JPWO2004070080A1 - Surface coated electrical steel sheet for bonding - Google Patents
Surface coated electrical steel sheet for bonding Download PDFInfo
- Publication number
- JPWO2004070080A1 JPWO2004070080A1 JP2005504797A JP2005504797A JPWO2004070080A1 JP WO2004070080 A1 JPWO2004070080 A1 JP WO2004070080A1 JP 2005504797 A JP2005504797 A JP 2005504797A JP 2005504797 A JP2005504797 A JP 2005504797A JP WO2004070080 A1 JPWO2004070080 A1 JP WO2004070080A1
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- steel sheet
- coating
- adhesive
- acrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 17
- 230000001070 adhesive effect Effects 0.000 claims abstract description 120
- 239000000853 adhesive Substances 0.000 claims abstract description 118
- 239000003822 epoxy resin Substances 0.000 claims abstract description 112
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 112
- 238000000576 coating method Methods 0.000 claims abstract description 105
- 239000011248 coating agent Substances 0.000 claims abstract description 99
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 77
- 239000010959 steel Substances 0.000 claims abstract description 77
- 229920000642 polymer Polymers 0.000 claims abstract description 60
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 39
- 239000010419 fine particle Substances 0.000 claims abstract description 36
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 29
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 230000009477 glass transition Effects 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000004593 Epoxy Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 238000005886 esterification reaction Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 47
- 239000010408 film Substances 0.000 description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- -1 n methacrylate Octyl Chemical compound 0.000 description 32
- 239000000178 monomer Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 238000010998 test method Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 11
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 10
- 239000002313 adhesive film Substances 0.000 description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 8
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 8
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 8
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000012948 isocyanate Substances 0.000 description 8
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 8
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000004080 punching Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 4
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 4
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 4
- FWWXYLGCHHIKNY-UHFFFAOYSA-N 2-ethoxyethyl prop-2-enoate Chemical compound CCOCCOC(=O)C=C FWWXYLGCHHIKNY-UHFFFAOYSA-N 0.000 description 4
- JGRXEBOFWPLEAV-UHFFFAOYSA-N 2-ethylbutyl prop-2-enoate Chemical compound CCC(CC)COC(=O)C=C JGRXEBOFWPLEAV-UHFFFAOYSA-N 0.000 description 4
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 4
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 4
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 4
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 4
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 4
- VHNJXLWRTQNIPD-UHFFFAOYSA-N 3-hydroxybutyl 2-methylprop-2-enoate Chemical compound CC(O)CCOC(=O)C(C)=C VHNJXLWRTQNIPD-UHFFFAOYSA-N 0.000 description 4
- JRCGLALFKDKSAN-UHFFFAOYSA-N 3-hydroxybutyl prop-2-enoate Chemical compound CC(O)CCOC(=O)C=C JRCGLALFKDKSAN-UHFFFAOYSA-N 0.000 description 4
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 4
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 4
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- 239000004640 Melamine resin Substances 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 4
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 4
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 4
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 125000005396 acrylic acid ester group Chemical group 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 4
- 229930016911 cinnamic acid Natural products 0.000 description 4
- 235000013985 cinnamic acid Nutrition 0.000 description 4
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 4
- 229940018557 citraconic acid Drugs 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 4
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 4
- FWLDHHJLVGRRHD-UHFFFAOYSA-N decyl prop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C=C FWLDHHJLVGRRHD-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 4
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N ethyl trimethyl methane Natural products CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 4
- 239000001530 fumaric acid Substances 0.000 description 4
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 4
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 4
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 4
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- ADGJZVKOKVENDN-UHFFFAOYSA-N n-(butoxymethyl)-2-methylprop-2-enamide Chemical compound CCCCOCNC(=O)C(C)=C ADGJZVKOKVENDN-UHFFFAOYSA-N 0.000 description 4
- UTSYWKJYFPPRAP-UHFFFAOYSA-N n-(butoxymethyl)prop-2-enamide Chemical compound CCCCOCNC(=O)C=C UTSYWKJYFPPRAP-UHFFFAOYSA-N 0.000 description 4
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 4
- LYJZNXAVZMEXDH-UHFFFAOYSA-N octadecan-8-yl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCC(OC(=O)C(C)=C)CCCCCCC LYJZNXAVZMEXDH-UHFFFAOYSA-N 0.000 description 4
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 4
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 4
- GYDSPAVLTMAXHT-UHFFFAOYSA-N pentyl 2-methylprop-2-enoate Chemical compound CCCCCOC(=O)C(C)=C GYDSPAVLTMAXHT-UHFFFAOYSA-N 0.000 description 4
- ULDDEWDFUNBUCM-UHFFFAOYSA-N pentyl prop-2-enoate Chemical compound CCCCCOC(=O)C=C ULDDEWDFUNBUCM-UHFFFAOYSA-N 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 4
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 4
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 230000008094 contradictory effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229920003987 resole Polymers 0.000 description 3
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- YOIZTLBZAMFVPK-UHFFFAOYSA-N 2-(3-ethoxy-4-hydroxyphenyl)-2-hydroxyacetic acid Chemical compound CCOC1=CC(C(O)C(O)=O)=CC=C1O YOIZTLBZAMFVPK-UHFFFAOYSA-N 0.000 description 2
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 2
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 229920006397 acrylic thermoplastic Polymers 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229960003299 ketamine Drugs 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- CRGGPIWCSGOBDN-UHFFFAOYSA-N magnesium;dioxido(dioxo)chromium Chemical compound [Mg+2].[O-][Cr]([O-])(=O)=O CRGGPIWCSGOBDN-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/02—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/10—Metallic substrate based on Fe
- B05D2202/15—Stainless steel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Soft Magnetic Materials (AREA)
- Adhesive Tapes (AREA)
Abstract
本発明は、薄塗時でも鋼板全面で接着し、接着強度の低下が小さい、加熱及び加圧により接着するための表面被覆電磁鋼板を提供するもので、電磁鋼板の表面に、加熱加圧により接着能を発揮する絶縁被膜を有し、該被膜がガラス転移点(Tg)80℃から150℃のエポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および粒径が0.01から0.5μmの微粒子状重合体が分散した混合物であることを特徴とする接着用表面被覆電磁鋼板。更に、上記微粒子状重合体のTgが10℃から80℃であること、また更に、上記微粒子状重合体がアクリル系樹脂であることを特徴とする。The present invention provides a surface-coated electrical steel sheet that adheres to the entire surface of a steel sheet even during thin coating and has a small decrease in adhesive strength, and is bonded by heating and pressurization. It has an insulating coating that exhibits adhesive ability, and the coating has an epoxy resin or modified epoxy resin having a glass transition point (Tg) of 80 to 150 ° C., an epoxy resin curing agent, and a particle size of 0.01 to 0.5 μm. A surface-coated electrical steel sheet for adhesion, which is a mixture in which a particulate polymer is dispersed. Further, the Tg of the fine particle polymer is from 10 ° C. to 80 ° C., and the fine particle polymer is an acrylic resin.
Description
本発明は打抜き又はせん断加工後、加熱及び/又は加圧により接着するための表面被覆電磁鋼板に関するものである。 The present invention relates to a surface-coated electrical steel sheet for bonding by heating and / or pressing after punching or shearing.
