定の免疫グロブリンによる認識に関与するアミノ酸残基のセット、または、T細胞の場合は、T細胞レセプタータンパク質および/もしくは主要組織適合性複合体(MHC)レセプターによる認識について必要であるアミノ酸残基のセットが包含される。この用語はまた、「抗原決定基」または「抗原決定部位」と交換可能に使用される。免疫系分野において、インビボまたはインビトロで、エピトープは、分子の特徴(例えば、一次ペプチド構造、二次ペプチド構造または三次ペプチド構造および電荷)であり、免疫グロブリン、T細胞レセプターまたはHLA分子によって認識される部位を形成する。ペプチドを含むエピトープは、エピトープに独特な空間的コンフォメーション中に3つ以上のアミノ酸を含み得る。一般に、エピトープは、少なくとも5つのこのようなアミノ酸からなり、代表的には少なくとも6つ、7つ、8つ、9つ、または10のこのようなアミノ酸からなる。エピトープの長さは、より長いほど、もとのペプチドの抗原性に類似することから一般的に好ましいが、コンフォメーションを考慮すると、必ずしもそうでないことがある。アミノ酸の空間的コンフォメーションを決定する方法は、当該分野で公知であり、例えば、X線結晶学、および2次元核磁気共鳴分光法を含む。さらに、所定のタンパク質におけるエピトープの同定は、当該分野で周知の技術を使用して容易に達成される。例えば、Geysenら(1984)Proc.Natl.Acad.Sci.USA 81:3998(所定の抗原における免疫原性エピトープの位置を決定するために迅速にペプチドを合成する一般的な方法);米国特許第4,708,871号(抗原のエピトープを同定し、そして化学的に合成するための手順);およびGeysenら(1986)Molecular Immunology 23:709(所定の抗体に対して高い親和性を有するペプチドを同定するための技術)を参照されたい。同じエピトープを認識する抗体は、単純な免疫アッセイにおいて同定され得る。このように、ペプチドを含むエピトープを決定する方法は、当該分野において周知であり、そのようなエピトープは、核酸またはアミノ酸の一次配列が提供されると、当業者はそのような周知慣用技術を用いて決定することができる。
従って、ペプチドを含むエピトープとして使用するためには、少なくとも3アミノ酸の長さの配列が必要であり、好ましくは、この配列は、少なくとも4アミノ酸、より好ましくは5アミノ酸、6アミノ酸、7アミノ酸、8アミノ酸、9アミノ酸、10アミノ酸、15アミノ酸、20アミノ酸、25アミノ酸の長さの配列が必要であり得る。
本明細書においてある核酸分子またはポリペプチドに「特異的に結合する因子」とは、その核酸分子またはポリペプチドに対するその因子の結合レベルが、その核酸分子またはポリペプチド以外の核酸分子またはポリペプチドに対するその因子の結合レベルと同じかまたはそれよりも高い因子をいう。そのような因子としては、例えば、対象が核酸分子の場合、対象となる核酸分子に対して相補的な配列を有する核酸分子、対象となる核酸配列に対して結合するポリペプチド(例えば、転写因子など)などが挙げられ、対象がポリペプチドの場合、抗体、単鎖抗体、レセプター−リガンドの対のいずれか一方、酵素−基質のいずれか一方などが挙げられるがそれらに限定されない。
本明細書において用いられる用語「抗体」は、ポリクローナル抗体、モノクローナル抗体、ヒト抗体、ヒト化抗体、多重特異性抗体、キメラ抗体、および抗イディオタイプ抗体、ならびにそれらの断片、例えばF(ab’)2およびFab断片、ならびにその他の組換えにより生産された結合体を含む。さらにこのような抗体を、酵素、例えばアルカリホスファターゼ、西洋ワサビペルオキシダーゼ、αガラクトシダーゼなど、に共有結合させまたは組換えにより融合させてよい。
本明細書中で使用される用語「モノクローナル抗体」は、同質な抗体集団を有する抗体組成物をいう。この用語は、それが作製される様式によって限定されない。この用語は、全免疫グロブリン分子ならびにFab分子、F(ab’)2フラグメント、Fvフラグメント、およびもとのモノクローナル抗体分子の免疫学的結合特性を示す他の分子を含む。ポリクローナル抗体およびモノクローナル抗体を作製する方法は当該分野で公知であり、そして以下でより十分に記載される。
モノクローナル抗体は、当該分野で周知の標準的な技術(例えば、KohlerおよびMilstein,Nature(1975)256:495)またはその改変(例えば、Buckら(1982)In Vitro 18:377)を使用して調製される。代表的には、マウスまたはラットを、タンパク質キャリアに結合したタンパク質で免疫化し、追加免疫し、そして脾臓(および必要に応じていくつかの大きなリンパ節)を取り出し、そして単一細胞を解離する。必要に応じて、この脾臓細胞は、非特異的接着細胞の除去後、抗原でコーティングされたプレートまたはウェルに細胞懸濁液を適用することにより、スクリーニングされ得る。抗原に特異的なイムノグロブリンを発現するB細胞がプレートに結合し、そして懸濁液の残渣でもリンス除去されない。次いで、得られたB細胞(すなわちすべての剥離した脾臓細胞)をミエローマ細胞と融合させて、ハイブリドーマを得、このハイブリドーマを用いてモノクローナル抗体を産生させる。
本明細書において「抗原」(antigen)とは、抗体分子によって特異的に結合され得る任意の基質をいう。本明細書において「免疫原」(immunogen)とは、抗原特異的免疫応答を生じるリンパ球活性化を開始し得る抗原をいう。
あるタンパク質分子において、配列に含まれるあるアミノ酸は、相互作用結合能力の明らかな低下または消失なしに、例えば、カチオン性領域または基質分子の結合部位のようなタンパク質構造において他のアミノ酸に置換され得る。あるタンパク質の生物学的機能を規定するのは、タンパク質の相互作用能力および性質である。従って、特定のアミノ酸の置換がアミノ酸配列において、またはそのDNAコード配列のレベルにおいて行われ得、置換後もなお、もとの性質を維持するタンパク質が生じ得る。従って、生物学的有用性の明らかな損失なしに、種々の改変が、本明細書において開示されたペプチドまたはこのペプチドをコードする対応するDNAにおいて行われ得る。
上記のような改変を設計する際に、アミノ酸の疎水性指数が考慮され得る。タンパク質における相互作用的な生物学的機能を与える際の疎水性アミノ酸指数の重要性は、一般に当該分野で認められている(Kyte.JおよびDoolittle,R.F.J.Mol.Biol.157(1):105−132,1982)。アミノ酸の疎水的性質は、生成したタンパク質の二次構造に寄与し、次いでそのタンパク質と他の分子(例えば、酵素、基質、レセプター、DNA、抗体、抗原など)との相互作用を規定する。各アミノ酸は、それらの疎水性および電荷の性質に基づく疎水性指数を割り当てられる。それらは:イソロイシン(+4.5);バリン(+4.2);ロイシン(+3.8);フェニルアラニン(+2.8);システイン/シスチン(+2.5);メチオニン(+1.9);アラニン(+1.8);グリシン(−0.4);スレオニン(−0.7);セリン(−0.8);トリプトファン(−0.9);チロシン(−1.3);プロリン(−1.6);ヒスチジン(−3.2);グルタミン酸(−3.5);グルタミン(−3.5);アスパラギン酸(−3.5);アスパラギン(−3.5);リジン(−3.9);およびアルギニン(−4.5))である。
あるアミノ酸を、同様の疎水性指数を有する他のアミノ酸により置換して、そして依然として同様の生物学的機能を有するタンパク質(例えば、酵素活性において等価なタンパク質)を生じさせ得ることが当該分野で周知である。このようなアミノ酸置換において、疎水性指数が±2以内であることが好ましく、±1以内であることがより好ましく、および±0.5以内であることがさらにより好ましい。疎水性に基づくこのようなアミノ酸の置換は効率的であることが当該分野において理解される。
親水性指数もまた、保存的置換において考慮され得る。米国特許第4,554,101号に記載されるように、以下の親水性指数がアミノ酸残基に割り当てられている:アルギニン(+3.0);リジン(+3.0);アスパラギン酸(+3.0±1);グルタミン酸(+3.0±1);セリン(+0.3);アスパラギン(+0.2);グルタミン(+0.2);グリシン(0);スレオニン(−0.4);プロリン(−0.5±1);アラニン(−0.5);ヒスチジン(−0.5);システイン(−1.0);メチオニン(−1.3);バリン(−1.5);ロイシン(−1.8);イソロイシン(−1.8);チロシン(−2.3);フェニルアラニン(−2.5);およびトリプトファン(−3.4)。アミノ酸が同様の親水性指数を有しかつ依然として生物学的等価体を与え得る別のものに置換され得ることが理解される。このようなアミノ酸置換において、親水性指数が±2以内であることが好ましく、±1以内であることがより好ましく、および±0.5以内であることがさらにより好ましい。
(プロファイルおよび関連技術)
本明細書において、細胞に関する「プロファイル」とは、細胞の生物学的状態の測定の集合をいう。特に、細胞のプロファイルという場合は、プロファイルとは、「細胞構成要素」のレベルを定量的に測定したものの測定値の集合あるいは連続であり得る。細胞構成要素には、生物学的系における遺伝子発現レベル、転写レベル(転写制御配列の活性レベル)、特定の遺伝子をコードするmRNAの存在量、およびタンパク質発現レベルが含まれる。遺伝子をコードするmRNAおよび/またはタンパク質発現レベルなどの細胞の各種構成要素のレベルは、薬物による処置や他の細胞生物学的状態の刺激(perturbation)または振動に応答して変化することが知られている。したがって、複数のそのような「細胞構成要素」の測定は、細胞の生物学的状態に対する刺激の効果に関する情報を豊富に含むことから、このプロファイルは、細胞の分析および詳細な解析においてますます重要となっている。哺乳動物細胞においては3万以上の異なる細胞構成要素が存在する。個々の細胞のプロファイルは通常複雑である。生物学的系の所定の状態のプロファイルは、しばしば、その生物学的系が刺激に付された後で測定される。そのような刺激としては、生物学的系と関係した実験的または環境的状態があり、例えば、生物学的系の薬物候補への暴露、外因性遺伝子の導入、時間の経過、系からの遺伝子の欠失、または培養条件の変更などがある。細胞構成要素の広範囲にわたる測定、つまり細胞における遺伝子の複製または転写、およびタンパク質の発現ならびにそれらの刺激に対する応答のプロファイルは、細胞自体の調査に加えて、薬物の効果の比較および検討、疾病の診断、患者の投薬法の最適化を含めて、広範な有用性がある。さらに、それらは基本的なライフサイエンスの研究においても有用である。このようなプロファイルは、種々の形態でデータとして生成され、提示される。そのような形態としては、数字と時間との関数の形態、グラフ形態、画像形態などが挙げられるがそれらに限定されない。したがって、プロファイルに関するデータは、ときに、「プロファイルデータ」と本明細書において称することがある。このようなデータ生成は、コンピュータにより容易に達成され得る。適切なプログラムのコード化もまた当該分野において周知の技術で実施され得る。
本発明の細胞分析では、細胞またはそれに相互作用する物質に起因する情報を検出することができる限り、種々の検出方法および検出手段を用いることができる。そのような検出方法および検出手段としては、例えば、目視、光学顕微鏡、蛍光顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる方法および手段を挙げることができるがそれらに限定されない。
本明細書において特に「経時プロファイル」というとき、ある特定の細胞に関して言及するとき、その細胞に関するあるパラメータの経時変化を示すプロファイルをいう。そのような経時プロファイルとしては、例えば、転写状態の経時プロファイル、発現状態(翻訳状態)の経時プロファイル、シグナル伝達の経時プロファイル、神経電位の経時プロファイルなどがあるがそれらに限定されない。経時プロファイルを生成するためには、あるパラメータ(例えば、転写状態に関連する標識に起因する信号)を連続して記録し、プロファイル生成する必要がある。経時的に測定することは、連続的に測定することであるから、本明細書において「経時プロファイル」は、ときに、連続プロファイルとも称され得る。
本明細書において細胞の「情報」とは、細胞中に存在する多くの要素を結合して全体として目的を指向させる働きをしているものをいう。情報の集合体がデジタル細胞を構成するといえる。
本明細書において細胞、生物などの「状態」とは、細胞の種々のパラメータ(例えば、細胞周期、外来因子に対する応答、シグナル伝達、遺伝子発現、遺伝子の転写など)に関する状況をさす。そのような状態としては、例えば、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期、増殖状態などが挙げられるがそれらに限定されない。本明細書では、特に、対象となる生物の環境、例えば、温度、湿度(例えば、絶対湿度、相対湿度など)、pH、塩濃度(例えば、塩全体の濃度または特定の塩の濃度)、栄養(例えば、炭水化物量など)、金属(例えば、金属全体の量または特定の金属(例えば、重金属)の濃度など)、ガス(例えば、ガス全体の量または特定のガスの量)、有機溶媒(例えば、有機溶媒全体の量または特定の有機溶媒(例えば、エタノールなど)の量)、圧力(例えば、局所圧または全体の圧など)、気圧、粘性、流速(例えば、培地中に生物が存在する場合のその培地の流速など)、光度(ある特定波長の光量など)、光波長(例えば、可視光のほか紫外線、赤外線なども含み得る)、電磁波、放射線、重力、張力、音波、対象となる生物とは異なる他の生物(例えば、寄生虫、病原菌など)、化学薬品(例えば、医薬品など)、抗生物質、天然物、精神的ストレス、物理的ストレスなどのようなパラメータに対する反応性または耐性を、そのような状態に関する指標として使用することができる。
本明細書においてある主体にとって「環境」(environment、Umgebung)とは、その主体に対するその外囲をいう。環境は、種々の構成要素、状態量が認められ,これらは環境要因といわれる、上記のようなパラメータが例示される。環境要因は、通常、非生物的環境要因と生物的環境要因とに大別され得る。非生物的環境要因(無機的環境)を物理的と化学的とに、あるいは気候的と土壌的とに区別することもある。こうした種々の環境要因の生物に対する作用は、各々が独立的して行われるとは限らず、互いに関連しあっている場合が多い。したがって、本明細書では、環境は、それぞれの要因ごとに観察してもよいし、環境要因の総体(種々のパラメータの総体)として認識されてもよい。このような環境を同一に保つすることは従来困難であると考えられてきた。これは特に、細胞の維持が困難であること、細胞をうまく固定することができず、しかも、導入を目的とする遺伝子などの物質が細胞内に導入されることが困難であることに起因する。本発明は、少なくともこれらの1つを解決した。なお、本明細書において「同一の環境」とは、細胞にとって実質的に同一の環境であることを意味する。したがって、細胞が同様に増殖、分化などをすることができる限り、そのような環境は同一の環境であるといえる。本明細書では、同一の環境とは、特定の刺激(例えば、外部刺激)を除き、他のパラメータが同一であることを意味する。
そのような環境を考慮する要因としては、例えば、温度、湿度、pH、塩濃度、栄養、金属、ガス、有機溶媒、圧力、気圧、粘性、流速、光度、光波長、電磁波、放射線、重力、張力、音波、対象となる生物とは異なる他の生物(例えば、寄生虫)、化学薬品、抗生物質、天然物、化学的ストレスおよび物理的ストレスからなる群より選択される少なくとも1つの因子をパラメータとして包含する。
ここで、温度としては、例えば、高温、低温、超高温(例えば、95℃など)、超低温(例えば、−80℃など)、150〜−270℃のような広汎な温度が挙げられるがそれらに限定されない。
湿度としては、例えば、相対湿度100%、相対湿度0%など0〜100%の間の任意の点が挙げられるがそれらに限定されない。
pHとしては、例えば、0〜14の任意の点が挙げられるがそれらに限定されない。
塩濃度としては、例えば、NaCl濃度(3%など)、他の塩の塩濃度0〜100%のうちの任意の点が挙げられるがそれらに限定されない。
栄養としては、例えば、タンパク質、グルコース、脂質、ビタミン、無機塩等が挙げられるがそれらに限定されない。
金属としては、例えば、重金属(例えば、水銀、カドミウムなど)、鉛、金、ウラン、銀が挙げられるがそれらに限定されない。
ガスとしては、例えば、酸素、窒素、二酸化炭素、一酸化炭素、一酸化窒素、およびそれらの混合物などが挙げられるがそれらに限定されない。
有機溶媒としては、例えば、エタノール、メタノール、キシレン、プロパノールなどが挙げられるがそれらに限定されない。
圧力としては、例えば、0〜10トン/cm2の任意の点などが挙げられるがそれらに限定されない。
気圧としては、例えば、0〜100気圧の任意の点などが挙げられるがそれらに限定されない。
粘性としては、例えば、水、グリセロールなど任意の流体またはそれらの混合物中の粘性が挙げられるがそれらに限定されない。
流速としては、例えば、0〜光速の任意の点などが挙げられるがそれらに限定されない。
光度としては、例えば、暗黒〜太陽光の間の一点などが挙げられるがそれらに限定されない。
光波長としては、例えば、可視光線、紫外線(UV−A、UV−B、UV−Cなど)、赤外線(遠赤外線、近赤外線など)などの任意の波長が挙げられるがそれらに限定されない。
電磁波としては、任意の波長のものが挙げられる。
放射線としては、任意の強度のものが挙げられる。
重力としては、地球上の任意の重力または無重力〜地球上の重力の間の1点、あるいは地球上の重力以上の任意の一点が挙げられるがそれらに限定されない。
張力としては、任意の強度のものが挙げられる。
音波としては、任意の強度および波長のものが挙げられる
対象となる生物とは異なる他の生物としては、例えば、寄生虫、病原菌、昆虫、線虫が挙げられるがそれらに限定されない。
化学薬品としては、例えば、塩酸、硫酸、苛性ソーダが挙げられるがそれらに限定されない。
抗生物質としては、例えば、ペニシリン、カナマイシン、ストレプトマイシン、キノロン等が挙げられるがそれらに限定されない。
天然物としては、例えば、ふぐ毒、蛇毒、アルカロイド等が挙げられるがそれらに限定されない。
物理的ストレスとしては、例えば、振動、騒音、電気、衝撃が挙げられるがそれらに限定されない。
本明細書において本発明のデジタル細胞が使用されるとき、環境は「環境パラメータ」として提示される。環境パラメータは、培地(種類、組成)、pH、温度、湿度、CO濃度、O濃度、抗生物質の存否、ある特定栄養素の存否などを含むがそれらに限定されない。
本明細書において「刺激」とは、外部から細胞に対して与えられる特異的な生活活動の発現または増強を喚起・誘発するような作用因子をいう。刺激としては、物理的刺激、化学的刺激、生物学的刺激、生化学的刺激などが挙げられるがそれらに限定されない。物理刺激としては、例えば、光、電波、電流、圧力、音(振動)などが挙げられるがそれらに限定されない。化学的刺激としては、例えば、化学物質による刺激が挙げられ、例えば、抗生物質、栄養素、ビタミン、金属、イオン、酸、アルカリ、塩、緩衝剤などが挙げられるがそれらに限定されない。生物学的刺激としては、例えば、他の生物の存在(例えば、寄生生物の存在、細胞集団の密度など)が挙げられるがそれらに限定されない。生化学的刺激としては、細胞シグナル伝達因子の存在などが挙げられるがそれらに限定されない。
本明細書において本発明のデジタル細胞が使用されるとき、刺激は「刺激パラメータ」として提示される。刺激パラメータとしては、上述の任意の刺激に対応するパラメータが利用され得る。本明細書では、刺激パラメータには、刺激を伝達するための因子(例えば、レポーター)が含まれることが理解されるべきである。そのようなレポーターとしては、例えば、抗生物質に対するオンオフ、転写制御配列、放射能、蛍光物質などが挙げられるがそれらに限定されない。
本明細書において刺激に対する「応答」は、細胞がある刺激に対して有するすべての応答(例えば、細胞の形状の変化、代謝変化、他の挙動の変化、シグナル伝達の変化など)を意味する。従って、例えば本発明におけるデジタル細胞実験の結果は、細胞動態データとして記録され得る。あるいは、上述のレポーターが利用されるときは、そのような刺激応答結果は、そのレポーターの生データであり得るか、あるいはそのレポーターのデータを変換したデータであり得る。
本明細書において「転写制御配列」とは、遺伝子の転写レベルを調節することができる配列をいう。そのような配列は、少なくとも2ヌクレオチド長を有する。そのような配列としては、代表的に、プロモーター、エンハンサー、サイレンサー、ターミネーター、他のゲノム構造中構造遺伝子のフランキング配列およびエキソン以外のゲノム配列、ならびにエキソン中の配列などが挙げられるがそれらに限定されない。本発明において用いられる転写制御配列は、特定の種類に関するものではない。むしろ、転写制御配列として重要な情報は、その経時的な変動である。このような変動は、(細胞状態の変化)プロセスともいう。従って、本発明では、このような転写制御配列は、任意に選択することができる。そのような転写制御配列の中には、従来はマーカーとして使用されていなかったものを含んでいてもよい。好ましくは、転写制御配列は、転写因子に結合する能力を有する。
本明細書において「転写因子」とは、遺伝子の転写の過程を調節する因子をいう。転写因子は、主として転写開始反応を調節する因子をさす。RNAポリメラーゼをDNA上のプロモーター領域に配置するために必要な基本転写因子群、および転写領域の上流や下流に存在するシス作用要素に結合してRNAの合成開始頻度を調節する各種の転写調節因子に大別される。
基本転写因子群はRNAポリメラーゼの種類に応じて用意されているが,TATA結合タンパク質は全転写系に共通であるとされている。転写因子の種類は多岐にわたるが、通常、構造上DNA結合に必要な部分と転写活性化または抑制に必要な部分とからなることが多い。DNA結合部位をもちシス作用要素に結合することができる因子を総称してトランス作用因子ともいう。
転写活性化または抑制に必要な部分は、他の転写因子や基本転写因子群との相互作用に関与しており,DNAや転写開始複合体の構造変化を通して転写調節を果たしていると考えられている.これら各部の構造上の特性から転写調節因子はいくつかのグループあるいはファミリーに分類され、発生または細胞分化において重要な役割をもつ因子も多い。
そのような転写因子としては、例えば、STAT1、STAT2、STAT3、GAS、NFAT、Myc、AP1、CREB、NFκB、E2F、Rb、p53、RUNX1、RUNX2、RUNX3、Nkx−2、CF2−II、Skn−1、SRY、HFH−2、Oct−1、Oct−3 Sox−5、HNF−3b、PPARγなどが挙げられるがそれらに限定されない。
本明細書において「ターミネーター」とは、通常遺伝子のタンパク質をコードする領域の下流に位置し、DNAがmRNAに転写される際の転写の終結、ポリA配列の付加に関与する配列をいう。ターミネーターは、mRNAの安定性に関与して遺伝子の発現量に影響を及ぼすことが知られている。
本明細書において「プロモーター」とは、遺伝子の転写の開始部位を決定し、またその頻度を直接的に調節するDNA上の領域をいい、通常RNAポリメラーゼが結合して転写を始める塩基配列である。したがって、本明細書においてある遺伝子のプロモーターの働きを有する部分を「プロモーター部分」という。プロモーターの領域は、通常、推定タンパク質コード領域の第1エキソンの上流約2kbp以内の領域であることが多いので、DNA解析用ソフトウエアを用いてゲノム塩基配列中のタンパク質コード領域を予測すれば、プロモータ領域を推定することはできる。推定プロモーター領域は、構造遺伝子ごとに変動するが、通常構造遺伝子の上流にあるが、これらに限定されず、構造遺伝子の下流にもあり得る。好ましくは、推定プロモーター領域は、第一エキソン翻訳開始点から上流約2kbp以内に存在する。プロモーターとしては、例えば、構成的プロモーター、特異的プロモーターおよび誘導性プロモーターなどが挙げられるがそれらに限定されない。
本明細書において「エンハンサー」とは、目的遺伝子の発現効率を高めるために用いられる配列をいう。そのようなエンハンサーは当該分野において周知である。エンハンサーは複数個用いられ得るが1個用いられてもよいし、用いなくともよい。
本明細書において「サイレンサー」とは、遺伝子発現を抑制し静止する機能を有する配列をいう。本発明では、サイレンサーとしてはその機能を有する限り、どのようなものを用いてもよく、サイレンサーを用いなくてもよい。
本明細書において「作動可能に連結された(る)」とは、所望の配列の発現(作動)がある転写翻訳調節配列(例えば、プロモーター、エンハンサー、サイレンサーなど)または翻訳調節配列の制御下に配置されることをいう。プロモーターが遺伝子に作動可能に連結されるためには、通常、その遺伝子のすぐ上流にプロモーターが配置されるが、必ずしも隣接して配置される必要はない。
本明細書では、他のゲノム構造中構造遺伝子のフランキング配列およびエキソン以外のゲノム配列、ならびにエキソン中の配列もまた重要であり得る。例えば、上述の特定の名称が付された配列以外の構造遺伝子のフランキング配列もまた、「プロセス」という観点では、転写制御に関連することが充分予想される。従って、そのようなフランキング配列もまた、本明細書では、転写制御配列に含まれる。エキソン以外のゲノム配列およびエキソン中の配列もまた、「プロセス」という観点では、転写制御に関連することが充分予想される。従って、エキソン以外のゲノム配列およびエキソン中の配列もまた、本明細書では、転写制御配列に含まれる。
本明細書において「RNAi」とは、RNA interferenceの略称で、二本鎖RNA(dsRNAともいう)のようなRNAiを引き起こす因子を細胞に導入することにより、相同なmRNAが特異的に分解され、遺伝子産物の合成が抑制される現象およびそれに用いられる技術をいう。本明細書においてRNAiはまた、場合によっては、RNAiを引き起こす因子と同義に用いられ得る。
本明細書において「RNAiを引き起こす因子」とは、RNAiを引き起こすことができるような任意の因子をいう。本明細書において「遺伝子」に対して「RNAiを引き起こす因子」とは、その遺伝子に関するRNAiを引き起こし、RNAiがもたらす効果(例えば、その遺伝子の発現抑制など)が達成されることをいう。そのようなRNAiを引き起こす因子としては、例えば、標的遺伝子の核酸配列の一部に対して少なくとも約70%の相同性を有する配列またはストリンジェントな条件下でハイブリダイズする配列を含む、少なくとも10ヌクレオチド長の二本鎖部分を含むRNAまたはその改変体が挙げられるがそれに限定されない。ここで、この因子は、好ましくは、3’突出末端を含み、より好ましくは、3’突出末端は、2ヌクレオチド長以上のDNA(例えば、2〜4ヌクレオチド長のDNAであり得る。
理論に束縛されないが、RNAiが働く機構として考えられるものの一つとして、dsRNAのようなRNAiを引き起こす分子が細胞に導入されると、比較的長い(例えば、40塩基対以上)RNAの場合、ヘリカーゼドメインを持つダイサー(Dicer)と呼ばれるRNaseIII様のヌクレアーゼがATP存在下で、その分子を3’末端から約20塩基対ずつ切り出し、短鎖dsRNA(siRNAとも呼ばれる)を生じる。本明細書において「siRNA」とは、short interfering RNAの略称であり、人工的に化学合成されるかまたは生化学的に合成されたものか、あるいは生物体内で合成されたものか、あるいは約40塩基以上の二本鎖RNAが体内で分解されてできた10塩基対以上の短鎖二本鎖RNAをいい、通常、5’−リン酸、3’−OHの構造を有しており、3’末端は約2塩基突出している。このsiRNAに特異的なタンパク質が結合して、RISC(RNA−induced−silencing−complex)が形成される。この複合体は、siRNAと同じ配列を有するmRNAを認識して結合し、RNaseIII様の酵素活性によってsiRNAの中央部でmRNAを切断する。siRNAの配列と標的として切断するmRNAの配列の関係については、100%一致することが好ましい。しかし、siRNAの中央から外れた位置についての塩基の変異については、完全にRNAiによる切断活性がなくなるのではなく、部分的な活性が残存する。他方、siRNAの中央部の塩基の変異は影響が大きく、RNAiによるmRNAの切断活性が極度に低下する。このような性質を利用して、変異をもつmRNAについては、その変異を中央に配したsiRNAを合成し、細胞内に導入することで特異的に変異を含むmRNAだけを分解することができる。従って、本発明では、siRNAそのものをRNAiを引き起こす因子として用いることができるし、siRNAを生成するような因子(例えば、代表的に約40塩基以上のdsRNA)をそのような因子として用いることができる。
また、理論に束縛されることを希望しないが、siRNAは、上記経路とは別に、siRNAのアンチセンス鎖がmRNAに結合してRNA依存性RNAポリメラーゼ(RdRP)のプライマーとして作用し、dsRNAが合成され、このdsRNAが再びダイサーの基質となり、新たなsiRNAを生じて作用を増幅することも企図される。従って、本発明では、siRNA自体およびsiRNAが生じるような因子もまた、有用である。実際に、昆虫などでは、例えば35分子のdsRNA分子が、1,000コピー以上ある細胞内のmRNAをほぼ完全に分解することから、siRNA自体およびsiRNAが生じるような因子が有用であることが理解される。
本発明においてsiRNAと呼ばれる、約20塩基前後(例えば、代表的には約21〜23塩基長)またはそれ未満の長さの二本鎖RNAを用いることができる。このようなsiRNAは、細胞に発現させることにより遺伝子発現を抑制し、そのsiRNAの標的となる病原遺伝子の発現を抑えることから、疾患の治療、予防、予後などに使用することができる。
本発明において用いられるsiRNAは、RNAiを引き起こすことができる限り、どのような形態を採っていてもよい。
別の実施形態において、本発明のRNAiを引き起こす因子は、3’末端に突出部を有する短いヘアピン構造(shRNA;short hairpin RNA)であり得る。本明細書において「shRNA」とは、一本鎖RNAで部分的に回文状の塩基配列を含むことにより、分子内で二本鎖構造をとり、ヘアピンのような構造となる約20塩基対以上の分子をいう。そのようなshRNAは、人工的に化学合成される。あるいは、そのようなshRNAは、センス鎖およびアンチセンス鎖のDNA配列を逆向きに連結したヘアピン構造のDNAをT7 RNAポリメラーゼによりインビトロでRNAを合成することによって生成することができる。理論に束縛されることは希望しないが、そのようなshRNAは、細胞内に導入された後、細胞内で約20塩基(代表的には例えば、21塩基、22塩基、23塩基)の長さに分解され、siRNAと同様にRNAiを引き起こし、本発明の処置効果があることが理解されるべきである。このような効果は、昆虫、植物、動物(哺乳動物を含む)など広汎な生物において発揮されることが理解されるべきである。このように、shRNAは、siRNAと同様にRNAiを引き起こすことから、本発明の有効成分として用いることができる。shRNAはまた、好ましくは、3’突出末端を有し得る。二本鎖部分の長さは特に限定されないが、好ましくは約10ヌクレオチド長以上、より好ましくは約20ヌクレオチド長以上であり得る。ここで、3’突出末端は、好ましくはDNAであり得、より好ましくは少なくとも2ヌクレオチド長以上のDNAであり得、さらに好ましくは2〜4ヌクレオチド長のDNAであり得る。
本発明において用いられるRNAiを引き起こす因子は、人工的に合成した(例えば、化学的または生化学的)ものでも、天然に存在するものでも用いることができ、この両者の間で本発明の効果に本質的な違いは生じない。化学的に合成したものでは、液体クロマトグラフィーなどにより精製をすることが好ましい。
本発明において用いられるRNAiを引き起こす因子は、インビトロで合成することもできる。この合成系において、T7 RNAポリメラーゼおよびT7プロモーターを用いて、鋳型DNAからアンチセンスおよびセンスのRNAを合成する。これらをインビトロでアニーリングした後、細胞に導入すると、上述のような機構を通じてRNAiが引き起こされ、本発明の効果が達成される。ここでは、例えば、リン酸カルシウム法でそのようなRNAを細胞内に導入することができる。
本発明のRNAiを引き起こす因子としてはまた、mRNAとハイブリダイズし得る一本鎖、あるいはそれらのすべての類似の核酸アナログのような因子も挙げられる。そのような因子もまた、本発明の処置方法および組成物において有用である。
本明細書において「経時的」とは、時間の経過に対して何らかの行為または現象を関連付けることをいう。
本明細書において「モニター」とは、少なくとも1つのパラメータ(例えば、転写に起因する標識信号など)を指標に、細胞の状態を観測することをいう。好ましくは、モニターは、検出機器または計測機器などの機器装置を用いて行われる。より好ましくは、このような機器は、データを記録および/または処理するためにコンピュータに接続される。モニターは、固相支持体(例えば、アレイ、プレートなど)の画像データを得る工程を含み得る。
本明細書において「リアルタイム」とは、ある状態が、実質的に同時に別の形態で表示される(例えば、ディスプレイ上の画像としてあるいはデータ処理されたグラフとして)ことをいう。そのような場合、リアルタイムは、データ処理にかかる時間だけタイムラグが生じるが、このようなタイムラグは、実質的に無視できる場合は、リアルタイムに包含される。そのようなタイムラグは、通常10秒以内であり、好ましくは1秒以内であり得るが、それらに限定されず、用途によっては、10秒を超える場合もまたリアルタイムと称することがある。
本明細書において細胞の状態の「判定」は、種々の方法を用いて行うことができる。そのような方法は、数理的処理(例えば、信号処理法、多変量解析など)、経験的処理、位相の変化などを包含するが、それらに限定されない。
本明細書において「差分」とは、あるプロファイルについて、コントロールプロファイル(例えば、刺激のない場合)の値を差し引いて提示するような数理的処理をいう。
本明細書において「位相」とは、プロファイルについて言及されるとき、そのプロファイルが基準点(通常0とする)より増えているかまたは減っているかを判定し、それぞれ+または−として表現することおよびそれによる解析をいう。
本明細書においてプロファイル(例えば、経時プロファイル)と細胞の状態との「相関付け」とは、あるプロファイル(例えば、経時プロファイル)またはその変化の特定の情報を、細胞の状態に対応付けることをいい、そのような関係を相関関係という。従来、プロファイル(例えば、経時プロファイル)と細胞の状態との間の相関付けることは、実質的に不可能であり、そのような関係は知られていなかったことから、本発明において、そのような相関付けを行うことができることは格別の効果といえる。
本明細書において、相関付けは、少なくとも1つのプロファイルまたはその変動と、細胞、組織、臓器または生体の状態の変化(例えば、親和性、薬剤耐性)とを関連付けること、例えば、あるプロファイルまたはその変動と、細胞の状態の少なくとも1つのパラメータとを定量的または定性的に対応付けることによって行うことができる。相関付けに使用される少なくとも1つのプロファイルの数は、相関付けが行うことができる限り少ない数であってよく、通常少なくとも1つ、好ましくは少なくとも2つ、より好ましくは少なくとも3つであり得るがそれらに限定されない。本発明では、少なくとも2つ、好ましくは少なくとも3つの少なくとも1つのプロファイルを特定することによって、ほぼすべての細胞を特定するに充分であることが判明した。そのような効果は、点で見ていた従来のプロファイリングまたはアッセイでは予測不可能であったことであり、本発明によって初めてもたらされた格別の効果といえる。このような場合、少なくとも1つのプロファイル(例えば、経時プロファイル)と、細胞の状態とを対応付ける場合は、行列式を利用して数学的処理を行ってもよい。1つの好ましい実施形態において、相関付けに使用する少なくとも1つのプロファイル(例えば、プロモーターに関するプロファイル)の数は少なくとも8つであることが有利であり得る。8種類の増減を観察することで、理論的には256種類の変化を対応付けることができ、生体を構成するといわれる300種類程度の細胞の種類の数をほぼ網羅することができるからである。その意味において、そのような糖鎖構造の種類としては、少なくとも9種類、または少なくとも10種類観察対象に含めることがさらに有利であり得る。しかし、本発明の技術を用いれば、実質的には、任意の1つの生物学的因子を選択し、プロファイルデータを取得するだけで、その細胞の状態をかなり理解することが可能である。
相関付けの具体的方法としては、例えば、信号処理法(ウエーブレットなどによる)、多変量解析(クラスター解析など)などを利用する方法が挙げられるがそれらに限定されない。
相関付けは、あらかじめ行っていてもよいが、細胞の判定ごとにコントロールを使用して行ってもよい。
本明細書において「外来因子」とは、ある細胞について言及するとき、その細胞において通常内部に存在しない因子(例えば、物質、エネルギーなど)をいう。本明細書において「因子」としては、意図する目的を達成することができる限りどのような物質または他の要素(例えば、電離線、放射線、光、音波などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、またはmRNA、RNAiのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(例えば、低分子リガンドなど)など)、これらの複合分子が挙げられるがそれらに限定されない。外来因子は、1つ用いられてもよいが、2つ以上の組み合わせを用いてもよい。本明細書において外来因子としては、温度変化、湿度変化、電磁波、電位差、可視光線、赤外線、紫外線、X線、化学物質、圧力、重力変化、ガス分圧および浸透圧などが挙げられるがそれらに限定されない。1つの好ましい実施形態において、外来因子は、生体分子または化学合成物であり得る。
本明細書において使用される用語「生体分子」とは、生体に関連する分子をいう。本明細書において「生体」とは、生物学的な有機体をいい、動物、植物、菌類、ウイルスなどを含むがそれらに限定されない。従って、本明細書では生体分子は、生体から抽出される分子を包含するが、それに限定されず、生体に影響を与え得る分子であれば生体分子の定義に入る。したがって、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(たとえば、低分子リガンドなど)もまた生体への効果が意図され得るかぎり、生体分子の定義に入る。そのような生体分子には、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカライド、オリゴサッカライド、脂質、低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子など)、これらの複合分子(糖脂質、糖タンパク質、リポタンパク質など)などが包含されるがそれらに限定されない。生体分子にはまた、細胞への導入が企図される限り、細胞自体、組織の一部も包含され得る。通常、生体分子は、核酸、タンパク質、脂質、糖、プロテオリピッド、リポプロテイン、糖タンパク質およびプロテオグリカンなどであり得る。好ましくは、生体分子は、核酸(DNAまたはRNA)またはタンパク質を含む。別の好ましい実施形態では、生体分子は、核酸(例えば、ゲノムDNAまたはcDNA、あるいはPCRなどによって合成されたDNA)である。他の好ましい実施形態では、生体分子はタンパク質であり得る。好ましくは、そのような生体分子は、ホルモンまたはサイトカインであり得る。
本明細書において「化学合成物」とは、通常の化学技術を用いて合成され得るすべての物質をいう。そのような合成技術は、当該分野において周知であり、当業者は、適宜そのような技術を組み合わせて化学合成物を製造することができる。
本明細書において使用される「サイトカイン」は、当該分野において用いられる最も広義の意味と同様に定義され、細胞から産生され同じまたは異なる細胞に作用する生理活性物質をいう。サイトカインは、一般にタンパク質またはポリペプチドであり、免疫応答の制禦作用、内分泌系の調節、神経系の調節、抗腫瘍作用、抗ウイルス作用、細胞増殖の調節作用、細胞分化の調節作用などを有する。本明細書では、サイトカインはタンパク質形態または核酸形態あるいは他の形態であり得るが、実際に作用する時点においては、サイトカインは通常はタンパク質形態を意味する。本明細書において用いられる「増殖因子」とは、細胞の増殖を促進または制御する物質をいう。増殖因子は、成長因子または発育因子ともいわれる。増殖因子は、細胞培養または組織培養において、培地に添加されて血清高分子物質の作用を代替し得る。多くの増殖因子は、細胞の増殖以外に、分化状態の制御因子としても機能することが判明している。サイトカインには、代表的には、インターロイキン類、ケモカイン類、コロニー刺激因子のような造血因子、腫瘍壊死因子、インターフェロン類が含まれる。増殖因子としては、代表的には、血小板由来増殖因子(PDGF)、上皮増殖因子(EGF)、線維芽細胞増殖因子(FGF)、肝実質細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)のような増殖活性を有するものが挙げられる。
本明細書において使用される「ホルモン」とは、当該分野において通常用いられる最も広い意味と同じ意味で用いられ、動植物の特定の器官または細胞で作られ,産出される部位からは隔たった器官にその特異的な生理作用をあらわす生理的有機化合物をいう。そのようなホルモンとしては、成長ホルモン、性ホルモン、甲状腺ホルモンなどが挙げられるがそれらに限定されない。そのようなホルモンは、一部、上記サイトカインとそのさす範囲が重複し得る。
本明細書において「アクチン作用物質」とは、細胞内のアクチンに対して直接的または間接的に相互作用して、アクチンの形態または状態を変化させる機能を有する物質をいう。そのような物質としては、例えば、細胞外マトリクスタンパク質(例えば、フィブロネクチン、ビトロネクチン、ラミニンなど)が挙げられるがそれらに限定されない。そのようなアクチン作用物質には、以下のようなアッセイによって同定される物質が含まれる。本明細書において、アクチンへの相互作用の評価は、アクチン染色試薬(Molecular Probes,Texas Red−X phalloidin)などによりアクチンを可視化した後、顕鏡し、アクチン凝集や細胞伸展を観察することによってアクチンの凝集、再構成および/または細胞伸展速度の向上という現象が確認されることによって判定される。これらの判定は、定量的または定性的に行われ得る。このようなアクチン作用物質は、トランスフェクションの効率を上昇させるために本発明において利用される。本発明において用いられるアクチン作用物質が生体に由来する場合、その由来は何でもよく、例えば、ヒト、マウス、ウシなどの哺乳動物種があげられる。
本明細書において「細胞接着因子」もしくは「細胞接着分子」(Cell adhesion molecule)または「接着因子」もしくは「接着分子」とは、互換可能に使用され、2つ以上の細胞の互いの接近(細胞接着)または基質と細胞との間の接着を媒介する分子をいう。一般には、細胞と細胞の接着(細胞間接着)に関する分子(cell−cell adhesion molecule)と,細胞と細胞外マトリックスとの接着(細胞−基質接着)に関与する分子(cell−substrate adhesion molecule)に分けられる。本発明の組織片では、いずれの分子も有用であり、有効に使用することができる。従って、本明細書において細胞接着分子は、細胞−基質接着の際の基質側のタンパク質を包含するが、本明細書では、細胞側のタンパク質(例えば、インテグリンなど)も包含され、タンパク質以外の分子であっても、細胞接着を媒介する限り、本明細書における細胞接着分子または細胞接着分子の概念に入る。
細胞間接着に関しては、カドヘリン、免疫グロブリンスーパーファミリーに属する多くの分子(NCAM、L1、ICAM、ファシクリンII、IIIなど)、セレクチンなどが知られており、それぞれ独特な分子反応により細胞膜を結合させることも知られている。
他方、細胞−基質接着のために働く主要な細胞接着分子はインテグリンで,細胞外マトリックスに含まれる種々のタンパク質を認識し結合する。これらの細胞接着分子はすべて細胞膜表面にあり,一種のレセプター(細胞接着受容体)とみなすこともできる。従って、細胞膜にあるこのようなレセプターもまた本発明の組織片において使用することができる。そのようなレセプターとしては、例えば、αインテグリン、βインテグリン、CD44,シンデカンおよびアグリカンなどが挙げられるがそれに限定されない。細胞接着に関する技術は、上述のもののほかの知見も周知であり、例えば、細胞外マトリックス−臨床への応用−メディカルレビュー社に記載されている。
ある分子が細胞接着分子であるかどうかは、生化学的定量(SDS−PAG法、標識コラーゲン法)、免疫学的定量(酵素抗体法、蛍光抗体法、免疫組織学的検討)PDR法、ハイブリダイゼイション法などのようなアッセイにおいて陽性となることを決定することにより判定することができる。このような細胞接着分子としては、コラーゲン、インテグリン、フィブロネクチン、ラミニン、ビトロネクチン、フィブリノゲン、免疫グロブリンスーパーファミリー(例えば、CD2、CD4、CD8、ICM1、ICAM2、VCAM1)、セレクチン、カドヘリンなどが挙げられるがそれに限定されない。このような細胞接着分子の多くは、細胞への接着と同時に細胞間相互作用による細胞活性化の補助シグナルを細胞内に伝達する。そのような補助シグナルを細胞内に伝達することができるかどうかは、生化学的定量(SDS−PAG法、標識コラーゲン法)、免疫学的定量(酵素抗体法、蛍光抗体法、免疫組織学的検討)PDR法、ハイブリダイゼイション法というアッセイにおいて陽性となることを決定することにより判定することができる。
細胞接着分子としては、例えば、カドヘリン、免疫グロブリンスーパーファミリー分子(CD 2、LFA−3、ICAM−1、CD2、CD4、CD8、ICM1、ICAM2、VCAM1など);インテグリンファミリー分子(LFA−1、Mac−1、gpIIbIIIa、p150、95、VLA1、VLA2、VLA3、VLA4、VLA5、VLA6など);セレクチンファミリー分子(L−セレクチン,E−セレクチン,P−セレクチンなど)などが挙げられるがそれらに限定されない。
本明細書において「細胞外マトリクスタンパク質」とは「細胞外マトリクス」のうちタンパク質であるものをいう。本明細書において「細胞外マトリクス」(ECM)とは「細胞外基質」とも呼ばれ、当該分野において通常用いられる意味と同様の意味で用いられ、上皮細胞、非上皮細胞を問わず体細胞(somatic cell)の間に存在する物質をいう。細胞外マトリクスは、組織の支持だけでなく、すべての体細胞の生存に必要な内部環境の構成に関与する。細胞外マトリクスは一般に、結合組織細胞から産生されるが、一部は上皮細胞や内皮細胞のような基底膜を保有する細胞自身からも分泌される。線維成分とその間を満たす基質とに大別され、線維成分としては膠原線維および弾性線維がある。基質の基本構成成分はグリコサミノグリカン(酸性ムコ多糖)であり、その大部分は非コラーゲン性タンパクと結合してプロテオグリカン(酸性ムコ多糖−タンパク複合体)の高分子を形成する。このほかに、基底膜のラミニン、弾性線維周囲のミクロフィブリル(microfibril)、線維、細胞表面のフィブロネクチンなどの糖タンパクも基質に含まれる。特殊に分化した組織でも基本構造は同一で、例えば硝子軟骨では軟骨芽細胞によって特徴的に大量のプロテオグリカンを含む軟骨基質が産生され、骨では骨芽細胞によって石灰沈着が起こる骨基質が産生される。従って、本発明において用いられる細胞外マトリクスとしては、例えば、コラーゲン、エラスチン、プロテオグリカン、グリコサミノグリカン、フィブロネクチン、ビトロネクチン、ラミニン、弾性繊維、膠原繊維などが挙げられるがそれに限定されない。
本明細書において「レセプター」とは、細胞上または核内などに存在し、外界からの因子または細胞内の因子に対する結合能を有し、その結合によりシグナルが伝達される分子をいう。レセプターは通常タンパク質の形態をとる。レセプターの結合パートナーは、通常リガンドという。
本明細書において「アゴニスト」とは、ある生体作用物質(リガンド)のレセプターに結合し、その物質のもつ作用と同じ(あるいは類似の)作用を現わすは因子をいう。
本明細書において「アンタゴニスト」とは、ある生体作用物質(リガンド)のレセプターへの結合に拮抗的に働き、それ自身はそのレセプターを介した生理作用を現わさない因子をいう。拮抗薬、遮断剤(ブロッカー)、阻害剤(インヒビター)などもこのアンタゴニストに包含される。
(デバイス・固相支持体)
本明細書において「デバイス」とは、装置の一部または全部を構成することができる部分をいい、支持体(好ましくは固相支持体)およびその支持体に担持されるべき標的物質などから構成される。そのようなデバイスとしては、チップ、アレイ、マイクロタイタープレート、細胞培養プレート、シャーレ、フィルム、ビーズなどが挙げられるがそれらに限定されない。
本明細書において使用される「支持体」は、生体分子のような物質を固定することができる材料(material)をいう。支持体の材料としては、共有結合かまたは非共有結合のいずれかで、本発明において使用される生体分子のような物質に結合する特性を有するかまたはそのような特性を有するように誘導体化され得る、任意の固体材料が挙げられる。
支持体として使用するためのそのような材料としては、固体表面を形成し得る任意の材料が使用され得るが、例えば、ガラス、シリカ、シリコン、セラミック、二酸化珪素、プラスチック、金属(合金も含まれる)、天然および合成のポリマー(例えば、ポリスチレン、セルロース、キトサン、デキストラン、およびナイロン)などが挙げられるがそれらに限定されない。支持体は、複数の異なる材料の層から形成されていてもよい。例えば、ガラス、石英ガラス、アルミナ、サファイア、フォルステライト、酸化珪素、炭化珪素、窒化珪素などの無機絶縁材料を使用することができる。ポリエチレン、エチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリルブタジエンスチレン共重合体、シリコーン樹脂、ポリフェニレンオキサイド、ポリスルホンなどの有機材料を用いることができる。本発明においてはまた、ニトロセルロース膜、ナイロン膜、PVDF膜など、ブロッティングに使用される膜を用いることもできる。支持体を構成する材料が固相である場合、本明細書において特に「固相支持体」という。本明細書において、プレート、マイクロウェルプレート、チップ、スライドグラス、フィルム、ビーズ、金属(表面)などの形態をとり得る。支持体はコーティングされていてもよく、コーティングされていなくてもよい。
本明細書において「液相」とは、当該分野において通常用いられる意味と同じ意味で用いられ、通常、溶液中での状態をいう。
本明細書において「固相」とは、当該分野において用いられる意味と同じ意味で用いられ、通常、固体の状態をいう。本明細書において液体および固体を総合して流体ということがある。
本明細書において使用される「基板」とは、本発明のチップまたはアレイが構築される材料(好ましくは固体)をいう。したがって、基板はプレートの概念に包含される。基板の材料としては、共有結合かまたは非共有結合のいずれかで、本発明において使用される生体分子に結合する特性を有するかまたはそのような特性を有するように誘導体化され得る、任意の固体材料が挙げられる。
プレートおよび基板として使用するためのそのような材料としては、固体表面を形成し得る任意の材料が使用され得るが、例えば、ガラス、シリカ、シリコン、セラミック、二酸化珪素、プラスチック、金属(合金も含まれる)、天然および合成のポリマー(例えば、ポリスチレン、セルロース、キトサン、デキストラン、およびナイロン)が挙げられるがそれらに限定されない。基板は、複数の異なる材料の層から形成されていてもよい。例えば、ガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化珪素、酸化珪素、窒化珪素などの無機絶縁材料を使用できる。また、ポリエチレン、エチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリルブタジエンスチレン共重合体、シリコーン樹脂、ポリフェニレンオキサイド、ポリスルホン等の有機材料を用いることができる。基板として好ましい材質は、測定機器などの種々のパラメータによって変動し、当業者は、上述のような種々の材料から適切なものを適宜選択することができる。トランスフェクションアレイのためには、スライドグラスが好ましい。好ましくは、そのような基材は、コーティングされ得る。
本明細書において「コーティング」とは、固相支持体または基板について用いられるとき、その固相支持体または基板の表面上にある物質の膜を形成させることおよびそのような膜をいう。コーティングは種々の目的で行われ、例えば、固相支持体および基板の品質向上(例えば、寿命の向上、耐酸性などの耐環境性の向上)、固相支持体または基板に結合されるべき物質の親和性の向上などを目的とすることが多い。そのようなコーティングのための物質としては、種々の物質が用いられ得、上述の固相支持体および基板自体に使用される物質のほか、DNA、RNA、タンパク質、脂質などの生体物質、ポリマー(例えば、ポリ−L−リジン、MAS(松浪硝子、岸和田、日本から入手可能)、、疎水性フッ素樹脂)、シラン(APS(例えば、γ−アミノプロピルシラン))、金属(例えば、金など)が使用され得るがそれらに限定されない。そのような物質の選択は当業者の技術範囲内にあり、当該分野において周知の技術を用いて場合ごとに選択することができる。一つの好ましい実施形態では、そのようなコーティングは、ポリ−L−リジン、シラン、(例えば、エポキシシランまたはメルカプトシラン、APS(γ−アミノプロピルシラン))、MAS、疎水性フッ素樹脂、金のような金属を用いることが有利であり得る。このような物質は、細胞または細胞を含む物体(例えば、生体、臓器など)に適合する物質を用いることが好ましい。
本明細書において「チップ」または「マイクロチップ」は、互換可能に用いられ、多様の機能をもち、システムの一部となる超小型集積回路をいう。チップとしては、例えば、DNAチップ、プロテインチップなどが挙げられるがそれらに限定されない。
本明細書において「アレイ」とは、1以上(例えば、1000以上)の標的物質を含む組成物(例えば、DNA、タンパク質、トランスフェクト混合物)が整列されて配置されたパターンまたはパターンを有する基板(例えば、チップ)そのものをいう。アレイの中で、小さな基板(例えば、10×10mm上など)上にパターン化されているものはマイクロアレイというが、本明細書では、マイクロアレイとアレイとは互換可能に使用される。従って、上述の基板より大きなものにパターン化されたものでもマイクロアレイと呼ぶことがある。例えば、アレイはそれ自身固相表面または膜に固定されている所望のトランスフェクト混合物のセットで構成される。アレイは好ましくは同一のまたは異なる抗体を少なくとも10個、より好ましくは少なくとも10個、およびさらに好ましくは少なくとも10個、さらにより好ましくは少なくとも10個を含む。これらの抗体は、好ましくは表面が125×80mm、より好ましくは10×10mm上に配置される。形式としては、96ウェルマイクロタイタープレート、384ウェルマイクロタイタープレートなどのマイクロタイタープレートの大きさのものから、スライドグラス程度の大きさのものが企図される。固定される標的物質を含む組成物は、1種類であっても複数種類であってもよい。そのような種類の数は、1個〜スポット数までの任意の数であり得る。例えば、約10種類、約100種類、約500種類、約1000種類の標的物質を含む組成物が固定され得る。
基板のような固相表面または膜には、上述のように任意の数の標的物質(例えば、抗体のようなタンパク質)が配置され得るが、通常、基板1つあたり、10個の生体分子まで、他の実施形態において10個の生体分子まで、10個の生体分子まで、10個の生体分子まで、10個の生体分子まで、10個の生体分子まで、または10個の生体分子までの個の生体分子が配置され得るが、10個の生体分子を超える標的物質を含む組成物が配置されていてもよい。これらの場合において、基板の大きさはより小さいことが好ましい。特に、標的物質を含む組成物(例えば、抗体のようなタンパク質)のスポットの大きさは、単一の生体分子のサイズと同じ小さくあり得る(これは、1−2nmの桁であり得る)。最小限の基板の面積は、いくつかの場合において基板上の生体分子の数によって決定される。本発明では、細胞への導入が企図される標的物質を含む組成物は、通常、0.01mm〜10mmのスポット状に共有結合あるいは物理的相互作用によって配列固定されている。
アレイ上には、生体分子の「スポット」が配置され得る。本明細書において「スポット」とは、標的物質を含む組成物の一定の集合をいう。本明細書において「スポッティング」とは、ある標的物質を含む組成物のスポットをある基板またはプレートに作製することをいう。スポッティングはどのような方法でも行うことができ、例えば、ピペッティングなどによって達成され得、あるいは自動装置で行うこともでき、そのような方法は当該分野において周知である。
本明細書において使用される用語「アドレス」とは、基板上のユニークな位置をいい、他のユニークな位置から弁別可能であり得るものをいう。アドレスは、そのアドレスを伴うスポットとの関連づけに適切であり、そしてすべての各々のアドレスにおける存在物が他のアドレスにおける存在物から識別され得る(例えば、光学的)、任意の形状を採り得る。アドレスを定める形は、例えば、円状、楕円状、正方形、長方形であり得るか、または不規則な形であり得る。したがって、「アドレス」は、抽象的な概念を示し、「スポット」は具体的な概念を示すために使用され得るが、両者を区別する必要がない場合、本明細書においては、「アドレス」と「スポット」とは互換的に使用され得る。
各々のアドレスを定めるサイズは、とりわけ、その基板の大きさ、特定の基板上のアドレスの数、標的物質を含む組成物の量および/または利用可能な試薬、微粒子のサイズおよびそのアレイが使用される任意の方法のために必要な解像度の程度に依存する。大きさは、例えば、1−2nmから数cmの範囲であり得るが、そのアレイの適用に一致した任意の大きさが可能である。
アドレスを定める空間配置および形状は、そのマイクロアレイが使用される特定の適用に適合するように設計される。アドレスは、密に配置され得、広汎に分散され得るか、または特定の型の分析物に適切な所望のパターンへとサブグループ化され得る。
マイクロアレイについては、ゲノム機能研究プロトコール(実験医学別冊 ポストゲノム時代の実験講座1)、ゲノム医科学とこれからのゲノム医療(実験医学増刊)などに広く概説されている。
マイクロアレイから得られるデータは膨大であることから、クローンとスポットとの対応の管理、データ解析などを行うためのデータ解析ソフトウェアが重要である。そのようなソフトウェアとしては、各種検出システムに付属のソフトウェアが利用可能である(Ermolaeva Oら(1998)Nat.Genet.20:19−23)。また、データベースのフォーマットとしては、例えば、Affymetrixが提唱しているGATC(genetic analysis technology consortium)と呼ばれる形式が挙げられる。
微細加工については、例えば、Campbell,S.A.(1996).The Science andEngineering of Microelectronic Fabrication,Oxford University Press;Zaut,P.V.(1996).Micromicroarray Fabrication:a Practical Guide to Semiconductor Processing,Semiconductor Services;Madou,M.J.(1997).Fundamentals of Microfabrication,CRC1 5 Press;Rai−Choudhury,P.(1997).Handbook of Microlithography,Micromachining,& Microfabrication:Microlithographyなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
(検出)
本発明の細胞分析または判定方法では、細胞またはそれに相互作用する物質に起因する情報を検出することができる限り、種々の検出方法および検出手段を用いることができる。そのような検出方法および検出手段としては、例えば、目視、光学顕微鏡、共焦点顕微鏡、蛍光顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる方法および手段を挙げることができるがそれらに限定されない。そのような検出装置としてはまた、蛍光分析装置、分光光度計、シンチレーションカウンター、CCD、ルミノメーターなども挙げられるがそれらに限定されず、生体分子を検出することができる手段であればどのようなものでもよい。
本明細書において「マーカー」とは、目的とする物質または状態についてレベルまたは頻度を反映する生物学的因子をいう。そのようなマーカーとしては、例えば、遺伝子をコードする核酸、遺伝子産物、代謝産物、レセプター、リガンド、抗体などが挙げられるがそれらに限定されない。
したがって、本明細書において細胞の状態に関連するマーカーとは、転写制御因子のほか、細胞の状態を示す細胞内因子(例えば、遺伝子をコードする核酸、遺伝子産物(例えば、mRNA、タンパク質、翻訳後修飾タンパク質)、代謝産物、レセプターなど)に対して相互作用する因子(例えば、リガンド、抗体など、相補的な核酸)などが挙げられるがそれらに限定されない。本発明では、このようなマーカーについて経時プロファイルを生成して解析することも包含する。そのようなマーカーは、好ましくは、目的とする因子に対して特異的に相互作用することが有利であり得る。そのような特異性は、例えば、類似の分子よりも目的の分子に対する相互作用の程度が有意に高い性質を言う。本発明では、好ましくは、そのようなマーカーは、細胞内部に存在するが、細胞外のものであってもよい。
本明細書において「標識」とは、目的となる分子または物質を他から識別するための存在(たとえば、物質、エネルギー、電磁波など)をいう。そのような標識方法としては、RI(ラジオアイソトープ)法、蛍光法、ビオチン法、化学発光法等を挙げることができる。上記の核酸断片および相補性を示すオリゴヌクレオチドを何れも蛍光法によって標識する場合には、蛍光発光極大波長が互いに異なる蛍光物質によって標識を行う。蛍光発光極大波長の差は、10nm以上であることが好ましい。蛍光物質としては、核酸の塩基部分と結合できるものであれば何れも用いることができるが、シアニン色素(例えば、Cy DyeTMシリーズのCy3、Cy5等)、ローダミン6G試薬、N−アセトキシ−N2−アセチルアミノフルオレン(AAF)、AAIF(AAFのヨウ素誘導体)等を使用することが好ましい。蛍光発光極大波長の差が10nm以上である蛍光物質としては、例えば、Cy5とローダミン6G試薬との組み合わせ、Cy3とフルオレセインとの組み合わせ、ローダミン6G試薬とフルオレセインとの組み合わせ等を挙げることができる。本発明では、このような標識を利用して、使用される検出手段に検出され得るように目的とする対象を改変することができる。そのような改変は、当該分野において公知であり、当業者は標識におよび目的とする対象に応じて適宜そのような方法を実施することができる。
本明細書において「相互作用」には、疎水性相互作用、親水性相互作用、水素結合、ファンデルワールス力、イオン性相互作用、非イオン性相互作用、静電的相互作用などが挙げられるがそれらに限定されない。
本明細書において「相互作用のレベル」とは、2つの物質(細胞などを含む)の間の相互作用について言及する場合、その2つの物質の間の相互作用の程度または頻度をいう。そのような相互作用のレベルは、当該分野において周知の方法によって測定することができる。そのような方法としては、例えば、実際に相互作用し固定状態にある細胞の数を、例えば、光学顕微鏡、蛍光顕微鏡、位相差顕微鏡などを利用して、直接または間接的に(例えば、反射光強度)計数すること、細胞に特異的なマーカー、抗体、蛍光標識などで染色しその強度を測定することなどが挙げられるがそれらに限定されない。これらのレベルは、マーカーから直接または標識を介して間接的に表示することができる。このような測定値から、例えば、あるスポットにおいて実際に転写または発現する遺伝子の個数または頻度を算出することができる。
(提示および表示)
本明細書において「表示」(ディスプレイ)および「提示」とは、互換可能に使用され、本発明の方法に従って得られたプロファイルまたはそれに由来する情報を直接または間接的にあるいは情報処理をした形態で具現化することをいう。そのような表示の形態としては、グラフ、写真、表、アニメーションなど種々の方法があり、限定されない。そのような技術としては、例えば、METHODS IN CELL BIOLOGY,VOL.56,ed.1998,pp:185−215、A High−Resolusion Multimode Digital Microscope System(Sluder & Wolf、Salmon)において、顕微鏡を自動化し、カメラを制御するためのアプリケーションソフトウェアとともに、自動光学顕微鏡の顕微鏡、カメラ、Z軸フォーカス装置を含む、ハードウェアシステムの設計について議論されており、本発明において利用することができる。カメラによるイメージ取得は、Inoue and Spring,Video Miroscopy,2d.Edition,1997に詳細に記載されており、本明細書において参考文献として援用される。
リアルタイムの表示および提示もまた、当該分野において周知の技術を用いて行うことができる。例えば、全てのイメージが取得され、半永久的メモリに格納された後、あるいはイメージの取得と実質的に同時に、適切なアプリケーションソフトウェアで処理し、処理されたデータを得ることができる。例えば、取得されたデータを処理する方法は、画像が中断されないシーケンスをプレイバックする、あるいは、リアルタイムで表示する、焦点面における変化および連続として、照射光を示す「ムービー」として表示することができる。
別の実施形態では、測定および表示用アプリケーションは、通常刺激付与の条件や得られた検出信号の記録条件を設定するためのソフトウエアを含んでいる。この測定および表示用アプリケーションによって、コンピュータは細胞に刺激を付与する手段と、細胞から検出された信号を処理する手段とを構成するだけでなく、光学観察手段(SITカメラ及び画像ファイル装置)および/または細胞培養手段の制御を行うこともできる。
パラメータ設定画面では、キーボード、タッチパネルまたはマウスなどを用いて画面上で刺激条件を入力することにより、所望の複雑な刺激条件の設定が可能である。その他、細胞培養の温度、pHなどの諸条件の設定をキーボード、マウスなどを用いて行うことができる。
表示画面では、細胞から検出されたプロファイルまたはそれに由来する情報をリアルタイムでまたは記録後に表示する。また、記録された別のプロファイルまたはそれに由来する情報を細胞の顕微鏡像に重ねて表示することもできる。記録情報の表示とともに、記録時の測定パラメータ(刺激条件、記録条件、表示条件、処理条件、細胞の諸条件、温度、pH等)もまたリアルタイムで表示することができる。温度またはpHが許容範囲を外れたときの警報機能も備えられていてもよい。
データ解析画面では、種々の数理解析、フーリエ変換、クラスター解析、FFT解析、コヒーレンス解析、コリレーション解析などの条件を設定することが可能である。一時的なプロファイル表示機能、トポグラフィー表示機能、も備えていてもよい。これらの解析結果は、記録媒体に保存されている顕微鏡像に重ねて表示することができる。
(遺伝子導入)
本明細書において、核酸分子を細胞に導入する技術は、どのような技術でもよく、例えば、形質転換、形質導入、トランスフェクションなどが挙げられる。本明細書では、トランスフェクションが好ましい。
本明細書において「トランスフェクション」とは、遺伝子DNA、プラスミドDNA、ウイルスDNA、ウイルスRNAなどを、ウイルス粒子などの形をとらない裸に近い状態で細胞の培養、または細胞の懸濁液に加えて細胞に取り込ませて遺伝子導入または感染を行うことをいう。通常トランスフェクションによって導入された遺伝子は、一過的に細胞において発現するが、永続的に取り込まれる場合もある。
そのような核酸分子の導入技術は、当該分野において周知であり、かつ、慣用されるものであり、例えば、Ausubel F.A.ら編(1988)、Current Protocols in Molecular Biology、Wiley、New York、NY;Sambrook Jら(1987)Molecular Cloning:A Laboratory Manual,2nd Ed.およびその第三版,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載される。遺伝子の導入は、ノーザンブロット、ウェスタンブロット分析のような本明細書に記載される方法または他の周知慣用技術を用いて確認することができる。
本明細書において遺伝子操作について言及する場合、「ベクター」または「組み換えベクター」とは、目的のポリヌクレオチド配列を目的の細胞へと移入させることができるベクターをいう。そのようなベクターとしては、原核細胞、酵母、動物細胞、植物細胞、昆虫細胞、動物個体および植物個体などの宿主細胞において自立複製が可能、または染色体中への組込みが可能で、本発明のポリヌクレオチドの転写に適した位置にプロモーターを含有しているものが例示される。ベクターのうち、クローニングに適したベクターを「クローニングベクター」という。そのようなクローニングベクターは通常、制限酵素部位を複数含むマルチプルクローニング部位を含む。そのような制限酵素部位およびマルチプルクローニング部位は、当該分野において周知であり、当業者は、目的に合わせて適宜選択して使用することができる。そのような技術は、本明細書に記載される文献(例えば、Sambrookら、前出)に記載されている。
本明細書において「発現ベクター」とは、構造遺伝子およびその発現を調節するプロモーターに加えて種々の調節エレメントが宿主の細胞中で作動し得る状態で連結されている核酸配列をいう。調節エレメントは、好ましくは、ターミネーター、薬剤耐性遺伝子のような選択マーカーおよび、エンハンサーを含み得る。生物(例えば、動物)の発現ベクターのタイプおよび使用される調節エレメントの種類が、宿主細胞に応じて変わり得ることは、当業者に周知の事項である。
原核細胞に対する組換えベクターとしては、pcDNA3(+)、pBluescript−SK(+/−)、pGEM−T、pEF−BOS、pEGFP、pHAT、pUC18、pFT−DESTTM42GATEWAY(Invitrogen)などが例示される。
動物細胞に対する組換えベクターとしては、pcDNAI/Amp、pcDNAI、pCDM8(いずれもフナコシより市販)、pAGE107[特開平3−229(Invitrogen)、pAGE103[J.Biochem.,101,1307(1987)]、pAMo、pAMoA[J.Biol.Chem.,268,22782−22787(1993)]、マウス幹細胞ウイルス(Murine Stem Cell Virus)(MSCV)に基づいたレトロウイルス型発現ベクター、pEF−BOS、pEGFPなどが例示される。
植物細胞に対する組換えベクターとしては、pPCVICEn4HPT、pCGN1548、pCGN1549、pBI221、pBI121などが挙げられるがそれらに限定されない。
また、ベクターの導入方法としては、細胞にDNAを導入する上述のような方法であればいずれも用いることができ、例えば、トランスフェクション、形質導入、形質転換など(例えば、リン酸カルシウム法、リポソーム法、DEAEデキストラン法、エレクトロポレーション法、パーティクルガン(遺伝子銃)を用いる方法など)、リポフェクション法、スフェロプラスト法[Proc.Natl.Acad.Sci.USA,84,1929(1978)]、酢酸リチウム法[J.Bacteriol.,153,163(1983)]、Proc.Natl.Acad.Sci.USA,75,1929(1978)記載の方法が挙げられる。
本明細書において「作動可能に連結された(る)」とは、所望の配列の発現(作動)がある転写翻訳調節配列(例えば、プロモーター、エンハンサーなど)または翻訳調節配列の制御下に配置されることをいう。プロモーターが遺伝子に作動可能に連結されるためには、通常、その遺伝子のすぐ上流にプロモーターが配置されるが、必ずしも隣接して配置される必要はない。
本明細書において「遺伝子導入試薬」とは、遺伝子導入方法において、導入効率を促進するために用いられる試薬をいう。そのような遺伝子導入試薬としては、例えば、カチオン性高分子、カチオン性脂質、ポリアミン系試薬、ポリイミン系試薬、リン酸カルシウムなどが挙げられるがそれらに限定されない。トランスフェクションの際に利用される試薬の具体例としては、種々なソースから市販されている試薬が挙げられ、例えば、Effectene Transfection Reagent(cat.no.301425,Qiagen,CA),TransFastTM Transfection Reagent(E2431,Promega,WI),TfxTM−20 Reagent(E2391,Promega,WI),SuperFect Transfection Reagent(301305,Qiagen,CA),PolyFect Transfection Reagent(301105,Qiagen,CA),LipofectAMINE 2000 Reagent(11668−019,Invitrogen corporation,CA),JetPEI(×4)conc.(101−30,Polyplus−transfection,France)およびExGen 500(R0511,Fermentas Inc.,MD)などが挙げられるがそれらに限定されない。
本明細書において遺伝子発現(たとえば、mRNA発現、ポリペプチド発現)の「検出」または「定量」は、例えば、mRNAの測定および免疫学的測定方法を含む適切な方法を用いて達成され得る。分子生物学的測定方法としては、例えば、ノーザンブロット法、ドットブロット法またはPCR法などが例示される。免疫学的測定方法としては、例えば、方法としては、マイクロタイタープレートを用いるELISA法、RIA法、蛍光抗体法、ウェスタンブロット法、免疫組織染色法などが例示される。また、定量方法としては、ELISA法またはRIA法などが例示される。アレイ(例えば、DNAアレイ、プロテインアレイ)を用いた遺伝子解析方法によっても行われ得る。DNAアレイについては、(秀潤社編、細胞工学別冊「DNAマイクロアレイと最新PCR法」)に広く概説されている。プロテインアレイについては、Nat Genet.2002 Dec;32 Suppl:526−32に詳述されている。遺伝子発現の分析法としては、上述に加えて、RT−PCR、RACE法、SSCP法、免疫沈降法、two−hybridシステム、インビトロ翻訳などが挙げられるがそれらに限定されない。そのようなさらなる分析方法は、例えば、ゲノム解析実験法・中村祐輔ラボ・マニュアル、編集・中村祐輔 羊土社(2002)などに記載されており、本明細書においてそれらの記載はすべて参考として援用される。
「発現量」とは、目的の細胞などにおいて、ポリペプチドまたはmRNAが発現される量をいう。そのような発現量としては、本発明の抗体を用いてELISA法、RIA法、蛍光抗体法、ウェスタンブロット法、免疫組織染色法などの免疫学的測定方法を含む任意の適切な方法により評価される本発明ポリペプチドのタンパク質レベルでの発現量、またはノーザンブロット法、ドットブロット法、PCR法などの分子生物学的測定方法を含む任意の適切な方法により評価される本発明のポリペプチドのmRNAレベルでの発現量が挙げられる。「発現量の変化」とは、上記免疫学的測定方法または分子生物学的測定方法を含む任意の適切な方法により評価される本発明のポリペプチドのタンパク質レベルまたはmRNAレベルでの発現量が増加あるいは減少することを意味する。
(スクリーニング)
本明細書において「スクリーニング」とは、目的とするある特定の性質をもつ生物または物質などの標的を、特定の操作/評価方法で多数を含む集団の中から選抜することをいう。スクリーニングのために、本発明の方法またはシステムを使用することができる。
本明細書において、免疫反応を利用してスクリーニングを行うことを、「免疫表現型分類(immunophenotyping)」ともいう。この場合、本発明の抗体または単鎖抗体は、細胞株および生物学的サンプルの免疫表現型分類のために利用され得る。本発明の遺伝子の転写産物・翻訳産物は、細胞特異的マーカーとして、あるいはより詳細には、特定の細胞型の分化および/または成熟の種々の段階で示差的に発現される細胞マーカーとして有用である。特異的エピトープ、またはエピトープの組み合わせに対して指向されるモノクローナル抗体は、マーカーを発現する細胞集団のスクリーニングを可能とする。種々の技術が、マーカーを発現する細胞集団をスクリーニングするために、モノクローナル抗体を用いて利用され得、そしてその技術には、抗体でコーティングされた磁気ビーズを用いる磁気分離、固体マトリクス(すなわち、プレート)に付着した抗体を用いる「パニング(panning)」、ならびにフローサイトメトリーが挙げられる(例えば、米国特許第5,985,660号;およびMorrisonら、Cell,96:737−49(1999)を参照)。
これらの技術は、ヒト臍帯血において見出され得るような細胞増殖および/または分化を起こし得るかまたは未分化状態への改変処置を行ったような細胞集団のような、未分化の細胞(例えば、胚性幹細胞、組織幹細胞など)を含む細胞集団についてスクリーニングするために利用され得る。
(診断)
本明細書において「診断」とは、被検体における疾患、障害、状態などに関連する種々のパラメータを同定し、そのような疾患、障害、状態の現状を判定することをいう。本発明の方法、装置、システムを用いることによって、糖鎖構造を分析し、薬剤耐性レベルと相関付けることができ、そのような情報を用いて、被検体における疾患、障害、状態、投与すべき処置または予防のための処方物または方法などの種々のパラメータを選定することができる。
本発明の診断方法は、原則として、身体から出たものを利用することができることから、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。
(治療)
本明細書において「治療」とは、ある疾患または障害について、そのような状態になった場合に、そのような疾患または障害の悪化を防止、好ましくは、現状維持、より好ましくは、軽減、さらに好ましくは消長させることをいう。
本明細書において「被検体」とは、本発明の処置が適用される生物をいい、「患者」ともいわれる。患者または被検体は好ましくは、ヒトであり得る。
本明細書において「病因」とは、被検体の疾患、障害または状態(本明細書において、総称して「病変」ともいい、植物では病害ともいう)に関連する因子をいい、例えば、原因となる病原物質(病原因子)、病原体、病変細胞、病原ウイルスなどが挙げられるがそれらに限定されない。
本発明が対象とする「疾患」は、病原遺伝子が関連する任意の疾患であり得る。そのような疾患としては、癌、ウイルスまたは細菌による感染症、アレルギー、高血圧、高脂血症、糖尿病、心臓病、脳梗塞、痴呆症、肥満、動脈硬化性疾患、不妊症、精神神経疾患、白内障、早老症、紫外線放射線過敏症などが挙げられるがそれらに限定されない。
本発明が対象とする「障害」は、病原遺伝子が関連する任意の障害であり得る。
そのような疾患、障害または状態の具体例としては、例えば、循環器系疾患(貧血(例えば、再生不良性貧血(特に重症再生不良性貧血)、腎性貧血、がん性貧血、二次性貧血、不応性貧血など)、がんまたは腫瘍(例えば、白血病、多発性骨髄腫)など);神経系疾患(痴呆症、脳卒中およびその後遺症、脳腫瘍、脊髄損傷など);免疫系疾患(T細胞欠損症、白血病など);運動器・骨格系疾患(骨折、骨粗鬆症、関節の脱臼、亜脱臼、捻挫、靱帯損傷、変形性関節症、骨肉腫、ユーイング肉腫、骨形成不全症、骨軟骨異形成症など);皮膚系疾患(無毛症、黒色腫、皮膚悪性リンパ腫、血管肉腫、組織球症、水疱症、膿疱症、皮膚炎、湿疹など);内分泌系疾患(視床下部・下垂体疾患、甲状腺疾患、副甲状腺(上皮小体)疾患、副腎皮質・髄質疾患、糖代謝異常、脂質代謝異常、タンパク質代謝異常、核酸代謝異常、先天性代謝異常(フェニールケトン尿症、ガラクトース血症、ホモシスチン尿症、メープルシロップ尿症)、無アルブミン血症、アスコルビン酸合成能欠如、高ビリルビン血症、高ビリルビン尿症、カリクレイン欠損、肥満細胞欠損、尿崩症、バソプレッシン分泌異常、侏儒症、ウオルマン病(酸リパーゼ(Acid lipase)欠損症)、ムコ多糖症VI型など);呼吸器系疾患(肺疾患(例えば、肺炎、肺がんなど)、気管支疾患、肺がん、気管支がんなど);消化器系疾患(食道疾患(たとえば、食道がん)、胃・十二指腸疾患(たとえば、胃がん、十二指腸がん)、小腸疾患・大腸疾患(たとえば、大腸ポリープ、結腸がん、直腸がんなど)、胆道疾患、肝臓疾患(たとえば、肝硬変、肝炎(A型、B型、C型、D型、E型など)、劇症肝炎、慢性肝炎、原発性肝がん、アルコール性肝障害、薬物性肝障害)、膵臓疾患(急性膵炎、慢性膵炎、膵臓がん、嚢胞性膵疾患)、腹膜・腹壁・横隔膜疾患(ヘルニアなど)、ヒルシュスプラング病など);泌尿器系疾患(腎疾患(腎不全、原発性糸球体疾患、腎血管障害、尿細管機能異常、間質性腎疾患、全身性疾患による腎障害、腎がんなど)、膀胱疾患(膀胱炎、膀胱がんなど)など);生殖器系疾患(男性生殖器疾患(男性不妊、前立腺肥大症、前立腺がん、精巣がんなど)、女性生殖器疾患(女性不妊、卵巣機能障害、子宮筋腫、子宮腺筋症、子宮がん、子宮内膜症、卵巣がん、絨毛性疾患など)など);循環器系疾患(心不全、狭心症、心筋梗塞、不整脈、弁膜症、心筋・心膜疾患、先天性心疾患(たとえば、心房中隔欠損、心室中隔欠損、動脈管開存、ファロー四徴)、動脈疾患(たとえば、動脈硬化、動脈瘤)、静脈疾患(たとえば、静脈瘤)、リンパ管疾患(たとえば、リンパ浮腫)など)などが挙げられるがそれらに限定されない。
本明細書において「がん」または「癌」は、互換可能に用いられ、異型性が強く、増殖が正常細胞より速く、周囲組織に破壊性に浸潤し得あるいは転移をおこし得る悪性腫瘍またはそのような悪性腫瘍が存在する状態をいう。本発明においては、がんは固形がんおよび造血器腫瘍を含むがそれらに限定されない。
本明細書において「固形がん」は、固形の形状があるがんをいい、白血病などの造血器腫瘍とは対峙する概念である。そのような固形がんとしては、例えば、乳がん、肝がん、胃がん、肺がん、頭頸部がん、子宮頸部がん、前立腺がん、網膜芽細胞腫、悪性リンパ腫、食道がん、脳腫瘍、骨腫瘍が挙げられるがそれらに限定されない。
本明細書において「がん治療」は、抗がん剤(例えば、化学療法剤、放射線治療など)を投与することによって行われるか、または外科的に除去などをする外科的治療を包含する。
本明細書において用いられる化学療法剤は、当該分野において周知であり、抗がん剤マニュアル第2版 塚越茂他編 中外医学社;Pharmacology; Lippincott Williams & Wilkins,Inc.に記載されている。そのような化学療法剤は、例えば、以下が挙げられるがそれに限定されない:1)アルキル化剤(DNA,タンパク質などの細胞構成成分をアルキル化して細胞毒性を示す。例えば、シクロホスファミド,ブスルファン、チオテパ、ダカルバジンが挙げられるがそれらに限定されない);2)代謝拮抗剤(おもに核酸の合成を阻害する薬剤(例えば、葉酸代謝拮抗剤としてメトトレキサートなど、プリン代謝拮抗剤として6−メルカプトプリンなど、ピリミジン代謝拮抗剤としてフルオロウラシル(5−FU)など);3)DNAトポイソメラーゼ阻害剤(例えば、カンプトテシン、エトポシド(それぞれトポイソメラーゼI、IIを阻害する));4)チューブリン作用薬(微小管形成を阻害し、細胞分裂を抑制する。ビンブラスチン、ビンクリスチンなど);5)白金化合物(DNAおよびタンパク質との結合による細胞毒性を示す。シスプラチン、カルボプラチンなど);6)抗がん抗生物質(DNAと結合し、DNA合成、RNA合成を阻害する。アドリアマイシン、ダウノルビシン、マイトマイシンC、ブレオマイシンなど);7)ホルモン剤(乳がん、子宮がん、前立腺がんなどホルモン依存性のがんに適応。タモキシフェン、リュープロレリン(LH−RH)など);8)生物製剤(アスパラギン要求性血液悪性腫瘍に対して有効なアスパラギナーゼ、直接的な抗腫瘍作用と免疫増強による間接作用を示すインターフェロンなどがある);9)免疫賦活剤(免疫応答能を増強し、間接的に抗腫瘍活性を示す。シイタケ由来の多糖体であるレンチナン、微生物由来のペプチドであるベスタチンなど)。
本明細書において「抗がん剤」とは、がん(腫瘍)細胞の増殖を選択的に抑制し、がんの薬剤および放射線治療の両方を包含する。そのような抗がん剤は当該分野において周知であり、例えば、抗がん剤マニュアル第2版 塚越茂他編 中外医学社;Pharmacology;Lippincott Williams & Wilkins,Inc.に記載されている。
本明細書において「放射線療法」または「放射線治療」とは、互換可能に使用され、電離放射線または放射性物質を利用した疾患の治療をいう。代表的な放射線療法としては、X線、γ線、電子線、陽子線、重粒子線、中性子捕捉療法が挙げられるがそれに限定されない。好ましい放射線療法としては、重粒子線が挙げられる。重粒子線を用いた療法は装置が大きく一般的でないことがある。そのような放射線療法は当該分野において周知であり、例えば、放射線検査と治療の基礎;放射線治療と集学的治療:邵啓全(滋賀医大放射線):総合消化器ケア 6巻 6号 Page79−89,6−7(2002.02)に記載されている。本発明において同定される薬剤耐性は、通常化学療法が想定されるが、放射線療法による耐性もまたプロファイルと関連付けられることから、本明細書では、放射線療法は薬剤の概念の中に入る。
本明細書において「薬学的に受容可能なキャリア」は、医薬または動物薬のような農薬を製造するときに使用される物質であり、有効成分に有害な影響を与えないものをいう。そのような薬学的に受容可能なキャリアとしては、例えば、以下が挙げられるがそれらに限定されない:抗酸化剤、保存剤、着色料、風味料、および希釈剤、乳化剤、懸濁化剤、溶媒、フィラー、増量剤、緩衝剤、送達ビヒクル、希釈剤、賦形剤および/または農学的もしくは薬学的アジュバント。
本発明の処置方法において使用される薬剤の種類および量は、本発明の方法によって得られた情報(例えば、薬剤耐性レベルに関する情報)を元に、使用目的、対象疾患(種類、重篤度など)、患者の年齢、体重、性別、既往歴、投与される被検体の部位の形態または種類などを考慮して、当業者が容易に決定することができる。本発明の処置方法を被検体(または患者)に対して施す頻度もまた、使用目的、対象疾患(種類、重篤度など)、患者の年齢、体重、性別、既往歴、および治療経過などを考慮して、当業者が容易に決定することができる。薬剤を投与する頻度あるいは薬剤耐性をモニタリングする頻度としては、例えば、毎日−数ヶ月に1回(例えば、1週間に1回−1ヶ月に1回)の投与が挙げられる。1週間−1ヶ月に1回の投与を、経過を見ながら施すことが好ましい。
本明細書において「指示書」は、本発明のテイラーメイド治療方法などを医師、患者など投与を行う人に対して記載したものである。この指示書は、本発明の医薬などを例えば、放射線治療直後または直前(例えば、24時間以内など)に投与することを指示する文言が記載されている。この指示書は、本発明が実施される国の監督官庁(例えば、日本であれば厚生労働省、米国であれば食品医薬品局(FDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
必要に応じて、本発明の治療では、2種類以上の薬剤が使用され得る。2種類以上の薬剤を使用する場合、類似の性質または由来の物質を使用してもよく、異なる性質または由来の薬剤を使用してもよい。このような2種類以上の薬剤を投与する方法のための薬剤耐性レベルに関する情報も、本発明の方法によって入手することができる。
本発明ではまた、得られた薬剤耐性に関する情報を元に、遺伝子治療を施すことも可能である。遺伝子治療とは、発現されたか、または発現可能な核酸の、被験体への投与により行われる治療をいう。本発明のこの実施形態において、核酸は、それらのコードされたタンパク質を産生し、そのタンパク質は治療効果を媒介する。
本発明では、いったん類似の種類(例えば、ヒトに対するマウスなど)の生物に関し、ある特定のプロファイルの分析結果と、細胞の状態とが相関付けられた場合、対応するプロファイルの分析結果と、細胞の状態とが相関付けることができることは、当業者は容易に理解する。そのような事項は、例えば、動物培養細胞マニュアル、瀬野ら編著、共立出版、1993年などに記載され支持されており、本明細書においてこのすべての記載を援用する。
本発明はまた、遺伝子治療に応用され得る。遺伝子治療とは、発現されたか、または発現可能な核酸の、被験体への投与により行われる治療をいう。本発明のこの実施形態において、核酸は、それらのコードされたタンパク質を産生し、そのタンパク質は治療効果を媒介する。
当該分野で利用可能な遺伝子治療のための任意の方法が、本発明に従って使用され得る。例示的な方法は、以下のとおりである。
遺伝子治療の方法の一般的な概説については、Goldspielら,Clinical Pharmacy 12:488−505(1993);WuおよびWu,Biotherapy 3:87−95(1991);Tolstoshev,Ann.Rev.Pharmacol.Toxicol.32:573−596(1993);Mulligan,Science 260:926−932(1993);ならびにMorganおよびAnderson,Ann.Rev.Biochem.62:191−217(1993);May,TIBTECH 11(5):155−215(1993)を参照のこと。遺伝子治療において使用される一般的に公知の組換えDNA技術は、Ausubelら(編),Current Protocols in Molecular Biology,John Wiley & Sons,NY(1993);およびKriegler,Gene Transfer and Expression,A Laboratory Manual,Stockton Press,NY(1990)に記載される。
(基本技術)
本明細書において使用される技術は、そうではないと具体的に指示しない限り、当該分野の技術範囲内にある、マイクロフルイディクス、微細加工、有機化学、生化学、遺伝子工学、分子生物学、微生物学、遺伝学および関連する分野における周知慣用技術を使用する。そのような技術は、例えば、以下に列挙した文献および本明細書において他の場所おいて引用した文献においても十分に説明されている。
微細加工については、例えば、Campbell,S.A.(1996).The Science and Engineering of Microelectronic Fabrication,Oxford University Press;Zaut,P.V.(1996).Micromicroarray Fabrication:a Practical Guide to Semiconductor Processing,Semiconductor Services;Madou,M.J.(1997).Fundamentals of Microfabrication,CRC1 5 Press;Rai−Choudhury,P.(1997).Handbook of Microlithography,Micromachining,& Microfabrication:Microlithographyなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J.et al.(1989).Molecular Cloning: A Laboratory Manual,Cold Spring Harborおよびその3rd Ed.(2001);Ausubel,F.M.(1987).Current Protocols in Molecular Biology,Greene Pub.Associates and Wiley−Interscience;Ausubel,F.M.(1989).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology,Greene Pub.Associates and Wiley−Interscience;Innis,M.A.(1990).PCR Protocols: A Guide to Methods and Applications,Academic Press;Ausubel,F.M.(1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology,Greene Pub.Associates;Ausubel,F.M.(1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology,Greene Pub.Associates;Innis,M.A.et al.(1995).PCR Strategies,Academic Press;Ausubel,F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology,Wiley,and annual updates;Sninsky,J.J.et al.(1999).PCR Applications: Protocols for Functional Genomics,Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えば、Gait,M.J.(1985).Oligonucleotide Synthesis:A Practical Approach,IRLPress;Gait,M.J.(1990).Oligonucleotide Synthesis:A Practical Approach,IRL Press;Eckstein,F.(1991).Oligonucleotides and Analogues:A Practical Approac,IRL Press;Adams,R.L.et al.(1992).The Biochemistry of the Nucleic Acids,Chapman&Hall;Shabarova,Z.et al.(1994).Advanced Organic Chemistry of Nucleic Acids,Weinheim;Blackburn,G.M.et al.(1996).Nucleic Acids in Chemistry and Biology,Oxford University Press;Hermanson,G.T.(I996).Bioconjugate Techniques,Academic Pressなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
(遺伝子の同時調節の解析)
本明細書において用いられる数理処理は、例えば、生命システム解析のための数学、コロナ社、清水和幸(1999)などにおいて記載される周知技術を適用することができる。以下にそのようなもののなかから代表的な解析手法を説明する。
1つの実施形態では、そのような数理処理は、回帰分析であり得る。回帰分析としては、線形回帰(単回帰分析法、重回帰分析法、ロバスト推定法などが挙げられる)、非線形推定法などが挙げられるがそれらに限定されない。
単回帰分析法では、n組のデータ(x,y)〜(x,y)のデータ組を、y=ax+b+e(i=1,2...n)にフィットさせることによって分析が行われる。ここで、aおよびbは、モデルパラメータであり、eは直線からのずれまたは誤差である。ここで、データ点と直接との垂直方向の距離の二乗和の平均値が最小となるようにaおよびbを決めるという分析が通常行われる。このような場合、偏微分をして、連立一次方程式を立て、これを解くことによって、二乗誤差を最低にする値が求められる。このような値を、最小二乗推定値という。
次に、それぞれのデータから平均値を引いた値に対して回帰直接を求める。回帰直線として
AΣ+B=ΣY
というものを想定し、B=0を仮定した場合の回帰直線を求めることができる。このとき、(x,y)(i=1,2,...n)の中からそれぞれの平均値(x veおよびyave)を求め、xの分散sxxおよびx、yの共分散sxyを求め、次式により回帰直線を求めることができる。
y−yave=(sxy/sxx)(x−xave)。
ここで、rxyを相関係数とすると、
Σe /n=syy(1−rxy )の関係があることから、|rxy|が1に近いほど、誤差は少なく、データは回帰直線でよく表せることを意味する。ここで、rxy=sxy/√(sxyyy)である。
別の実施形態において使用される重回帰分析法は、yが1つの独立変数ではなく、2つまたはそれ以上の変数の関数と考えられ、例えば、
y=a+a+a+...+a