一般に電磁鋼板を用いてモーターやトランスなどの積層鉄芯を組み立てる場合、剪断加工あるいは打抜きにより単位鉄芯とした後積層し、ボルト締め、カシメ、溶接あるいは接着等により固着する。その後、巻線コイルの組込み工程などの次工程に送られる。
ところで、積層鉄芯を固着する方法として、鋼板の表面に加熱及び/又は加圧により接着性を発揮する、いわゆる被着被膜と呼ばれる絶縁被膜を塗布しておいて、単位鉄芯に打抜き、積層した後、加圧加熱して固着コアとすることで、熱歪や機械歪の無い、且つ剛性に優れた積層鉄芯が得られる方法も有る。
接着被膜にはコアを固着するための接着剤としての働きと、電磁鋼板表面に形成される絶縁被膜としての働きが必要とされるが、接着剤として必要とされる特性と絶縁被膜として必要とされる特性には相反する場合が多く、高度な技術が求められている。例えば接着剤としての特性としては、均一な接着状態を容易に達成するため、柔らかい方が良いとされるが、一方絶縁被膜としては単位鉄芯に打抜き加工する場合には表面にすり疵等が発生しないよう硬い被膜である方が良い。また、接着剤としては単位鉄芯同士を強固に結合させるべく、接着被膜表面の濡れ性は高いほうが良いが、絶縁被膜としては耐蝕性保持の為には濡れ性は低いほうが良いといったものである。
このような相反する必要特性を満足させるため、特開平6−182296号公報には、鋼板表面に予め潜在性硬化剤を配合したアクリル変性エポキシ樹脂エマルジョンを主成分とする混合液を均一に塗布し、不完全状態に焼き付ける技術が提案されており、処理液の安定性が良く、塗布作業性が良好で長期保存が可能な接着用表面被覆鋼板が得られた。
しかし、上記特開平6−182296号公報に記載された技術では、単位鉄芯を積層し加圧加熱して固着する際に、単位鉄芯の全面を接着させ難いといった問題点が有った。即ち、予め配合された潜在性硬化剤は加熱によりエポキシ樹脂と化学反応して被膜を硬化し接着するのであるが、加熱により単位鉄芯の表面に塗布された接着被膜同士が交じり合い、溶融すると同時にエポキシ樹脂とエポキシ硬化剤とが硬化反応するため、部分的に硬化反応が先行し、鋼板全面が接着しない場合があった。鋼板全面が接着せず、部分的に固着した状態では鋼板同士の接着強度にバラツキが発生して接着強度の弱い部分が生じることから、製造中にコアが分解したり、モーター等では回転時の異常振動の原因になるといった問題が有った。
そこで、特開平10−343276号公報では、アクリル系樹脂とエポキシ樹脂とをエステル化した樹脂組成物にエポキシ樹脂硬化剤とを混合し、該樹脂組成物の対数減数率のピーク温度を80〜200℃とする技術が開示されている。この技術により、鋼板表面の接着被膜同士が溶融して交じり合った後、樹脂組成物の硬化反応が進行することにより全面接着が可能となった。
近年、地球環境問題に関する高まりと共に、モーターやトランスに対する高効率化が強く要請されており、モーターやトランスの効率を向上させるため、電磁鋼板に対しても占積率の向上が求められており、接着被膜についても3μm以下といった膜厚の薄手化が要請されている。しかし、上記特開平10−343276号公報に記載の技術では、接着被膜の膜厚を薄くした場合には単位鉄芯の全面を接着させ難い問題点が依然として解決されないことが判明した。
すなわち一般に、接着被膜を塗布した電磁鋼板では、無方向性電磁鋼板に塗布されている有機無機混合系絶縁被膜が1〜2μm程度の膜厚を保持しているのに比較して、膜厚が3〜8μmと厚塗りされるのが通常である。その理由としては、膜厚が少ない場合には鋼板を圧延する時に生じる圧延疵のような微妙な表面凹凸でも表面で接触しない部分が発生し、接着される部分と接着されない部分が生じるためである。
つまり、鋼板表面の表面粗さは圧延機の設定にも当然依存するものの、所定測定範囲中の最高点と最低点の差(Rmax)は、1〜5μm程度あり、従ってこの差以上の塗布厚みが必要とされるからである。特に膜厚が薄い場合に顕著になる現象としては、単板を用いて接着強度を測定した場合には比較的接着強度が確保されるものの、積層鉄芯にした場合には特に積層面を押し開く方向の強度が低下するといった現象がある。その結果、単板を用いた接着強度試験では問題無いレベルではあっても、積層鉄芯にした場合に積層面に隙間が発生したり、酷い場合にはハンドリング中の衝撃で積層鉄芯が分解したりする問題が発生する。
また、耐熱性のある接着被膜を通常の有機無機混合系絶縁被膜や無機系絶縁被膜が施された電磁鋼板に塗布した場合には、通常の絶縁被膜と電磁鋼板との間で剥離が発生し、接着強度が低下するといった問題が発生する場合もあることが判明した。
エポキシ樹脂の内部応力を低下させる技術としては、現在までに様々な方法が開示、示唆されているが、例えば特開昭62−50361号公報に、ガラス転移温度が室温に達しない重合体の微粒子が系中に存在して成ることを特徴とするエポキシ樹脂組成物を用いる技術がある。接着被膜では、モーターやトランスの鉄芯として使用されるため、ジュール熱の発生による温度上昇に対する耐熱性が必要である。上記公報に記載される発明では、耐熱性を保持した上で内部応力を低下させることが可能である。
しかし、上記特開昭62−50361号公報に開示された技術は、エポキシ樹脂の内部応力を低下させる効果に関しては非常に有用な技術であるが、接着剤と電磁鋼板の絶縁被膜の両方の特性を必要とする接着被膜を想定したものでは無く、また接着被膜が必要とする耐蝕性やブロッキング性といった諸特性を満足させる技術でも無いため、接着被膜としては問題点が多い。In general, when a laminated iron core such as a motor or a transformer is assembled using a magnetic steel sheet, it is laminated after being made into a unit iron core by shearing or punching, and fixed by bolting, caulking, welding, adhesion or the like. Then, it is sent to the next process such as a winding coil assembling process.
By the way, as a method for fixing the laminated iron core, an insulating film called a coating film that exhibits adhesiveness by heating and / or pressurization is applied to the surface of the steel sheet, and the unit iron core is punched and laminated. After that, there is a method in which a laminated iron core having no thermal strain or mechanical strain and excellent in rigidity is obtained by pressurizing and heating to form a fixed core.
The adhesive film needs to act as an adhesive for fixing the core and as an insulating film formed on the surface of the electromagnetic steel sheet, but it requires the properties required as an adhesive and the insulating film. There are many cases where these properties are contradictory, and advanced technology is required. For example, as an adhesive property, a softer one is preferable in order to easily achieve a uniform adhesion state. On the other hand, when the insulating coating is punched into a unit iron core, there is a crease on the surface. It is better that the film is hard so that it does not occur. Also, as the adhesive, in order to firmly bond the unit iron cores, it is better that the wettability of the surface of the adhesive film is better, but as the insulating film, it is better that the wettability is lower in order to maintain corrosion resistance. .
In order to satisfy these contradictory required characteristics, Japanese Patent Application Laid-Open No. 6-182296 uniformly applies a mixed liquid mainly composed of an acrylic-modified epoxy resin emulsion in which a latent curing agent is blended on the surface of a steel sheet. Thus, a technique for baking in an incomplete state has been proposed, and a surface-coated steel sheet for adhesion that can be stored for a long period of time has been obtained with good stability of the treatment liquid, good workability of coating.
However, the technique described in JP-A-6-182296 has a problem that it is difficult to adhere the entire surface of the unit iron core when the unit iron cores are stacked and fixed by heating under pressure. That is, the pre-blended latent curing agent chemically reacts with the epoxy resin by heating to cure and adhere the coating, but when the adhesive coating applied to the surface of the unit iron core is mixed by heating and melts At the same time, since the epoxy resin and the epoxy curing agent undergo a curing reaction, the curing reaction partially preceded, and the entire surface of the steel sheet may not adhere. When the entire surface of the steel sheet is not bonded and is partially fixed, the adhesive strength between the steel sheets varies and a part with weak adhesive strength is generated. There was a problem of causing abnormal vibration.
Therefore, in JP-A-10-343276, an epoxy resin curing agent is mixed with a resin composition obtained by esterifying an acrylic resin and an epoxy resin, and the peak temperature of the logarithmic reduction ratio of the resin composition is 80 to 200. A technique for setting the temperature to ° C is disclosed. By this technique, after the adhesive coatings on the steel sheet surfaces are melted and mixed with each other, the entire surface can be bonded by the progress of the curing reaction of the resin composition.
In recent years, with the increase in global environmental issues, there has been a strong demand for higher efficiency for motors and transformers, and in order to improve the efficiency of motors and transformers, improvement in the space factor is also required for electromagnetic steel sheets. The adhesive film is also required to have a thin film thickness of 3 μm or less. However, it has been found that the technique described in JP-A-10-343276 does not solve the problem that it is difficult to adhere the entire surface of the unit core when the thickness of the adhesive coating is reduced.
That is, in general, in an electromagnetic steel sheet coated with an adhesive coating, the film thickness is smaller than the organic-inorganic mixed insulating coating applied to the non-oriented electrical steel sheet has a film thickness of about 1 to 2 μm. Usually, it is thickly coated to 3 to 8 μm. The reason for this is that when the film thickness is small, a portion that does not come into contact with the surface is generated even with subtle surface irregularities such as rolling mills that occur when rolling a steel sheet, resulting in a portion that is bonded and a portion that is not bonded. .