であらわされるような式で表され、これを重回帰式という。ここで、aなどは(偏)回帰係数と呼ばれる。重回帰分析法では、最小二乗法を適用して、正規方程式を解くことによって、重みつき最小二乗推定が求められる。ここでも単回帰分析と同様の評価を行うことが可能である。
別の実施形態において、ロバスト推定法が用いられる。最小二乗法は、測定値に偏りがなく、その測定誤差が正規分布をし、モデルにも近似の誤差がないという前提に基づいている。しかし、ここでは、実際の測定ミス、単純ミスなどがあり得ることから、そのような信頼できないデータを、大多数の信頼できるデータから、アウトライヤー(outlier)として検出して除いたり、または統計処理をすることをロバスト推定法という。このようなロバスト推定法もまた、本発明において利用され得る。
非線形推定法もまた本明細書において用いられ得る。このような非線形推定法では、非線形モデルをベクトル方程式として表して解を求めることが可能である。
本発明において用いられる数理処理としては、このほかに、主成分分析法、があり、二次元データの主成分分析、多次元データの主成分分析、特異値分解、一般化逆行列を利用する。あるいは、正準相関分析法、因子分析法、判別分析法、クラスター分析法などが利用され得る。
(クラスター分析による遺伝子セット分類)
多くの用途に対して、広範な条件にわたって共同で制御される基準転写制御配列のセットを見出すことが所望され得る。このような基準転写制御配列セットを同定する実施形態としては、クラスター化アルゴリズムが挙げられる(クラスター化アルゴリズムの概説は、例えば、Fukunaga、1990、Statistical Pattern Recognition、2nd ed.、Academic Press、San Diego;Anderberg、1973、Cluster Analysis for Applications、Academic Press: New York;Everitt、1974、Cluster Analysis、London: Heinemann Educ.Books;Hartigan、1975、Clustering Algorithms、New York: Wiley;SneathおよびSokal、1973、Numerical Taxonomy、Freemanを参照)。
転写制御配列セットは、転写制御機構に基づいて定義することもできる。調節領域に同一または類似の配列の転写因子結合部位を有している転写制御配列は、共同調節されやすい。ある好ましい実施態様では、目的とする転写制御配列の調節領域を、多重アラインメント分析を用いて比較し、可能な共有転写因子結合部位を解読することができる(Stormo and Hartzell,1989,Identifying protein binding sites from unaligned DNA fragments,Proc Natl Acad Sci 86:1183−1187;Hertz and Stormo,1995,Identification of consensus patterns in unaligned DNA and protein sequences: a large−deviation statistical basis for penalizing gaps,Proc of 3rd Intl Conf on Bioinformatics and Genome Research,Lim and Cantor編,World Scientific Publishing Co.,Ltd.Singapore,pp.201−216)。
種々の条件にわたって共同調節される基本的な生物学的因子のセットを見出すことが所望され得る。これにより、本発明の方法が、効率よくプロファイルに基づく判定において十分に機能するようになる。このような基本的な生物学的因子のセットを同定するための好ましい実施形態はクラスター化アルゴリズムを含む
クラスター分析を用いる実施形態において、生物学的サンプルに種々の刺激を施しながら、多数の生物学的因子の状態をモニターすることができる。生物学的因子の状態の測定を含むデータの表がクラスター分析に用いられる。種々の条件にわたって同時変化する生物学的因子を含む基本生物学的因子セットを得るためには、通常少なくとも2、好ましくは少なくとも3つ、より好ましくは少なくとも10、さらに好ましくは50を超え、最も好ましくは100を超える刺激または条件を用いる。クラスター分析はm×k次元を有するデータの表に対して行い、ここでmは条件または刺激の合計数であり、かつkは測定する生物学的因子の数である。
多くのクラスター化アルゴリズムがクラスター化分析に有用である。クラスター化アルゴリズムは、クラスターを形成する場合に、対象間の相違点または距離を用いる。ある実施形態においては、用いられる距離は多次元空間におけるユークリッド距離:
数1
Figure 2005021744
であり、式中I(x,y)は遺伝子Xと遺伝子Yとの(または、あらゆる他の細胞構成要素(例えば、生物学的因子)XとYとの)距離であり;XおよびYは刺激iの下での遺伝子発現応答である。ユークリッド距離を平方してさらに遠隔の対象に徐々に大きくなる重みをかけることができる。その代わりに、距離基準は、例えば生物学的因子Xと生物学的因子Yとの間の、マンハッタン距離であってもよく、これは:
数2
Figure 2005021744
によって与えられる。ここでもやはり、XおよびYは刺激iの下での生物学的因子または遺伝子発現応答である。他の幾つかの距離の定義は、チェビシェフ距離、パワー距離および不一致率である。次元のデータが自然のままでカテゴリー的である場合、I(x,y)=(X≠Yの数)/iとして定義される不一致率が本発明の方法において利用され得る。このような方法は、細胞応答に関連して特に有用である、他の有用な距離定義はI=1−rであり、式中rは応答ベクトルX、Y間の相関係数であって、正規化内積X・Y/|X||Y|とも呼ばれる。具体的には、内積X・Yは式:
数3
Figure 2005021744
によって定義され、かつ|X|=(X・X)1/2、|Y|=(Y・Y)1/2である。
最も好ましくは、距離基準を、例えば、同時変化するおよび/または同時調節される細胞構成要素(同時変化するまたは同時調節される生物学的因子など)を同定するために、問題となっている生物学的問題点に適合させる。例えば、特に好ましい実施形態において、距離は、遺伝子XおよびYの加重内積を含む相関係数を有するI=1−rを基準とする。具体的には、この好ましい実施形態において、rηは好ましくは以下に示す式:
数4
Figure 2005021744
によって定義される。式中、σ (x)およびσ (Y)は、実験iにおける遺伝子XおよびYの測定とそれぞれ関連する標準誤差である。
上記正規および加重内積の相関係数は、値+1(2つの応答ベクトルが完全に相関し、本質的に同一であることを示す)と−1(2つの応答ベクトルが「相関していない」または「同一方向を向いていない」(すなわち反対を向いている)ことを示す)との間に拘束される。これらの相関係数は、細胞構成要素(例えば、生物学的因子、転写制御配列)セットまたはクラスターが同じ兆候の応答を有する細胞構成要素(例えば、生物学的因子、転写制御配列)を求める本発明の実施形態に特に好ましい。
他の実施形態において、同じ生物学的応答または経路を同時調節するかまたはそれに関与しているが、類似しかつ非相関の応答を含む細胞構成要素(例えば、生物学的因子、転写制御配列)のセットまたはクラスターを同定することが好ましい。このような実施形態においては、上述の正規化または加重内積のいずれかの絶対値、すなわち|r|を相関係数として使用することが好ましい。
さらに他の実施形態においては、同時調節されるおよび/または同時変化する細胞構成要素(生物学的因子、転写制御配列など)の間の関係はさらに複雑であり、多数の生物学的経路(例えばシグナル伝達経路)が同じ細胞構成要素(例えば、生物学的因子、転写制御配列)に集まり、異なる結果を出すような例がある。そのような実施形態においては、同時変化するおよび/または同時調節される細胞構成要素(変化に関与しないコントロールとしての別の生物学的因子、転写制御配列)を同定することができる、相関係数r=r(変化)を用いることが好ましい。以下の式(数5)に特定される相関係数は、そのような実施形態において特に有用である:
数5
Figure 2005021744
種々のクラスター連関法則が本発明の方法において有用である。
このような方法としては、例えば、単一連関法、最近接点法などが挙げられこれらの方法は、2つの最も近い対象物間の距離を測定する。あるいは、本発明において使用され得る完全連関法は、異なるクラスターにある2つの対象物間の最大距離で距離を測定する。この方法は、遺伝子または他の細胞構成要素が天然に別個の「凝集(clump)」を形成する場合には特に有用である。
あるいは、非加重ペア群の平均が、2つの異なるクラスターにおける対象物ペア全ての間の平均距離として距離を定義する。この方法もまた、天然に別個の「凝集」を形成する遺伝子または他の細胞構成要素をクラスター化するのに非常に有用である。最後に、加重ペア群平均法も利用可能である。この方法は、それぞれのクラスターのサイズを重みとして使用することを除けば非加重ペア群平均法と同じである。この方法は、生物学的因子などのクラスターのサイズが非常に可変すると疑われる実施形態に特に有用である(SneathおよびSokal、1973,Numerical taxonomy,San Francisco:W.H.Freeman & Co.)。他のクラスター連関法則、例えば非加重および加重ペア群セントロイドおよびウオード法もまた本発明のいくつかの実施形態に有用である。例えば、Ward,1963,J.Am.Stat Assn.58: 236;Hartigan,1975,Clustering algorithms,New York:Wileyを参照のこと。
ある好ましい一つの実施形態において、クラスター分析はhclustの周知技術(例えば、プログラムS−Plus,MathSoft,Inc.,Cambridge,MAからの「hclust」の周知の手順を参照のこと)を用いて行うことができる。
クラスター化セットにおける刺激の多様性が大きくなっても、本発明の方法で解析した場合は、通常少なくとも2つ、好ましくは少なくとも3つのプロファイルを解析しただけで、細胞の状態をほぼ解明することができるということが本発明により見出された。このような刺激条件には、異なる濃度での薬剤処理、処理後の異なる測定時間、種々の遺伝子中の遺伝的変異に対する応答、薬剤処理と変異との組合せ、ならびに増殖条件の変化(温度、密度、およびカルシウム濃度など)が含まれる。
本明細書において統計学的に「有意に異なる」とは、2つの統計量について言及されるとき、統計的有意性を伴って異なることをいう。本発明の実施形態において、実験のセットを横断する各細胞構成要素の応答に関する実験の見出しを、モンテカルロ法で無作為化することにより、客観的試験を定義することができる。
ある実施形態においては、客観的試験を以下の方法で定義することができる:pkiを、実験iにおける構成要素kの応答とする。Π(i)を実験のインデックスの無作為並べ替えとする。次いで、多数(約100〜1000)の異なる無作為並べ替えの各々について、pkΠ(i)をたてる。元のツリーの各分枝について、各並べ替えに関して: (1)並べ替えていない元のデータに対して用いたのと同じアルゴリズム(この場合は「hclust」)を用いて階層的クラスター化を行う;
(2)1つのクラスターから2つのクラスターへ移動する際の、クラスター中心に関しての総分散における分別の改善fを計算する;
数6
Figure 2005021744
式中、Dは、帰属するクラスターの中心に関しての構成要素kの距離基準(平均)の二乗である。上付の1または2は、それが全分枝の中心に関するものであるのか、または2つのサブクラスターのうちの好適なクラスターの中心に関するものであるのかを示す。このクラスター化法において使用する距離関数Dの定義には、かなりの自由度がある。これらの例においては、D=1−rであり、rは、実験セットを横断する1つの構成要素の応答間の、別の応答に対しての(または平均クラスター応答に対しての)相関係数である。
詳細には、好ましくは客観的統計学的検定を用いてあらゆるクラスター化法またはアルゴリズムのグループ化決定の統計学的信頼性を判定することができる。好ましくは、同様の検定を、階層的および非階層的クラスター化法の双方に用いることができる。クラスターのコンパクト性は、例えば、「クラスターの平均値」からのクラスターのエレメントの距離の二乗の平均として、またより好ましくは、クラスターの平均値からのエレメントの距離の二乗の平均値の逆数として、定量的に定義される。特定のクラスターのクラスター平均値は、一般に、クラスターの全てのエレメントの応答ベクトルの平均値として定義される。しかし、特定の実施形態(クラスターの平均値に定義が疑わしい場合など)では、例えば、正規化または加重内積の絶対値を用いて、クラスター化アルゴリズムの距離関数(即ち、I=1−|r|)を評価する。通常、上記の平均値の定義は、応答ベクトルが反対方向を向き、上記に定義するクラスター平均値がゼロになりうる実施形態では問題を包含し得る。従って、このような実施形態では、クラスターのコンパクト性の異なる定義を選択することが好ましく、例えば限定はしないが、クラスター内のエレメントの全てのペア間の距離の二乗の平均値などがある。あるいは、クラスターのコンパクト性は、クラスターの各エレメント(例えば、細胞構成要素)からそのクラスターの他のエレメントまでの平均距離(またはより好ましくは、平均距離の逆数)を意味すると定義することができる。
本発明において用いられる統計的方法においても使用しうるその他の定義は、当業者には明らかである。
別の実施形態では、本発明のプロファイルは、信号処理技術を用いて解析することができる。そのような信号処理技術では、相関関数を定義し、相関係数を計算し、自己相関関数および相互相関関数を定義し、これらについて、重み付けの総和が1になるように計算することによって、移動平均を求めることができる。
信号処理において、時間領域および周波数領域を考慮することが重要であり得る。自然現象、特に生命および生体の動特性解析において、リズムは重要であることが多い。ここで、ある時間関数f(t)を考えると、次の条件を満たす関数を周期関数という。
f(t)=f(t+T)
ここで、時間軸上の基準となる点、例えば、時間0の点を基準に考えると、このときの関数の値はf(0)であり、その後種々の変動を繰り返した後時刻Tの時点でf(0)と同じ値に戻ることになる。このような関数を周期関数と呼び、このような関数としては、例えば、正弦様波が代表例として挙げられる。ここで、Tを周期と呼ぶ。ここで、T時間に1回のサイクルを有することをこれは意味するが、単位時間当たりのサイクル数に置き換えて1/T(サイクル/時間)と表現してもその情報は失われない。このように単位時間当たりのサイクル数で表現される概念は周波数と呼ばれる。ここで周波数をfとしてあらわすと、
f=1/T
で表現できる。ここで、時間と周波数とは表裏の関係であり、時間を扱う場合を時間領域を扱うといい、周波数を扱う場合を周波数領域を扱うという。ここでは、電気工学的に周波数を表現することもできる。例えば、周期は、1周期を角度に直して、360°または2πラジアンとして表現することが可能である。このように表現する場合、f(サイクル/秒)は2π(ラジアン/秒)となり、これを一般にω(=2πf)とあらわして、角周波数を呼ぶ。
ここで、正弦波と余弦波とを比較すると、余弦波は正弦波に比べて90°またはπ/2ラジアン平行移動させたものになる。ここで、正弦波は余弦波の時間遅れとしてあらわすことができ、この時間の遅れを位相(phase)という。例えば、純粋な余弦波において位相を0とすると、正弦波では位相は90°となる。例えば、正弦波と余弦波とを足したものは、振幅が√2増え、位相がπ/4となる。
このような解析において、フーリエ級数および周波数解析の手法が利用され得る。また、フーリエ変換、離散フーリエ変換およびパワースペクトルを利用することも可能である。フーリエ級数展開において、ウエーブレット変換の方法などが利用され得る。このような手法は、当該分野において周知であり、生命システム解析のための数学、コロナ社、清水和幸(1999)、臨床医学のためのウェーブレット解析、医学出版、石川康宏に記載されている。
(好ましい実施形態の説明)
以下に好ましい実施形態の説明を記載するが、この実施形態は本発明の例示であり、本発明の範囲はそのような好ましい実施形態に限定されないことが理解されるべきである。
1つの局面において、本発明は、細胞の状態を提示する方法を提供する。このような方法は、a)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして上記細胞のプロファイルを得る工程;およびb)上記プロファイルを提示する工程;を包含する。ここでは、例えば、モニターした結果得られる信号強度のプロファイルを区間微分することにより、変化の関数を得、表示することができる。この場合、好ましくは、例えば、構成的プロモーターなどの変化しないと仮定される生物学的因子を基準に差分を取ることによってそのようなプロファイルを得ることができるがそれに限定されない。
プロファイルの表示には、どのような方法を用いてもよい。例えば、ディスプレイを用いて視覚的に表示してもよく(例えば、x軸に時間、y軸に信号強度)、あるいは、表計算ソフトウェアなどを利用して、数値表として表示してもよい。あるいは、信号強度をある別の光強度としてディスプレイに表示することも可能である。あるいは、プロファイルは、音声によって表示してもよい。
好ましくは、細胞は、支持体(好ましくは、固相支持体、例えば、アレイ、プレート、マイクロタイタープレートなど)に固定された状態でモニターされる。そのような固定方法は、当該分野において公知の任意の方法または本明細書において記載される方法に基づいて行うことができる。細胞を固定することによって、検査を系統立てて行うことができる。
好ましい実施形態において、このようなプロファイルは、リアルタイムで提示され得る。ここで、リアルタイムは、実質的に同時に表示することができる限り、ある程度のタイムラグが生じてもよい。許容されるタイムラグは、求められるリアルタイムの同時性によるが、例えば、最大で10秒であり、より好ましくは最大で1秒であり得る。
別の局面において、本発明は、細胞の状態を判定する方法を提供する。このような細胞の状態の判定は、転写制御因子の転写状態の変化をプロセスとして観察することから、従来においてはまったく観察されていなかった要素を判断要因に加えることになる。従って、本発明の細胞状態の判定方法は、従来観察することができなかった種々の状態を判定することを可能にする。このような方法は、a)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る工程;およびb)上記転写状態のプロファイルから上記細胞の状態を判定する工程を包含する。
好ましくは、細胞は、支持体(好ましくは、固相支持体、例えば、アレイ、プレート、マイクロタイタープレートなど)に固定された状態でモニターされる。そのような固定方法は、当該分野において公知の方法または本明細書において記載される方法に基づいて行うことができる。
好ましい実施形態において、本発明の細胞状態判定方法では、プロファイルと細胞の状態とを予め相関付ける工程をさらに包含することが有利であり得る。あるいは、そのような相関付けの情報があらかじめ提供されてもよい。そのような相関付けの工程は、判定を行うごとに行ってもよく、データベースとして保存したものを用いてもよい。
好ましい実施形態では、使用される生物学的因子は、転写制御配列であってもよく、このような転写制御配列は、例えば、プロモーター、エンハンサー、サイレンサー、他のゲノム構造中構造遺伝子のフランキング配列およびエキソン以外のゲノム配列などであり得るがそれらに限定されない。プロモーターが好ましい。転写状態を直接測定することができるからであり、転写状態は、しばしば、細胞の状態を如実に反映するからである。特定の実施形態では、転写制御配列群は、構成的プロモーター、特異的プロモーターおよび誘導性プロモーターなどであり得る。
1つの実施形態において、本発明の生物学的因子(例えば、プロモーター)は、どのようなものでもよく、むしろ、種類を選ばないことが特徴である。本発明の方法を用いることにより、プロファイルを「プロセス」という視点で解析することが可能となったことから、任意の生物学的因子(例えば、プロモーター、構造遺伝子など)またはその異種または同種のセットを用いて細胞の状態を判定することが可能になった。そのような判定は、従来の技術では不可能であったことであり、本発明は、従来技術からは達成不可能であったことを達成したという意味でその有用性は高い。
好ましい実施形態では、モニターされる生物学的因子(例えば、転写制御配列)は、少なくとも2つ使用される。少なくとも2つの生物学的因子を観察することによって、通常80%以上(好ましい場合は90%以上、場合によってはほぼ100%)の細胞状態の同定が可能になるからである。より好ましくは、モニターされる生物学的因子は、少なくとも3つの生物学的因子を含む。少なくとも3つの生物学的因子を観察することによって、通常90%以上(好ましい場合は95%以上、場合によってはほぼ100%)の生物学的因子を同定することが可能となるからである。最も好ましい実施形態において、モニターされる生物学的因子は、少なくとも8つの転写制御配列を含む。少なくとも8つの生物学的因子を観察することによって、通常、すべての細胞状態を同定することが可能となるからである。このように、任意の生物学的因子を選択したにもかかわらず、上述のような少ない数のみを選択し、それをモニターすることによって、ほぼすべての細胞の状態を判定することができることは、予想されていなかったことであり、これは、時間点ごとに観察し、それをヘテロな集団として統計処理をした従来の判定方法に比較して、はるかに簡便で精密で正確な判定を提供することになる。
従って、本発明の判定方法では、モニターする前に、生物学的因子群から、少なくとも1つの生物学的因子を任意に選択する工程をさらに包含することが好ましい。本発明の1つの重要な特徴は、生物学的因子として、点ごとの調査では特異性を示していないものでも使用可能であるという点にあるからである。また、本発明では、同一環境において線形的に測定されたデータを利用することから、得られるデータが対象となる細胞の状態をより正確に反映することになる。このような精度のデータは、従来技術では取得不可能であったものである。
好ましい実施形態において、本発明において得られるプロファイルは、リアルタイムで提示され得る。あるいは、本発明において、データはリアルタイムで得られ得る。本明細書でいう「リアルタイム」は、実質的に同時に表示することができる限り、ある程度のタイムラグが生じてもよいことを意味する。許容されるタイムラグは、求められるリアルタイムの同時性によるが、例えば、最大で10秒であり、より好ましくは最大で1秒であり得る。例えば、リアルタイムの診断が必要な治療などでは、そのリアルタイム性は、例えば、最大で30秒であってもよく、それより長い時間であってもよい。
好ましい特定の実施形態において、本発明の細胞の状態判定方法で判定される状態としては、例えば、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期および増殖状態などが挙げられる。より詳細には、そのような状態としては、例えば、がん細胞の抗がん剤に対する応答、薬剤耐性、生物時間に対する応答、幹細胞(例えば、間葉系幹細胞、神経幹細胞など)の分化状態、あるいは精製した幹細胞(例えば胚性幹細胞)の未分化状態、細胞形態の変化、細胞の移動状態、分子の細胞内局在化、分泌物質産生能力などが挙げられるがそれらに限定されない。
好ましい実施形態では、本発明において使用される細胞としては、幹細胞または体細胞あるいはそれらの混合物が挙げられるがそれらに限定されない。あるいは、そのような細胞は、付着細胞、浮遊細胞、組織形成細胞およびそれらの混合物であってもよい。
1つの特定の好ましい実施形態では、本発明の細胞状態判定方法は、支持体(好ましくは固体支持体)として基板上に固定された細胞を対象として行うことができる。そのような場合、固相支持体はチップと呼ばれ、細胞が整列して配置される場合はアレイとも呼ばれる。
特に好ましい実施形態において、本発明の細胞状態判定方法では、判定に供される生物学的因子(例えば、転写制御配列)が核酸分子である場合、その核酸分子と作動可能に連結されるレポーター遺伝子配列を含む核酸分子という形態で対象となる細胞にトランスフェクトされることが有利である。このような形態を採用することによって、転写状態がレポーター遺伝子の信号として測定することが可能となるからである。
このようなトランスフェクトは、固相上または液相中で行われ得る。ここで、トランスフェクトのために、標的物質の細胞への導入効率を上昇させるための方法が利用され得る。本発明は、通常の条件下では、ほとんど細胞に導入されない標的物質(例えば、DNA、RNA、ポリペプチド、糖鎖またはそれらの複合物質など)を、フィブロネクチンのようなアクチン作用物質とともに細胞に提示する(好ましくは、接触させる)ことによって、その標的物質が効率よく細胞に導入されるという作用を利用する。従って、このトランスフェクション方法は、A)標的物質(すなわち、転写制御配列を含むDNA)を提供する工程;B)アクチン作用物質(例えば、フィブロネクチン)を提供する工程を順不同に包含し、C)該標的物質および該アクチン作用物質を該細胞に接触させる工程をさらに包含する。ここで、標的物質およびアクチン作用物質は、一緒に提供されてもよく、別々に提供されてもよい。アクチン作用物質としては、上述の本発明の標的物質の細胞内への導入の効率を上昇させるための組成物において詳述した形態が適用され得る。そのような形態は、当業者は、本明細書の記載に基づけば、適切な形態を選択し実施することができる。したがって、このようなアクチン作用物質としては、本発明の標的物質の細胞への導入効率を上昇させるための組成物において適用される形態を当業者が任意に選択して本発明を実施することができる。好ましくは、アクチン作用物質は、細胞外マトリクスタンパク質(例えば、フィブロネクチン、ビトロネクチン、ラミニンなど)またはその改変体であり得る。より好ましくは、フィブロネクチンまたはその改変体もしくはそのフラグメントが使用され得る。
1つの実施形態において、本発明において使用される生物学的因子が転写制御配列である場合、その配列は転写因子に結合する能力を有する。そのような転写因子としては、例えば、ISRE、RARE、STAT3、GAS、NFAT、MIC、AP1、SRE,GRE,CRE、NFκB、ERE、TRE、E2F、Rb、p53などが挙げられるがそれらに限定されない。このような転写因子は、セットとしてBD Biosciences Clonetech,CA,USAから市販されているものを利用することができる。ここで、ISREは、STAT1/2と関連し、RAREはレチノイン酸と関連する。STAT3は分化制御に関連し、GREは糖代謝に関連する。CREは、cAMPに関連し、TREは甲状腺ホルモンに関連する。E2Fは細胞周期に関連し、p53はG1チェックポイイントに関連する。従って、このような情報を元に、細胞状態を判定することが可能である。
好ましい実施形態において、本発明における判定工程は、本発明で得られたプロファイルの位相を比較することを包含する。位相の算出は、本明細書において上述される一般方法、および実施例に記載される方法を参酌して、当業者が適宜行うことができる。
別の好ましい実施形態において、本発明における判定工程は、上記細胞のプロファイルとコントロールプロファイルとの差分をとる工程を包含する。差分の算出は、本明細書において上述される一般方法、および実施例に記載される方法を参酌して、当業者が適宜行うことができる。
別の好ましい実施形態において、本発明における判定工程は、信号処理法および多変量解析からなる群より選択される数学処理を包含する。このような数学処理は、当業者には周知であり、本明細書の記載を参酌して、容易に実施することができる。
別の局面において、本発明は、外来因子と、外来因子に対する細胞の応答とを相関付ける方法を提供する。この方法では、a)上記細胞を外来因子に曝露する工程;b)上記細胞に存在する転写制御因子群から選択される少なくとも1つの転写制御因子に関連する転写状態を経時的にモニターして、上記細胞のプロファイルを得る工程;およびc)上記外来因子と、上記プロファイルとを相関付ける工程が包含される。
本発明において相関付けがされる外来因子はどのようなものでもよい。そのような外来因子は、細胞に直接または間接的に適用可能であるものが好ましい。外来因子の曝露方法は当該分野において周知であり、その外来因子の種類などによって変動する。物質であれば、その物質を溶媒中に溶解し、その溶液を細胞を含む培地中に滴下することによって曝露が達成される。
本発明の相関付けの方法でもまた、プロファイルの生成は、上述のように行うことができる。
本発明の相関付けの方法における、外来因子と、プロファイルとの相関付けは、種々の方法を提供して行うことができる。簡便には、ある外来因子が滴下された場合のプロファイルをパターン化し、そのプロファイルからの相違が少ない場合には、その外来因子が滴下されたと推定することができる。
好ましくは、細胞は、固相支持体(例えば、アレイ、プレート、マイクロタイタープレートなど)に固定された状態でモニターされる。そのような固定方法は、当該分野において公知の方法または本明細書において記載される方法に基づいて行うことができる。
好ましい実施形態において、本発明の相関付け方法では、少なくとも2つの外来因子を使用して、各外来因子に対するプロファイルを得る工程を包含してもよい。このような外来因子は、ある実施形態では、少なくとも3つ、あるいは4つ、より好ましくは、少なくとも10個用いられ得るがそれらに限定されない。
特定の実施形態において、本発明の相関付けの方法は、少なくとも2つのプロファイルを類別することにより、該プロファイルに対応する外来因子を類別する工程を包含する。このような類別は、当業者は、本明細書の記載を参酌すれば、容易に行うことができる。このような類別により、本発明の方法を用いて、未知の外来因子の相関付けおよび同定を達成することができる。
好ましい実施形態では、生物学的因子として転写制御配列が使用される場合は、そのような配列は、プロモーター、エンハンサー、サイレンサー、他のゲノム構造中構造遺伝子のフランキング配列およびエキソン以外のゲノム配列などであり得るがそれらに限定されない。プロモーターが好ましい。転写状態を直接測定することができるからである。
特定の実施形態では、転写制御配列群は、構成的プロモーター、特異的プロモーターおよび誘導性プロモーターなどであり得る。ここで、プロモーターは、どのようなものでもよく、むしろ、種類を選ばないことが特徴である。本発明の方法を用いることにより、プロファイルを「プロセス」という視点で解析することが可能となったことから、任意のプロモーターまたはそのセットを用いて細胞の状態を判定することが可能になった。そのような判定は、従来の技術では不可能であったことであり、本発明は、従来技術からは達成不可能であったことを達成したという意味でその有用性は高い。
好ましい実施形態では、モニターされる生物学的因子(例えば、転写制御配列)は、少なくとも2つ使用される。少なくとも2つの生物学的因子を観察することによって、通常80%以上(好ましい場合は90%以上、場合によってはほぼ100%)の細胞状態の同定が可能になるからである。より好ましくは、モニターされる生物学的因子は、少なくとも3つの生物学的因子を含む。少なくとも3つの生物学的因子を観察することによって、通常90%以上(好ましい場合は95%以上、場合によってはほぼ100%)の生物学的因子を同定することが可能となるからである。最も好ましい実施形態において、モニターされる生物学的因子は、少なくとも8つの転写制御配列を含む。少なくとも8つの生物学的因子を観察することによって、通常、すべての細胞状態を同定することが可能となるからである。このように、任意の生物学的因子を選択したにもかかわらず、上述のような少ない数のみを選択し、それをモニターすることによって、ほぼすべての細胞の状態を判定することができることは、予想されていなかったことであり、これは、時間点ごとに観察し、それをヘテロな集団として統計処理をした従来の判定方法に比較して、はるかに簡便で精密で正確な判定を提供することになる。
従って、本発明の判定方法では、モニターする前に、生物学的因子群から、少なくとも1つの生物学的因子を任意に選択する工程をさらに包含することが好ましい。本発明の1つの重要な特徴は、生物学的因子として、点ごとの調査では特異性を示していないものでも使用可能であるという点にあるからである。
好ましい実施形態において、このようなプロファイルは、リアルタイムで提示され得る。ここで、リアルタイムは、実質的に同時に表示することができる限り、ある程度のタイムラグが生じてもよい。許容されるタイムラグは、求められるリアルタイムの同時性によるが、例えば、最大で10秒であり、より好ましくは最大で1秒であり得る。例えば、リアルタイムの外来因子の同定が必要な環境測定などでは、そのリアルタイム性は、例えば、最大で1秒または最大で0.1秒などであってもよい。あるいは、データがリアルタイムで記録媒体に格納された後、格納されたデータに基づいてタイムラグをもってそのデータに対応するプロファイルが提示されてもよい。
本発明の相関付けの好ましい実施形態において、工程c)では、外来因子との相関付けに使用される上記プロファイルの情報として、該プロファイルの位相が用いられる。位相は、ある周期における信号強度がプラスおよびマイナスの二種類で表示され、そのように単純化された方法を用いても、細胞を同定あるいは外来因子を同定することができることから、本発明の方法の精密性が実証される。
好ましくは、本発明の方法では、細胞は、アレイ上で培養されることが有利である。アレイ上で培養することによって、多数の細胞の観察を一度に行うことができるからである。好ましくは、アレイのような固体支持体上で細胞が固定されるときは、塩が使用され得る。
好ましい実施形態において、細胞の状態の経時的モニターは、上記アレイから画像データを得る工程を包含する。画像データを提供することによって、目視も可能になり、人間(特に、医師などの当業者)の目による判断を得ることが容易になるからである。
本発明の好ましい実施形態において、外来因子とプロファイルとを相関付けの工程は、プロファイルの位相の異同を識別することを包含する。位相は上述したように、簡便なパラメータであり、その情報処理が簡便であるからであり、その簡便な情報処理によるのみで、細胞を充分に同定することが可能である。
好ましい実施形態において、本発明の方法において同定されるべき外来因子としては、温度変化、湿度変化、電磁波、電位差、可視光線、赤外線、紫外線、X線、化学物質、圧力、重力変化、ガス分圧および浸透圧などが挙げられるがそれらに限定されない。このような因子は、従来の方法では、充分に同定することができなかったが、プロセスを重視した本発明の細胞判定方法を用いることによって、充分に因子の細胞に対する影響を調査することが可能になった。
特に好ましい実施形態では、本発明の方法において同定されるべき外来因子は化学物質であり、そのような化学物質としては、生体分子、化学合成物または培地などが挙げられる。
このような生体分子としては、例えば、核酸、タンパク質、脂質、糖、プロテオリピッド、リポプロテイン、糖タンパク質およびプロテオグリカンなどが挙げられるがそれらに限定されない。このような生体分子は、生物に対して影響を与えることが公知であるか、未知であってもその可能性が充分に高いことから、調査対象として重要なものであると考えられる。
特に好ましくは、細胞に影響を与えることが期待される、ホルモン、サイトカイン、細胞接着因子、細胞外マトリクス、レセプターのアゴニストまたはアンタゴニストなどが調査されるべき生体分子として利用される。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための方法を提供する。本発明の方法は、a)上記細胞を複数の既知の外来因子に曝露する工程;b)上記細胞に存在する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして、既知の外来因子の各々に対する上記細胞のプロファイルを得る工程;c)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける工程;d)上記細胞を未同定の外来因子に曝露する工程;e)上記選択された生物学的因子に関連する細胞の状態を経時的にモニターして、未同定の外来因子に関する上記細胞のプロファイルを得る工程;f)上記工程(b)で得られたプロファイルの中から、上記工程(e)で得られたプロファイルに対応するプロファイルを決定する工程;およびg)上記未同定の外来因子は、上記工程(f)において決定されたプロファイルに対応する上記既知の外来因子であることを決定する工程;を包含する。
この方法において、外来因子の曝露は、本明細書において上述し、実施例において例示するように行うことができる。プロファイルの生成もまた、本明細書において上述し、実施例において例示するように行うことができる。相関付けもまた、本明細書において上述し、実施例において例示するように行うことができる。このようにして、既知の外来遺伝子に関する情報がそろったところに、未同定の外来因子について同様のモニターを行い、それらを比較して、その未同定の外来因子が既知のものであるかどうかを判定することが可能である。この場合、プロファイルがまったく同じであれば、当然に同じであると判断することが可能であるが、実質的に同じである場合もまた、既知外来因子と判定することが可能である。そのような判定は、その既知の外来因子に関する情報の量および質に依存する。そのような判定の判断は、当業者には容易であり、種々の要素を考慮して決定することができる。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための方法を提供する。このような方法は、a)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関して、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータを提供する工程;b)上記細胞を未同定の外来因子に曝露する工程;c)上記選択された生物学的因子に関連する細胞の状態を経時的にモニターして、上記細胞のプロファイルを得る工程;d)上記工程(a)において提供された、上記プロファイルの中から、上記工程(c)において得られたプロファイルに対応するプロファイルを決定する工程;およびe)上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子であることを決定する工程を包含する。
ここで、外来遺伝子の曝露、プロファイル生成、相関付けなどは、本明細書において上述し、実施例において例示するような技術を利用することができる。
別の局面において、本発明は、細胞の状態を提示するためのシステムを提供する。このようなシステムは、a)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る手段;およびb)上記プロファイルを提示する手段を備える。システム構成例は、図32に示される。
本発明の細胞状態提示方法を実行するコンピュータ構成あるいはそれを実現するシステムの例を図17を参照して示す。図17は、本発明の細胞状態提示方法を実行するコンピュータの500の構成例を示す。システム構成例は、図32に示される。
コンピュータ500は、入力部501と、CPU502と、出力部503と、メモリ504と、バス505とを備える。入力部501と、CPU502と、出力部503と、メモリ504とは、バス505によって相互に接続されている。入力部501と出力部503とは入出力装置506に接続されている。
コンピュータ500によって実行される細胞状態提示の処理の概略を説明する。
細胞状態提示方法を実行させるプログラム(以下、細胞状態提示プログラムという)は、例えば、メモリ502に格納されている。あるいは、細胞状態提示プログラムは、それぞれ独立してあるいは一緒に、フロッピーディスク、MO、CD−ROM、CD−R、DVD−ROMのような任意のタイプの記録媒体に記録され得る。あるいは、アプリケーションサーバに格納されていてもよい。そのような記録媒体に記録された細胞状態提示プログラムは、出入力装置506(例えば、ディスクドライブ、ネットワーク(例えば、インターネット))を介してコンピュータ500のメモリ504にロードされる。CPU502が細胞状態提示プログラムを実行することによって、コンピュータ500は、本発明の細胞状態提示方法の処理を実行する装置として機能する。
入力部501を介して、細胞に関する情報などを入力する。また、測定されたプロファイルのデータも入力される。必要に応じて、既知の情報に関する情報も入力してもよい。
CPU502は、入力部501で入力された情報をもとに、プロファイルデータおよび細胞の情報から表示データを生成し、メモリ504に表示データを格納する。その後、CPU502は、これらの情報をメモリ504に格納し得る。その後、出力部503は、CPU502が選択した細胞の状態を表示データとして出力する。出力されたデータは、入出力装置506から出力され得る。
別の局面において、本発明は、細胞の状態を判定するシステムを提供する。このようなシステムは、a)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る手段;およびb)上記転写状態のプロファイルから上記細胞の状態を判定する手段、を備える。システム構成例は、図32に示される。
本発明の細胞状態判定方法を実行するコンピュータ構成あるいはそれを実現するシステムの例を図17を参照して示す。図17は、本発明の細胞状態判定方法を実行するコンピュータの500の構成例を示す。システム構成例は、図32に示される。
コンピュータ500は、入力部501と、CPU502と、出力部503と、メモリ504と、バス505とを備える。入力部501と、CPU502と、出力部503と、メモリ504とは、バス505によって相互に接続されている。入力部501と出力部503とは入出力装置506に接続されている。
コンピュータ500によって実行される細胞状態判定の処理の概略を説明する。
細胞状態判定方法を実行させるプログラム(以下、細胞状態判定プログラムという)は、例えば、メモリ502に格納されている。あるいは、細胞状態判定プログラムは、それぞれ独立してあるいは一緒に、フロッピーディスク、MO、CD−ROM、CD−R、DVD−ROMのような任意のタイプの記録媒体に記録され得る。あるいは、アプリケーションサーバに格納されていてもよい。そのような記録媒体に記録された細胞状態判定プログラムは、出入力装置506(例えば、ディスクドライブ、ネットワーク(例えば、インターネット))を介してコンピュータ500のメモリ504にロードされる。CPU502が細胞状態判定プログラムを実行することによって、コンピュータ500は、本発明の細胞状態判定方法の処理を実行する装置として機能する。
入力部501を介して、細胞に関する情報などを入力する。また、測定されたプロファイルのデータも入力される。必要に応じて、既知の情報に関する情報も入力してもよい。
CPU502は、入力部501で入力された情報をもとに、プロファイルデータおよび細胞の情報から細胞の状態を判定し、その結果を判定結果データとして生成し、メモリ504に判定結果データを格納する。その後、CPU502は、これらの情報をメモリ504に格納し得る。その後、出力部503は、CPU502が選択した細胞の状態を判定結果データとして出力する。出力されたデータは、入出力装置506から出力され得る。
別の局面において、本発明は、外来因子と、外来因子に対する細胞の応答とを相関付けるためのシステムを提供する。このシステムは、a)上記細胞を外来因子に曝露する手段;b)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関連する転写状態を経時的にモニターして、上記細胞のプロファイルを得る手段;およびc)上記外来因子と、上記プロファイルとを相関付ける手段を備える。このようなシステムもまた、上述のシステムと同様にコンピュータを用いて実現することができる。システム構成例は、図32に示される。
他の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するためのシステムを提供する。このようなシステムは、a)上記細胞を複数の既知の外来因子に曝露する手段;b)上記細胞に存在する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして、既知の外来因子の各々に対する上記細胞のプロファイルを得る手段;c)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける手段;d)上記細胞を未同定の外来因子に曝露する手段;e)上記選択されたプロモーターに関連する転写状態を経時的にモニターして、未同定の外来因子に関する上記細胞のプロファイルを得る手段;f)上記手段(b)で得られたプロファイルの中から、上記手段(e)で得られたプロファイルに対応するプロファイルを決定する手段;およびg)上記未同定の外来因子は、上記手段(f)において決定されたプロファイルに対応する上記既知の外来因子であることを決定する手段を備える。このようなシステムもまた、上述のシステムと同様にコンピュータを用いて実現することができる。システム構成例は、図32に示される。
他の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するためのシステムを提供する。このようなシステムは、a)上記細胞に存在する生物学的因子群から選択される少なくとも1つのプロモーターに関して、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータを提供する手段;b)上記細胞を未同定の外来因子に曝露する手段;c)上記選択された生物学的因子に関連する細胞の状態を経時的にモニターして、上記細胞のプロファイルを得る手段;d)上記手段(a)において提供された、上記プロファイルの中から、上記手段(c)において得られたプロファイルに対応するプロファイルを決定する手段;およびe)上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子であることを決定する手段を備える。このようなシステムもまた、上述のシステムと同様にコンピュータを用いて実現することができる。システム構成例は、図32に示される。
本発明が上述のようにシステム形態として提供される場合、各々の構成要件は、本発明が方法として提供されるのと同様の詳細なまたは好ましい実施形態を適用して実施することが可能であり、そのような好ましい実施形態の選択は、当業者には容易であり、当業者は、このようなシステムの好ましい実施形態を、本明細書の記載を参酌して容易に行うことができる。システム構成例は、図32に示される。
別の局面において、本発明は、コンピュータに細胞の状態を提示する処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。ここで、この記録媒体には、少なくとも、a)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る手順;およびb)上記プロファイルを提示する手順、を実行させるためのプログラムが記録されている。
別の局面において、本発明は、コンピュータに、細胞の状態を判定する処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。このような記録媒体には、少なくともa)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る手順;およびb)上記転写状態のプロファイルから上記細胞の状態を判定する手順、を実行させるためのプログラムが記録されている。
別の局面において、本発明は、コンピュータに、外来因子と、外来因子に対する細胞の応答とを相関付けるための処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。この記録媒体には、少なくともa)上記細胞を外来因子に曝露する手順;b)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関連する転写状態を経時的にモニターして、上記細胞のプロファイルを得る手順;およびc)上記外来因子と、上記プロファイルとを相関付ける手順、を実行させるためのプログラムが記録されている。
他の局面において、本発明は、コンピュータに、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。この記録媒体には、少なくともa)上記細胞を複数の既知の外来因子に曝露する手順;b)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関連する転写状態を経時的にモニターして、既知の外来因子の各々に対する上記細胞のプロファイルを得る手順;c)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける手順;d)上記細胞を未同定の外来因子に曝露する手順;e)上記選択されたプロモーターに関連する転写状態を経時的にモニターして、未同定の外来因子に関する上記細胞のプロファイルを得る手順;f)上記手順(b)で得られたプロファイルの中から、上記手順(e)で得られたプロファイルに対応するプロファイルを決定する手順;およびg)上記未同定の外来因子は、上記手順(f)において決定されたプロファイルに対応する上記既知の外来因子であることを決定する手順、を実行させるためのプログラムが記録されている。
他の局面において、本発明は、コンピュータに、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。この記録媒体には、少なくともa)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関して、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータを提供する手順;b)上記細胞を未同定の外来因子に曝露する手順;c)上記選択されたプロモーターに関連する転写状態を経時的にモニターして、上記細胞のプロファイルを得る手順;d)上記手順(a)において提供された、上記プロファイルの中から、上記手順(c)において得られたプロファイルに対応するプロファイルを決定する手順;およびe)上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子であることを決定する手順、を実行させるためのプログラムが記録されている。
本発明が上述のように記録媒体形態として提供される場合、各々の構成要件は、本発明が方法として提供されるのと同様の詳細なまたは好ましい実施形態を適用して実施することが可能であり、そのような好ましい実施形態の選択は、当業者には容易であり、当業者は、このような記録媒体の好ましい実施形態を、本明細書の記載を参酌して容易に行うことができる。
別の局面において、本発明は、コンピュータに細胞の状態を提示する処理を実行させるためのプログラムを提供する。ここで、このプログラムは、少なくともa)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして上記細胞のプロファイルを得る手順;およびb)上記プロファイルを提示する手順、を実行させる。
別の局面において、本発明は、コンピュータに、細胞の状態を判定する処理を実行させるためのプログラムを提供する。ここで、このプログラムは、少なくともa)上記細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する転写状態を経時的にモニターして上記細胞のプロファイルを得る手順;およびb)上記転写状態のプロファイルから上記細胞の状態を判定する手順、を実行させる。
別の局面において、本発明は、コンピュータに、外来因子と、外来因子に対する細胞の応答とを相関付けるための処理を実行させるためのプログラムを提供する。このプログラムは、少なくともa)上記細胞を外来因子に曝露する手順;b)上記細胞に存在するプロモーター群から選択される少なくとも1つのプロモーターに関連する転写状態を経時的にモニターして、上記細胞のプロファイルを得る手順;およびc)上記外来因子と、上記プロファイルとを相関付ける手順、を実行させる。このような手順を実行させるための技術は、当該分野において周知であり、その目的に応じて適切なプログラムを当業者は作成することができる。
他の局面において、本発明は、コンピュータに、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための処理を実行させるためのプログラムを提供する。このプログラムは、少なくともa)上記細胞を複数の既知の外来因子に曝露する手順;b)上記細胞に存在する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして、既知の外来因子の各々に対する上記細胞のプロファイルを得る手順;c)上記既知の外来因子の各々と、上記プロファイルの各々とを相関付ける手順;d)上記細胞を未同定の外来因子に曝露する手順;e)上記選択されたプロモーターに関連する転写状態を経時的にモニターして、未同定の外来因子に関する上記細胞のプロファイルを得る手順;f)上記手順(b)で得られたプロファイルの中から、上記手順(e)で得られたプロファイルに対応するプロファイルを決定する手順;およびg)上記未同定の外来因子は、上記手順(f)において決定されたプロファイルに対応する上記既知の外来因子であることを決定する手順、を実行させる。
他の局面において、本発明は、コンピュータに、細胞のプロファイルから、細胞に与えられた未同定の外来因子を推定するための処理を実行させるためのプログラムを提供する。このプログラムは、少なくともa)上記細胞に存在する生物学的因子群から選択される少なくとも1つの生物学的因子に関して、既知の外来因子と、上記既知の外来因子に対応する上記細胞のプロファイルとの相関関係に関するデータを提供する手順;b)上記細胞を未同定の外来因子に曝露する手順;c)上記選択されたプロモーターに関連する細胞の状態を経時的にモニターして、上記細胞のプロファイルを得る手順;d)上記手順(a)において提供された、上記プロファイルの中から、上記手順(c)において得られたプロファイルに対応するプロファイルを決定する手順;およびe)上記未同定の外来因子は、上記決定されたプロファイルに対応する上記既知の外来因子であることを決定する手順、を実行させる。
本発明が上述のようにプログラム形態として提供される場合、各々の構成要件は、本発明が方法として提供されるのと同様の詳細なまたは好ましい実施形態を適用して実施することが可能であり、そのような好ましい実施形態の選択は、当業者には容易であり、当業者は、このようなプログラムの好ましい実施形態を、本明細書の記載を参酌して容易に行うことができる。そのようなプログラムの記述形式は、当業者には周知であり、例えば、C+言語などを応用することができる。
別の局面において、本発明は、被検体を診断する方法およびシステムを提供する。この診断方法は、a)上記被検体の細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして上記細胞のプロファイルを得る工程;b)上記状態のプロファイルから上記細胞の状態を判定する工程;およびc)上記細胞の状態から上記被検体の状態、障害または疾患を判定する工程、を包含する。この診断方法がシステムとして提供される場合、本発明のシステムは、a)上記被検体の細胞に由来する生物学的因子群から選択される少なくとも1つの生物学的因子に関連する細胞の状態を経時的にモニターして上記細胞のプロファイルを得る手段;b)上記細胞の状態のプロファイルから上記細胞の状態を判定する手段;およびc)上記細胞の状態から上記被検体の状態、障害または疾患を判定する手段、を備える。このように、本発明は、細胞の種々の状態、生存、分化、薬剤耐性、適切な抗がん剤の選択、適切な移植細胞の選択などのテーラーメイド診断および治療に応用可能である。好ましくは、本発明の診断方法は、診断結果に応じて選択した治療または予防を被検体に施す工程を包含する治療または予防方法として提供される。別の好ましい実施形態では、本発明の診断システムは、診断結果に応じて選択した治療または予防を提供する手段を備える、治療または予防システムとして提供される。システム構成例は、図32に示される。
本発明の診断方法または治療方法を実行するコンピュータ構成あるいはそれを実現するシステムの例を図17を参照して示す。図17は、本発明の診断方法を実行するコンピュータの500の構成例を示す。システム構成例は、図32に示される。
コンピュータ500は、入力部501と、CPU502と、出力部503と、メモリ504と、バス505とを備える。入力部501と、CPU502と、出力部503と、メモリ504とは、バス505によって相互に接続されている。入力部501と出力部503とは入出力装置506に接続されている。
コンピュータ500によって実行される相関付けの処理の概略を説明する。
相関付け方法および/または処置もしくは予防の選択を実行させるプログラム(以下、それぞれ相関付けプログラムおよび選択プログラムという)は、例えば、メモリ502に格納されている。あるいは、相関付けプログラムおよび選択プログラムは、それぞれ独立してあるいは一緒に、フロッピーディスク、MO、CD−ROM、CD−R、DVD−ROMのような任意のタイプの記録媒体に記録され得る。あるいは、アプリケーションサーバに格納されていてもよい。そのような記録媒体に記録された相関付けプログラムおよび/または選択プログラムは、出入力装置506(例えば、ディスクドライブ、ネットワーク(例えば、インターネット))を介してコンピュータ500のメモリ504にロードされる。CPU502が相関付けプログラムおよび/または選択プログラムを実行することによって、コンピュータ500は、本発明の相関付け方法および/または選択方法の処理を実行する装置として機能する。
入力部501を介して、プロファイルの分析の結果(例えば、位相など)および細胞の状態に関する情報などを入力する。必要に応じて、プロファイルと相関付けられる状態、障害または疾患などの副次的情報、処置および/または予防に関する情報も入力してもよい。
CPU502は、入力部501で入力された情報をもとに、プロファイルに関する情報と細胞の状態または被検体の状態、障害または疾患に関する情報、および必要に応じて予防または治療方法とを相関付け、メモリ504に相関データを格納する。その後、CPU502は、これらの情報をメモリ504に格納し得る。その後、出力部503は、CPU502が選択した細胞の状態に関する情報、被検体の状態、障害または疾患に関する情報、および必要に応じて予防または治療方法などを診断情報として出力する。出力されたデータは、入出力装置506から出力され得る。
(データ生成)
1つの局面において、本発明は、細胞の情報に関するプロファイルデータを生成する方法を提供する。この方法は、a)細胞を支持体上に固定して配置する工程;およびb)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;を包含する。この局面の本発明の重要な特徴のひとつは、細胞に関して継続して(例えば、経時的に)同一の情報が得られるように、細胞を実質的に支持体上の同一の箇所に固定することができるようになった点にある。これにより、細胞の生物学的因子およびその集合体の経時的モニターが可能となった。経時的モニターが可能となったことにより、細胞のプロファイルを得ることができ、デジタル細胞を構築することが可能となった。細胞を支持体に固定するために、本発明は、支持体において、例えば、塩のような固定化剤が使用され得る。塩と、正に荷電した物質と負に荷電した物質との複合体と、細胞との組み合わせで支持体に細胞が固定され得る。そのような塩としてはどのようなものでも使用することができ、例えば、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸およびビタミンなどが利用され得るがそれらに限定されない。そのような正に荷電した物質と負に荷電した物質との組み合わせとしては、例えば、DNA、RNA、PNA、ポリペプチド、化学化合物、及びその複合体からなる群より選択される負に荷電した物質と、カチオン性ポリマー、カチオン性脂質、カチオン性ポリアミノ酸及びその複合体からなる群より選択される正に荷電した物質との複合体が挙げられるがそれらに限定されない。本発明において、好ましい実施形態では、対象となる生物学的因子が核酸分子または該核酸分子に由来する分子であり得る。核酸分子は、遺伝情報を司ることが多く、そのような遺伝情報に関し、細胞の情報を得ることができるからである。
別の局面において、本発明は、a)細胞を支持体上に固定して配置する工程;およびb)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;を包含する方法によって得られるデータに関する。このようなデータは、従来なかった方法によって得られるデータであり、それ自体新規のものである。従って、本発明は、このようなデータを含む記録媒体を提供する。
別の局面において、本発明は、同一環境にある細胞(好ましくは、複数の細胞)の情報に関するプロファイルデータを生成する方法に関する。この方法は、a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;およびb)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程を包含する。この局面の本発明の重要な特徴のひとつは、同一環境にある複数の細胞の情報に関するプロファイルデータを得ることができた点にある。そのような環境を提供する技術もまた、本発明の範囲内にある。同一環境を複数の細胞に提供するために、本発明は、支持体において、例えば、塩のような固定化剤が使用され得る。塩と、正に荷電した物質と負に荷電した物質との複合体と、細胞との組み合わせで支持体に細胞が固定され得る。そのような塩としてはどのようなものでも使用することができ、例えば、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸およびビタミンなどが利用され得るがそれらに限定されない。そのような正に荷電した物質と負に荷電した物質との組み合わせとしては、例えば、DNA、RNA、PNA、ポリペプチド、化学化合物、及びその複合体からなる群より選択される負に荷電した物質と、カチオン性ポリマー、カチオン性脂質、カチオン性ポリアミノ酸及びその複合体からなる群より選択される正に荷電した物質との複合体が挙げられるがそれらに限定されない。本発明において、好ましい実施形態では、対象となる生物学的因子が核酸分子または該核酸分子に由来する分子であり得る。核酸分子は、遺伝情報を司ることが多く、そのような遺伝情報に関し、細胞の情報を得ることができるからである。
好ましい実施形態において、本発明の方法では、対象となる細胞には、アクチン作用物質が提供されることが好ましい。アクチン作用物質は、細胞内のアクチンに作用し、細胞の内部骨格を変形させて、外部から外来因子を導入することが容易になるという効果を有する。このようなアクチン作用物質の存在により、目的となる外来因子の細胞内での影響を調べることが可能となる。
1つの実施形態において、本発明において対象とされる生物学的因子は、核酸、タンパク質、糖鎖、脂質、低分子、それらの複合分子からなる群より選択される少なくとも1つの因子を含む。
好ましい実施形態において、本発明では、対象となる細胞は、モニター前に、ある程度の期間刺激なしで培養することが好ましい。対象となる細胞を同期化するためである。同期化に必要な期間としては、例えば、少なくとも1日間、より好ましくは、少なくとも2日間、さらに好ましくは少なくとも3日間、さらにより好ましくは少なくとも5日間培養することが有利であり得る。ただし、培養が長くなるにつれ、培養条件を維持する必要性が高くなる。同期化は、各細胞に供給される培地が同一であることが好ましいことから、培養中の培地は、常に同一であるか、あるいは、少なくとも同様に変化していることが好ましい。したがって、好ましくは、そのために、培地を対流させる手段を備え、使用してもよい。
より好ましい実施形態において、本発明において細胞に提供される生物学的因子は、遺伝子をコードする核酸分子を含み得る。遺伝子をコードする核酸分子は、好ましくは、細胞にトランスフェクトされる。好ましくは、トランスフェクション試薬(遺伝子導入試薬)とともにこのような生物学的因子が提供され得る。さらに好ましくは、遺伝子をコードする核酸分子は、遺伝子導入試薬およびアクチン作用物質とともに細胞に提供され得る。このとき、細胞は、塩と、正に荷電した物質と負に荷電した物質と(ここでは、核酸分子と遺伝子導入試薬と)の複合体とともに提供されることが好ましい。このことにより、細胞および対象となる分子が支持体に固定され、かつ、壁のない状態で別々の生物学的因子(例えば、核酸分子)が細胞内に導入されることが可能となった。壁のない状態で細胞をモニターできることから、実質的に同一の環境下で複数の細胞をモニターすることが可能となる。しかも、異なる生物学的因子を細胞内に導入することもできることから、そのような生物学的因子によって影響を受ける、細胞の状態のプロファイルを取得することができるようになった。このようなプロファイルは、データとして格納することが可能であり、しかも、そのようなデータは、一定の規格でなされたデータであるから、再現および比較が可能となるという点で、従来の生物学的アッセイで得られた結果とは全く異なる効果を有するといえる。しかも、そのような一定の規格で生成されたデータは、一度格納されると、何度でも多種多様な目的で取り出して使用することができることから、例えば、研究者が種々の解析を行うために、全く同一条件で実質的に無限大の条件の違いを考慮して「仮想実験」を行うことも可能となった。その上、一定の仮想実験および結果が、生の状態を反映した形で格納されていることから、従来、ウェットな仕事でその学生生活の大半をすごさざるを得なかった、生物系の大学生および大学院生が、真の意味でのデータ解析教育を受けることも可能になった。また、このようにして得られた細胞プロファイルデータは、規格化することが容易であるので、世界中で同じ条件で実験を行ったと考えてよいデータをもとに研究を行うことが可能となった。そのようなデータは、規格化された形態で流通されてもよい。そのような規格化された形態は、通常のコンピュータ(例えば、Windows、Mac、UNIX、LINUXなどの通常手に入るOSが装備されたもの)によって読み取り可能な形態であり得る。本発明で生成されるデータは、生成された細胞プロファイルデータ、生成の際に使用した実験条件に関する情報、細胞に関する情報、環境に関する情報などを含み得る。
好ましい実施形態において、本発明が対象とするプロファイルは、遺伝子発現のプロファイル、アポトーシスシグナルのプロファイル、ストレスシグナルのプロファイル、分子(好ましくは、蛍光、燐光、放射性物質またはその組み合わせにて標識される)の局在化に関するプロファイル、細胞形態の変化、プロモーターのプロファイル、特定薬剤(例えば、抗生物質、リガンド、毒素、栄養素、ビタミン、ホルモン、サイトカインなど)依存性のプロモーターのプロファイル、分子間相互作用のプロファイルなどを含み得る。ここで、本発明の対象が、特定薬剤依存性のプロモーターのプロファイルを含む実施形態において、本発明は、好ましくはこの特定薬剤を投与するさらに工程を含んでいてもよい。
好ましい実施形態において、本発明は、外来刺激が細胞に提供される工程をさらに包含してもよい。このような外来刺激は、生物学的因子であってもよく、そうでなくてもよい。外来因子は、任意の因子であり得、例えば、物質または他の要素(例えば、電離線、放射線、光、音波などのエネルギー)が挙げられるがそれらに限定されない。
1つの実施形態において、本発明において使用される外来因子は、RNAiを含み得る。RNAiは、実質的に任意の遺伝子の抑制を調べることができることから、存在する遺伝子分だけRNAiを作製してその効果を調べることもできる。RNAiは当該分野において周知の方法によって作製することができる。
別の実施形態において。本発明において使用される外来因子は、生体に存在しない化学物質を含み得る。このように生体に存在しない化学物質を、細胞に提供することによって、種々の情報を収集することができる。また、一旦収集されたデータは再利用することができることから、生体に存在しない化学物質がほとんど入手不可能な場合であっても、一旦本発明においてデータを取得することができれば、入手可能性を気にすることなく、研究を続けることが可能となる。
1つの実施形態において、本発明が対象とし得る外来因子は、細胞のレセプターに対するリガンドを含み得る。リガンドを分析することによって、種々のシグナル伝達経路を調査することが可能である。したがって、このような場合、本発明によって得られるプロファイルは、レセプターリガンド相互作用のプロファイルを含む。
好ましい実施形態において、本発明によって得られるプロファイルは、細胞形態であり、ここで、本発明の方法は、遺伝子の過剰発現、過小発現もしくはノックダウン、外来因子の添加および環境の変化からなる群より選択され得る刺激を細胞に与える工程をさらに含んでいていもよい。
より好ましい実施形態において、本発明によって得られるプロファイルは、細胞内に存在する分子間の相互作用のプロファイルを含む。このような分子間の相互作用のプロファイルとしては、例えば、シグナル伝達経路において登場する分子と分子との間の相互作用、レセプターとリガンドとの相互作用、転写因子と転写因子配列との相互作用などのプロファイルが挙げられるがそれらに限定されない。
別の好ましい実施形態では、本発明によって得られるプロファイルは、前記細胞内に存在する分子間の相互作用のプロファイルを含み、ここで、本発明はツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する。ここで、ツーハイブリッド法は、分子間相互作用を細胞内において検出する。詳細に関しては、Protein−Protein Interactions,A MOLECULAR CLONING MANUAL,Edited by Erica Golemis,Cold Spring Habor Laboratory Press,Cold Spring Harbor,New Yorkに記載されている(この文献は、FRETも記載する)。FRETは、分子間、分子内の共鳴エネルギー移動を蛍光波長の変化として検出するという技術であり、Protein−Protein Interactions、前出、Miyawaki A.Visualization of the spatial and temporal dynamics of intracellular signaling.Dev Cell.2003 Mar;4(3):295−305.Reviewに説明されている。BRETは、分子間相互作用アッセイシステムであり、Boute N,The use of resonance energy transfer in high−throughput screening:BRET versus FRET.Trends Pharmacol Sci.2002 Aug;23(8):351−4.Reviewに詳述されている。
1つの好ましい実施形態において、本発明では、対象となる細胞が、支持体上にアレイ状に配置されていることが好ましい。この場合、好ましくは、本発明において対象となる複数の細胞は、各々が最大10cm、より好ましくは、最大1cm、さらに好ましくは、最大1mmもっとも好ましくは、最大0.1mmの間隔をあけて配置され得る。細胞同士は、最低限の間隔をあけることが必要である。そのような間隔は、相互作用をしない程度に保つことが好ましい。
1つの実施形態において、本発明で得られるプロファイルはリアルタイムに得られてもよいが、得られなくてもよい。リアルタイムで得ることが有利であり得る。同時性が重要である場面ではそのようなリアルタイム性は重要である。あるいは、格納することが目的の場合は、必ずしもリアルタイム性は必要ではない。
さらなる実施形態において、本発明は、細胞を固相支持体に固定する工程をさらに包含する。ここで、固体支持体への固定は、塩、複合体、アクチン作用物質などとともに行うことが可能であり得る。
1つの実施形態において、本発明によって生成されるデータは、プロファイルに関する情報を含む。好ましい実施形態では、本発明によって生成されるデータは、モニターにおける条件に関する情報、細胞の状態に関する情報、外来因子に関する情報、環境に関する情報などをさらに含んでいてもよい。
好ましい実施形態において、本発明においてモニターされる生物学的因子は、少なくとも2種の生物学的因子を含み、より好ましくは、少なくとも3種の生物学的因子を含み、さらに好ましくは、少なくとも8種の生物学的因子を含み得る。あるいは、ある特定の生物学的因子であれば、そのカテゴリーすべて(例えば、嗅覚レセプター、味覚レセプターであれば、存在するすべてのレセプター)を含むことがもっとも好ましい実施形態であり得る。
あるいは、別の好ましい実施形態では、本発明は、このような生物学的因子を任意に選択する工程をさらに包含してもよい。
好ましい実施形態では、本発明が対象とする細胞は、幹細胞および体細胞からなる群より選択され得る。
1つの実施形態において、本発明において使用される支持体は、固相支持体であることが好ましい。固定することが容易であるからである。そのような固相支持体は、当該分野において公知の任意の物質を材料として使用することができる。ここで、この支持体は、基盤の形態を採っていてもよい。
1つの実施形態において、本発明では、生物学的因子は核酸であり、この細胞は、該核酸でトランスフェクトされることが有利である。このように核酸でトランスフェクトすることによって、その核酸が細胞に与える影響をリアルタイムであるいは規定化された格納可能な様式でデータとしてプロファイルを収集することが可能となる。このようなことは、従来技術では実現不可能であった。好ましい実施形態では、このトランスフェクトは固相上または液相中で行われ得る。より好ましくは、このトランスフェクトは固相上で行われることが有利である。データ収集および規格化がより容易であるからである。
本発明の好ましい実施形態では、プロファイルの処理は、位相の比較、コントロールプロファイルとの差分計算、信号処理法および多変量解析からなる群より選択される処理により処理され得る。そのように処理されたデータもまた、本発明の範囲内にある。
別の局面において、本発明は、同一環境にある細胞(好ましくは複数の細胞)の情報に関するプロファイルデータを提示方法を提供する。この方法は、a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;およびc)該データを提示する工程、を包含する。
ここで、複数の細胞を同一環境に保つことができる支持体は、本明細書において別に詳述したとおりに実施することができる。データを生成する工程もまた、本明細書において別に詳述したとおりに実施することができる。データを提示する工程もまた、本明細書において別に詳述したとおりに実施することができる。そのような提示方法としては、例えば、視覚的、聴覚的、嗅覚的、触覚的、味覚的など種々の感覚手段を利用する方法が挙げられるがそれらに限定されない。好ましくは、視覚的な提示手段が利用される。例えば、コンピュータのディスプレイなどが例示され得る。
好ましくは、本発明の提示方法では、提示はリアルタイムで行われ得る。あるいは、格納されたデータを呼び出して遅れて提示されてもよい。リアルタイムで提示が行われるべき場合は、データ信号が直接例えばディスプレイに送信され得る。
別の局面において、本発明は、同一環境にある細胞の状態を判定する方法を提供する。ここで、この方法は、a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;およびc)該データから該細胞の状態を判定する工程、を包含する。
ここで、複数の細胞を同一環境に保つことができる支持体は、本明細書において別に詳述したとおりに実施することができる。データを生成する工程もまた、本明細書において別に詳述したとおりに実施することができる。細胞の状態を判定する工程は、例えば、生成されたデータと、細胞に関する情報とを相関付けるか、あるいは、標準的なデータと比較することなどによって判定を行うことができる。この場合、統計学的処理が行われてもよい。
したがって、ある実施形態において、本発明は、本発明によって得られるプロファイルと細胞の状態とを予め相関付ける工程をさらに包含する。判定を円滑に行うためには、好ましくは、本発明において対象とする細胞は、状態が既知の細胞を含むことが有利である。状態が既知の細胞に関するデータをすでに保持することが可能であることから、その既知細胞と未知細胞とのデータ比較により、判定を迅速に行うことが可能となるからである。
判定の際には、好ましくは、対象となる生物学的因子は、少なくとも2種存在することが有利である。そのような生物学的因子が複数存在するとき、生物学的因子は、異種カテゴリー(例えば、タンパク質および核酸など)であってもよく、同種カテゴリーであってもよい。
好ましくは、本発明は、生物学的因子を任意に選択する工程をさらに包含する。どのような生物学的因子を選択しても、細胞の状態は、ある程度特著付けることができ、場合によっては同定することも可能であることから、本発明は、従来技術からは想像もつかない効果を奏するといえる。
ここで、本発明の判定方法では、好ましくは、データは、リアルタイムで生成される。データがリアルタイムで生成されることにより、未知物質または状態が未知の細胞の判定がリアルタイムで行われ得るからである。
ここで、本発明の判定方法において、対象とされる細胞の状態としては、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期および増殖状態などが挙げられるが、それらに限定されない。
本発明において対象とされる細胞は、幹細胞であっても体細胞であってもよい。体細胞は、どのような細胞であってもよい。細胞の選択は、細胞を使う目的によって当業者が適宜選択することができる。
本発明の判定方法で用いられる固相支持体は、基板を含む。基板とすることで、本発明は、コンピュータシステムの一部としてその基板を使用し、自動的に判定を行うことが可能となる。システム構成例は、図32に示される。
好ましい実施形態において、本発明の判定方法では、生物学的因子は核酸分子であり、前記細胞は該核酸分子でトランスフェクトされる、請求項52に記載の方法。ここで、トランスフェクション技術は、どのような物を利用してもよいが、好ましくは、遺伝子導入試薬を用いることが有利である。さらに好ましくは、塩、アクチン作用物質などを用いて固相支持体上でトランスフェクトされることが好ましい。トランスフェクトは固相上で行われても液相中で行れてもよいが、好ましくは固相上で行われ得ることが有利である。
本発明の判定方法では、対象とする生物学的因子は、別の生物学的因子に結合する能力を有するものであってもよい。このような性質を持っている生物学的因子を調べることによって、細胞中のネットワーク機構が解明され得るからである。
本発明の判定方法でもまた、判定工程は、プロファイルの位相の比較、コントロールプロファイルとの差分収集、信号処理法および多変量解析からなる群より選択される数学処理を行うことを包含し得る。このような処理方法は、当該分野において周知であり、本明細書において詳細に説明されている。
別の局面において、本発明は、外来因子と、該外来因子に対する細胞の応答とを相関付ける方法を提供する。ここで、この方法は、a)細胞を、複数の細胞を同一環境を保つことができる支持体上で、外来因子に曝露する工程;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;およびc)該外来因子と、該プロファイルとを相関付ける工程;包含する。ここで、外来因子への曝露は、細胞と外来因子とを接触する環境に配置することによって達成される。例えば、細胞が支持体上に固定されているとき、その支持体上にその外来因子を加えることによって、曝露が達成され得る。データの生成および相関付けの方法もまた、当該分野において周知であり、そのような生成および相関付けの方法として、通常のデータ処理を用いるかそれを組み合わせて使用することができる。統計学的処理を行い、統計学的に有意なデータおよび情報を生成することが好ましい。
好ましい実施形態において、本発明の相関付け方法では、細胞は、支持体に固定されていてもよい。固定されることによって、データの規格化が容易になり、データ処理が格段に効率化される。
好ましい実施形態において、本発明の相関付け方法では、少なくとも2つの前記外来因子を使用して、各外来因子に対するプロファイルを得る工程をさらに包含し得る。このようなプロファイルを得る技術は、本明細書において充分に説明されている。
より好ましくは、相関付けは、少なくとも2つのプロファイルを類別することにより、該プロファイルに対応する外来因子を類別する工程をさらに包含してもよい。類別化することによって、より規格化されたデータ処理が可能となる。
好ましい実施形態では、本発明において得られるプロファイルはリアルタイムで提示されるが、データの格納を目的とする場合は、特にリアルタイムでなくてもよい。
好ましい実施形態では、本発明において使用される細胞は、アレイ上で培養され得る。したがって、そのような場合、細胞は培地で覆われていることが好ましい。培地としては、通常細胞に使用する培地であればどのような培地でも使用され得る。
本発明の好ましい実施形態では、プロファイルのモニターは、前記アレイから画像データを得ることを包含する。特に、プロファイルが、視覚情報(例えば、遺伝子発現による蛍光の発光)である場合は、画像データを得ることによって、プロファイルを得ることが可能になるからである。
本発明の相関付け方法では、外来因子とプロファイルとを相関付ける工程は、前記プロファイルの位相の異同を識別する工程を包含し得る。位相の異動の判別は、本発明がプロファイルを初めて経時的に、かつ、同一環境で提供することによって達成される特徴である。
本発明が対象とする外来因子は、温度変化、湿度変化、電磁波、電位差、可視光線、赤外線、紫外線、X線、化学物質、圧力、重力変化、ガス分圧および浸透圧からなる群から選択され得る。好ましくは、化学物質は、生体分子、化学合成物または培地であり得る。そのような生体分子としては、例えば、核酸分子、タンパク質、脂質、糖、プロテオリピッド、リポプロテイン、糖タンパク質およびプロテオグリカンなどが挙げられるがそれらに限定されない。生体分子はまた、例えば、ホルモン、サイトカイン、細胞接着因子および細胞外マトリクスなどであってもよい。あるいは、化学物質は、レセプターのアゴニストまたはアンタゴニストであってもよい。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法に関する。この方法は、a)細胞に、同一環境を保つことができる支持体上で、複数の既知の外来因子を曝露する工程;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターし、既知の外来因子の各々に対する該細胞のプロファイルを得て該細胞のプロファイルのデータを生成する工程;c)該既知の外来因子の各々と、該プロファイルの各々とを相関付ける工程;d)該細胞を未同定の外来因子に曝露する工程;e)外来因子に曝露された該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして、未同定の外来因子に関する該細胞のプロファイルを得る工程;f)該工程(b)で得られたプロファイルの中から、該工程(e)で得られたプロファイルに対応するプロファイルを決定する工程;およびg)該未同定の外来因子は、該工程(f)において決定されたプロファイルに対応する該既知の外来因子であることを決定する工程;を包含する。ここで、外来因子の曝露、データ生成、相関付け、未同定の外来因子の曝露などは、本明細書において他の場所において詳述されており、当業者はこれらの記述を参照して、目的に応じて適宜適切な形態を選択することができる。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法を提供する。この方法は、a)該細胞上または該細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、該既知の外来因子に対応する該細胞のプロファイルとの相関関係に関するデータを提供する工程;b)該細胞を未同定の外来因子に曝露する工程;c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして、該細胞のプロファイルを得る工程;d)該工程(a)において提供された、該プロファイルの中から、該工程(c)において得られたプロファイルに対応するプロファイルを決定する工程;およびe)該未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子であることを決定する工程;を包含する。ここで、外来因子の曝露、データ生成、相関付け、未同定の外来因子の曝露などは、本明細書において他の場所において詳述されており、当業者はこれらの記述を参照して、目的に応じて適宜適切な形態を選択することができる。
別の局面において、本発明は、同一環境にある細胞(好ましくは複数の細胞)の情報に関するプロファイルを得る方法を提供する。この方法は、a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;およびb)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルを得る工程、包含する。ここで、外来因子の曝露、データ生成、相関付け、未同定の外来因子の曝露などは、本明細書において他の場所において詳述されており、当業者はこれらの記述を参照して、目的に応じて適宜適切な形態を選択することができる。
別の局面において、本発明は、本発明の細胞プロファイルデータを生成する方法によって生成されたデータが格納される記録媒体に関する。格納形式はどのようなものであってもよく、記録媒体もまた、どのような媒体であってもよい。例えば、そのような記録媒体としては、CD−ROM、フレキシブルディスク、CD−R、CD−RW、MO、ミニディスク、DVD−ROM、DVD−R、メモリースティック、ハードディスクなどが挙げられるがそれらに限定されない。本発明はまた、本発明の細胞プロファイルデータを生成する方法によって生成されたデータが格納される伝送媒体に関する。伝送媒体としては、例えば、イントラネット、インターネットなどのネットワークが挙げられるがそれらに限定されない。
本発明の記録媒体または伝送媒体は、前記モニターにおける条件に関する情報、前記プロファイルに関する情報、前記細胞の状態に関する情報および前記生物学的因子に関する情報からなる群より選択される、少なくとも1つの情報に関するデータをさらに含んでいてもよい。このような情報に関するデータは、相互にリンクされた形態で格納されてもよい。好ましくは、これらのデータは規格化されることが有利である。規格化されることによって、一定の流通経路に載せることが可能になるからである。上記リンクは各々の細胞ごとにリンクされるか、あるいは生物学的因子ごとにリンクされるか、あるいはその両方であってもよい。
別の局面において、本発明は、本発明の細胞プロファイルデータを生成する方法によって生成されたデータに関する。このようなデータは、従来の技術では生成し得なかったデータであることから、全く新規であるといえる。
別の局面において、本発明は、同一環境にある複数の細胞の情報に関するプロファイルデータを生成するシステムを提供する。このシステムは、a)複数の細胞を同一環境を保つことができる支持体;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;およびc)該モニター手段から得られた信号から該細胞のプロファイルのデータを生成する手段;を備える。同一環境に保つことができる支持体は、本発明によって初めて提供された技術を用いて当業者が実施することができる。そのような技術とは、細胞を固定化し、壁のない状態で細胞を配列することができることに起因する。モニター手段としては、例えば、顕微鏡(例えば、光学顕微鏡、蛍光顕微鏡、位相差顕微鏡など)、電子顕微鏡、スキャナー、肉眼、赤外線カメラ、共焦点・非共焦点顕微鏡、CCDカメラ、などが挙げられるがそれらに限定されない。システム構成例は、図32に示される。
本発明のシステムは、システムとして実施されるときには、細胞を最初から含んでいる必要はないが、好ましくは、複数の細胞が含まれており、かつ、支持体に固定されていることが有利である。そのような場合、固定は、規格化されていることが好ましい。また、固定される場合、細胞間の距離としては、例えば、1mmなどが挙げられるがそれらに限定されない。
好ましい実施形態では、支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着されることが好ましい。このように塩およびアクチン作用物質のいずれか、好ましくは両方が付着されることによって、固定および/または細胞内物質導入の効果が増強されるからである。
本発明のシステムにおいて使用され得るモニター手段としては、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段、放射光、共焦点顕微鏡、非共焦点顕微鏡、微分干渉顕微鏡、実体顕微鏡、ビデオモニターおよび赤外線カメラなどが挙げられるがそれらに限定されない。好ましくは、スキャナー、例えば、白色光源もしくはレーザーによって基盤表面をスキャンするスキャナーを使用する。スキャナーが好ましいのは、蛍光であれば励起エネルギーを効率よく伝達すること、顕微鏡技術を流用することが容易であるという利点があるからである。さらに、細胞に対して大きなダメージを与えることなく測定できるという利点を有するからである。システム構成例は、図32に示される。
別の局面において、本発明は、同一環境にある細胞(好ましくは複数の細胞)の情報に関するプロファイルを提示するシステムを提供する。このシステムは、a)複数の細胞を同一環境を保つことができる支持体;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;c)該モニター手段から得られた信号から該細胞のプロファイルのデータを生成する手段;および
d)該データを提示する手段、を包含する。ここで、支持体、モニター手段、データ生成手段については、本明細書において他の場所に記載されるように実施することができる。データを提示する手段もまた、当該分野において周知の手段を利用することができる。そのようなデータ提示手段としては、コンピュータのディスプレイ、スピーカなどが挙げられるがそれらに限定されない。システム構成例は、図32に示される。
本発明の提示システムは、複数の細胞をさらに含み、該複数の細胞は前記支持体に固定されていることが好ましい。このような場合、支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着される。このような物質が使用されることによって、固定が強化され、および/または外来物質の細胞内導入が増強されるからである。
モニター手段は、どのようなものであってもよく、例えば、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段などであり得る。
データ提示手段は、どのようなものであってもよく、例えば、ディスプレイ、スピーカなどが挙げられる。
別の局面において、本発明は、細胞の状態を判定するシステムを提供する。このシステムは、a)複数の細胞を同一環境を保つことができる支持体;b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;c)該モニター手段から得られた信号からデータを生成する手段;およびd)該データから該細胞の状態を外挿する手段、を備える。ここで、支持体、モニター手段およびデータ生成手段は、本明細書において他の場所において記載したように当業者は実施することができる。データから細胞の状態を外挿する手段もまた、当該分野において周知の技術を用いて作製し、使用することができる。例えば、測定されたデータと、既知の細胞に関する標準データとを比較することによって外挿が達成され、そのような外挿のためのプログラムを格納したデバイスまたはそれを実行することができるコンピュータをそのような外挿手段として使用することができる。システム構成例は、図32に示される。
別の局面において、本発明は、外来因子と、該外来因子に対する細胞の応答とを相関付けるシステムを提供する。このシステムは、a)複数の細胞を同一環境を保つことができる支持体;b)外来因子を曝露する手段;c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;d)該モニター手段からの信号から、該細胞のプロファイルのデータを生成する工程;およびe)該外来因子と、該プロファイルとを相関付ける手段;を備える。ここで、支持体、モニター手段、データ生成手段は本明細書において他の場所において説明したように実施することができる。外来因子を曝露する手段もまた、その外来因子の性質に応じて当業者が適宜設計し、実施することができる。相関付けの手段もまた、その相関付けのためのプログラムを格納した記録媒体またはそれを実行することができるコンピュータを利用することができる。好ましくは、本発明のシステムは、複数の細胞を含む。システム構成例は、図32に示される。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムを提供する。このシステムは、a)複数の細胞を同一環境を保つことができる支持体;b)既知の外来因子を曝露する手段;c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;d)外来因子の各々に対する該細胞のプロファイルを得て該細胞のプロファイルのデータを生成する手段;e)該既知の外来因子の各々と、該プロファイルの各々とを相関付ける手段;f)該細胞を未同定の外来因子に曝露する手段;g)該手段(d)で得られた既知の外来因子のプロファイルと、未知の外来因子のプロファイルとを比較し、既知の外来因子のプロファイルの中から、未知の外来因子のプロファイルに対応するプロファイルを決定する手段であって、該決定された未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子である、手段、を備える。ここで、支持体、曝露手段、モニター手段、データ生成手段。相関付け手段、別の曝露手段は、本明細書における他の場所の記載を参酌して、当業者は適宜適切な携帯で実施することができる。また、対応するプロファイルを決定する手段もまた、そのような決定プロセスを実行するプログラムを格納した記録媒体とそのプログラムを実行するコンピュータとを利用することなどによって、実施することができる。好ましくは、このシステムは、複数の細胞を含む。システム構成例は、図32に示される。
別の局面において、本発明は、細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムを提供する。このシステムは、a)該細胞上または該細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、該既知の外来因子に対応する該細胞のプロファイルとの相関関係に関するデータが格納された記録媒体;b)該細胞を未同定の外来因子に曝露する手段;c)複数の細胞を同一環境を保つことができる支持体;d)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;e)該モニター手段から得られた信号から、該細胞のプロファイルを得る手段;f)該記録媒体(a)において格納される該プロファイルの中から、未知の外来因子に関して得られたプロファイルに対応するプロファイルを決定する手段であって、該未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子である、手段;を備える。ここで、支持体、曝露手段、モニター手段、データ生成手段。相関付け手段、別の曝露手段は、本明細書における他の場所の記載を参酌して、当業者は適宜適切な携帯で実施することができる。また、対応するプロファイルを決定する手段もまた、そのような決定プロセスを実行するプログラムを格納した記録媒体とそのプログラムを実行するコンピュータとを利用することなどによって、実施することができる。好ましくは、このシステムは、複数の細胞を含む。システム構成例は、図32に示される。
別の局面において、本発明は、複数の細胞の環境を同一に維持することができる支持体に関する。このような支持体は、本発明によって始めて提供された。このような支持体を利用することによって、複数の細胞の同一環境下での分析が可能になった。
好ましくは、支持体上の細胞は、アレイ状に配置されていることが有利である。規格化された分析が可能となるからである。この場合、塩またはアクチン作用物質を含むことが好ましい。より好ましくは、正に荷電した物質と負に荷電した物質との複合体を含むことが有利である。細胞の固定が容易になるからである。アクチン作用物質は、細胞への外来因子の導入効率を上げることから特に内部を分析する際に好ましい。したがって、本発明の好ましい実施形態では、塩およびアクチン作用物質を含み、さらに正に荷電した物質と負に荷電した物質との複合体を含むことがさらに好ましい。