That is, although the surface roughness of the steel sheet surface naturally depends on the setting of the rolling mill, the difference (Rmax) between the highest point and the lowest point in the predetermined measurement range is about 1 to 5 μm, and therefore the coating thickness exceeding this difference. Because is required. The phenomenon that becomes particularly noticeable when the film thickness is thin is that when the adhesive strength is measured using a single plate, a relatively strong adhesive strength is ensured. There is a phenomenon that the strength in the opening direction decreases. As a result, even if it is at a level where there is no problem in the adhesion strength test using a single plate, when the laminated iron core is used, a gap is generated on the laminated surface, or in severe cases, the laminated iron core is decomposed by an impact during handling. Problems occur.
In addition, when a heat-resistant adhesive coating is applied to a normal organic / inorganic mixed insulating coating or an electromagnetic steel plate with an inorganic insulating coating, peeling occurs between the normal insulating coating and the electromagnetic steel plate. It has been found that problems such as a decrease in adhesive strength may occur.
As a technique for reducing the internal stress of an epoxy resin, various methods have been disclosed and suggested so far. For example, JP-A-62-50361 discloses polymer fine particles whose glass transition temperature does not reach room temperature. There is a technique using an epoxy resin composition characterized in that is present in the system. Since the adhesive coating is used as an iron core of a motor or a transformer, it needs heat resistance against a temperature rise due to generation of Joule heat. In the invention described in the above publication, it is possible to reduce internal stress while maintaining heat resistance.
However, the technique disclosed in the above Japanese Patent Application Laid-Open No. 62-50361 is a very useful technique with respect to the effect of reducing the internal stress of the epoxy resin, but the characteristics of both the adhesive and the insulating coating of the electrical steel sheet. It is not intended for an adhesive coating that requires a film, nor is it a technique that satisfies various properties such as corrosion resistance and blocking properties required by the adhesive coating, and therefore has many problems as an adhesive coating.
本発明者等は、様々な実験により、これらの膜厚を薄くした場合の問題点が接着被膜を塗布することにより発生する、いわゆる内部応力が大きいことにあることを見出し、接着被膜の内部応力を低下させることにより解決できることを見出した。
本発明者等は、接着被膜の内部応力を低下させるために必要な知見を見出し、薄膜時の接着被膜の接着面を押し開く方向の接着強度を向上させ、また通常の絶縁被膜を施した上に接着被膜を形成した場合の接着強度の低下を防止し得る接着用被膜を見出し、本発明を完成させた。
すなわち本発明は、以下の構成を要旨とする。
(1)表面に、加熱及び/又は加圧により接着能を発揮する絶縁被膜を有する電磁鋼板であって、該被膜が、ガラス転移点(Tg)80℃から150℃のエポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および粒径が0.01μmから0.5μmの微粒子状重合体が分散した混合物であることを特徴とする接着用表面被覆電磁鋼板。
(2)上記微粒子状重合体のTgが10℃から80℃であることを特徴とする前項(1)に記載の接着用表面被覆電磁鋼板。
(3)上記微粒子状重合体がアクリル系樹脂であることを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。
(4)エポキシ樹脂100重量部に対し、微粒子状重合体を1〜30重量部含有することを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。
(5)上記エポキシ樹脂が予めアクリル系樹脂とエステル化反応により変性したものであることを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。
(6)表面に有機無機混合絶縁被膜あるいは無機系絶縁被膜を形成した電磁鋼板に、エポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および微粒子状重合体が分散した接着能を有する絶縁被膜を形成することを特徴とする前記(1)から(5)のいずれか1項に記載の接着用表面被覆電磁鋼板。Through various experiments, the present inventors have found that the problem when these film thicknesses are reduced is that the so-called internal stress generated by applying the adhesive coating is large, and the internal stress of the adhesive coating is It was found that the problem can be solved by lowering.
The inventors have found the knowledge necessary to reduce the internal stress of the adhesive coating, improve the adhesive strength in the direction to open the adhesive surface of the adhesive coating in the case of a thin film, and applied a normal insulating coating The present inventors have completed the present invention by finding an adhesive coating capable of preventing a decrease in adhesive strength when an adhesive coating is formed on the substrate.
That is, the gist of the present invention is as follows.
(1) An electromagnetic steel sheet having an insulating coating on its surface that exhibits adhesion by heating and / or pressurization, wherein the coating is an epoxy resin or epoxy resin modified at a glass transition point (Tg) of 80 ° C to 150 ° C. A surface-coated electrical steel sheet for bonding, characterized by being a mixture in which a body, an epoxy resin curing agent, and a particulate polymer having a particle size of 0.01 to 0.5 μm are dispersed.
(2) The surface-coated electrical steel sheet for bonding as described in (1) above, wherein the Tg of the particulate polymer is 10 to 80 ° C.
(3) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, wherein the particulate polymer is an acrylic resin.
(4) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, which contains 1 to 30 parts by weight of a particulate polymer with respect to 100 parts by weight of the epoxy resin.
(5) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, wherein the epoxy resin is previously modified with an acrylic resin by an esterification reaction.
(6) Forming an insulating film having adhesive ability in which an epoxy resin or an epoxy resin modified material, an epoxy resin curing agent and a fine particle polymer are dispersed on a magnetic steel sheet having an organic-inorganic mixed insulating film or an inorganic insulating film formed on the surface The surface-coated electrical steel sheet for bonding according to any one of (1) to (5), wherein:
図1は、2cm×3cmの形状に打抜き加工されたサンプル板を、200℃×10kgf/cm2×30分間加熱加圧して接着した後、常温にて押し割り試験を行った。それぞれのサンプルを回収し破断した接着面について走査型電子顕微鏡にて表面状態を観察した状態の写真である。図1Aは従来の接着面の破断状態の写真であり、図1Bは本発明による接着面の破断状態の写真である。
図2は、接着強度の測定方法の1つとして用いられてきたピール試験法の概念図と本発明を実施するに当って新たに考案した押し割り試験法の概念図を示す。どちらも接着剤あるいは接着被膜によって張り合わされた鋼板を引き剥がす剥離強度測定法であるが、ピール試験法では鋼板が大きく変形するため、鋼板自身の特性による影響が非常に大きいのに対し、押し割り試験法では、複数枚鋼板を積層し固着することにより、鋼板の影響を最小限に抑制し、接着部材の特性を細かく評価可能である。In FIG. 1, a sample plate punched into a shape of 2 cm × 3 cm was bonded by heating and pressing at 200 ° C. × 10 kgf / cm 2 × 30 minutes, and then a split test was performed at room temperature. It is the photograph of the state which observed the surface state with the scanning electron microscope about the adhesive surface which collect | recovered and fractured each sample. FIG. 1A is a photograph of a conventional fracture state of an adhesive surface, and FIG. 1B is a photograph of a fracture state of the adhesive surface according to the present invention.
FIG. 2 shows a conceptual diagram of a peel test method that has been used as one of the methods for measuring adhesive strength, and a conceptual diagram of a split split test method newly devised for carrying out the present invention. Both methods are peel strength measurement methods that peel off the steel sheets bonded with adhesives or adhesive coatings. However, the peel test method greatly deforms the steel sheet, so the effect of the steel sheet itself is very large. In the method, by laminating and fixing a plurality of steel plates, the influence of the steel plates can be minimized and the characteristics of the adhesive member can be evaluated in detail.