本発明の支持体は、細胞が1mmの間隔で配置され得るという特徴を有する。このような間隔で、壁のない環境を提示することは、従来不可能であった。したがって、本発明は、驚くべき効果および実用性を有するものである。
好ましい実施形態では、本発明の支持体は、固定された細胞をさらに含んで提供される。より好ましい実施形態では、本発明の支持体は、固定された生物学的因子をさらに含んで提供される。
好ましい実施形態では、上記生物学的因子は2種類以上固定される。このような生物学的因子は、核酸分子、タンパク質、糖、脂肪、代謝物、低分子、それらの複合体、ならびに物理的要素および/または時間的要素が入った因子からなる群より選択される因子であってもよい。
より好ましい実施形態において、本発明の支持体には、細胞および生物学的因子が混合して固定される。生物学的因子と細胞とは、ここでは、。相互作用するように配置され得る。そのような相互作用は、生物学的因子によって変動するが、当業者はその性質を見れば、どのように相互作用するかおよびどのように配置すれば相互作用するかを理解することができる。
好ましい実施形態にひとつにおいて、本発明の支持体には、塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともに固定される。
より好ましい実施形態では、本発明の支持体には、塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともにアレイ状に固定される。このような構成をとることによって、細胞プロファイルデータを生成することができる、細胞チップが提供される。この支持体は、好ましくは、塩と、遺伝子導入試薬と、アクチン作用物質と、核酸分子と、細胞とがアレイ状に固定されるという構成を採り、そのような支持体は、「トランスフェクションアレイ」とも呼ばれる。
ここで、本発明の支持体で使用される塩としては、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸およびビタミンなどが挙げられるがそれらに限定されない。この塩としては、好ましくは、塩化ナトリウムなどが挙げられるがそれらに限定されない。
本発明の支持体において使用される遺伝子導入試薬は、カチオン性高分子、カチオン性脂質、ポリアミン系試薬、ポリイミン系試薬、リン酸カルシウム、オリゴフェクタミンおよびオリゴフェクターなどが挙げられるがそれらに限定されない。この遺伝子導入試薬としては、好ましくは、リポフェクトアミン、オリゴフェクタミンおよびオリゴフェクターが挙げられるがそれらに限定されない。
本発明の支持体において使用されるアクチン作用物質としては、フィブロネクチン、ラミニン、ビトロネクチンが挙げられるがそれらに限定されない。このアクチン作用物質としては、好ましくは、フィブロネクチンが挙げられるがそれらに限定されない。
本発明の支持体において使用される核酸分子としては、転写制御配列(例えば、プロモーター、エンハンサーなど)、遺伝子コード配列、非翻訳領域を含むゲノム配列、宿主ゲノムにコードされていない核酸配列(蛍光タンパク質遺伝子、大腸菌・酵母自己複製起点、GAL4ドメイン等)を含む核酸分子が挙げられるがそれらに限定されない。この核酸分子としては、好ましくは、転写制御配列(例えば、プロモーター、エンハンサーなど)、遺伝子コード配列、非翻訳領域を含むゲノム配列が挙げられるがそれらに限定されない。
本発明の支持体において使用される細胞としては、幹細胞、樹立細胞株、初代培養細胞、昆虫細胞、細菌細胞が挙げられるがそれらに限定されない。この細胞としては、好ましくは、幹細胞、樹立細胞株、初代培養細胞が挙げられるがそれらに限定されない。
本発明の支持体において使用される支持体の材料は、ガラス、シリカ、およびプラスチックなどが挙げられるがそれらに限定されない。この材料としては、好ましくは、コーティングされた上記材料が挙げられるがそれらに限定されない。
別の局面において、本発明は、固定された複数の細胞を含み、かつ、該細胞の環境を同一に維持し得る支持体を生産する方法を提供する。この方法は、A)支持体を提供する工程;およびB)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて該支持体上に固定する工程、を含む。支持体の提供は、市販のものを入手するか、あるいは、支持体材料を成型することをによって達成され得る。支持体材料を調製する必要があるときは、そのような材料の原料の混合などによって調製することができる。固定する工程もまた、当該分野において公知の技術を用いて行うことができるそのような固定技術としては、例えば、インクジェットプリント法、ピンアレイ法、スタンプ法が挙げられるがそれらに限定されない。そのような技術は、周知であり、当業者は適宜そのような技術を用いて実施することができる。
好ましい実施形態において、本発明における固定工程は、前記塩と、前記正に荷電した物質としての遺伝子導入試薬と、アクチン作用物質と、前記負に荷電した物質としての核酸分子と、前記細胞との混合物を、アレイ状に固定することを含む。このような固定は、プリント技術を用いて達成され得る。
別の局面において、本発明は、固定された複数の細胞を含み、かつ、該細胞の環境を同一に維持し得る支持体を生産する装置を提供する。この装置は、A)支持体を提供する手段;およびB)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて該支持体上に固定する手段を備える。支持体の提供の実現は、上述の方法を行うことができる手段を用いて達成され得る。そのような手段としては、例えば、支持体の成型手段、材料の調製手段(例えば、混合手段)などが挙げられるがそれらに限定されない。成型手段は、当該分野において周知の技術を使用することができる。固定手段は、プリント手段を含み、そのような手段としては、市販のインクジェットプリンターを利用することが可能である。
(デジタル細胞)
「デジタル細胞」とは、実験対象の細胞に対する少なくとも1つの実験データの集合をいう。これらの実験データは、現実の細胞に対して行った実験の実験条件と実験結果とを関連づけたものである。デジタル細胞は、実験条件が与えられると、その実験条件に関連する実験結果を再現可能なように構成されている。
デジタル細胞を用いると、現実の細胞に対して行った実験の実験結果をコンピュータシステム上で再現することができる。これにより、実験設備を持たない研究機関や個人においても、細胞に関する最先端の研究を行うことが可能になる。その結果、従来はこの分野に参入することが不可能であった異業種からもこの分野に参入することが可能になる。
図33Aは、デジタル細胞のデータ構造の一例を示す。この例では、デジタル細胞は、細胞Aに対する3つの実験データA1、A2、A3の集合として表現されている。
実験データA1、A2、A3のそれぞれは、実験条件を示すパラメータとして細胞パラメータと環境パラメータと刺激パラメータとを含み、実験結果として刺激応答結果を含む。
ここで、細胞パラメータは、実験対象の細胞を特定する。環境パラメータは、細胞パラメータによって特定された細胞を培養する環境を特定する。刺激パラメータは、細胞パラメータによって特定された細胞に与える刺激を特定する。刺激応答結果は、環境パラメータによって特定された環境下で細胞パラメータによって特定された細胞が刺激パラメータによって特定された刺激に対して応答した結果を示す。
実験データA1は、「DMEM」という培地を用いてpH「7」、温度「37」度、CO濃度「5」%という培地条件で細胞Aを培養し、「Tet−OFF CMV EGF」、「CMV EGFP」というレポーターと「Doxycycene」という化学刺激(薬剤)からなる刺激を細胞Aに与えることにより、刺激応答結果が得られたことを示す。この刺激応答結果は、「細胞動態データ1」と「レポーター計測データ1」とによって表される。
実験データA2は、「DMEM」という培地を用いてpH「7」、温度「37」度、CO濃度「5」%という培地条件で細胞Aを培養し、「c−fos」というレポーターと「PSC833」という化学刺激(薬剤)からなる刺激を細胞Aに与えることにより、刺激応答結果が得られたことを示す。この刺激応答結果は、「細胞動態データ2」と「レポーター計測データ2」とによって表される。
実験データA3は、「DMEM」という培地を用いてpH「5」、温度「39」度、CO濃度「4」%という培地条件で細胞Aを培養し、「CREB」というレポーターと「Vindecine」という化学刺激(薬剤)からなる刺激を細胞Aに与えることにより、刺激応答結果が得られたことを示す。この刺激応答結果は、「細胞動態データ3」と「レポーター計測データ3」とによって表される。
このように、実験条件を示すパラメータ(細胞パラメータ、環境パラメータおよび刺激パラメータ)と実験結果を示す刺激応答結果とが関連づけられている。これらを関連づけたものを実験データという。デジタル細胞は、実験対象の細胞に対する少なくとも1つの実験データの集合として提供される。
図33Bは、デジタル細胞のデータ構造の他の一例を示す。この例は、図33Aに示されるデータ構造を階層化したものである。このようにデジタル細胞のデータ構造を階層化することにより、図33Aに示されるデータ構造に比べて少ないデータ量で同一の内容を表現することが可能になる。
なお、図33A、図33Bに示される例では、実験条件を示すパラメータと実験結果とは単方向リンク(図中の矢印)によって関連づけられている。しかし、これらを関連づける方法はこれに限定されない。これらを関連づける方法としては任意の方法を採用することができる。
(デジタル細胞の生産)
図34は、デジタル細胞を生産する処理の手順の一例を示す。この処理は、任意のタイプのコンピュータによって実行される。
ステップS3401:実験対象の細胞を特定する細胞パラメータが取得される。細胞パラメータの取得は、例えば、ユーザによって入力された細胞パラメータをコンピュータが受け取ることによって行われる。あるいは、実験装置から出力されるデータをコンピュータが自動的に収集もしくは解析することによって細胞パラメータを取得するようにしてもよい。
ステップS3402:細胞パラメータによって特定された細胞を培養する環境を特定する環境パラメータが取得される。環境パラメータの取得は、例えば、ユーザによって入力された環境パラメータをコンピュータが受け取ることによって行われる。あるいは、実験装置(例えば、実験環境を計測するセンサなど)から出力されるデータをコンピュータが自動的に収集もしくは解析することによって環境パラメータを取得するようにしてもよい。環境パラメータは、例えば、細胞を培養する培地を示すパラメータと、その培地の条件を示すパラメータとを含む。培地の条件としては、例えば、培地のpH、温度、CO濃度などが挙げられる。
ステップS3403:細胞パラメータによって特定された細胞に与える刺激を特定する刺激パラメータが取得される。刺激パラメータの取得は、例えば、ユーザによって入力された刺激パラメータをコンピュータが受け取ることによって行われる。あるいは、実験装置から出力されるデータをコンピュータが自動的に収集もしくは解析することによって刺激パラメータを取得するようにしてもよい。刺激パラメータは、例えば、レポーターを示すパラメータと、化学刺激を示すパラメータとを含む。
ステップS3404:環境パラメータによって特定された環境下で細胞パラメータによって特定された細胞が刺激パラメータによって特定された刺激に対して応答した結果を示す刺激応答結果が取得される。刺激応答結果の取得は、例えば、実験装置(例えば、実験経過をモニターするモニター装置など)から出力されるデータをコンピュータが自動的に収集もしくは解析することによって行われる。
ステップS3405:細胞パラメータと環境パラメータと刺激パラメータと刺激応答結果とが関連づけられる。この関連づけにより、実験対象の細胞に対する1つの実験データが生成される。このような関連づけは、例えば、図33Aに示されるように単方向のリンクを用いて行われる。しかし、関連づけの方法は問わない。
ステップS3406:ステップS3401〜ステップS3405が必要に応じて繰り返される。これにより、実験対象の細胞に対する少なくとも1つの実験データが生成される。この少なくとも1つの実験データの集合がデジタル細胞として提供される。
デジタル細胞を生産する処理を実行するコンピュータは、デジタル細胞を生産する装置として機能する。生産されたデジタル細胞は、例えば、そのコンピュータがアクセス可能なデータベースに格納される。
このように、少なくとも1つの実験データの集合をデジタル細胞として提供することは、複数の細胞を同一環境を保つことができる支持体上に配置する技術が本発明者によって開発されてはじめて可能となった。従来の技術では、複数の細胞を同一環境下に保つことができなかったため、実験条件に信頼性がなく、これらの実験データを集積する意義がなかったからである。この意味で、「デジタル細胞の生産」は、本発明者の技術革新を通してはじめて可能になった先端技術であるというべきである。
(現実の細胞に対する実験結果を再現するサービスの提供)
図35は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステム3501の構成の一例を示す。
コンピュータシステム3501は、ユーザが所望するサービスをリクエストするサービスリクエスタ3510と、そのリクエストに応答して所定のサービスを提供するサービスプロバイダ3520とを含む。
コンピュータシステム3501は、複数のサービスリクエスタ3510を含んでいてもよい。
サービスプロバイダ3520は、少なくとも1つのデジタル細胞を格納したデータベース3522にアクセス可能なように構成されている。データベース3522に格納されたデジタル細胞のデータ構造は、例えば、図33A、図33Bに示されるとおりである。データベース3522は、サービスプロバイダ3520の内部に設けられていてもよいし、サービスプロバイダ3520の外部に設けられていてもよい。
サービスプロバイダ3520は、少なくとも1つのデジタル細胞をそれぞれ格納した複数のデータベースにアクセス可能なように構成されていてもよい。
サービスリクエスタ3510およびサービスプロバイダ3520のそれぞれは、任意のタイプのコンピュータであり得る。
サービスリクエスタ3510とサービスプロバイダ3520とは、ネットワーク3530を介して接続されている。ネットワーク3530は、任意のタイプのネットワークであり得るが、接続の容易性やコストを考慮すると、インターネットであることが最も好ましい。
ネットワーク3530がインターネットである場合には、サービスリクエスタ3510は、ユーザが操作するWebブラウザであり得、サービスプロバイダ3520は、インターネットを介してサービスリクエスタ3510に接続されるWebサーバーであり得る。このような構成をとることにより、世界中のユーザがサービスプロバイダ3520に容易にアクセスすることが可能になる。
図36は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する処理の手順の一例を示す。この処理は、サービスリクエスタ3510とサービスプロバイダ3520とが協働することにより実行される。
ステップS3601:サービスリクエスタ3510は、細胞パラメータと環境パラメータと刺激パラメータとを受け取り、細胞パラメータと環境パラメータと刺激パラメータとを含むリクエストを生成する。そのリクエストは、例えば、XMLで記述されている。
ステップS3602:サービスリクエスタ3510は、そのリクエストをサービスプロバイダ3520に提供する。
ステップS3603:サービスプロバイダ3520は、そのリクエストに応答してデータベース3522を検索し、データベース3522内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する刺激応答結果が存在するか否かを決定する。
ステップS3604:データベース3522内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する刺激応答結果が存在すると決定された場合には、サービスプロバイダ3520は、その刺激応答結果をサービスリクエスタ3510に提供する。その刺激応答結果は、例えば、XMLで記述されている。
ステップS3605:サービスリクエスタ3510は、サービスプロバイダ3520によって提供された刺激応答結果を表示する。
なお、データベース3522内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する刺激応答結果が存在しないと決定された場合には、サービスプロバイダ3520は、例えば、「該当なし」という結果をサービスリクエスタ3510に提供する。
なお、図36に示される処理を単一のコンピュータで処理することも可能である。例えば、図36に示されるステップS3601〜S3605の処理を単一のコンピュータによって実行される単一のプログラムで実現すればよい。この場合、その単一のコンピュータは、サービスリクエスタ3510の機能とサービスプロバイダ3520の機能とを併せ持つ装置として機能する。
図37は、サービスリクエスタ3510に細胞パラメータと環境パラメータと刺激パラメータとを入力する入力画面の一例を示す。この例では、これらのパラメータは、入力画面の所定の領域にユーザがテキストを入力することにより入力される。
なお、これらのパラメータをサービスリクエスタ3510に入力する方法としては任意の方法を採用することができる。例えば、これらのパラメータをユーザがメニュー(例えば、プルダウンメニュー、ポップアップメニュー)を選択することにより入力するようにしてもよい。
サービスリクエスタ3510が刺激応答結果を表示する態様としては任意の態様を採用することができる。例えば、サービスリクエスタ3510は、刺激応答結果をディスプレイに表示してもよいし、刺激応答結果をプリンタに出力してもよい。サービスリクエスタ3510は、刺激応答結果を静止画を用いてディスプレイに表示してもよいし、動画を用いてディスプレイに表示してもよい。
刺激応答結果は、例えば、細胞上または細胞内の生物学的因子またはその集合体を経時的にモニターすることによって得られる細胞のプロファイルのデータを含み得る。この場合には、刺激応答結果として、例えば、図19に示されるような細胞のプロファイルのデータがサービスリクエスタ3510によって表示される。
このように、コンピュータシステム3501によれば、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供することが可能になる。これにより、実験設備を持たない研究機関や個人においても、細胞に関する最先端の研究を行うことが可能になる。
図38は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステム3801の構成の一例を示す。
コンピュータシステム3801は、ユーザが所望するサービスをリクエストするサービスリクエスタ3810と、そのリクエストに応答して所定のサービスを提供する複数のサービスプロバイダ3820〜3820と、複数のサービスプロバイダ3820〜3820が提供可能な少なくとも1つのサービスを登録したサービスレジストリ3840とを含む。ここで、Nは2以上の任意の整数である。
コンピュータシステム3801は、複数のサービスリクエスタ3810を含んでいてもよい。
サービスプロバイダ3820は、少なくとも1つのデジタル細胞を格納したデータベース3822にアクセス可能なように構成されている。データベース3822に格納されたデジタル細胞のデータ構造は、例えば、図33A、図33Bに示されるとおりである。データベース3822は、サービスプロバイダ3820の内部に設けられていてもよいし、サービスプロバイダ3820の外部に設けられていてもよい。ここで、i=1、2、・・・Nである。
なお、サービスプロバイダ3820は、少なくとも1つのデジタル細胞をそれぞれ格納した複数のデータベースにアクセス可能なように構成されていてもよい。
サービスレジストリ3840は、サービスプロバイダ3820〜3820が提供可能なサービスを表すデータを格納したデータベース3842にアクセス可能なように構成されている。データベース3842は、サービスレジストリ3840の内部に設けられていてもよいし、サービスレジストリ3840の外部に設けられていてもよい。データベース3842にサービスを表すデータを格納することにより、サービスレジストリ3840にサービスを登録することができる。データベース3842に格納されるデータのフォーマットは予め標準化されていることが好ましい。データベース3842へのデータの格納は、サービスレジストリ3840を管理する会社が人手で行ってもよいし、サービスプロバイダ3820〜3820からネットワーク3830を介してサービスレジストリ3840にデータを送信することによって行ってもよい。
サービスリクエスタ3810、サービスプロバイダ3820〜3820およびサービスレジストリ3840のそれぞれは、任意のタイプのコンピュータであり得る。
サービスプロバイダ3820〜3820のそれぞれは、実験設備を持ち現実の細胞を研究している研究機関、企業または団体によって運営されることが好ましい。サービスリクエスタ3810およびサービスレジストリ3840のそれぞれは、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスの提供を統括する研究機関、企業または団体(例えば、デジタル細胞推進協議会)によって運営されることが好ましい。また、サービスレジストリ3840に登録されるサービスの品質を保証するために、サービスプロバイダ3820〜3820の運営機関に一定の基準を満たすことを義務づけることが好ましい。
サービスリクエスタ3810とサービスプロバイダ3820〜3820とサービスレジストリ3840とは、ネットワーク3830を介して接続されている。ネットワーク3830は、任意のタイプのネットワークであり得るが、接続の容易性やコストを考慮すると、インターネットであることが最も好ましい。
ネットワーク3830がインターネットである場合には、サービスリクエスタ3810は、インターネットを介してユーザが操作するWebブラウザに接続されるWebサーバーであり得、サービスプロバイダ3820〜3820のそれぞれは、インターネットを介してサービスリクエスタ3810に接続されるWebサーバーであり得る。この場合、サービスリクエスタ3810は、ユーザが操作するWebブラウザとサービスプロバイダ3820のWebサーバーとを中継するポータル・Webサイトとして機能する。このような構成をとることにより、世界中のユーザがサービスプロバイダ3820〜3820に容易にアクセスすることが可能になるとともに、世界中の研究機関や企業がデジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するビジネスに参画することが可能になる。
図39は、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する処理の手順の一例を示す。この処理は、サービスリクエスタ3810とサービスプロバイダ3820〜3820とが協働することにより実行される。
ステップS3901:サービスリクエスタ3810は、細胞パラメータと環境パラメータと刺激パラメータとを受け取り、細胞パラメータと環境パラメータと刺激パラメータとを含むリクエストを生成する。そのリクエストは、例えば、XMLで記述されている。
ステップS3902:サービスリクエスタ3810は、そのリクエストに応答してサービスレジストリ3840を検索し、サービスプロバイダ3820〜3820の中にそのリクエストのサービスを提供可能なサービスプロバイダ3820が存在するか否かを決定する。ここで、iは、1からNのいずれかを示す。
サービスプロバイダ3820〜3820が提供可能なサービスをサービスリジストリ3840に登録しておく方法としては任意の方法を採用することができる。例えば、サービスプロバイダ3820が細胞Aに対する実験結果を再現するサービスを提供可能である場合には、細胞Aを特定する細胞パラメータとサービスプロバイダ3820の位置を特定するアドレス(例えば、URL)とをデータベース3842に格納しておけばよい。例えば、サービスプロバイダ3820が細胞B、細胞Cに対する実験結果を再現するサービスを提供可能である場合には、細胞B、細胞Cを特定する細胞パラメータとサービスプロバイダ3820の位置を特定するアドレス(例えば、URL)とをデータベース3842に格納しておけばよい。あるいは、サービスプロバイダ3820が細胞Dに対する特定の実験条件を満たす実験結果を再現するサービスを提供可能である場合には、細胞Dを特定するパラメータとその実験条件を特定するためのパラメータ(例えば、環境パラメータ、刺激パラメータ)とサービスプロバイダ3820の位置を特定するアドレス(例えば、URL)とをデータベース3842に格納しておくようにしてもよい。
ステップS3903:サービスプロバイダ3820〜3820の中にそのリクエストのサービスを提供可能なサービスプロバイダ3820が存在すると決定された場合には、サービスリクエスタ3810は、そのリクエストをサービスプロバイダ3820に提供する。サービスプロバイダ3820の位置は、サービスレジストリ3840のデータベース3842を参照することによって特定され得る。
ステップS3904:サービスプロバイダ3820は、そのリクエストに応答してデータベース3822を検索し、データベース3822内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する該刺激応答結果が存在するか否かを決定する。
ステップS3905:データベース3822内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する刺激応答結果が存在すると決定された場合には、サービスプロバイダ3820は、その刺激応答結果をサービスリクエスタ3810に提供する。その刺激応答結果は、例えば、XMLで記述されている。
ステップS3906:サービスリクエスタ3810は、サービスプロバイダ3820によって提供された刺激応答結果を表示する。
なお、データベース3822内にそのリクエストに含まれる細胞パラメータと環境パラメータと刺激パラメータとに関連する刺激応答結果が存在しないと決定された場合には、サービスプロバイダ3820は、例えば、「該当なし」という結果をサービスリクエスタ3810に提供する。
また、細胞パラメータと環境パラメータと刺激パラメータとをサービスリクエスタ3810に入力する方法として任意の方法を採用し得ること、サービスリクエスタ3810が刺激応答結果を表示する態様として任意の態様を採用し得ることは、上述したとおりである。
このように、コンピュータシステム3801によれば、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供することが可能になる。これにより、実験設備を持たない研究機関や個人においても、細胞に関する最先端の研究を行うことが可能になる。さらに、コンピュータシステム3801によれば、複数のサービスプロバイダ3820〜3820が提供可能なサービスをサービスレジストリ3840に登録することによって、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するビジネスに参画する機会を世界中の研究機関や企業に与えることが可能になる。
本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。当業者は、以下の実施例から、適宜細胞、支持体、生物学的因子、塩、正に荷電した物質、負に荷電した物質、アクチン作用物質などを選択し、実施することができることが理解される。
以下に実施例を示して本発明をさらに詳しく説明するが、この発明は以下の例に限定されるものではない。以下の実施例において用いられる試薬、支持体などは、例外を除き、Sigma(St.Louis,USA、和光純薬(大阪、日本)、松浪硝子(岸和田、日本)などから市販されるものを用いた。
[実施例1:試薬]
この実施例において調製したものは以下のとおりである。
アクチン作用物質の候補として、種々の細胞外マトリクスタンパク質およびその改変体もしくはそのフラグメントを準備した。この実施例において調製したものは以下のとおりである。フィブロネクチンなどは、市販のものを用い、フラグメントおよび改変体は、遺伝子操作して改変したものを用いた。
1)フィブロネクチン(配列番号11);
2)フィブロネクチン29kDaフラグメント;
3)フィブロネクチン43kDaフラグメント;
4)フィブロネクチン72kDaフラグメント;
5)フィブロネクチン改変体(配列番号11のうち、152位のアラニンをロイシンに変化させたもの);
6)プロネクチンF(三洋化成、京都、日本);
7)プロネクチンL(三洋化成);
8)プロネクチンPlus(三洋化成);
9)ラミニン(配列番号6、8および10);
10)RGDペプチド(トリペプチド);
11)RGDを含んだ30kDaペプチド;
12)ラミニンの5アミノ酸(IKVAV);
13)ゼラチン。
DNAとしてトランスフェクションのためのプラスミドを調製した。プラスミドとして、pEGFP−N1およびpDsRed2−N1(ともにBD Biosciences,Clontech、CA、USA)を用いた。これらのプラスミドでは、遺伝子発現はサイトメガロウイルス(CMV)の制御下にある。プラスミドDNAを、E.coli(XL1 blue、Stratgene,TX,USA)中で増幅し増幅したプラスミドDNAを複合体パートナーの一方として用いた。DNAは、DNaseもRNaseも含まない蒸留水中に溶解した。
使用したトランスフェクション試薬は以下の通りである:Effectene Transfection Reagent(cat.no.301425,Qiagen,CA),TransFastTM Transfection Reagent(E2431,Promega,WI),TfxTM−20Reagent(E2391,Promega,WI),SuperFect Transfection Reagent(301305,Qiagen,CA),PolyFect Transfection Reagent(301105,Qiagen,CA),LipofectAMINE 2000 Reagent(11668−019,Invitrogen corporation,CA),JetPEI(×4)conc.(101−30,Polyplus−transfection,France)およびExGen 500(R0511,Fermentas Inc.,MD)。トランスフェクション試薬は、上記DNAおよびアクチン作用物質にあらかじめ加えるかあるいはDNAと複合体を先に生成してから使用した。
このようにして調製した溶液を以下のトランスフェクションアレイを用いたアッセイに用いた。
[実施例2:トランスフェクションアレイ−間葉系幹細胞を用いた実証]
本実施例では、固相におけるトランスフェクション効率の改善を観察した。そのプロトコルを以下に示す。
(プロトコル)
DNAの最終濃度は、1μg/μLに調整した。アクチン作用物質は、ddHO中で10μg/μLのストックとして保存した。全ての希釈をPBS、ddHOまたはダルベッコMEM培地を用いて行った。希釈系列として、例えば、0.2μg/μL、0.27μg/μL、0.4μg/μL、0.53μg/μL、0.6μg/μL、0.8μg/μL、1.0μg/μL、1.07μg/μL、1.33μg/μL、などを調製した。
トランスフェクション試薬は、それぞれの製造業者が提供する指示書に従って、使用した。
プラスミドDNA:グリセロールストックから100mLのL−amp中で一晩増殖させ、Qiaprep MiniprepまたはQiagen Plasmid Purification Maxiを用いて製造業者が提供する標準プロトコールによって精製した。
本実施例では、以下の5種類の細胞を利用して、効果を確認した:ヒト間葉系幹細胞(hMSCs、PT−2501、Cambrex BioScience Walkersville,Inc.,MD)、ヒト胚性腎細胞(HEK293、RCB1637、RIKEN Cell Bank,JPN)、NIH3T3−3細胞(RCB0150,RIKEN Cell Bank,JPN)、HeLa細胞(RCB0007、RIKEN Cell Bank,JPN)およびHepG2(RCB1648、RIKEN Cell Bank,JPN)。これらは、L−glutおよびpen/strepを含むDMEM/10%IFS中で培養した。
(希釈およびDNAのスポット)
トランスフェクション試薬とDNAとを混合してDNA−トランスフェクション試薬複合体を形成させる。複合体形成にはある程度の時間が必要であることから、上記混合物を、アレイ作製機(arrayer)を用いて固相支持体(例えば、ポリ−L−リジンスライド)にスポットした。本実施例では、固相支持体として、ポリ−L−リジンスライドのほか、APSスライド、MASスライド、コーティングなしのスライドを用いた。これらは、松浪硝子(岸和田、日本)などから入手可能である。
複合体形成およびスポット固定のために、真空乾燥機中で一晩スライドを乾燥させた。乾燥時間の範囲は、2時間から1週間とした。
アクチン作用物質は、上記複合体形成時に使用してもよいが、本実施例では、スポッティングの直前に使用する形態も試験した。
(混合液の調製および固相支持体への適用)
エッペンドルフチューブに、300μLのDNA濃縮緩衝液(EC緩衝液)+16μLのエンハンサーを混合した。これをボルテックスによって混合し、5分間インキュベートした。50μLのトランスフェクション試薬(Effecteneなど)を加え、そしてピペッティングによって混合した。トランスフェクション試薬を適用するために、スライドのスポットのまわりにワックス環状バリヤーを引いた。スポットのワックスで囲まれた領域に366μLの混合物を加え、室温で10から20分間インキュベートした。これにより、支持体への手動による固定が達成された。
(細胞の分配)
次に、細胞を添加するプロトコルを示す。トランスフェクトのために細胞を分配した。この分配は、通常、フード内で試薬を減圧吸引して行った。スライドを皿に置き、そしてトランスフェクションのために細胞を含む溶液を加えた。細胞の分配は、以下のとおりである。
細胞の濃度が25mL中10細胞になるように、増殖中の細胞を分配した。四角の100×100×15mmのペトリ皿または半径100mm×15mmの円形ディッシュ中で、スライド上に細胞をプレーティングした。約40時間、トランスフェクションを進行させた。これは、約2細胞周期にあたる。免疫蛍光のためにスライドを処理した。
(遺伝子導入の評価)
遺伝子導入の評価は、例えば、免疫蛍光、蛍光顕微鏡検査、レーザー走査、放射性標識および感受性フィルムまたはエマルジョンを用いた検出によって達成した。
可視化されるべき発現されたタンパク質が蛍光タンパク質であるなら、それらを蛍光顕微鏡検査で見てそして写真を撮ることができる。大きな発現アレイに関しては、スライドをデータ保存のためにレーザースキャナーで走査し得る。発現されたタンパク質を蛍光抗体が検出し得るなら、免疫蛍光のプロトコールを引き続いて行うことができる。検出が放射能に基づくなら、スライドを上記で示したように付着し得、そしてフィルムまたはエマルジョンを用いたオートラジオグラフィーによって放射能を検出することができる。
(レーザー走査および蛍光強度定量)
トランスフェクション効率を定量するために、本発明者らは、DNAマイクロアレイスキャナ(GeneTAC UC4×4、Genomic Solutions Inc.,MI)を使用した。総蛍光強度(任意の単位)を測定した後、表面積あたりの蛍光強度を計算した。
(共焦点顕走査顕微鏡による切片観察)
使用した細胞を、組織培養ディッシュに最終濃度1×10細胞/ウェルで播種し、適切な培地を用いて(ヒト間葉系細胞の場合ヒト間葉系細胞基本培地(MSCGM、BulletKit PT−3001、Cambrex BioScience Walkersville,Inc.、MD,USA)を用いた)培養した。細胞層を4%パラホルムアルデヒド溶液で固定した後、染色試薬であるSYTOおよびTexas Red−Xファロイジン(Molecular Probes Inc.,OR,USA)を細胞層に添加して、核およびFアクチンを観察した。遺伝子産物によって発色するサンプルまたは染色されたサンプルを共焦点レーザー顕微鏡(LSM510、Carl Zeiss Co.,Lrd、ピンホールサイズ=Ch1=123μm、Ch2=108μm;画像間隔=0.4)を用いて、切片像を得た。
(結果)
図1に一例としてHEK293細胞を用いた場合の種々のアクチン作用物質およびコントロールとしてのゼラチンを用いた結果を示す。
結果から明らかなように、ゼラチンを用いた系ではトランスフェクションがあまり成功していないのに対して、フィブロネクチン、フィブロネクチンの改変体であるプロネクチン(プロネクチンF、プロネクチンL、プロネクチンPlus)およびラミニンでは、顕著にトランスフェクションが起こっていた。従って、このような分子は、トランスフェクション効率を顕著に上昇させることが実証された。RGDペプチド単体では、その効果はほとんど見えなかった。
図2および3に、フィブロネクチンのフラグメントを用いた場合のトランスフェクション効率の結果を示す。図4にその結果をまとめた図を示す。29kDaおよび72kDaのフラグメントは、トランスフェクション活性が顕著に示され、43kDaフラグメントは、活性はあるものの、その程度は、低かった。従って、29kDaに含まれるアミノ酸配列がトランスフェクション効率の上昇に役割を果たしていることが示唆される。29kDaフラグメントは、夾雑がほとんど見られなかったのに対して、他の二つのフラグメント(43kDaおよび72kDa)では、夾雑が見られた。従って、29kDaドメインのみをアクチン作用物質として使用することが好ましくあり得る。また、RGDペプチドのみではトランスフェクション効率上昇活性は示されなかったが、これをつけた30kDaのペプチドでは活性が見られた。また、ラミニンの6アミノ酸をつけ高分子量にした系でもトランスフェクション活性が見られた。従って、これらのペプチド配列もまた、トランスフェクション効率上昇活性において重要な役割を果たし得るがそれに限定されない。このような場合、少なくとも5kDa、好ましくは少なくとも10kDa,より好ましくは少なくとも15kDaの分子量を含むことがトランスフェクション効率上昇に必要であり得る。
次に、種々の細胞におけるトランスフェクション効率を調べた結果を図5に示す。図5では、従来トランスフェクションが可能な細胞としてHEK293細胞、HeLa細胞、3T3細胞、ならびに従来トランスフェクションがほとんど不可能といわれていたHepG2細胞および間葉系幹細胞(MSC)を用いた本発明のトランスフェクション方法の効果を示す。縦軸にはGFPの強度を示した。
図5では、本発明の固相支持体を用いたトランスフェクション法との比較対照として、従来の液相トランスフェクション法を示した対比した。従来型の液相トランスフェクションの方法は、キットを製造する製造会社の推奨する方法に従って行った。
図5から明らかなように、従来トランスフェクション可能とされていたHEK293、HeLa、3T3はもちろん、トランスフェクション不可能とされていたHepG2およびMSCでも、HeLaおよび3T3に匹敵するトランスフェクション効率が達成された。このような効果は、従来のトランスフェクション系では決して達成されなかったことであり、事実上すべての細胞についてトランスフェクション効率を上昇させることができ、実用に耐え得るトランスフェクションをすべての細胞に提供する系が史上初めて提供されたことになる。また、固相条件を採用したことによって、相互夾雑も顕著に減少した。従って、固相支持体を使用する場合本発明は、集積化バイオアレイを製造するために適切な方法であることが実証された。
次に図6として、種々のプレートを用いた場合のトランスフェクションの状態を示す結果を提供する。図6の結果からも明らかなように、コーティングをした場合、コーティングをしていない場合よりも夾雑が少なくなっており、トランスフェクション効率も上昇しているようであることが明らかになった。
次に、図7として、フィブロネクチンの濃度を0、0.27、0.53、0.8、1.07および1.33(それぞれμg/μL)としてトランスフェクションを行った場合の結果を示す。図7では、PLL(ポリ−L−リジン)およびAPSでコーティングされたスライドおよびコーティングされていないスライドについて示す。
図7の結果から明らかなように、トランスフェクション効率は、フィブロネクチン濃度の上昇に伴って上昇することが明らかになった。ただし、PLLコーティングおよびコーティングなしの場合には、0.53μg/μLを超えると効率がプラトーに達していることがわかる。他方、APSの場合は、1.07μg/μLを超えても効果の上昇が見られた。
次に図8として、フィブロネクチンの有無での、細胞接着プロファイルを示す写真を示す。図9には、切片写真を示す。接着細胞の形状は、顕著に異なることが明らかになった(図8)。細胞培養の最初の3時間で、フィブロネクチン有の方は、細胞が完全に伸展したのに対して、フィブロネクチン無のほうは、伸展が限られていた(図9)。アクチンフィラメントの挙動を観察した図9の結果について経時的に観察した結果を勘案すると、固相支持体上に沈着したフィブロネクチンのようなアクチン作用物質がアクチンフィラメントの形状および方向に影響を与え、トランスフェクション効率などの物質の細胞への導入効率を上昇させるものと考えられる。具体的には、フィブロネクチンの存在下では、アクチンフィラメントは、迅速に配置転換し、細胞伸展とともに核の下にある細胞質空間から消失する。フィブロネクチンのようなアクチン作用物質によって誘導される核周辺のアクチン枯渇によって、DNAなどの標的物質が細胞内および必要に応じて核内へ移行すると考えられる。理論に束縛されないが、これは、細胞質の粘性の低下および正に荷電したDNA粒子が負に荷電したアクチンフィラメントに捕捉されることを防止するという効果に起因すると考えられる。また、核の表面積は、フィブロネクチン存在下で顕著に拡大することから(図10)、DNAなどの標的物質の核への移行が容易になるものと考えられる。
[実施例3:バイオアレイへの応用]
次に、上述の効果がアレイを用いた場合でも実証されるかどうかを確認するために規模拡大して実験を行った。
(実験プロトコル)
(細胞供給源、培養培地、および培養条件)
この実施例では、5種類の異なる細胞株を使用した:ヒト間葉系幹細胞(hMSC、PT−2501、Cambrex BioScience Walkersville,Inc.,MD)、ヒト胚性腎細胞HEK293(RCB1637、RIKEN Cell Bank,JPN)、NIH3T3−3(RCB0150、RIKEN Cell Bank,JPN)、HeLa(RCB0007、RIKEN Cell Bank,JPN)、およびHepG2(RCB1648、RIKEN Cell Bank,JPN)。ヒトMSC細胞の場合、この細胞を、市販のヒト間葉細胞基底培地(MSCGM BulletKit PT−3001,Cambrex BioScience Walkersville,Inc.,MD)中で維持した。HEK293細胞、NIH3T3−3細胞、HeLa細胞およびHepG2細胞の場合、これらの細胞を、10% ウシ胎仔血清(FBS、29−167−54、Lot No.2025F、Dainippon Pharmaceutical CO.,LTD.,JPN)を有するダルベッコ改変イーグル培地(DMEM、L−グルタミンおよびピルビン酸ナトリウムを有する高グルコース(4.5g/L);14246−25、Nakalai Tesque,JPN)中で維持した。全ての細胞株を、37℃、5% COに制御されたインキュベーター中で培養した。hMSCを含む実験において、本発明者らは、表現型の変化を回避するために、5継代未満のhMSCを使用した。
(プラスミドおよびトランスフェクション試薬)
トランスフェクションの効率を評価するために、pEGFP−N1ベクターおよびpDsRed2−N1ベクター(カタログ番号6085−1、6973−1、BD Biosciences Clontech,CA)を使用した。共に遺伝子発現は、サイトメガロウイルス(CMV)プロモーターの制御下であった。トランスフェクトされた細胞は、それぞれ、連続的にEGFPまたはDsRed2を発現した。プラスミドDNAを、Escherichia coli、XL1−blue株(200249,Stratagene,TX)を使用して増幅し、そしてEndoFree Plasmid Kit(EndoFree Plasmid Maxi Kit 12362、QIAGEN、CA)によって精製した。全ての場合において、プラスミドDNAを、DNaseおよびRNaseを含まない水に溶解した。トランスフェクション試薬は以下のようにして得た:Effectene Transfection Reagent(カタログ番号301425、Qiagen、CA)、TransFastTM Transfection Reagent(E2431、Promega、WI)、TfxTM−20 Reagent(E2391、Promega、WI)、SuperFect Transfection Reagent(301305、Qiagen、CA)、PolyFect Transfection Reagent(301105、Qiagen、CA)、LipofectAMINE 2000 Reagent(11668−019、Invitrogen corporation、CA)、JetPEI(×4)conc.(101−30、Polyplus−transfection、France)、およびExGen 500(R0511、Fermentas Inc.,MD)。
(固相系トランスフェクションアレイ(SPTA)生成)
「リバーストランスフェクション」につてのプロトコルの詳細は、ウェブサイト http://staffa.wi.mit.edu/sabatini_public/reverse_transfection.htmの「Reverse Transfection Homepage」に記載されていた。本発明者らの固相系トランスフェクション(SPTA方法)において、疎水性フッ素樹脂コーティングによって分離した48平方パターン(3mm×3mm)を有する3つの型のスライドガラス(シラン処理したスライドガラス;APSスライド、およびポリ−L−リジンでコーティングしたスライドガラス;PLLスライド、およびMASでコーティングしたスライド;Matsunami Glass Ind.,LTD.,JPN)を研究した。
(プラスミドDNAプリンティング溶液の調製)
SPTAを生成するための2つの異なる方法を開発した。その主な違いは、プラスミドDNAプリンティング溶液の調製にある。
(方法A)
Effectene Transfection Reagentを使用する場合、プリンティング溶液は、プラスミドDNAおよび細胞接着分子(4mg/mLの濃度で超純水に溶解したウシ血漿フィブロネクチン(カタログ番号16042−41、Nakalai Tesque、JPN))を含んだ。上記の溶液を、インクジェットプリンタ(synQUADTM、Cartesian Technologies,Inc.,CA)を用いてか、または手動で0.5〜10μLチップを用いて、スライドの表面に適用した。このプリントしたスライドガラスを安全キャビネットの内側で室温にて15分間かけて乾燥させた。トランスフェクションの前に、総Effectene試薬を、DNAプリントしたスライドガラス上に静かに注ぎ、そして室温にて15分間インキュベートした。過剰のEffectene溶液を、吸引アスピレーターを用いてスライドガラスから除去し、そして安全キャビネットの内側で室温にて15分間かけて乾燥させた。得られたDNAプリントしたスライドガラスを、100mm培養ディッシュの底に置き、そして約25mLの細胞懸濁液(2〜4×10細胞/mL)を、このディッシュに静かに注いだ。次いで、このディッシュを37℃、5% COのインキュベーターに移し、2〜3日間インキュベートした。
(方法B)