以下、本発明を実施する具体的形態について説明する。
本発明における被膜では、エポキシ樹脂あるいはエポキシ樹脂変性体中にエポキシ樹脂硬化剤と粒径が0.01から0.5μmの範囲の特定の有機樹脂粒子が分散していることが必要である。
本発明で使用するエポキシ樹脂とは、硬化後のガラス転移点(Tg)が80℃から150℃の範囲にあるもので、硬化反応前には常温で液体、好ましくは固体のもので単量体中に平均で1つ以上のエポキシ基を有するものであれば特に限定するものではないが、エポキシ当量が100〜5000のものが好適である。
具体的には、ビスフェノールA,F,AD型、フェノールノボラック型、オルソクレゾールノボラック型、フェノール系化合物変性型などがあり、単量体中に芳香環構造を持つものが好適である。
本発明における被膜では、エポキシ樹脂だけで無く、エポキシ樹脂の変性体を用いても良い。エポキシ樹脂を変性体とする方法については特に限定するものでは無いが、特定の置換基を主鎖に用いたり、エポキシ樹脂末端のエポキシ基や側鎖の水酸基に各種化合物を結合させたりしたものである。特に、接着被膜としては、樹脂成分が溶融後にエポキシ樹脂の硬化反応が進行することが望ましいことから、変性体としては、エポキシ樹脂にアクリル系樹脂をエステル化反応させたアクリル変性エポキシ樹脂が好適である。
上記エポキシ樹脂変性体に用いるアクリル系樹脂としては、カルボキシル基含有ビニルポリマーを含む重合性モノマーの重合物が好適である。具体的には、α,β−エチレン性不飽和カルボン酸のアルキルエステル、ヒドロキシルアルキルエステル及びN−ヒドロキシアルキルアミドの中から選ばれる1種の単量体とカルボキシル基を有するα,β−エチレン性不飽和単量体とスチレン系ビニル単量体から成り、これらの混合物を有機溶媒中で通常のラジカル重合開始剤を用いて共重合せしめることにより得ることができるものである。
本発明で使用する、α,β−エチレン性不飽和カルボン酸のアルキルエステルとしては、例えば、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸nアミル、アクリル酸nヘキシル、アクリル酸イソオクチル、アクリル酸nオクチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸2エチルブチル、アクリル酸2エチルヘキシル、アクリル酸デシルなど)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソブチル、メタクリル酸nブチル、メタクリル酸nアミル、メタクリル酸nヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸nオクチル、メタクリル酸デシルオクチル、メタクリル酸2エチルヘキシル、メタクリル酸デシルなど)が有る。
α,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステルとしては、例えばアクリル酸2ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸3ヒドロキシブチル、アクリル酸2,2ビス(ヒドロキシメチル)エチル、メタクリル酸2ヒドロキシエチル、メタクリル酸3ヒドロキシブチル、メタクリル酸ヒドロキシプロピル、メタクリル酸2,3ジヒドロキシプロピルなどが有る。
α,β−エチレン性不飽和カルボン酸のN−ヒドロキシルアルキルアミドとしては、例えばN−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−ブトキシメチルアクリルアミド、N−ブトキシメチルメタクリルアミドなどの、N置換アクリル系単量体が有る。
本発明では、上記α,β−エチレン性不飽和カルボン酸単量体の中から選ばれる少なくとも1種以上の単量体を含有することが望ましい。
次に、カルボキシル基を有するα,β−エチレン性不飽和単量体としては、例えばアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸などが挙げられる。
スチレン系ビニル単量体としては、例えばスチレン、ビニルトルエン、t−ブチルスチレンなどが挙げられる。
上記カルボキシル基含有ビニルポリマーの製造法においては、特に限定するものではないが、カルボキシル基を有するα,β−エチレン性不飽和単量体を全単量体に対して10〜60質量%、特に好ましくは15〜30質量%とし、共重合温度としては50〜150℃、特に好ましくは60〜90℃で行うのが良い。
硬化後のエポキシ樹脂あるいはエポキシ樹脂変性体のTgを80℃から150℃に限定する理由は、80℃未満では接着後の耐熱性に劣り、モーターやトランスの駆動時の発熱に耐えられないためであり、150℃超では被膜が硬く成り過ぎて接着強度が低下したり、モーターやトランスとして使用する時の振動などにより劣化が進行し過ぎるためである。特に好適には90〜120℃の範囲、さらに好適には110〜120℃である。この範囲により微粒子状重合体がエポキシ樹脂中に分散することにより内部応力が低減する。
次に本発明で用いる微粒子状重合体とは、粒径が0.01μmから0.5μmの範囲のもので、エポキシ樹脂中に分散状態で安定的に存在できるものが使用可能である。本発明で使用できる微粒子重合体の種類としては、アクリル樹脂、酢酸ビニル、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、ポリカーボネートなどが好適である。
具体的には、アクリル樹脂としては、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸nアミル、アクリル酸nヘキシル、アクリル酸イソオクチル、アクリル酸nオクチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸2エチルブチル、アクリル酸2エチルヘキシル、アクリル酸デシルなど)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソブチル、メタクリル酸nブチル、メタクリル酸nアミル、メタクリル酸nヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸nオクチル、メタクリル酸デシルオクチル、メタクリル酸2エチルヘキシル、メタクリル酸デシルなど)、アクリル酸2ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸3ヒドロキシブチル、アクリル酸2,2ビス(ヒドロキシメチル)エチル、メタクリル酸2ヒドロキシエチル、メタクリル酸3ヒドロキシブチル、メタクリル酸ヒドロキシプロピル、メタクリル酸2,3ジヒドロキシプロピル、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−ブトキシメチルアクリルアミド、N−ブトキシメチルメタクリルアミド、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸、スチレン、ビニルトルエン、t−ブチルスチレンなどの単量体を1段ないし2段以上のプロセスにて乳化重合せしめたものである。
酢酸ビニルとしては、酢酸ビニル、酢酸ビニル・ベオバ共重合体、酢酸ビニル・エチレン共重合体などである。
ポリウレタンとしては、単量体中にウレタン結合を有するもので、主にイソシアネート化合物とポリオール類あるいはポリエーテルとの化学反応により得られるものが使用可能であり、トリレンジイソシアネート、ジフェニルメタン4,4ジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルプロパン1−メチル2−イソシアノ4−カルバメート、ポリメチレンポリフェニルイソシアネート、メタキシリレンジイソシアネートなどのイソシアネート化合物と、ポリエチレングリコール、ポリプロピレングリコール、ポリエーテルトリオールなどのポリオール類、ポリエーテルを化合したものである。
ポリエステルとしては、2塩基酸と2価のアルコールを反応させた一般的なものが使用可能で、具体的には、2塩基酸としては、無水マレイン酸、フマル酸、アジピン酸、無水フタル酸、イソフタル酸、2価のアルコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3ブチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、ビスフェノールジオキシエチルエーテルなどが使用可能である。
本発明で用いる微粒子状重合体は、粒径が0.01μmから0.5μmの範囲にある必要がある。粒径が0.01μm未満では、本発明の膜厚が薄い時でも接着強度が向上するという効果が得られず、0.5μm超でも、エポキシ樹脂同士の溶融を妨害し、接着強度を低下させるからである。
本発明者等は、接着被膜においては微粒子状重合体の分散時の粒径の方がより重要な働きをしており、0.01μmから0.5μmという非常に狭い範囲の微粒子重合体を用いることによって、接着被膜に要求される諸特性を満足できることを見出した。
その理由としては、接着被膜では数μm、厚くても十数μmという非常に膜厚が薄いために、エポキシ樹脂中に均一に微粒子が分散するためには、自ずからその大きさに限界があり、例えば膜厚よりも大きな粒径の微粒子を添加せしめた場合には、塗布乾燥時に微粒子の構成成分のみの領域が現れることにより「島−海構造」が形成不能となることから、本発明の効果が得られないと推定される。従って、効果の得られる微粒子重合体の粒径が非常に狭い範囲に限られ、本発明者らが検討した結果では、好適には0.05μm以上、さらに好適には0.1μm以上、特に好適には0.2μmから0.4μmの範囲である。
本発明で用いる微粒子状重合体は、ガラス転移点が10℃から80℃の範囲が好適である。ガラス転移点が10℃未満の場合、スリット作業や打抜き加工時に被膜に疵が付き易くなる傾向があり、80℃超の場合には被膜が白化する恐れがある。より好適なガラス転移点は、その下限については、25℃以上、35℃以上、45℃以上、さらには55℃以上であり、また、その上限については、70℃以下、65℃以下である。
本発明の微粒子状重合体をエポキシ樹脂中に分散させる方法については、特に限定するものではなく、各樹脂を機械的に混合したり、それぞれをエマルジョンとしてから混合したり、あるいはアクリル変性エポキシ樹脂溶液中で乳化重合することによりアクリル樹脂を微粒子状重合体としても良い。
微粒子重合体の形態としては、一般的には球状が望ましいが、中空型や卵型などの異型あるいは内部と外周側で組成の異なるいわゆるハイブリッド型でも良い。また、エポキシ樹脂との相溶性によっては、明確な外観を呈しない場合もある。スリットなどの加工時に、部分的に過大な圧力がかかる可能性を考慮すると、エポキシ樹脂と微粒子状重合体の界面密着性は高いほうが加工性が良好であることから、明確な外観を呈しなくても構わない。
微粒子状重合体の添加量としては、エポキシ樹脂100重量部に対して、1〜30重量部が適当である。1重量部未満では本発明の効果が現れず、30重量部超では微粒子状重合体同士の凝集や沈殿が発生し易く、取り扱いに支障が生じるためである。
本発明で使用するエポキシ樹脂硬化剤とは、エポキシ樹脂を硬化させ得るもので、通常、所定温度に加熱することにより硬化反応を開始するものである。具体的には、酸無水物系硬化剤(無水フタル酸、ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、無水ピロメリット酸、パイロメリット酸無水物など)、脂肪族アミン(ジエチレントリアミン、トリエチレンテトラミン、ポリアミド、2エチル4メチルイミダゾールなど)、メタフェニレンジアミン、ジシアンジアミド、有機酸ジヒドラジド、アミンイミド、ケテミン、第3アミン塩、3フッ化ホウ素アミン塩、ナイロン、メラミン樹脂、フェノール樹脂、キシレン樹脂、NBR、ポリサルファイド、アニリン樹脂、ブロックイソシアネート、アクリル樹脂などが挙げられる。特に良好な特性を示すものは、メラミン樹脂、レゾール型フェノール樹脂、ブロックイソシアネート、アクリル樹脂などである。
エポキシ樹脂硬化剤の重量比はエポキシ樹脂とのエステル化反応生成物100重量部に対して1〜30重量部が良好である。エポキシ樹脂硬化剤が1重量部未満の場合では接着後の被膜の耐熱性が劣る傾向に有り、30重量部超では塗布乾燥後に硬化剤が被膜表面近傍に濃縮し白濁する傾向に有る。
また、被膜量としては1〜6g/m2が良く、特に1〜3g/m2が好ましい。1g/m2未満では接着強度が低下する傾向に有り、6g/m2超では占積率が劣る傾向にあるからである。
次に、電磁鋼板に被膜を形成する時の焼き付け設定条件は、特に限定するものではないが、通常行われているような150〜800℃に設定した乾燥炉で、短時間に板温で100〜300℃とするのが良い。
本発明のメカニズムは内部応力の低減によるものと想定されるが、詳細は明らかではなく、前記特開昭62−50361号公報に開示された技術では、室温以下のガラス転移点が有効であるが、接着被膜においては、微粒子状重合体のガラス転移点はむしろ10℃から80℃の範囲が良く、さらには微粒子状重合体の粒径が接着強度に大きく影響する理由は詳細には明らかではない。しかし、接着被膜の場合には有機樹脂と比較すると非常に熱膨張係数が小さく、剛性の大きい鋼板の表面にエポキシ樹脂層が非常に薄く形成された状態で使用されており、一般的な有機樹脂の内部応力低減機構とは、異なる要因が働くものと推定される。
図1は、本発明に基づく樹脂組成物を塗布焼付した接着用表面被覆鋼板を200℃×10kgf/cm2×30分間の条件で接着したサンプル(No.2)と、従来例に基づくサンプルについて接着したサンプル(No.1)の接着部破断面を走査型電子顕微鏡にて観察したものである。従来例に基づくサンプル図1Aでは、破断した部分が滑らかな面を呈しており、亀裂の伝播が素早く生じたことが伺える。
それに対し、本発明に基づくサンプル図1Bでは、破断した部分にミクロ的な凹凸が生じており、亀裂の伝播経路が入り組んでいる。
これらの観察結果から、本発明に基づく樹脂組成物の場合には、エポキシ樹脂連続相中にアクリル樹脂微粒子が均一に分散したいわゆる「島−海構造」が形成されることにより、亀裂の伝播が遅延し、従って接着強度が向上したとも推定される。
さらに、剪断接着強度と本発明で実施する押割り試験の接着強度では、異なる挙動を示す。すなわち、剪断強度試験では鋼板の接着面に対して垂直方向の力が働かないのに対し、押割り試験では接着面に対して垂直方向に働く成分があり、当然接着被膜の剥離挙動が変化するが、現実のモーター等の積層鉄芯に働く電磁力を考慮した場合、押割り試験の方がより実際の積層鉄芯に必要とされる強度であると想定される。
通常、押割り方向の強度測定方法としてはピール強度測定法が一般的である。ところが、本発明者らが検討した結果、電磁鋼板を用いてピール強度を測定した場合には、サンプルに折れが発生するため接着したサンプル同士を滑らかに剥離させることが困難で、バラツキが非常に大きくなり測定が困難である。
また、ピール強度測定用に薄鋼板を調製する方法では、様々な鋼成分を添加する電磁鋼板とは表面状態が異なるため、実際の積層鉄芯とは異なる挙動となる心配がある。
そこで本発明者らは、押割り方向の接着強度測定方法として積層接着した鉄芯サンプルに楔を押し込むことにより、押割り方向の接着強度を測定できることを見出した。前記特開昭62−50361号公報では接着強度の測定方法として、ピール試験法(ASTM D1876)が使用されているが、本発明では電磁鋼板用として押し割り試験方法を創案し、従来例と比較した。図2に従来法であるピール試験方法と本発明で測定した押し割り試験法を示す。Hereinafter, specific modes for carrying out the present invention will be described.
In the coating film of the present invention, it is necessary that an epoxy resin curing agent and specific organic resin particles having a particle size in the range of 0.01 to 0.5 μm are dispersed in the epoxy resin or the modified epoxy resin.
The epoxy resin used in the present invention has a glass transition point (Tg) after curing in the range of 80 ° C. to 150 ° C., and is a liquid at room temperature, preferably a solid monomer before curing reaction. Although it will not specifically limit if it has an average of 1 or more epoxy groups in it, A thing with an epoxy equivalent of 100-5000 is suitable.
Specifically, there are bisphenol A, F, AD type, phenol novolak type, orthocresol novolak type, phenolic compound modified type and the like, and those having an aromatic ring structure in the monomer are preferable.
In the coating according to the present invention, not only an epoxy resin but also a modified epoxy resin may be used. There is no particular limitation on the method of modifying the epoxy resin, but a specific substituent is used for the main chain, or various compounds are bonded to the epoxy group at the end of the epoxy resin or the hydroxyl group of the side chain. is there. In particular, as the adhesive film, it is desirable that the curing reaction of the epoxy resin proceeds after the resin component is melted. Therefore, as the modified body, an acrylic modified epoxy resin obtained by esterifying an acrylic resin with an epoxy resin is suitable. is there.
As the acrylic resin used for the modified epoxy resin, a polymer of a polymerizable monomer containing a carboxyl group-containing vinyl polymer is suitable. Specifically, α, β-ethylenic acid having one monomer selected from alkyl ester, hydroxyl alkyl ester and N-hydroxyalkylamide of α, β-ethylenically unsaturated carboxylic acid and carboxyl group It consists of an unsaturated monomer and a styrene vinyl monomer, and can be obtained by copolymerizing these mixtures in an organic solvent using a normal radical polymerization initiator.
Examples of the alkyl ester of α, β-ethylenically unsaturated carboxylic acid used in the present invention include acrylic acid esters (methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, N-amyl acrylate, n-hexyl acrylate, isooctyl acrylate, n-octyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, 2-ethylbutyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc.), methacrylates ( Methyl methacrylate, ethyl methacrylate, propyl methacrylate, isobutyl methacrylate, nbutyl methacrylate, n amyl methacrylate, n hexyl methacrylate, lauryl methacrylate, stearyl methacrylate, n methacrylate Octyl, decyl octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, and the like.
Examples of the hydroxyalkyl ester of α, β-ethylenically unsaturated carboxylic acid include 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 3-hydroxybutyl acrylate, 2,2-bis (hydroxymethyl) ethyl acrylate, methacrylic acid 2 Examples include hydroxyethyl, 3-hydroxybutyl methacrylate, hydroxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate, and the like.
Examples of N-hydroxylalkylamides of α, β-ethylenically unsaturated carboxylic acids include N-substituted acrylics such as N-methylolacrylamide, N-methylolmethacrylamide, N-butoxymethylacrylamide, and N-butoxymethylmethacrylamide. There are monomers.
In the present invention, it is desirable to contain at least one monomer selected from the above α, β-ethylenically unsaturated carboxylic acid monomers.
Next, examples of the α, β-ethylenically unsaturated monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and cinnamic acid. Is mentioned.
Examples of the styrenic vinyl monomer include styrene, vinyl toluene, t-butyl styrene and the like.
In the method for producing the carboxyl group-containing vinyl polymer, although not particularly limited, the α, β-ethylenically unsaturated monomer having a carboxyl group is 10 to 60% by mass with respect to the total monomers, particularly The content is preferably 15 to 30% by mass, and the copolymerization temperature is 50 to 150 ° C, particularly preferably 60 to 90 ° C.
The reason why the Tg of the cured epoxy resin or modified epoxy resin is limited to 80 ° C. to 150 ° C. is that if it is less than 80 ° C., the heat resistance after bonding is inferior and it cannot withstand the heat generated when driving a motor or transformer. If the temperature exceeds 150 ° C., the film becomes too hard and the adhesive strength is lowered, or the deterioration is excessively caused by vibrations when used as a motor or a transformer. Particularly preferably, it is in the range of 90 to 120 ° C, more preferably 110 to 120 ° C. With this range, the internal stress is reduced by dispersing the fine particle polymer in the epoxy resin.