他のトランスフェクション試薬(TransFastTM、TfxTM−20、SuperFect、PolyFect、LipofectAMINE 2000、JetPEI(×4)conc.またはExGen)の場合、プラスミドDNA、フィブロネクチン、およびトランスフェクション試薬を、製造業業者が配布する指示書に示される比率に従って1.5mLのマイクロチューブ中で均一に混合し、そしてチップ上にプリンティングする前に室温にて15分間インキュベートした。プリンティング溶液を、インクジェットプリンターまたは0.5〜10μLチップを用いてスライドガラスの表面上に適用した。このプリントしたスライドガラスを、安全キャビネットの内側で室温にて10分間かけて完全に乾燥させた。プリントしたスライドガラスを100mm培養ディッシュの底に置き、そして約3mLの細胞懸濁液(2〜4×10細胞/mL)を添加し、安全キャビネットの内側で室温にて15分間にわたってインキュベートした。インキュベーション後、新鮮な培地をこのディッシュに静かに注いだ。次いで、このディッシュを37℃、5% COのインキュベーターに移し、2〜3日間インキュベートした。インキュベーション後、本発明者らは、蛍光顕微鏡(IX−71、Olympus PROMARKETING,INC.,JPN)を用いて、増強された蛍光タンパク質(EFP、EGFP、およびDsRed2)の発現に基づいてトランスフェクト体を観察した。位相差画像を同じ顕微鏡を用いて撮った。両プロトコルにおいて、細胞をパラホルムアルデヒド(PFA)固定方法(PBS中の4% PFA、処理時間は、室温にて10分間)を用いることによって固定した。
(レーザー走査および蛍光強度定量)
トランスフェクション効率を定量するために、本発明者らは、DNAマイクロアレイスキャナ(GeneTAC UC4×4、Genomic Solutions Inc.,MI)を使用した。総蛍光強度(任意の単位)を測定した後、表面積あたりの蛍光強度を計算した。
(結果)
(フィブロネクチン支持局所的トランスフェクション)
トランスフェクションアレイチップを、図11に示されるように構築した。トランスフェクションアレイチップは、PLLコーティングされたスライドグラス上でDNA/トランスフェクション試薬およびフィブロネクチンを含む細胞培養液をマイクロプリントすることによって構築した。
種々の細胞をこの実施例において用いた。これらの細胞は、通常使用される培養条件で培養した。これらの細胞はスライドガラスに付着することから、細胞は、効率よく取り込まれ、そしてアレイ上に与えられた位置でプリントされたDNAに対応する遺伝子を発現した。通常のトランスフェクション方法(例えば、カチオン性脂質またはカチオン性高分子媒介トランスフェクション)と比較すると、本発明の方法を用いた場合のトランスフェクション効率は、いずれも顕著に高かった。特に、トランスフェクトすることが困難とされていたHepG2、hMSCなどのような組織幹細胞でも、効率よくトランスフェクトされることが見出されたことは、特に重要である。hMSCの場合には、従来方法の約40倍以上の効率上昇が見られた。また、高密度アレイに必要な高い集積度も達成された(すなわち、アレイ上で隣接するスポット同士の間の夾雑が顕著に減っていた)。これは、EGFPおよびDs−REDのチェック状パターンのアレイを生成することによって確認した。ヒトMSCをこのアレイにおいて培養し、実質的にすべての空間解像度が示されるように対応する蛍光タンパク質を発現させた。その結果図12に示されるように、ほとんど夾雑していないことが明らかになった。プリント混合物の個々の成分の役割に関するこの研究に基づいて、種々の細胞に関して、トランスフェクション効率の最適化を行うことができる。
(フィブロネクチンによる局所的トランスフェクションにおける効率化)
本発明者らの上述してきたデータを総合すると、フィブロネクチンなどの接着因子または細胞外マトリクスタンパク質と称されていたタンパク質は、細胞接着活性以外の活性を有することが明らかになった。そのような活性としては、種々の細胞によって異なるが、これらの活性は、トランスフェクション効率の上昇に関与していることがわかる。なぜなら、フィブロネクチンの有無で接着の様子を調べた結果(図8)によると、接着の状態自体は差異が見られなかったからである。
(ヒト間葉系幹細胞の固相系トランスフェクションアレイ)
多様な種類の細胞に分化するヒト間葉系幹細胞(hMSC)の能力は、組織再生および組織復活を標的化する研究にとって特に興味深いものになっている。特に、これらの細胞の形質転換についての遺伝子解析は、hMSCの多能性を制御する因子を解明する上で、関心が高まっている。hMSCの研究は、所望の遺伝物質を用いたトランスフェクションが不可能な点にある。
これを達成するために、従来の方法は、ウイルスベクターまたはエレクトロポレーションのいずれかの技術を含む。本発明者らが開発した複合体−塩という系を用いることにより、種々の細胞株(hMSCを含む)に対して高いトランスフェクション効率ならびに密集したアレイ中での空間的な局在の獲得を可能にする固相系トランスフェクションが達成された。固相系トランスフェクションの概略を、図13Aに示す。
固相系トランスフェクションにより、インビボ遺伝子送達のために使用され得る「トランスフェクションパッチ」の技術的な達成ならびにhMSCにおける高スループットの遺伝子機能研究のための固相系トランスフェクションアレイ(SPTA)が可能になることが判明した。
哺乳動物細胞をトランスフェクトするための多数の標準的な方法が存在するが、遺伝物質のhMSCへの導入については、HEK293、HeLaなどの細胞株を比較して不便かつ困難であることが知られている。従来使用されるウイルスベクター送達またはエレクトロポレーションのいずれも重要であるが、潜在的な毒性(ウイルス方法)、ゲノムスケールでの高スループット分析を受けにくいこと、およびインビボ研究に対して制限された適用性(エレクトロポレーションに関して)のような不便さが存在する。
固相支持体に簡便に固定することができ、かつ徐放性および細胞親和性を保持した固相支持体固定系が開発されたことにより、これらの欠点のほとんど克服することができた。
上述の実験の結果の一例を、図13Bに示す。マイクロプリンティング技術を使用する本発明者らの技術を用いて、選択された遺伝物質、トランスフェクション試薬および適切な細胞接着分子、ならびに塩を含む混合物を、固体支持体上に固定化し得た。混合物を固定化した支持体の上での細胞培養は、その培養細胞に対する、混合物中の遺伝子の取り込みを可能にした。その結果、支持体−接着細胞における、空間的に分離したDNAの取り込みを可能にした(図13B)。
本実施例の結果、いくつかの重要な効果が達成された:高いトランスフェクション効率(その結果、統計学的に有意な細胞集団が研究され得る)、異なるDNA分子を支持する領域間の低い相互夾雑(その結果、個々の遺伝子の効果が、別々に研究され得る)、トランスフェクト細胞の長期生存、高スループットの互換性のある形式および簡便な検出方法。これらの基準を全て満たすSPTAは、さらなる研究のための適切な基盤となる。
これらの目的の達成を明確に確立するために、上述のように本発明者らは、5種類の異なる細胞株(HEK293、HeLa、NIH3T3、HepG2およびhMSC)を、本発明者らの方法論(固相系でのトランスフェクション)(図13Aおよび図13Cを参照のこと)および従来の液相系トランスフェクションの両方を用いて一連のトランスフェクション条件下で研究した。SPTAの場合、相互夾雑を評価するために、本発明者らは、チェック模様のパターンでガラス支持体上にプリントした赤色蛍光タンパク質(RFP)および緑色蛍光タンパク質(GFP)を使用し、一方、従来の液相系トランスフェクションを含む実験の場合(ここで、本来、トランスフェクト細胞の自発的な空間的分離は達成され得ない)、本発明者らは、GFPを使用した。いくつかのトランスフェクション試薬を評価した:4つの液体トランスフェクション試薬(Effectene、TransFastTM、TfxTM−20、LopofectAMINE 2000)、2つのポリアミン(SuperFect、PolyFect)、ならびに2つの型のポリイミン(JetPEI(×4)およびExGen 500)。
トランスフェクション効率:トランスフェクション効率を、単位面積あたりの総蛍光強度として決定した(図14A。図14Bはそのイメージを示す。)。使用した細胞株に従って、最適な液相の結果を、異なるトランスフェクション試薬を用いて得た(図14C−Dを参照のこと)。次いで、これらの効率的なトランスフェクション試薬を、固相系プロトコルの最適化に使用した。いくつかの傾向が観察された:容易にトランスフェクト可能な細胞株(例えば、HEK293、HeLa、NIH3T3)の場合、固相系プロトコルで観察されたトランスフェクション効率は、標準的な液相系プロトコルと比較してわずかに優れていたが、本質的に類似したレベルで達成されている(図14)。
しかし、細胞をトランスフェクトするのが困難な場合(例えば、hMSCおよびHepG2)においてSPTA方法論に最適化した条件を用いることによって、本発明者らは、細胞の特徴を維持しながら、トランスフェクション効率が40倍まで増加したことを観察した(上述のプロトコルおよび図14C−Dを参照のこと)。hMSCの特定の場合(図15)、最良条件は、ポリエチレンイミン(PEI)トランスフェクション試薬の使用を含んだ。予想したように、高いトランスフェクション効率を実現するための重要な因子は、ポリマー内の窒素原子(N)の数とプラスミドDNA内のリン酸残基(P)の数との間の電荷バランス(N/P比率)、ならびにDNA濃度である。一般的に、N/P比率および濃度における増大は、トランスフェクション効率の増大を生じる。並行して、本発明者らは、hMSCの溶液トランスフェクション実験における高いDNAおよび高いN/P比率の場合に、細胞生存率の有意な低下を観察した。これら2つの拮抗因子に起因して、hMSCの液相系トランスフェクションの効率は、かなり悪い非常に低い細胞生存率(N/P比率>10で観察された)であった。しかし、SPTAプロトコルは、細胞生存率にも細胞形態にも有意に影響を与えることなく、非常に高い(固体支持体に固定された)N/P比率およびDNA濃度を許容し(おそらく、細胞膜に対する固体支持体の安定化効果に起因する)、従って、このことがおそらく、トランスフェクション効率の劇的な改善の原因となっている。SPTAの場合、10のN/P比率が最適であることが見出され、細胞毒性を最小化しながら十分なトランスフェクションレベルを提供する。SPTAプロトコルにおいて観察されたトランスフェクション効率の増大に関するさらなる理由は、高い局所的なDNA濃度/トランスフェクション試薬濃度(これは、液相系トランスフェクション実験において使用される場合は細胞死を生成する)の達成である。
チップ上での高いトランスフェクション効率の達成のための重要な点は、使用されるコーティング剤である。ガラス製のチップを用いた場合、PLLが、トランスフェクション効率および相互夾雑の両方に関して、最良の結果を提供することを発見した(下記に考察する)。フィブロネクチンコーティングしない場合、少数のトランスフェクト体を観察した(他のすべての実験条件は一定に保った)。完全に確立したわけではないが、フィブロネクチンの役割はおそらく、細胞接着プロセスを加速し(データは示していない)、ゆえに、表面を離れたDNA拡散が可能になる時間を制限するということである。
低い相互夾雑:SPTAプロトコルで観察されたより高いトランスフェクション効率は別として、本技術の重要な利点は、別個に分離された細胞アレイの実現であり、その各位置では、選択した遺伝子が発現する。本発明者らは、フィブロネクチンでコーティングしたガラス表面上に、JetPEI(「実験プロトコル」を参照のこと)およびフィブロネクチンと混合した2つの異なるレポーター遺伝子(RFPおよびGFP)をプリントした。得られたトランスフェクションチップを適切な細胞培養に提供した。最良であると見出された実験条件下において、発現されたGFPおよびRFPは、それぞれのcDNAがスポットされた領域に局在した。相互夾雑はほとんど観察されなかった(図16)。しかし、フィブロネクチンまたはPLLの非存在下において、固相でのトランスフェクションの障害となる相互夾雑が観察され、そしてトランスフェクション効率は、有意に低かった(図6を参照)。このことは、細胞接着および支持体表面から離れて拡散するプラスミドDNAの相対的な割合が、高いトランスフェクション効率および高い相互夾雑の両方に対して重要な因子であるという仮説を立証する。
相互夾雑のさらなる原因は、固体支持体上のトランスフェクション細胞の移動性であり得る。本発明者らは、数個の支持体上での細胞接着速度(図16C)およびプラスミドDNAの拡散速度の両方を測定した。その結果、最適条件下においてDNA拡散はほとんど生じなかった。しかし、高い相互夾雑条件下において、細胞接着が完了するまでの時間に、相当な量のプラスミドDNAが拡散し、その結果、固相表面からプラスミドDNAが涸渇した。
この確立された技術は、経済的な高スループットの遺伝子機能スクリーニングの状況において特に重要である。実際に、必要とされる少量のトランスフェクション試薬およびDNA、ならびに全プロセス(プラスミドの単離から検出まで)を自動化する可能性は、上記の方法の有用性を増大する。
結論として、本発明者らは、複合体−塩を用いた系で、hMSCトランスフェクションアレイを好首尾に実現した。このことは、多能性幹細胞の分化を制御する遺伝子機構の解明など、固相系トランスフェクションを利用した種々の研究における高スループット研究を可能にすることになる。固相系トランスフェクションの詳細な機構ならびに高スループットのリアルタイム遺伝子発現モニタリングに対するこの技術の使用に関する方法論は種々の目的に応用可能であることが明らかになった。
[実施例4:数理解析]
次に、実施例2の手法を用いて得られたデータをもとにプロファイルを生成した。
(分化誘導)
各レポーターを固相支持体に固定し、未分化の間葉系幹細胞の維持培地(MSCGM、PT−3001、PT−3238、PT−4105、Cambrex、BioWhittaker,USA)において2日間培養後、分化誘導培地(hMSC Differentiation、PT−3002、PT−4120、Cambrex、BioWhittaker,USA)に培地を換え、各レポーターの応答プロファイルを測定した。
(数理解析法)
使用した数理解析法を図18(図18A−B(18−1〜18−2))に示す。
(使用した転写因子)
図19および図24に示すように、17種類の転写因子(ISRE、RARE、STAT3、GAS、NFAT、MIC、AP1、SRE,GRE,CRE、NFκB、ERE、TRE、E2F、Rb、p53)を、GFPに作動可能に連結したプラスミド(Clontechから市販される)を用いて、間葉系幹細胞の骨芽細胞分化を観察した。このとき得られたプロファイルを図19に示す。また、転写因子レポーターの構築は、図23に示されるように行った。
転写因子のレポーターのアッセイを行った。これはClontechにより公開されているコントロール条件(細胞、添加因子、培養条件など)にしたがって行った。
その結果を図25に示す。このようにDNAのみと比較した場合、ほとんどの転写因子において誘導因子を添加したときに誘導がかかることが実証された。
次に、骨分化誘導の際の転写因子活性の時系列的測定を行った。これは上述の条件に従って、分化誘導させたときにプロファイルを比較したものである。プロファイルは、各レポーター遺伝子を固相系トランスフェクション法を用いて導入し、2日間未分化維持培地にて培養を行い、骨芽細胞分化誘導培地と交換した。この時点を骨芽細胞分化開始時間とした。添加因子などに関しては、骨芽細胞分化誘導培地に推奨の濃度にて行った。その他の培養に関しては、Cambrex社の指示書通りに行った。
結果を図26に示す。培地交換後10時間〜30時間では、図26に左のようなプロファイルパターンを示していたのに対し、培地交換後5〜6日では、右のようなプロファイルパターンを示し、顕著に変動していることが明らかになった。これを、図27に示される式を用いて、位相を算出し、その結果を図27の右の表にまとめた。このように、分化に特に深い関係がある、ISRE、RARE、STAT3、GRE、CRE、TRE、E2F、およびp53において、位相の反転が見られた。従って、位相を判定することは、プロセスの変化が起こる、つまり、転写制御が起こっていると判定することができることが明らかになった。
(プロモーターの任意性)
次に、分化誘導初期において任意に抽出される組み合わせを変化させるときの同定可能性を実証した。解析は図20に示されるように行った。
この結果を図20に示す。この解析により、分化のごく初期に関しては、分化誘導を把握できない(他のノイズもあると考えられる)が、約15時間後以降では、確認することが可能であることが判明した。変化を同定することができるのが100%となったのは、本実施例では8以上であったが、抽出数が3のときでもすでに90%を超える同定率を示しており、2のときでも88%、1のときでも82%を示していることから、1つでも、2つでも、あるいは少なくとも3つでも、細胞の状態を判定または同定するのに充分であることが明らかになった。
(未分化維持)
次に、未分化維持に関して、任意に抽出される組み合わせを変化させて解析した。解析は図20に記載されるものに準じて行った。
この結果を図21に示す。分化誘導時の結果と比べると大きく異なり、この比較によって、本実施例での処理により、幹細胞が分化誘導に向かっているのか未分化を未分化を維持しているのかが判断することができる。このような判断は、少なくとも1つの生物学的因子を用いることによって行うことができた。このように少ない数でも充分に細胞の状態を判定することができることは、従来技術では達成できなかったことであり、本発明は、優れた効果を達成したということができる。
このようにプロセスを解析することによって、図22に示すように、細胞機能の形成は、種々の因子のカクテルパーティープロセスとして記述することが可能であることがわかる。このようなプロセス記述により、本発明は、薬剤応答プロセスおよび分化誘導プロセスの解析を行うことを可能にした。
[実施例5:抗がん剤]
本実施例では、シスプラチンを抗がん剤の例として、培地に混ぜ、細胞に曝露した。用いた濃度としては、1μM、5μM、10μMなどを適宜採用して細胞の反応を見た。シスプラチンに耐性の細胞および感受性の細胞に対してシスプラチンを適用し、上述の実施例と同様にしてプロファイルを観察した。その結果、シスプラチンの濃度および耐性/感受性の違いにより、顕著にプロファイルが変動することが明らかになった。
[実施例6:RNAi]
実施例1に記載されるように細胞を固定し、生物学的因子としてRNAiを用いて遺伝子ノックダウン効果に関するプロファイルを取得することができることを実証した。RNAiとして以下のものを用いて、以下の実験を行った。リボザイム、siRNAなどの遺伝子発現抑制法を用いて遺伝子発現抑制を行った細胞における応答反応をプロフィールとして得ることが可能である。
RNAi:http://www.nippongene.jp/pages/products/sirna/review/において入手可能な配列(例えば、Control siRNA duplex)を使用した。
(RNAiのトランスフェクション)
siRNAがまず、ノックダウンし得るかどうかを確認した。EGFPに対する5’−AAGCAGCAGGACUUCUUCAAG−3’siRNA(配列番号12)を合成し、これを上述の実施例に記載されるようにアレイ基板を調製した。ここでは、プロモーター配列を含む核酸分子の代わりにsiRNAを用いてアレイ基板を調製した。このアレイ基板を用いてトランスフェクトすると、標的遺伝子の発現が効果的に抑制されるかどうかを確認した。そのプロトコルは、図28に示される。
(結果)
siRNAによる標的遺伝子抑制の効果を示す結果を図29Aに示す。実際に標的遺伝子の発現が効果的に抑制された。このゲルでの結果は、任意のデータ形式でプロファイルとして格納することができる。
次に、siRNAでの結果をプロファイルデータとして保存する。(5μm/pixel以下の解像度有するTIFFフォーマットの画像データ)。このようにsiRNAでの結果は、プロファイルデータとして保存できる。そのような形式は、この実施例で示した形式に限定されず、当業者は任意の形式を用いることができる。
[実施例9:コラーゲンIVコートチップ上におけるPC12細胞のトランスフェクションマイクロアレイのsiRNAを用いた応用例]
次に、siRNAを用いた遺伝子発現抑制実験を本実施例において行った。本実施例では、EGFPに対するsiRNAが特異的にEGFPの発現を抑制できるかどうかを指標に本発明が機能するかどうかを評価した。
実施例7などに記載されるような条件を用いて、コラーゲンIVをコーティングしたアレイ上でPC12のトランスフェクションを行った。実施例7において使用される遺伝子に代えて、以下の条件を使用した。
0.75ngの発現ベクター(pEGFP−N1)、HcRed(BD Clonetchより購入)をそれぞれアレイ上の1スポットにスポッティングした。この後、16.5ngのsiRNA(Dharmaconより購入。標的配列:5’−GGC TAC GTC CAG GAG CGC ACC −3’(配列番号47)=a)またはスクランブルsiRNA(Dharmaconより購入。標的配列:5’−gCg CgC TTT gTA ggA TTC g−3’(配列番号48)=b)をこのスポットに適用した。
結果を図29Bに示す。図29B(A)に示されるように、EGFPベクターおよび抗EGFP siRNAを共トランスフェクションしたPC12細胞の場合、HcRedのみが発色し、pEGFP−N1に由来する緑色信号が抑制されていたことが判明した。他方、図29B(B)に示されるように、スクランブルsiRNAの場合は、緑色の蛍光が観察され、図29B(A)における効果は、RNAiの効果であることが確認された。図29B(A)および図29B(B)における蛍光の強度を相対的に示した図を図29B(C)に示す。y軸は相対輝度により示す。EGFPによる効果は、ほぼ完全に抑えられていることが分かる。
図29Cには、これらをまとめた結果およびグラフを示す。左のパネルは、RNAiとpDNAとの比率を変動させた場合の、EGFPのRNAiとスクランブル(Mock)RNAiとを比較した写真である。示されるように、EGFPのRNAiでは阻害効果が示されているのに対してスクランブルでは、変化がなかった。こrを、DsRed2とともに示したものを右パネルに示す。実験条件は、上述のものに準じた。その結果、赤(DsRed由来のシグナル)および緑(EGFP由来のシグナル)は、RNAiの効果に比例して示された。
図29Dには、RNAiレポーターを用いたチップの模式図を示す。インプットシグナルとしてRNAiを使用した場合、そのアウトプットとしてEGFなどのシグナル発信が可能な遺伝子産物と目的となる遺伝子(プロモーターを含む)をコードする核酸を共に導入した場合、アウトプットとしてそのシグナル発信を観察することによって、細胞情報を取り出すことが可能である。
図29Eには、種々のレポーター(pAP1−EGFP,pAP1(PMA)−EGFP,pCRE−EGFP,pE2F−EGFP,pERE−EGFP,pGAS−EGFP,pGRE−EGFP,pHSE−EGFP,pISRE−EGFP,pMyc−EGFP,pNFAT−EGFP,pNFkB−EGFP,pRARE−EGFP,pRb−EGFP,pSTST3−EGFP,pSRE−EGFP,pTRE−EGFP,pp53−EGFP,pCREB−sensor,pIkB−sensor,pp53−sensor,pCasapase3−sensor;シスエレメント配列は、クロンテックより購入。蛍光蛋白質遺伝子を組み換えて作成したプラスミドベクター)を用いた実験例を示す。このように、どのようなレポーターを用いても、本発明のシステムが作動することが分かる。
[実施例7:テトラサイクリン依存性プロモーターを用いた遺伝子発現調節]
実施例1〜3に記載の実施例と同様に、テトラサイクリン依存性プロモーターを用いて遺伝子発現調節がどのようになされるかをプロファイルとして生成することができることを実証した。使用した配列は以下のとおりである。
テトラサイクリン依存性プロモーター(およびその遺伝子ベクター構築物)としては、BD BiosciencesのpTet offおよびpTetonベクター系を用いた(http://www.clontech.com/techinfo/vectors/cattet.shtmlを参照)。ベクターは、pTRE−d2EGFPを利用した(http://www.clontech.com/techinfo/vectors/vectorsT−Z/pTRE−d2EGFP.shtmlに記載されている)。
(プロトコル)
アレイ基板上に、テトラサイクリン依存性プロモーターと、非依存性プロモーター(配列をご教示ください)とをプリントし、同一基板上においてテトラサイクリンによる遺伝子発現調節がされるかどうかをリアルタイムで計測した。その結果を、図30に示す。図30に示されるように、依存性プロモーターでのみ遺伝子発現の変化が測定された。図31には、非依存性と依存性とにおける発現の実際の様子を写真として示す。このように、肉眼でもはっきりわかる程度に比較可能に変化が測定可能となる。
(プロファールデータの測定)
リアルタイムに取得した画像をもとにして、細胞あたり、面積あたりの輝度変化をグラフ化し、ノイズ除去などの一次変換の後、多変量解析、信号処理法などを適用し、プロファイルデータを提示することができた。これを現象ごと、細胞ごとに比較することで、細胞特有の応答や同一性を取得することができた。
[実施例8:遺伝子発現]
次に、構造遺伝子をコードする核酸分子を用いて細胞のプロファイルを作成した。ここでは、構造遺伝子として、嗅覚レセプターI7(配列番号13、14)を使用した。プロトコルは、実施例1〜3に準じた。
その結果、プロモーターと同様に、遺伝子産物の量などを測定することで、細胞のプロファイルを作成することができることが実証された。
[実施例9:アポトーシスシグナル]
次に、細胞内にあるカスパーゼ3の活性化に着目してモニターしても、細胞のプロファイルを作成することができることを調べた。トランスフェクトおよびアレイの調製は上述の実施例と同様に行った。
ここでは、pCaspase3−Sensor Vector(BD Biosciences Clontech,1020 East Meadow Circle,Palo Alto,CA94303;カタログ番号8185−1)を用いて、アポトーシスシグナルであるカスパーゼ3をモニターした。
その結果、プロモーターと同様に、アポトーシスシグナルなどを測定することで、細胞のプロファイルを作成することができることが実証された。
[実施例10:ストレスシグナル]
次に、細胞内にあるJNK、ERK、p38などのアポトーシスシグナルを転写因子レポーターを使用してストレスシグナルに関し細胞のプロファイルを作成することができることを調べた。トランスフェクトおよびアレイの調製は上述の実施例と同様に行った。
ここでは、BD Bioscience Clontechから入手したpAP1−EGFP、pCRE−EGFP、pSRE−EGFPを用いて、ストレスシグナルであるJNK、ERK、p38をモニターした。
その結果上述の実施例と同様に、ストレスシグナルなどを測定することで、細胞のプロファイルを作成することができることが実証された。
[実施例11:分子局在化]
次に、蛍光タンパク質を目的遺伝子に融合させ、その発現プロファイルおよび細胞内における局在化を可視化することができることを実証した。
ここでは、蛍光タンパク質として、GFP,RFP,CFP,BFPを使用し、目的遺伝子として、KIAAクローン、cDNAライブラリーなどを使用し、これらを用いて遺伝子構築物を作製した。具体的に使用したものは以下のとおりである。
KIAA cDNAクローン(KIAA=かずさDNA研究所、かずさ、千葉から入手可能)
インビトロジェンのcDNA市販ライブラリー
トランスフェクトおよびアレイの調製は上述の実施例と同様に行った。
ここでは、KIAAクローンの内のKIAA1474を用いて、発現プロファイルおよび局在化をモニターした。
その結果上述の実施例と同様に、意図的に構築した遺伝子構築物を用いて、意図したパラメータについて、細胞のプロファイルを作成することができることが実証された。
[実施例12:細胞形態変化]
次に、ある遺伝子を発現させて、あるいは、ノックダウンし、あるいは、添加物質(ここでは、化学物質としてグリセロフォスフェートを使用し、サイトカインとしてデキサメタゾンを使用する)細胞形態の変化をプロファイルとして取得することができることを実証した。細胞形態としては、細胞の多核化、伸展状態、伸展突起の伸長などを、三次元データとして取得し、解析した。
ここでは、導入した核酸分子の具体的な配列は以下のとおりである。
KIAAクローン(前出)
転写因子に対するRNAi(CBFA−1,AP1)。
トランスフェクトおよびアレイの調製は上述の実施例と同様に行った。
ここでは、上述の実施例で用いた間葉系幹細胞を用いて、骨芽細胞分化誘導した際の細胞形態をモニターした。
その結果上述の実施例と同様に、意図的に構築した遺伝子構築物を用いて、意図したパラメータについて、細胞のプロファイルを作成することができることが実証された。
[実施例13:分子間相互作用]
次に、ツーハイブリッドシステム、FRET、BRETなどの手法を用い又細胞のプロファイルを取得することができることを実証した。
ここでは、導入した核酸分子の具体的な配列は以下のとおりである。
嗅覚レセプター(配列番号13〜38に示す配列をもつもの)とGタンパク質(配列番号39〜44に示す配列をもつもの)
トランスフェクトおよびアレイの調製は上述の実施例と同様に行った。
ここでは、嗅覚レセプターとGタンパク質の解離を臭い物質の誘導によってモニターし、これを蛍光波長の変化として用いて、細胞をモニターした。
ここで使用したツーハイブリッドシステム、FRETおよびBRETは、具体的には以下のようにして行った。
ツーハイブリッドシステム(Clontechから入手;http://www.clontech.co.jp/product/catalog/007003006.shtml)。FRETおよびBRETは、ベルトールドジャパンから入手可能な機器を用いて測定した。
その結果上述の実施例と同様に、意図的に構築した遺伝子構築物を用いて、ツーハイブリッドシステム、FRET、BRETなどによっても、細胞のプロファイルを作成することができることが実証された。
[実施例14:レセプター−リガンド]
次に、レセプターとリガンドとの相互作用を指標に細胞のプロファイルを取得することができることを実証した。細胞膜、核膜などに存在するレセプタータンパク質とリガンドとの相互作用情報を取得することは、細胞内のネットワーク形成に有用である。
この実施例において調製したものは以下のとおりである。
(細胞接着因子)
細胞接着分子の候補として、種々の細胞外マトリクスタンパク質およびその改変体もしくはそのフラグメントを準備した。この実施例において調製したものは以下のとおりである。細胞接着因子などは、市販のものを用いた。
1)プロネクチンF(三洋化成、京都、日本);
2)プロネクチンL(三洋化成);
3)プロネクチンPlus(三洋化成);
4)フィブロネクチン(配列番号2)
5)ゼラチン。
DNAとしてトランスフェクションのためのプラスミドを調製した。プラスミドとして、pEGFP−N1およびpDsRed2−N1(ともにBD Biosciences,Clontech、CA、USA)を用いた。EGFの配列は、配列番号45−46に示される。これらのプラスミドでは、遺伝子発現はサイトメガロウイルス(CMV)の制御下にある。プラスミドDNAを、E.coli(XL1 blue、Stratgene,TX,USA)中で増幅し増幅したプラスミドDNAを複合体パートナーの一方として用いた。DNAは、DNaseもRNaseも含まない蒸留水中に溶解した。
使用したトランスフェクション試薬は以下の通りである:Effectene Transfection Reagent(cat.no.301425,Qiagen,CA),TransFastTM Transfection Reagent(E2431,Promega,WI),TfxTM−20 Reagent(E2391,Promega,WI),SuperFect Transfection Reagent(301305,Qiagen,CA),PolyFect Transfection Reagent(301105,Qiagen,CA),LipofectAMINE 2000 Reagent(11668−019,Invitrogen corporation,CA),JetPEI(×4)conc.(101−30,Polyplus−transfection,France)およびExGen 500(R0511,Fermentas Inc.,MD)。トランスフェクション試薬は、上記DNAおよび細胞接着分子にあらかじめ加えるかあるいはDNAと複合体を先に生成してから使用した。
このようにして調製した溶液を以下のトランスフェクションアレイ作製に用いた。次に固相におけるトランスフェクション効果を観察した。そのプロトコルを以下に示す。
(プロトコル)
DNAの最終濃度は、1μg/μLに調整した。細胞接着分子は、ddHO中で10μg/μLのストックとして保存した。全ての希釈をPBS、ddHOまたはDMEM培地を用いて行った。希釈系列として、例えば、0.2μg/μL、0.27μg/μL、0.4μg/μL、0.53μg/μL、0.6μg/μL、0.8μg/μL、1.0μg/μL、1.07μg/μL、1.33μg/μLなどを調製した。
トランスフェクション試薬は、それぞれの製造業者が提供する指示書に従って、使用した。
プラスミドDNA:グリセロールストックから100mLのL−amp中で一晩増殖させ、Qiaprep MiniprepまたはQiagen Plasmid Purification Maxiを用いて製造業者が提供する標準プロトコールによって精製した。
本実施例では、以下の5種類の細胞を利用して、効果を確認した:ヒト間葉系幹細胞(hMSCs、PT−2501、Cambrex BioScience Walkersville,Inc.,MD)、ヒト胚性腎細胞(HEK293、RCB1637、RIKEN Cell Bank,JPN)、NIH3T3−3細胞(RCB0150,RIKEN Cell Bank,JPN)、HeLa細胞(RCB0007、RIKEN Cell Bank,JPN)およびHepG2(RCB1648、RIKEN Cell Bank,JPN)。これらは、L−glutおよびpen/strepを含むDMEM/10%IFS中で培養した。
(希釈およびDNAのスポット)
トランスフェクション試薬とDNAとを混合してDNA−トランスフェクション試薬複合体を形成させる。複合体形成にはある程度の時間が必要であることから、上記混合物を、アレイ作製機(arrayer)を用いて固相支持体(例えば、ポリ−L−リジンスライド)にスポットした。本実施例では、固相支持体として、ポリ−L−リジンスライドのほか、APSスライド、MASスライド、コーティングなしのスライドを用いた。これらは、松浪硝子(岸和田、日本)などから入手可能である。
複合体形成およびスポット固定のために、真空乾燥機中で一晩スライドを乾燥させた。乾燥時間の範囲は、2時間から1週間とした。
細胞接着分子は、上記複合体形成時に使用してもよいが、本実施例では、スポッティングの直前に使用する形態も試験した。
(混合液の調製および固相支持体への適用)
エッペンドルフチューブに、300μLのDNA濃縮緩衝液(EC緩衝液)+16μLのエンハンサーを混合した。これをボルテックスによって混合し、5分間インキュベートした。50μLのトランスフェクション試薬(Effecteneなど)を加え、そしてピペッティングによって混合した。トランスフェクション試薬を適用するために、スライドのスポットのまわりにワックス環状バリヤーを引いた。スポットのワックスで囲まれた領域に366μLの混合物を加え、室温で10から20分間インキュベートした。これにより、支持体への手動による固定が達成された。
(細胞の分配)
次に、細胞を添加するプロトコルを示す。トランスフェクトのために細胞を分配した。この分配は、通常、フード内で試薬を減圧吸引して行った。スライドを皿に置き、そしてトランスフェクションのために細胞を含む溶液を加えた。細胞の分配は、以下のとおりである。
細胞の濃度が25mL中10細胞になるように、増殖中の細胞を分配した。四角の100×100×15mmのペトリ皿または半径100mm×15mmの円形ディッシュ中で、スライド上に細胞をプレーティングした。約40時間、トランスフェクションを進行させた。これは、約2細胞周期にあたる。免疫蛍光のためにスライドを処理した。
(遺伝子導入の評価)
遺伝子導入の評価は、例えば、免疫蛍光、蛍光顕微鏡検査、レーザー走査、またはエマルジョンを用いた検出によって達成した。
可視化されるべき発現されたタンパク質が蛍光タンパク質であるなら、それらを蛍光顕微鏡検査で見てそして写真を撮ることができる。大きな発現アレイに関しては、スライドをデータ保存のためにレーザースキャナーで走査し得る。あるいは、カルシウムの場合のように、特異的な蛍光で検出可能な場合は、その蛍光を検出することによってシグナルを検出することができる。発現されたタンパク質を蛍光抗体が検出し得るなら、免疫蛍光のプロトコールを引き続いて行うことができる。
(レーザー走査および蛍光強度定量)
トランスフェクション効率を定量するために、本発明者らは、DNAマイクロアレイスキャナ(GeneTAC UC4×4、Genomic Solutions Inc.,MI)を使用した。総蛍光強度(任意の単位)を測定した後、表面積あたりの蛍光強度を計算した。
(共焦点顕走査顕微鏡による切片観察)
使用した細胞を、組織培養ディッシュに最終濃度1×10細胞/ウェルで播種し、適切な培地を用いて(ヒト間葉系細胞の場合ヒト間葉系細胞基本培地(MSCGM、BulletKit PT−3001、Cambrex BioScience Walkersville,Inc.、MD,USA)を用いた)培養した。細胞層を4%パラホルムアルデヒド溶液で固定した後、染色試薬であるSYTOおよびTexas Red−Xファロイジン(Molecular Probes Inc.,OR,USA)を細胞層に添加して、核およびFアクチンを観察する。遺伝子産物によって発色するサンプルまたは染色されたサンプルを共焦点レーザー顕微鏡(LSM510、Carl Zeiss Co.,Ltd、ピンホールサイズ=Ch1=123μm、Ch2=108μm;画像間隔=0.4)を用いて、切片像を得る。
次に、嗅覚レセプターをレセプター−リガンドの相互作用の観察のための資料として、本発明のセンサに応用した実施例を示す。予備的実験を行ったところ、嗅覚レセプターでもトランスフェクションアレイを用いることが可能であることが判明した。
嗅覚レセプター発現ベクター群をレセプター種毎にスポットし、アレイ状にしたカバーグラスを信号測定用チャンバーにネジなどで固定し、その上に性質がほぼ均一な細胞を培養しておいた。信号測定用チャンバーは、公知の構造(Proc.Natl.Acad.Sci.USA,96(1999):4040−4045など)にサンプルガスを導入した。その他の工夫をしたものもまた企図される。応答測定中は培養液を一定の速度で流しておいた。培養液が培養液供給チューブの開口から測定用チャンバーに供給され、測定部天井用カバーグラス上への培養液の進入を防止する壁に達するまでの区間の上部のなるべく液面に近い位置に、サンプルガスがこの区間を流れる培養液に吹き付けられるようにサンプルガス供給チューブを固定しておいた。このサンプルガス供給チューブはテフロン、ピークなど親油性の匂い物質、埃の吸着しにくい材料で作られていることが好ましかった。また、サンプルガスを導入するとき以外の時間は、チューブ内の残留サンプルガスを除去し、内部をなるべく清浄に保つために、途中に3方弁あるいは無臭空気供給チューブとの接続部での無臭空気供給チューブ側に逆止弁などを設けて無臭空気でチューブのなるべく広範な長さを洗浄できるようにしておくと効果が高かったが、必要というわけではなかった。サンプルガスを0.5〜4秒間の適当な時間だけ外部から導入するとき以外は、外部のガス採取開口に近いサンプルガス供給チューブの途中から無臭空気を導入し、チューブ内を洗浄する一方でサンプルガスと同様に培養液に吹き付け、測定チャンバー内の残留ガスの排除を促進するようにしても実施され得た。天井用カバーグラス支持用ベースはテフロンなど撥水製の不透明プラスティックで作成する。培養液の流れる流路幅は、アレイの幅の2倍程度とし、その中心にアレイが配置されるようにしておく。培養液供給チューブおよびオーバーフロー培養液吸引チューブは、測定チャンバー側の開口部から数ミリの長さ分はステンレスなど親水性が高く変形しにくい材料を用いる。両者のチューブの開口部からアレイ側に向けて、培養液が流れる天井用カバーグラス支持用ベース上の部分は親水性を十分に持たせるために、コーティングをするかレンズペーパー片などを固定した。吸引のための陰圧は、培養液の吸い込みにより生じる音による振動が測定に影響を与えない程度に調整しておいた。
一般的にベクターにより導入された遺伝子が発現する2日後には応答の測定が可能であった。天井用カバーグラスは測定時にのみ必要になるため、遺伝子を発現させるまでの培養中は設置不要であり、遺伝子が発現し蛍光変化計測系に測定用チャンバーを設置する際に、培養液進入防止壁と一体化させた天井用カバーグラス、天井用カバーグラス支持用ベースを測定用チャンバーに付加しても実施し得た。また、同遺伝子を発現させるまでの培養中は、培養液供給チューブとオーバーフロー培養液吸引チューブを用いずに培養液を交換しても実施し得た。培養液は、応答計測を行わず培養のみしている期間は、数時間〜1日に1回程度の頻度で培養液の10ml程度の分量が供給され交換されるようにした。
匂い応答の大きさは、細胞にカルシウムイオン感受性蛍光色素fura−2などを取り込ませておき、高感度ビデオカメラなど2次元撮像素子を用いることで光学的に計測することが可能であった。測定間隔は1/3秒〜1秒程度で応答の立ち上がりと回復の時定数を評価できる時間分解能を持たせることが望ましいが、平均的な応答時間曲線あるいはその理論式が得られている場合は、刺激後5秒、10秒、15秒、20秒、25秒の5秒間隔の5点での計測結果から実際の変化を推定し、得られる応答開始時期、応答立ち上がり・回復の時定数の推定値を指標として信号が匂いにより引き起こされたものか細胞の自発的活動あるいは他の異常により生じているものかなどを評価することもできた。このような評価は、すべて、細胞のプロファイルとして取得することが可能であった。
本実施例では、具体的なパラメータとして、嗅覚受容細胞(olfactory receptor neuron)において、発現している嗅覚レセプターの応答をカルシウム感受性蛍光色素の蛍光強度変化の測定により調べた。蛍光強度の減少が嗅覚レセプターの応答に対応する。刺激源として、図中に示した略号の匂い分子をその上に示した濃度で培養液に加えて、バーで示す時間だけ(4秒間あるいは2秒間)細胞に投与した。この例からも分かるように、同時に調製された細胞で同時に測定された応答では、応答の時間特性、細胞毎の異なる刺激に対する応答閾値濃度および応答振幅の相対値の共通性が高いが、異なる時期に調整された細胞では、多少の相違が見られた。これらの結果は、調整条件を同じにし、サンプルガスが均一に投与されるサイズにアレイ化したセンサによって匂い応答を計測することによって、最も測定の信頼性を高めることが可能になることを示している。
このように、本発明において、嗅覚レセプター−リガンド(嗅覚物質)を用いても、細胞のプロファイルを取得することができることがわかった。
[実施例15:ニューロン分化への応用]
次に、実施例14と同様の実験をニューロンで行い、チロシンキナーゼのRNAiの影響をトランスフェクションマイクロアレイを用いて分析した。その模式図を図31Bに示す。
図31Bに示すように、レポーターが示すシグナルを写真撮影し情報を収集することによって、ネットワーク解析などを行うことができる。
図31Cには、種々のチロシンキナーゼによるレチノイン酸(RA)および神経成長因子(NGF)の応答を示す。siRNAでの阻害%を示した。
図31Dは、解析の結果得られたシグナル伝達経路の模式図を示す。
図31Eは、上記の解析により得られた結果を示す。ドパミン作動性ニューロンであるか、コリン作動性ニューロンであるか、その両方であるか、その両方でないかで分類してある。両方に関与するものが神経突起形成に関与する可能性が高いと分析できる。
[実施例16:データ生成]
実施例5〜15において生成したデータは、実施例4に記載したのと同様に、適宜改変を加えた数理解析を用いて解析することができる。そのようなデータは、種々の形態をもって提示することができることが実証された。
[実施例17:デジタル細胞の生成]
実施例5〜15において生成したデータおよびこれらの実施例に記載されるプロトコルを用いて生成した追加データを用いて、デジタル細胞を生成した。デジタル細胞を生成するために、これらの実施例で生成したデータのためのパラメータを抽出し、まず環境パラメータとして、培地、pH、温度、CO濃度などでデータ整理する。データベース作成は、例えば、Microsoftから発売されるExcelのような表作成ソフトウェアまたはAccessなどのデータベースソフトウェアを用いて作成することができる。次に、細胞パラメータとして、実施例5〜15において使用した細胞種を含むデータベースを作成することができる。これに、種々の刺激パラメータ(種々の化学刺激(例えば、HGF、FGF、PDGF,VEGF、CSFなどの種々の増殖因子またはサイトカイン)を含む)を入力し、刺激応答結果を、細胞動態データ、レポーターの計測データ(例えば、蛍光強度など)として入力することができる。これにより、デジタル細胞を構成するデータベースが作成される。その例は、図33A、図33Bに示される。
[実施例18:デジタル細胞の利用−インシリコ生実験]
実施例17において作成したデジタル細胞を用いて、コンピュータ上で実験を行う。本実施例では、間葉系幹細胞を用いてどのような因子が分化因子であるかどうかを検討する。図33Aを例にとれば、細胞は細胞A(ここでは、例えば、間葉系幹細胞など)を選択する。これに対して、培地として、DMEMを選択し、pHは7.4を選択し、温度として37℃を選択し、CO濃度として5%を選択する。これに対して、種々の化学刺激(例えば、HGF、FGF、PDGF,VEGF、CSFなどの種々の増殖因子またはサイトカイン)を選択する。種々の化学刺激については、濃度も適宜(例えば、1nM〜1mM)選択する。種々の化学刺激には、それらの2つおよび3つの組合せも選択しておく。これらの組合せおよび濃度に応じて、間葉系幹細胞がどのように応答するかについてデータ出力する。出力データとしては、細胞動態データを含める。細胞動態データから、間葉系幹細胞が分化(例えば、骨髄細胞、脂肪細胞など)するかどうかを確認する。形状で足りない場合は、さらに、レポーターとして転写因子とEGFとの組合せを用いてさらに計測データを出力させる。これにより、間葉系幹細胞がどの分化細胞に分化したかを確認する。これにより、分化細胞へと分化させる化学刺激を特定することができる。
[実施例19:デジタル細胞の利用−インシリコ生実験による教育]
実施例18に記載されるようなインシリコ生実験を、今度は、学校教育において実施する。今度は、上述のような実験テーマを学生に与える。学生は、与えられたデジタル細胞のデータベースから種々のパラメータを選択する。選択したデータをもとに、学生は、自分なりの研究を組み立てる。組み立てられた研究成果は、学生が課題として提出する。これにより、学生を生の実験系を使用せずに教育することができる。
[実施例20:デジタル細胞のサービスとしての提供]
デジタル細胞のデータベースは、外部サービスとして、提供することができる。実施例18において生成したデータベースは、例えば、図35に示されるものを利用することができる。ここでは、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステム3501の構成が示される。コンピュータシステム3501は、ユーザが所望するサービスをリクエストするサービスリクエスタ3510と、そのリクエストに応答して所定のサービスを提供するサービスプロバイダ3520とを含む。ユーザーとして、例えば、研究機関または学校教育機関が、要求するサービスをリクエストする。商用サービスを展開するサービスリクエスタは、要求に応じて、適切にデータを研究機関または学校教育機関に提供する。学校教育目的などでは、例えば、ある特定の細胞、パラメータなどの特定のデータベースのみをサービス対象としてもよい。
このように、本発明のデジタル細胞を用いてサービスを提供することが実証される。
以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
本発明により、驚くべきほど少ない因子を観察することによって、細胞の状態を判定することが可能になった。このような判定により、診断、予防、治療に応用することが可能となり、その応用範囲は医療のみならず、食品、化粧品、農業、環境など種々の分野に及ぶ。コンピュータ上で生実験を再現できることから、バイオテクノロジーにおける教育および研究を行うことができるようになったという産業上の有用性も有する。
【配列表】
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744
Figure 2005021744