Next, the fine particle polymer used in the present invention has a particle diameter in the range of 0.01 μm to 0.5 μm, and a polymer that can stably exist in a dispersed state in the epoxy resin can be used. As the kind of fine particle polymer that can be used in the present invention, acrylic resin, vinyl acetate, polyester, polyurethane, polyethylene, polypropylene, polycarbonate and the like are suitable.
Specifically, acrylic resins include acrylic acid esters (methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, nbutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isooctyl acrylate, N-octyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, 2-ethylbutyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc.), methacrylates (methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacrylic acid) Isobutyl, nbutyl methacrylate, n amyl methacrylate, n hexyl methacrylate, lauryl methacrylate, stearyl methacrylate, n octyl methacrylate, decyl octyl methacrylate, methacrylic acid 2 Tilhexyl, decyl methacrylate, etc.), 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 3-hydroxybutyl acrylate, 2,2-bis (hydroxymethyl) ethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxybutyl methacrylate, methacryl Hydroxypropyl acid, 2,3 dihydroxypropyl methacrylate, N-methylolacrylamide, N-methylolmethacrylamide, N-butoxymethylacrylamide, N-butoxymethylmethacrylamide, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumar Monomers such as acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid, styrene, vinyltoluene, and t-butylstyrene are emulsion-polymerized in one or more stages. It is.
Examples of vinyl acetate include vinyl acetate, vinyl acetate / veova copolymer, vinyl acetate / ethylene copolymer, and the like.
As the polyurethane, those having a urethane bond in the monomer and those obtained mainly by a chemical reaction between an isocyanate compound and a polyol or a polyether can be used. Tolylene diisocyanate, diphenylmethane 4,4 diisocyanate, Compound of isocyanate compounds such as hexamethylene diisocyanate, trimethylpropane 1-methyl 2-isocyano 4-carbamate, polymethylene polyphenyl isocyanate, metaxylylene diisocyanate, polyols such as polyethylene glycol, polypropylene glycol, polyether triol, and polyether. It is what.
As the polyester, a general one obtained by reacting a dibasic acid and a divalent alcohol can be used. Specifically, as the dibasic acid, maleic anhydride, fumaric acid, adipic acid, phthalic anhydride, As isophthalic acid and divalent alcohol, ethylene glycol, propylene glycol, diethylene glycol, 1,3 butylene glycol, dipropylene glycol, neopentyl glycol, bisphenol dioxyethyl ether, and the like can be used.
The fine particle polymer used in the present invention needs to have a particle size in the range of 0.01 μm to 0.5 μm. If the particle size is less than 0.01 μm, the effect of improving the adhesive strength is not obtained even when the film thickness of the present invention is thin, and even if it exceeds 0.5 μm, the melting of the epoxy resins is hindered and the adhesive strength is reduced. Because.
The inventors of the present invention have a more important function of the particle size at the time of dispersion of the fine polymer in the adhesive coating, and use a fine polymer in a very narrow range of 0.01 μm to 0.5 μm. Thus, it has been found that various properties required for an adhesive coating can be satisfied.
The reason for this is that the adhesive film has a very small thickness of several μm and even a few tens of μm, so there is a limit to its size in order to uniformly disperse the fine particles in the epoxy resin, For example, when a fine particle having a particle size larger than the film thickness is added, the region of only the constituent component of the fine particle appears at the time of coating and drying, so that the “island-sea structure” cannot be formed. It is estimated that is not obtained. Accordingly, the particle size of the fine particle polymer that is effective is limited to a very narrow range, and as a result of the study by the present inventors, it is preferably 0.05 μm or more, more preferably 0.1 μm or more, and particularly preferably Is in the range of 0.2 μm to 0.4 μm.
The fine particle polymer used in the present invention preferably has a glass transition point in the range of 10 ° C to 80 ° C. If the glass transition point is less than 10 ° C., the coating tends to be wrinkled during slitting or punching, and if it exceeds 80 ° C., the coating may be whitened. More preferable glass transition points are 25 ° C. or more, 35 ° C. or more, 45 ° C. or more, and further 55 ° C. or more for the lower limit, and 70 ° C. or less and 65 ° C. or less for the upper limit.
The method for dispersing the fine particle polymer of the present invention in the epoxy resin is not particularly limited, and each resin is mixed mechanically, mixed as an emulsion, or an acrylic-modified epoxy resin solution. The acrylic resin may be made into a fine particle polymer by emulsion polymerization in the medium.
The shape of the fine particle polymer is generally preferably spherical, but may be a hollow type or an egg type or a so-called hybrid type having a different composition between the inside and the outer periphery. Further, depending on the compatibility with the epoxy resin, a clear appearance may not be exhibited. Considering the possibility that excessive pressure is partially applied during processing such as slits, the higher the interfacial adhesion between the epoxy resin and the fine particle polymer, the better the workability, so it does not exhibit a clear appearance. It doesn't matter.
The addition amount of the fine particle polymer is suitably 1 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin. When the amount is less than 1 part by weight, the effect of the present invention does not appear. When the amount exceeds 30 parts by weight, aggregation and precipitation of the particulate polymers are likely to occur, and the handling is hindered.
The epoxy resin curing agent used in the present invention can cure an epoxy resin, and usually initiates a curing reaction by heating to a predetermined temperature. Specifically, acid anhydride curing agents (phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, pyromellitic anhydride, pyromellitic anhydride, etc.), aliphatic amines (diethylenetriamine, triethylene) Tetramine, polyamide, 2ethyl 4-methylimidazole, etc.), metaphenylenediamine, dicyandiamide, organic acid dihydrazide, amine imide, ketamine, tertiary amine salt, boron trifluoride amine salt, nylon, melamine resin, phenol resin, xylene resin, NBR , Polysulfide, aniline resin, blocked isocyanate, acrylic resin and the like. Those having particularly good characteristics are melamine resin, resol type phenol resin, blocked isocyanate, acrylic resin and the like.
The weight ratio of the epoxy resin curing agent is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the esterification reaction product with the epoxy resin. When the epoxy resin curing agent is less than 1 part by weight, the heat resistance of the coated film tends to be inferior, and when it exceeds 30 parts by weight, the curing agent tends to concentrate near the coating surface and become cloudy after coating and drying.
As the coating amount better 1 to 6 g / m 2, in particular 1 to 3 g / m 2 is preferred. This is because if it is less than 1 g / m 2 , the adhesive strength tends to decrease, and if it exceeds 6 g / m 2 , the space factor tends to be inferior.
Next, the baking setting conditions when forming a film on the electromagnetic steel sheet are not particularly limited, but in a drying furnace set at 150 to 800 ° C. as usual, the plate temperature is 100 in a short time. It is good to set it to -300 degreeC.
Although the mechanism of the present invention is assumed to be due to the reduction of internal stress, the details are not clear, and in the technique disclosed in Japanese Patent Laid-Open No. 62-50361, a glass transition point below room temperature is effective. In the adhesive coating, the glass transition point of the particulate polymer is preferably in the range of 10 ° C. to 80 ° C. Further, the reason why the particle size of the particulate polymer greatly affects the adhesive strength is not clear in detail. . However, in the case of adhesive coatings, the thermal expansion coefficient is very small compared to organic resins, and the epoxy resin layer is formed on the surface of a steel plate with high rigidity, so that it is used with a general organic resin. It is estimated that a different factor works from the internal stress reduction mechanism.
FIG. 1 shows a sample (No. 2) obtained by adhering a surface-coated steel sheet for adhesion to which a resin composition according to the present invention is applied and baked under conditions of 200 ° C. × 10 kgf / cm 2 × 30 minutes, and a sample based on a conventional example. The bonded part fracture surface of the adhered sample (No. 1) is observed with a scanning electron microscope. In the sample FIG. 1A based on the conventional example, the broken part has a smooth surface, and it can be seen that the propagation of the crack occurred quickly.
On the other hand, in the sample FIG. 1B based on the present invention, microscopic unevenness is generated in the broken portion, and the propagation path of the crack is complicated.
From these observation results, in the case of the resin composition according to the present invention, the so-called “island-sea structure” in which the acrylic resin fine particles are uniformly dispersed in the epoxy resin continuous phase is formed, so that the propagation of cracks is achieved. It is also assumed that there was a delay, and hence the adhesive strength was improved.
Further, the shear adhesive strength and the adhesive strength of the split test performed in the present invention show different behaviors. In other words, in the shear strength test, a force perpendicular to the bonding surface of the steel sheet does not work, whereas in the split test, there is a component that works perpendicular to the bonding surface, and naturally the peeling behavior of the adhesive coating changes. However, when the electromagnetic force acting on the laminated iron core of an actual motor or the like is taken into consideration, it is assumed that the cracking test is the strength required for the actual laminated iron core.