Claims (144)

  1. 同一環境にある細胞の情報に関するプロファイルデータを生成する方法であって、
    a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;および
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;
    を包含する、方法。
  2. 前記生物学的因子は、核酸分子または該核酸分子に由来する分子である、請求項1に記載の方法。
  3. 前記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、前記支持体に固定される、請求項1に記載の方法。
  4. 前記細胞には、アクチン作用物質が提供される、請求項1に記載の方法。
  5. 前記細胞は、a)正に荷電した物質と負に荷電した物質との複合体;および b)塩、を含む、組成物によって、前記支持体に固定され、かつ、アクチン作用物質が提供される、請求項1に記載の方法。
  6. 前記生物学的因子は、核酸分子、タンパク質、糖鎖、脂質、低分子、それらの複合分子からなる群より選択される、請求項1に記載の方法。
  7. 前記細胞は、モニター前に少なくとも約3日間培養される、請求項1に記載の方法。
  8. 前記生物学的因子は、遺伝子をコードする核酸分子を含む、請求項1に記載の方法。
  9. 前記プロファイルは、遺伝子発現のプロファイルを含む、請求項1に記載の方法。
  10. 前記プロファイルは、アポトーシスシグナルのプロファイルを含む、請求項1に記載の方法。
  11. 前記プロファイルは、ストレスシグナルのプロファイルである、請求項1に記載の方法。
  12. 前記プロファイルは、分子の局在化に関するプロファイルである、請求項1に記載の方法。
  13. 前記分子は、蛍光、燐光、放射性物質またはその組み合わせにて標識される、請求項12に記載の方法。
  14. 前記プロファイルは、細胞形態の変化を含む、請求項1に記載の方法。
  15. 前記プロファイルは、プロモーターのプロファイルを含む、請求項1に記載の方法。
  16. 前記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含む、請求項1に記載の方法。
  17. 前記プロファイルは、特定薬剤依存性のプロモーターのプロファイルを含み、前記特定薬剤を投与するさらに工程を含む、請求項1に記載の方法。
  18. 外来因子が前記細胞に提供される工程をさらに包含する、請求項1に記載の方法。
  19. 前記外来因子は、RNAiを含む、請求項18に記載の方法。
  20. 前記外来因子は、生体に存在しない化学物質を含む、請求項18に記載の方法。
  21. 前記プロファイルは、分子間相互作用のプロファイルを含む、請求項1に記載の方法。
  22. 前記外来因子は、前記細胞のレセプターに対するリガンドを含む、請求項18に記載の方法。
  23. 前記プロファイルは、レセプターリガンド相互作用のプロファイルを含む、請求項1に記載の方法。
  24. 前記プロファイルは細胞形態であり、前記方法は、遺伝子の過剰発現、過小発現もしくはノックダウン、外来因子の添加および環境の変化からなる群より選択される、刺激を該細胞に与える工程をさらに包含する、請求項1に記載の方法。
  25. 前記プロファイルは、前記細胞内に存在する分子間の相互作用のプロファイルを含む、請求項1に記載の方法。
  26. 前記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、請求項1に記載の方法。
  27. 前記プロファイルは、前記細胞内に存在する分子間の相互作用のプロファイルを含み、前記方法は、ツーハイブリッド法、FRETおよびBRETからなる群より選択される技術を用いた観察を行う工程をさらに包含する、請求項1に記載の方法。
  28. 前記細胞は、前記支持体上にアレイ状に配置される、請求項1に記載の方法。
  29. 前記細胞は、前記支持体上にアレイ状に配置され、前記複数の細胞は、各々が最大1mmの間隔をあけて配置される、請求項1に記載の方法。
  30. 前記プロファイルはリアルタイムに得られる、請求項1に記載の方法。
  31. 前記細胞を固相支持体に固定する工程をさらに包含する、請求項1に記載の方法。
  32. 前記データは、前記プロファイルに関する情報を含む、請求項1に記載の方法。
  33. 前記データは、前記モニターにおける条件に関する情報を含む、請求項1に記載の方法。
  34. 前記データは、前記細胞の状態に関する情報を含む、請求項1に記載の方法。
  35. 前記モニターされる生物学的因子は、少なくとも2種の生物学的因子を含む、請求項1に記載の方法。
  36. 前記モニターされる生物学的因子は、少なくとも3種の生物学的因子を含む、請求項1に記載の方法。
  37. 前記モニターされる生物学的因子は、少なくとも8種の生物学的因子を含む、請求項1に記載の方法。
  38. 生物学的因子を任意に選択する工程をさらに包含する、請求項1に記載の方法。
  39. 前記細胞は、幹細胞および体細胞からなる群より選択される、請求項1に記載の方法。
  40. 前記支持体は、固相支持体を含む、請求項1に記載の方法。
  41. 前記支持体は、基板を含む、請求項1に記載の方法。
  42. 前記生物学的因子は核酸分子であり、前記細胞は、該核酸分子でトランスフェクトされる、請求項1に記載の方法。
  43. 前記トランスフェクトは固相上または液相中で行われる、請求項42に記載の方法。
  44. 前記トランスフェクトは固相上で行われる、請求項42に記載の方法。
  45. 前記プロファイルの位相を比較する工程を包含する、請求項1に記載の方法。
  46. 前記細胞のプロファイルとコントロールプロファイルとの差分をとる工程を包含する、請求項1に記載の方法。
  47. 前記プロファイルは、信号処理法および多変量解析からなる群より選択される数学処理により処理される工程をさらに包含する、請求項1に記載の方法。
  48. 同一環境にある細胞の情報に関するプロファイルデータを提示方法であって、
    a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;および
    c)該データを提示する工程、
    を包含する、方法。
  49. 前記提示はリアルタイムである、請求項48に記載の提示方法。
  50. 前記提示は、視覚で感知されるように行われる、請求項48に記載の方法。
  51. 前記提示は、聴覚で感知されるように行われる、請求項48に記載の方法。
  52. 同一環境にある細胞の状態を判定する方法であって、
    a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;および
    c)該データから該細胞の状態を判定する工程、
    を包含する、方法。
  53. 前記プロファイルと前記細胞の状態とを予め相関付ける工程をさらに包含する、請求項52に記載の方法。
  54. 前記細胞は、状態が既知の細胞を含む、請求項52に記載の方法。
  55. 前記生物学的因子は、少なくとも2種存在する、請求項52に記載の方法。
  56. 前記生物学的因子を任意に選択する工程をさらに包含する、請求項52に記載の方法。
  57. 前記データは、リアルタイムで生成される、請求項52に記載の方法。
  58. 前記状態は、分化状態、未分化状態、外来因子に対する細胞応答、細胞周期および増殖状態からなる群より選択される、請求項52に記載の方法。
  59. 前記細胞は、幹細胞および体細胞からなる群より選択される、請求項52に記載の方法。
  60. 前記固相支持体は、基板を含む、請求項52に記載の方法。
  61. 前記生物学的因子は核酸分子であり、前記細胞は該核酸分子でトランスフェクトされる、請求項52に記載の方法。
  62. 前記トランスフェクトは固相上または液相中で行われる、請求項61に記載の方法。
  63. 前記生物学的因子は、他の生物学的因子に結合する能力を有する、請求項52に記載の方法。
  64. 前記判定工程c)は、前記プロファイルの位相を比較することを包含する、請求項52に記載の方法。
  65. 前記判定工程c)は、前記プロファイルとコントロールプロファイルとの差分をとる工程を包含する、請求項52に記載の方法。
  66. 前記判定工程c)は、信号処理法および多変量解析からなる群より選択される数学処理を包含する、請求項52に記載の方法。
  67. 外来因子と、該外来因子に対する細胞の応答とを相関付ける方法であって、
    a)細胞を、複数の細胞を同一環境を保つことができる支持体上で、外来因子に曝露する工程;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;および
    c)該外来因子と、該プロファイルとを相関付ける工程;
    を包含する、方法。
  68. 前記細胞は、前記支持体に固定される、請求項67に記載の方法。
  69. 少なくとも2つの前記外来因子を使用して、各外来因子に対するプロファイルを得る工程をさらに包含する、請求項67に記載の方法。
  70. 少なくとも2つの前記プロファイルを類別することにより、該プロファイルに対応する外来因子を類別する工程をさらに包含する、請求項67に記載の方法。
  71. 前記プロファイルは、リアルタイムで提示される、請求項70に記載の方法。
  72. 前記細胞は、アレイ上で培養される、請求項67に記載の方法。
  73. 前記工程(b)におけるプロファイルのモニターは、前記アレイから画像データを得ることを包含する、請求項67に記載の方法。
  74. 前記(c)における前記外来因子と前記プロファイルとを相関付ける工程は、前記プロファイルの位相の異同を識別する工程である、請求項67に記載の方法。
  75. 前記外来因子は、温度変化、湿度変化、電磁波、電位差、可視光線、赤外線、紫外線、X線、化学物質、圧力、重力変化、ガス分圧および浸透圧からなる群から選択される、請求項67に記載の方法。
  76. 前記化学物質は、生体分子、化学合成物または培地である、請求項75に記載の方法。
  77. 前記生体分子は、核酸分子、タンパク質、脂質、糖、プロテオリピッド、リポプロテイン、糖タンパク質およびプロテオグリカンからなる群から選択される、請求項76に記載の方法。
  78. 前記生体分子は、ホルモン、サイトカイン、細胞接着因子および細胞外マトリクスからなる群より選択される少なくとも1つの生体分子を含む、請求項76に記載の方法。
  79. 前記化学物質は、レセプターのアゴニストまたはアンタゴニストである、請求項75に記載の方法。
  80. 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法であって、
    a)細胞に、同一環境を保つことができる支持体上で、複数の既知の外来因子を曝露する工程;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターし、既知の外来因子の各々に対する該細胞のプロファイルを得て該細胞のプロファイルのデータを生成する工程;
    c)該既知の外来因子の各々と、該プロファイルの各々とを相関付ける工程;
    d)該細胞を未同定の外来因子に曝露する工程;
    e)外来因子に曝露された該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして、未同定の外来因子に関する該細胞のプロファイルを得る工程;
    f)該工程(b)で得られたプロファイルの中から、該工程(e)で得られたプロファイルに対応するプロファイルを決定する工程;および
    g)該未同定の外来因子は、該工程(f)において決定されたプロファイルに対応する該既知の外来因子であることを決定する工程;
    を包含する、方法。
  81. 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するための方法であって、
    a)該細胞上または該細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、該既知の外来因子に対応する該細胞のプロファイルとの相関関係に関するデータを提供する工程;
    b)該細胞を未同定の外来因子に曝露する工程;
    c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして、該細胞のプロファイルを得る工程;
    d)該工程(a)において提供された、該プロファイルの中から、該工程(c)において得られたプロファイルに対応するプロファイルを決定する工程;および
    e)該未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子であることを決定する工程;
    を包含する、方法。
  82. 同一環境にある細胞の情報に関するプロファイルを得る方法であって、
    a)複数の細胞を同一環境を保つことができる支持体上に配置する工程;および
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルを得る工程、
    を包含する、方法。
  83. 請求項1に記載の方法によっ生成されたデータが格納される記録媒体。
  84. 前記記録媒体は、前記モニターにおける条件に関する情報、前記プロファイルに関する情報、前記細胞の状態に関する情報および前記生物学的因子に関する情報からなる群より選択される、少なくとも1つの情報に関するデータをさらに含む、請求項83に記載の記録媒体。
  85. 前記データは、互いにリンクされた形態で格納される、請求項84に記載の記録媒体。
  86. 前記データは、前記細胞ごとにリンクされて格納される、請求項84に記載の記録媒体。
  87. 請求項1に記載された方法によって生成されたデータ。
  88. 請求項1に記載された方法によって生成されたデータを含む伝送媒体。
  89. 同一環境にある複数の細胞の情報に関するプロファイルデータを生成するシステムであって、
    a)複数の細胞を同一環境を保つことができる支持体;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;および
    c)該モニター手段から得られた信号から該細胞のプロファイルのデータを生成する手段;
    を備える、システム。
  90. 複数の細胞をさらに含み、該複数の細胞は前記支持体に固定される、請求項89に記載のシステム。
  91. 前記支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着される、請求項90に記載のシステム。
  92. 前記モニター手段は、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段、放射光、共焦点顕微鏡、非共焦点顕微鏡、微分干渉顕微鏡、実体顕微鏡、ビデオモニターおよび赤外線カメラからなる群より選択される少なくともひとつの手段を含む、請求項89に記載のシステム。
  93. 同一環境にある細胞の情報に関するプロファイルを提示するシステムであって、
    a)複数の細胞を同一環境を保つことができる支持体;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
    c)該モニター手段から得られた信号から該細胞のプロファイルのデータを生成する手段;および
    d)該データを提示する手段、
    を備える、システム。
  94. 複数の細胞をさらに含み、該複数の細胞は前記支持体に固定される、請求項93に記載のシステム。
  95. 前記支持体には、塩およびアクチン作用物質からなる群より選択される少なくとも1つの物質が付着される、請求項93に記載のシステム。
  96. 前記モニター手段は、光学顕微鏡、蛍光顕微鏡、位相顕微鏡、レーザー光源を用いた読取装置、表面プラズモン共鳴(SPR)イメージング、電気信号、化学的または生化学的マーカーのいずれかあるいは複数種を用いる手段、放射光、共焦点顕微鏡、非共焦点顕微鏡、微分干渉顕微鏡、実体顕微鏡、ビデオモニターおよび赤外線カメラからなる群より選択される少なくともひとつの手段を含む、請求項93に記載のシステム。
  97. 前記データを提示する手段は、ディスプレイである、請求項93に記載のシステム。
  98. 前記データを提示する手段は、スピーカである、請求項93に記載のシステム。
  99. 細胞の状態を判定するシステムであって、
    a)複数の細胞を同一環境を保つことができる支持体;
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
    c)該モニター手段から得られた信号からデータを生成する手段;および
    d)該データから該細胞の状態を外挿する手段、
    を備える、システム。
  100. 外来因子と、該外来因子に対する細胞の応答とを相関付けるシステムであって、
    a)複数の細胞を同一環境を保つことができる支持体;
    b)外来因子を曝露する手段;
    c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
    d)該モニター手段からの信号から、該細胞のプロファイルのデータを生成する工程;および
    e)該外来因子と、該プロファイルとを相関付ける手段;
    を備える、システム。
  101. 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムであって、
    a)複数の細胞を同一環境を保つことができる支持体;
    b)既知の外来因子を曝露する手段;
    c)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
    d)外来因子の各々に対する該細胞のプロファイルを得て該細胞のプロファイルのデータを生成する手段;
    e)該既知の外来因子の各々と、該プロファイルの各々とを相関付ける手段;
    f)該細胞を未同定の外来因子に曝露する手段;
    g)該手段(d)で得られた既知の外来因子のプロファイルと、未知の外来因子のプロファイルとを比較し、既知の外来因子のプロファイルの中から、未知の外来因子のプロファイルに対応するプロファイルを決定する手段であって、該決定された未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子である、手段、
    を備える、システム。
  102. 細胞のプロファイルから、細胞に与えられた未同定の外来因子を同定するためのシステムであって、
    a)該細胞上または該細胞内の生物学的因子またはその集合体に関し、既知の外来因子と、該既知の外来因子に対応する該細胞のプロファイルとの相関関係に関するデータが格納された記録媒体;
    b)該細胞を未同定の外来因子に曝露する手段;
    c)複数の細胞を同一環境を保つことができる支持体;
    d)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターする手段;
    e)該モニター手段から得られた信号から、該細胞のプロファイルを得る手段;
    f)該記録媒体(a)において格納される該プロファイルの中から、未知の外来因子に関して得られたプロファイルに対応するプロファイルを決定する手段であって、該未同定の外来因子は、該決定されたプロファイルに対応する該既知の外来因子である、手段;
    を備える、システム。
  103. 複数の細胞を固定し得、かつ、該細胞の環境を同一に維持し得る支持体。
  104. 前記支持体上の細胞は、アレイ状に配置され得る、請求項103に記載の支持体。
  105. 塩および正に荷電した物質と負に荷電した物質との複合体、またはアクチン作用物質を含む、請求項103に記載の支持体。
  106. 塩および正に荷電した物質と負に荷電した物質との複合体、ならびにアクチン作用物質を含む、請求項103に記載の支持体。
  107. 前記細胞は、最大1mm以下の間隔で配置され得る、請求項103に記載の支持体。
  108. 固定された細胞をさらに含む、請求項103に記載の支持体。
  109. 固定された生物学的因子をさらに含む、請求項104に記載の支持体。
  110. 前記生物学的因子は2種類以上固定される、請求項109に記載の支持体。
  111. 細胞および生物学的因子が固定される、請求項103に記載の支持体。
  112. 塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともに固定される、請求項103に記載の支持体。
  113. 塩および正に荷電した物質と負に荷電した物質との複合体と、アクチン作用物質とが、細胞および生物学的因子とともにアレイ状に固定される、請求項103に記載の支持体。
  114. 塩と、遺伝子導入試薬と、アクチン作用物質と、核酸分子と、細胞とがアレイ状に固定される、請求項104に記載の支持体。
  115. 前記塩は、塩化カルシウム、リン酸水素ナトリウム、炭酸水素ナトリウム、ピルビン酸ナトリウム、HEPES、塩化カルシウム、塩化ナトリウム、塩化カリウム、硫化マグネシウム、硝酸鉄、アミノ酸およびビタミンからなる群より選択される塩を含む、請求項114に記載の支持体。
  116. 前記遺伝子導入試薬は、カチオン性高分子、カチオン性脂質、ポリアミン系試薬、ポリイミン系試薬、リン酸カルシウム、オリゴフェクタミンおよびオリゴフェクターからなる群より選択される少なくともひとつの試薬を含む、請求項114に記載の支持体。
  117. 前記アクチン作用物質は、フィブロネクチン、ラミニンおよびビトロネクチンからなる群より選択される少なくとも1つのタンパク質またはその改変体もしくはフラグメントを含む、請求項114に記載の支持体。
  118. 前記核酸分子は、サイトカイン、ホルモン、細胞接着因子、細胞骨格タンパク質および酵素からなる群より選択されるタンパク質をコードする配列を含む、請求項114に記載の支持体。
  119. 前記細胞は、動物細胞、昆虫細胞、植物細胞、細菌細胞および真菌細胞からなる群より選択される細胞を含む、請求項114に記載の支持体。
  120. 前記支持体の材料は、ガラス、シリカ、およびプラスチックからなる群より選択される材料を含む、請求項114に記載の支持体。
  121. 固定された複数の細胞を含み、かつ、該細胞の環境を同一に維持し得る支持体を生産する方法であって、
    A)支持体を提供する工程;および
    B)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて該支持体上に固定する工程、
    を含む、方法。
  122. 前記固定工程は、前記塩と、前記正に荷電した物質としての遺伝子導入試薬と、アクチン作用物質と、前記負に荷電した物質としての核酸分子と、前記細胞との混合物を、アレイ状に固定することを含む、請求項121に記載の方法。
  123. 前記固定工程は、プリント工程を含む、請求項121に記載の方法。
  124. 前記支持体の提供は、支持体材料から該支持体を作製する工程を包含する、請求項121に記載の方法、。
  125. 固定された複数の細胞を含み、かつ、該細胞の環境を同一に維持し得る支持体を生産する装置であって、
    A)支持体を提供する手段;および
    B)細胞を塩および正に荷電した物質と負に荷電した物質との複合体を用いて該支持体上に固定する手段
    を備える、装置。
  126. 前記固定手段は、プリント手段を含む、請求項125に記載の装置。
  127. 前記支持体提供手段は、支持体材料から前記支持体を成型する手段を含む、請求項125に記載の装置。
  128. デジタル細胞を生産する方法であって、
    a)実験対象の細胞を特定する細胞パラメータを取得する工程;
    b)該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータを取得する工程;
    c)該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータを取得する工程;
    d)該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果を取得する工程;
    e)該細胞パラメータと該環境パラメータと該刺激パラメータと該刺激応答結果とを関連づけることにより、該細胞に対する1つの実験データを生成する工程;および
    f)工程a)〜工程e)を必要に応じて繰り返すことにより、該細胞に対する少なくとも1つの実験データの集合を生成し、該少なくとも1つの実験データの集合をデジタル細胞として提供する工程;
    を包含する、方法。
  129. 前記環境パラメータは、前記細胞を培養する培地を示すパラメータと、前記培地の条件を示すパラメータとを含む、請求項128に記載の方法。
  130. 前記刺激パラメータは、レポーターを示すパラメータと、化学刺激を示すパラメータとを含む、請求項128に記載の方法。
  131. 前記刺激応答結果は、前記細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターすることによって得られる該細胞のプロファイルのデータを含む、請求項128に記載の方法。
  132. 前記方法は、前記デジタル細胞をデータベースに格納する工程をさらに包含する、請求項128に記載の方法。
  133. デジタル細胞を生産する装置であって、
    a)実験対象の細胞を特定する細胞パラメータを取得する手段;
    b)該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータを取得する手段;
    c)該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータを取得する手段;
    d)該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果を取得する手段;
    e)該細胞パラメータと該環境パラメータと該刺激パラメータと該刺激応答結果とを関連づけることにより、該細胞に対する1つの実験データを生成する手段;および
    f)工程a)〜工程e)を必要に応じて繰り返すことにより、該細胞に対する少なくとも1つの実験データの集合を生成し、該少なくとも1つの実験データの集合をデジタル細胞として提供する手段;
    を備えた、装置。
  134. サービスリクエスタとサービスプロバイダとを含むコンピュータシステムを用いて、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する方法であって、
    少なくとも1つのデジタル細胞を格納したデータベースを用意する工程であって、該少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、該少なくとも1つの実験データのそれぞれは、該細胞を特定する細胞パラメータと、該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータと、該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータと、該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果とを含む、工程;
    該サービスリクエスタが、該細胞パラメータと該環境パラメータと該刺激パラメータとを受け取り、該細胞パラメータと該環境パラメータと該刺激パラメータとを含むリクエストを生成する工程;
    該サービスリクエスタが、該リクエストを該サービスプロバイダに提供する工程;
    該サービスプロバイダが、該リクエストに応答して該データベースを検索し、該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在するか否かを決定する工程;
    該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在すると決定された場合には、該サービスプロバイダが、該刺激応答結果を該サービスリクエスタに提供する工程;および
    該サービスリクエスタが、該刺激応答結果を表示する工程;
    を包含する、方法。
  135. サービスリクエスタと複数のサービスプロバイダとを含むコンピュータシステムを用いて、デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供する方法であって、
    少なくとも1つのデジタル細胞をそれぞれ格納した複数のデータベースを用意する工程であって、該少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、該少なくとも1つの実験データのそれぞれは、該細胞を特定する細胞パラメータと、該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータと、該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータと、該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果とを含む、工程;
    該複数のサービスプロバイダが提供可能な少なくとも1つのサービスを登録したサービスレジストリを用意する工程;
    該サービスリクエスタが、該細胞パラメータと該環境パラメータと該刺激パラメータとを受け取り、該細胞パラメータと該環境パラメータと該刺激パラメータとを含むリクエストを生成する工程;
    該サービスリクエスタが、該リクエストに応答して該サービスレジストリを検索し、該複数のサービスプロバイダの中に該リクエストのサービスを提供可能なサービスプロバイダが存在するか否かを決定する工程;
    該複数のサービスプロバイダの中に該リクエストのサービスを提供可能なサービスプロバイダが存在すると決定された場合には、該サービスリクエスタが、該リクエストを該サービスプロバイダに提供する工程;
    該サービスプロバイダが、該リクエストに応答して該データベースを検索し、該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在するか否かを決定する工程;
    該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在すると決定された場合には、該サービスプロバイダが、該刺激応答結果を該サービスリクエスタに提供する工程;および
    該サービスリクエスタが、該刺激応答結果を表示する工程;
    を包含する、方法。
  136. デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステムであって、
    少なくとも1つのデジタル細胞を格納したデータベースにアクセス可能なように構成されたサービスプロバイダであって、該少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、該少なくとも1つの実験データのそれぞれは、該細胞を特定する細胞パラメータと、該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータと、該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータと、該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果とを含む、サービスプロバイダ;および
    ユーザが所望するサービスをリクエストするサービスリクエスタ;
    を備え、
    該サービスリクエスタは、
    該細胞パラメータと該環境パラメータと該刺激パラメータとを受け取り、該細胞パラメータと該環境パラメータと該刺激パラメータとを含むリクエストを生成する手段;および
    該リクエストを該サービスプロバイダに提供する手段;
    を含み、
    該サービスプロバイダは、
    該リクエストに応答して該データベースを検索し、該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在するか否かを決定する手段;および
    該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在すると決定された場合には、該刺激応答結果を該サービスリクエスタに提供する手段;
    を含み、
    該サービスリクエスタは、
    該刺激応答結果を表示する手段;
    をさらに含む、コンピュータシステム。
  137. 前記サービスリクエスタは、前記ユーザが操作するWebブラウザであり、前記サービスプロバイダは、インターネットを介して該サービスリクエスタに接続されるWebサーバーである、請求項136に記載のコンピュータシステム。
  138. 前記サービスリクエスタは、XMLで記述した形式で前記リクエストを前記サービスプロバイダに提供する、請求項136に記載のコンピュータシステム。
  139. 前記サービスプロバイダは、XMLで記述した形式で前記刺激応答結果を前記サービスリクエスタに提供する、請求項136に記載のコンピュータシステム。
  140. デジタル細胞を用いて現実の細胞に対する実験結果を再現するサービスを提供するコンピュータシステムであって、
    複数のサービスプロバイダであって、該複数のサービスプロバイダのそれぞれは、少なくとも1つのデジタル細胞を格納したデータベースにアクセス可能なように構成されており、該少なくとも1つのデジタル細胞のそれぞれは、実験対象の細胞に対する少なくとも1つの実験データの集合によって表現されており、該少なくとも1つの実験データのそれぞれは、該細胞を特定する細胞パラメータと、該細胞パラメータによって特定された該細胞を培養する環境を特定する環境パラメータと、該細胞パラメータによって特定された該細胞に与える刺激を特定する刺激パラメータと、該環境パラメータによって特定された該環境下で該細胞パラメータによって特定された該細胞が該刺激パラメータによって特定された該刺激に対して応答した結果を示す刺激応答結果とを含む、複数のサービスプロバイダ;
    該複数のサービスプロバイダが提供可能な少なくとも1つのサービスを登録したサービスレジストリ;および
    ユーザが所望するサービスをリクエストするサービスリクエスタ;
    を備え、
    該サービスリクエスタは、
    該細胞パラメータと該環境パラメータと該刺激パラメータとを受け取り、該細胞パラメータと該環境パラメータと該刺激パラメータとを含むリクエストを生成する手段;
    該リクエストに応答して該サービスレジストリを検索し、該複数のサービスプロバイダの中に該リクエストのサービスを提供可能なサービスプロバイダが存在するか否かを決定する手段;および
    該複数のサービスプロバイダの中に該リクエストのサービスを提供可能なサービスプロバイダが存在すると決定された場合には、該リクエストを該サービスプロバイダに提供する手段;
    を含み、
    該複数のサービスプロバイダのそれぞれは、
    該リクエストに応答して該データベースを検索し、該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在するか否かを決定する手段;および
    該データベース内に該リクエストに含まれる該細胞パラメータと該環境パラメータと該刺激パラメータとに関連する該刺激応答結果が存在すると決定された場合には、該刺激応答結果を該サービスリクエスタに提供する手段;
    を含み、
    該サービスリクエスタは、
    該刺激応答結果を表示する手段;
    をさらに含む、コンピュータシステム。
  141. 前記サービスリクエスタは、インターネットを介して前記ユーザが操作するWebブラウザに接続されるWebサーバーであり、前記複数のサービスプロバイダのそれぞれは、該インターネットを介して該サービスリクエスタに接続されるWebサーバーである、請求項140に記載のコンピュータシステム。
  142. 前記サービスリクエスタは、XMLで記述した形式で前記リクエストを前記サービスプロバイダに提供する、請求項140に記載のコンピュータシステム。
  143. 前記サービスプロバイダは、XMLで記述した形式で前記刺激応答結果を前記サービスリクエスタに提供する、請求項140に記載のコンピュータシステム。
  144. 細胞の情報に関するプロファイルデータを生成する方法であって、
    a)細胞を支持体上に固定して配置する工程;および
    b)該細胞上または該細胞内の生物学的因子またはその集合体を経時的にモニターして該細胞のプロファイルのデータを生成する工程;
    を包含する、方法。
JP2005513404A 2003-06-25 2004-06-25 デジタル細胞 Pending JPWO2005021744A1 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003181915 2003-06-25
JP2003181915 2003-06-25
JP2003289469 2003-08-07
JP2003289469 2003-08-07
PCT/JP2004/009404 WO2005021744A1 (ja) 2003-06-25 2004-06-25 デジタル細胞