Usually, the peel strength measurement method is generally used as the strength measurement method in the split direction. However, as a result of the study by the present inventors, when the peel strength is measured using a magnetic steel sheet, it is difficult to smoothly peel off the adhered samples because the samples are bent, and the variation is very large. It becomes large and difficult to measure.
Further, in the method of preparing a thin steel plate for measuring peel strength, the surface state is different from that of an electromagnetic steel plate to which various steel components are added, so that there is a concern that the behavior differs from that of an actual laminated iron core.
Therefore, the present inventors have found that the adhesive strength in the split direction can be measured by pushing a wedge into the iron core sample laminated and bonded as a method for measuring the adhesive strength in the split direction. In the above Japanese Patent Laid-Open No. Sho 62-50361, the peel test method (ASTM D1876) is used as a method for measuring the adhesive strength. In the present invention, however, a cracking test method for electromagnetic steel sheets was created and compared with the conventional example. . FIG. 2 shows a conventional peel test method and a split split test method measured according to the present invention.
公知の方法で処理した、仕上げ焼鈍後の無方向性電磁鋼板(板厚0.5mm、シリコン量0.5%)のコイルを通常の絶縁被膜を塗布せず、そのままの状態のものを供試材とした。次に表1に示すエポキシ樹脂エマルジョンとエポキシ樹脂硬化剤、および表2に示す微粒子状重合体を順次混合し、表3に示す処理液を作製した。それぞれの処理液をゴムロール方式の塗布装置で塗布した後、板温160℃で被膜の塗布量が表中に記載する量になるように焼き付け処理を行った。
このコイルから試料を切り出し、被膜諸特性を評価した。その結果を表4に示す。次に通常の電磁鋼板に塗布されるクロム酸マグネシウム・アクリル樹脂系の有機無機混合被膜を1g/m2になるよう塗布焼付したコイルを供試材とした場合を表5に示す。なお、塗布量を膜厚に換算するには、例えば塗布量が多い場合と少ない場合や鋼板の表面粗度が異なる場合などで換算式を変更する必要があるが、本発明で塗布される場合では、1g/m2で約0.6μm〜1μmである。
接着面を押し開く方向の接着強度に付いては、各溶液を所定量塗布焼付したコイルから2cm×3cmの大きさに切り出した試料を40枚積層した後専用冶具で固定し、200℃×10kgf/cm2×30分間加熱加圧して接着した積層鉄芯を作製した後、積層面の中央部に楔型圧子を押し付け、積層鉄芯が分離する時の荷重を測定した。
*:エポキシ3は、変性したアクリル樹脂が硬化剤として機能するため、硬化剤は添加せず。
*:表1,2中の略号の説明
BPA:ビスフェノールA型エポキシ、NR:ノボラック型エポキシ、PR:フェノールレゾール型硬化剤、AR:アミノ樹脂硬化剤、EA:アクリル酸エチル、MMA:メタクリル酸メチル、St:スチレン、BA:アクリル酸ブチル、PVA:酢酸ビニル、PA:ポリエチレン、PU:ポリウレタン、HPMA:メタクリル酸ヒドロキシプロピル、MA:アクリル酸、EHMA:メタクリル酸2−エチルヘキシル
*:表中の部は樹脂固形分換算で重量部
(注)a:圧力10kg/cm2、温度200℃で60秒間圧着後、常温でせん断接着力を測定。
b:上記a条件で接着後、150℃に加熱した状態で接着強度を測定。
c:2cm×3cmに剪断したサンプルを40枚積層し、200℃×10kgf/cm2×30分間の条件で接着した後、積層面の中央部に楔(先端角7°)を押し込み、その時の最大荷重を測定した。
d:常温にて72時間20kg/cm2で加圧した後、粘着の度合いを評価した。
全く粘着しなかったものを◎、若干粘着したものを○、粘着するが手で剥がすのに力を必要としないものを△、手で剥がすのに力が必要なものを×とし、○以上を合格とした。
A non-oriented electrical steel sheet (plate thickness: 0.5 mm, silicon content: 0.5%) after finish annealing, treated by a known method, is used as it is without applying a normal insulation coating. A material was used. Next, the epoxy resin emulsion shown in Table 1, the epoxy resin curing agent, and the particulate polymer shown in Table 2 were sequentially mixed to prepare the treatment liquid shown in Table 3. Each of the treatment liquids was applied with a rubber roll type coating device, and then baked at a plate temperature of 160 ° C. so that the coating amount was the amount described in the table.
A sample was cut out from this coil, and the coating properties were evaluated. The results are shown in Table 4. Next, Table 5 shows a case where a coil obtained by applying and baking a magnesium chromate / acrylic resin-based organic-inorganic mixed coating applied to a normal electromagnetic steel sheet to 1 g / m 2 is used as a test material. In order to convert the coating amount into a film thickness, for example, when the coating amount is large and small, or when the surface roughness of the steel sheet is different, it is necessary to change the conversion formula. Then, it is about 0.6 μm to 1 μm at 1 g / m 2 .
Regarding the adhesive strength in the direction of pushing the adhesive surface open, 40 samples cut out to a size of 2 cm × 3 cm from a coil in which a predetermined amount of each solution was applied and baked were stacked and then fixed with a dedicated jig, and 200 ° C. × 10 kgf After producing a laminated iron core that was bonded by heating / pressing for 30 minutes / cm 2 , a wedge-type indenter was pressed against the center of the laminated surface, and the load when the laminated iron core was separated was measured.
* : Epoxy 3 does not contain a curing agent because the modified acrylic resin functions as a curing agent.
*: Explanation of abbreviations in Tables 1 and 2 BPA: bisphenol A type epoxy, NR: novolac type epoxy, PR: phenol resol type curing agent, AR: amino resin curing agent, EA: ethyl acrylate, MMA: methyl methacrylate , St: styrene, BA: butyl acrylate, PVA: vinyl acetate, PA: polyethylene, PU: polyurethane, HPMA: hydroxypropyl methacrylate, MA: acrylic acid, EHMA: 2-ethylhexyl methacrylate *: parts in the table are Part by weight in terms of resin solids
(Note) a: After pressure bonding at a pressure of 10 kg / cm 2 and a temperature of 200 ° C. for 60 seconds, the shear adhesive strength was measured at room temperature.
b: After bonding under the above condition a, the adhesive strength was measured in a state heated to 150 ° C.
c: 40 samples sheared to 2 cm × 3 cm were laminated and bonded under the conditions of 200 ° C. × 10 kgf / cm 2 × 30 minutes, and then a wedge (tip angle 7 °) was pushed into the center of the laminated surface. Maximum load was measured.
d: After pressurizing at 20 kg / cm 2 for 72 hours at room temperature, the degree of adhesion was evaluated.
◎ for those that did not stick at all, ◯ for those that were slightly sticky, △ for those that stick but do not require force to peel off by hand, × for those that require power to peel by hand, and ○ or more Passed.
本発明によれば、ガラス転移点(Tg)80℃から150℃のエポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および粒径が0.01から0.5μmの微粒子状重合体が分散した混合物を用いることにより、薄塗りでも接着強度の低下を少なくすることが可能で、接着面を押し開く方向の接着強度も十分に確保でき、さらに通常の絶縁被膜上に塗布した場合にも接着強度低下を低減することが可能である。 According to the present invention, a mixture in which an epoxy resin having a glass transition point (Tg) of 80 ° C. to 150 ° C. or a modified epoxy resin, an epoxy resin curing agent, and a particulate polymer having a particle size of 0.01 to 0.5 μm are dispersed. By using, it is possible to reduce the decrease in adhesive strength even with thin coating, it is possible to secure sufficient adhesive strength in the direction to push the adhesive surface open, and even when applied on a normal insulating film, the adhesive strength decreases Can be reduced.
本発明は、打抜き又はせん断加工後、加熱及び/又は加圧により接着するための表面被覆電磁鋼板に関するものである。 The present invention relates to a surface-coated electrical steel sheet for bonding by heating and / or pressing after punching or shearing.
一般に電磁鋼板を用いてモーターやトランスなどの積層鉄芯を組み立てる場合、剪断加工あるいは打抜きにより単位鉄芯とした後積層し、ボルト締め、カシメ、溶接あるいは接着等により固着する。その後、巻線コイルの組込み工程などの次工程に送られる。 In general, when a laminated iron core such as a motor or a transformer is assembled using a magnetic steel sheet, it is laminated after being made into a unit iron core by shearing or punching, and fixed by bolting, caulking, welding, adhesion or the like. Then, it is sent to the next process such as a winding coil assembling process.