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010065276A Division JP2010207222A (ja) 2003-06-25 2010-03-19 デジタル細胞

Publications (1)

Publication Number Publication Date
JPWO2005021744A1 true JPWO2005021744A1 (ja) 2006-10-26

Family

ID=34277161

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005513404A Pending JPWO2005021744A1 (ja) 2003-06-25 2004-06-25 デジタル細胞
JP2010065276A Withdrawn JP2010207222A (ja) 2003-06-25 2010-03-19 デジタル細胞

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010065276A Withdrawn JP2010207222A (ja) 2003-06-25 2010-03-19 デジタル細胞

Country Status (5)

Country Link
US (2) US7747390B2 (ja)
EP (1) EP1640453A4 (ja)
JP (2) JPWO2005021744A1 (ja)
CA (1) CA2530350A1 (ja)
WO (1) WO2005021744A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1617101A (en) * 1999-11-15 2001-05-30 Walgreens Co. Apparatus and method for accessing pharmacy information and ordering prescriptions
EP1640453A4 (en) * 2003-06-25 2009-09-02 Nat Inst Of Advanced Ind Scien DIGITAL CELL
US20050149546A1 (en) * 2003-11-03 2005-07-07 Prakash Vipul V. Methods and apparatuses for determining and designating classifications of electronic documents
US7519565B2 (en) * 2003-11-03 2009-04-14 Cloudmark, Inc. Methods and apparatuses for classifying electronic documents
US8862582B2 (en) * 2007-11-15 2014-10-14 At&T Intellectual Property I, L.P. System and method of organizing images
US9336302B1 (en) 2012-07-20 2016-05-10 Zuci Realty Llc Insight and algorithmic clustering for automated synthesis
US10083275B2 (en) 2012-12-13 2018-09-25 International Business Machines Corporation Stable genes in comparative transcriptomics
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US11205103B2 (en) 2016-12-09 2021-12-21 The Research Foundation for the State University Semisupervised autoencoder for sentiment analysis
JP2018100903A (ja) * 2016-12-20 2018-06-28 パナソニックIpマネジメント株式会社 樹脂判定方法及び装置
CN117597452A (zh) * 2021-06-29 2024-02-23 富士胶片株式会社 制作细胞数理模型的方法、细胞数理模型制作程序、细胞数理模型制作装置、细胞数理模型的判定方法、细胞数理模型判定程序、及细胞数理模型判定装置
CN113759196B (zh) * 2021-09-08 2022-09-13 山东大学 一种高压电气设备实验装置及其实验方法
WO2023190139A1 (ja) * 2022-03-30 2023-10-05 富士フイルム株式会社 構成方法、構成装置、及び構成プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006874A1 (en) * 1995-08-09 1998-02-19 The Regents Of The University Of California Systems for generating and analyzing stimulus-response output signal matrices
WO1998038490A1 (en) * 1997-02-27 1998-09-03 Cellomics, Inc. A system for cell-based screening
WO1999060094A2 (de) * 1998-05-20 1999-11-25 Forschungszentrum Jülich GmbH Verfahren zur durchführung einer messung der interaktion von chemikalien mit zellen
WO2000003246A2 (en) * 1998-07-13 2000-01-20 Cellomics, Inc. A system for cell-based screening
WO2001063245A2 (en) * 2000-02-25 2001-08-30 The Technology Partnership Plc Method and apparatus for high throughput cell - based assays for screening and diagnostics
WO2002007100A1 (fr) * 2000-07-13 2002-01-24 Takashi Gojobori Procede, systeme et programme permettant d'indiquer le phenomene d'expression d'un ecosysteme
US20020072116A1 (en) * 2000-10-12 2002-06-13 Bhatia Sangeeta N. Nanoporous silicon bioreactor
JP2003024056A (ja) * 2001-06-06 2003-01-28 Becton Dickinson & Co すぐに使用できる均一に分散した細胞外マトリックスを基質に提供する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055910A2 (en) * 2000-01-27 2001-08-02 American Express Travel Related Services Company, Inc. Information architecture for an interactive environment
US20020055935A1 (en) * 2000-03-31 2002-05-09 Rosenblum Michael G. Methods and systems for providing access to one or more databases of information concerning therepeutic and diagnostic agents
US20030065774A1 (en) * 2001-05-24 2003-04-03 Donald Steiner Peer-to-peer based distributed search architecture in a networked environment
EP1640453A4 (en) * 2003-06-25 2009-09-02 Nat Inst Of Advanced Ind Scien DIGITAL CELL

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006874A1 (en) * 1995-08-09 1998-02-19 The Regents Of The University Of California Systems for generating and analyzing stimulus-response output signal matrices
US5777888A (en) * 1995-08-09 1998-07-07 Regents Of The University Of California Systems for generating and analyzing stimulus-response output signal matrices
WO1998038490A1 (en) * 1997-02-27 1998-09-03 Cellomics, Inc. A system for cell-based screening
WO1999060094A2 (de) * 1998-05-20 1999-11-25 Forschungszentrum Jülich GmbH Verfahren zur durchführung einer messung der interaktion von chemikalien mit zellen
WO2000003246A2 (en) * 1998-07-13 2000-01-20 Cellomics, Inc. A system for cell-based screening
WO2001063245A2 (en) * 2000-02-25 2001-08-30 The Technology Partnership Plc Method and apparatus for high throughput cell - based assays for screening and diagnostics
WO2002007100A1 (fr) * 2000-07-13 2002-01-24 Takashi Gojobori Procede, systeme et programme permettant d'indiquer le phenomene d'expression d'un ecosysteme
US20020072116A1 (en) * 2000-10-12 2002-06-13 Bhatia Sangeeta N. Nanoporous silicon bioreactor
JP2003024056A (ja) * 2001-06-06 2003-01-28 Becton Dickinson & Co すぐに使用できる均一に分散した細胞外マトリックスを基質に提供する方法

Also Published As

Publication number Publication date
US7747390B2 (en) 2010-06-29
CA2530350A1 (en) 2005-03-10
EP1640453A1 (en) 2006-03-29
US20110004415A1 (en) 2011-01-06
JP2010207222A (ja) 2010-09-24
EP1640453A4 (en) 2009-09-02
US20060253258A1 (en) 2006-11-09
WO2005021744A1 (ja) 2005-03-10

Similar Documents

Publication Publication Date Title
JP2010207222A (ja) デジタル細胞
JPWO2006001397A1 (ja) 細胞ネットワーク解析システム
US20090012766A1 (en) Event Sequencer
Giladi et al. Dissecting cellular crosstalk by sequencing physically interacting cells
Kernfeld et al. A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation
US20070054266A1 (en) Chemical sensor system
Grimm The art and design of genetic screens: mammalian culture cells
JP6509745B2 (ja) 標的細胞の選択的富化のための方法、組成物、キット、及びシステム
US10146914B1 (en) Systems and methods for evaluating whether perturbations discriminate an on target effect
US11555180B2 (en) Methods and apparatuses for patient-derived micro-organospheres
Kim et al. CellNeighborEX: deciphering neighbor‐dependent gene expression from spatial transcriptomics data
Ide et al. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns
US20230003716A1 (en) Methods and apparatuses for patient-derived microorganospheres
Clausen et al. Guidelines for mouse and human DC functional assays
JP2006522605A (ja) 経時的細胞解析法
JP2008518319A (ja) 生物学的機能のネットワークを解析するための方法およびシステム
US20090004171A1 (en) Compound profiling method
Liu et al. Patient‐Derived Tumor Organoids Combined with Function‐Associated ScRNA‐Seq for Dissecting the Local Immune Response of Lung Cancer
Clausen Guidelines for mouse and human DC functional assays
Evans et al. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development
JP2007259855A (ja) ディスク状バイオチップ及びその読取り装置
Wojdyla et al. and Peter J. Rugg-Gunn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100419