ところで、積層鉄芯を固着する方法として、鋼板の表面に加熱及び/又は加圧により接着性を発揮する、いわゆる被着被膜と呼ばれる絶縁被膜を塗布しておいて、単位鉄芯に打抜き、積層した後、加圧加熱して固着コアとすることで、熱歪や機械歪の無い、且つ剛性に優れた積層鉄芯が得られる方法も有る。 By the way, as a method for fixing the laminated iron core, an insulating film called a coating film that exhibits adhesiveness by heating and / or pressurization is applied to the surface of the steel sheet, and the unit iron core is punched and laminated. After that, there is a method in which a laminated iron core having no thermal strain or mechanical strain and excellent in rigidity is obtained by pressurizing and heating to form a fixed core.
接着被膜にはコアを固着するための接着剤としての働きと、電磁鋼板表面に形成される絶縁被膜としての働きが必要とされるが、接着剤として必要とされる特性と絶縁被膜として必要とされる特性には相反する場合が多く、高度な技術が求められている。例えば接着剤としての特性としては、均一な接着状態を容易に達成するため、柔らかい方が良いとされるが、一方絶縁被膜としては単位鉄芯に打抜き加工する場合には表面にすり疵等が発生しないよう硬い被膜である方が良い。また、接着剤としては単位鉄芯同士を強固に結合させるべく、接着被膜表面の濡れ性は高いほうが良いが、絶縁被膜としては耐蝕性保持の為には濡れ性は低いほうが良いといったものである。 The adhesive film needs to act as an adhesive for fixing the core and as an insulating film formed on the surface of the electromagnetic steel sheet, but it requires the properties required as an adhesive and the insulating film. There are many cases where these properties are contradictory, and advanced technology is required. For example, as an adhesive property, a softer one is preferable in order to easily achieve a uniform adhesion state. On the other hand, when the insulating coating is punched into a unit iron core, there is a crease on the surface. It is better that the film is hard so that it does not occur. Also, as the adhesive, in order to firmly bond the unit iron cores, it is better that the wettability of the surface of the adhesive film is better, but as the insulating film, it is better that the wettability is lower in order to maintain corrosion resistance. .
このような相反する必要特性を満足させるため、特許文献1には、鋼板表面に予め潜在性硬化剤を配合したアクリル変性エポキシ樹脂エマルジョンを主成分とする混合液を均一に塗布し、不完全状態に焼き付ける技術が提案されており、処理液の安定性が良く、塗布作業性が良好で長期保存が可能な接着用表面被覆鋼板が得られた。 In order to satisfy such conflicting necessary characteristics, Patent Document 1 uniformly applies a mixed liquid mainly composed of an acrylic-modified epoxy resin emulsion in which a latent curing agent is preliminarily blended on the surface of a steel sheet, and is in an incomplete state. A surface-coated steel sheet for adhesion that can be stored for a long period of time has been obtained.
しかし、上記特許文献1に記載された技術では、単位鉄芯を積層し加圧加熱して固着する際に、単位鉄芯の全面を接着させ難いといった問題点が有った。即ち、予め配合された潜在性硬化剤は加熱によりエポキシ樹脂と化学反応して被膜を硬化し接着するのであるが、加熱により単位鉄芯の表面に塗布された接着被膜同士が交じり合い、溶融すると同時にエポキシ樹脂とエポキシ硬化剤とが硬化反応するため、部分的に硬化反応が先行し、鋼板全面が接着しない場合があった。鋼板全面が接着せず、部分的に固着した状態では鋼板同士の接着強度にバラツキが発生して接着強度の弱い部分が生じることから、製造中にコアが分解したり、モーター等では回転時の異常振動の原因になるといった問題が有った。 However, the technique described in Patent Document 1 has a problem that it is difficult to adhere the entire surface of the unit iron core when the unit iron cores are stacked and fixed by heating under pressure. That is, the pre-blended latent curing agent chemically reacts with the epoxy resin by heating to cure and adhere the coating, but when the adhesive coating applied to the surface of the unit iron core is mixed by heating and melts At the same time, since the epoxy resin and the epoxy curing agent undergo a curing reaction, the curing reaction partially preceded, and the entire surface of the steel sheet may not adhere. When the entire surface of the steel sheet is not bonded and is partially fixed, the adhesive strength between the steel sheets varies and a part with weak adhesive strength is generated. There was a problem of causing abnormal vibration.
そこで、特許文献2では、アクリル系樹脂とエポキシ樹脂とをエステル化した樹脂組成物にエポキシ樹脂硬化剤とを混合し、該樹脂組成物の対数減数率のピーク温度を80〜200℃とする技術が開示されている。この技術により、鋼板表面の接着被膜同士が溶融して交じり合った後、樹脂組成物の硬化反応が進行することにより全面接着が可能となった。 Therefore, in Patent Document 2, a resin composition obtained by esterifying an acrylic resin and an epoxy resin is mixed with an epoxy resin curing agent, and the peak temperature of the logarithmic reduction ratio of the resin composition is set to 80 to 200 ° C. Is disclosed. By this technique, after the adhesive coatings on the steel sheet surfaces are melted and mixed with each other, the entire surface can be bonded by the progress of the curing reaction of the resin composition.
近年、地球環境問題に関する高まりと共に、モーターやトランスに対する高効率化が強く要請されており、モーターやトランスの効率を向上させるため、電磁鋼板に対しても占積率の向上が求められており、接着被膜についても3μm以下といった膜厚の薄手化が要請されている。しかし、上記特許文献2に記載の技術では、接着被膜の膜厚を薄くした場合には単位鉄芯の全面を接着させ難い問題点が依然として解決されないことが判明した。 In recent years, with the increase in global environmental issues, there has been a strong demand for higher efficiency for motors and transformers, and in order to improve the efficiency of motors and transformers, improvement in the space factor is also required for electromagnetic steel sheets. The adhesive film is also required to have a thin film thickness of 3 μm or less. However, it has been found that the technique described in Patent Document 2 still does not solve the problem that it is difficult to adhere the entire surface of the unit iron core when the thickness of the adhesive coating is reduced.
すなわち一般に、接着被膜を塗布した電磁鋼板では、無方向性電磁鋼板に塗布されている有機無機混合系絶縁被膜が1〜2μm程度の膜厚を保持しているのに比較して、膜厚が3〜8μmと厚塗りされるのが通常である。その理由としては、膜厚が少ない場合には鋼板を圧延する時に生じる圧延疵のような微妙な表面凹凸でも表面で接触しない部分が発生し、接着される部分と接着されない部分が生じるためである。 That is, in general, in an electromagnetic steel sheet coated with an adhesive coating, the film thickness is smaller than the organic-inorganic mixed insulating coating applied to the non-oriented electrical steel sheet has a film thickness of about 1 to 2 μm. Usually, it is thickly coated to 3 to 8 μm. The reason for this is that when the film thickness is small, a portion that does not come into contact with the surface is generated even with subtle surface irregularities such as rolling mills that occur when rolling a steel sheet, resulting in a portion that is bonded and a portion that is not bonded. .
つまり、鋼板表面の表面粗さは圧延機の設定にも当然依存するものの、所定測定範囲中の最高点と最低点の差(Rmax)は、1〜5μm程度あり、従ってこの差以上の塗布厚みが必要とされるからである。特に膜厚が薄い場合に顕著になる現象としては、単板を用いて接着強度を測定した場合には比較的接着強度が確保されるものの、積層鉄芯にした場合には特に積層面を押し開く方向の強度が低下するといった現象がある。その結果、単板を用いた接着強度試験では問題無いレベルではあっても、積層鉄芯にした場合に積層面に隙間が発生したり、酷い場合にはハンドリング中の衝撃で積層鉄芯が分解したりする問題が発生する。 That is, although the surface roughness of the steel sheet surface naturally depends on the setting of the rolling mill, the difference (Rmax) between the highest point and the lowest point in the predetermined measurement range is about 1 to 5 μm. Because is required. The phenomenon that becomes particularly noticeable when the film thickness is thin is that when the adhesive strength is measured using a single plate, a relatively strong adhesive strength is ensured. There is a phenomenon that the strength in the opening direction decreases. As a result, even if it is at a level where there is no problem in the adhesion strength test using a single plate, when the laminated iron core is used, a gap is generated on the laminated surface, or in severe cases, the laminated iron core is decomposed by an impact during handling. Problems occur.
また、耐熱性のある接着被膜を通常の有機無機混合系絶縁被膜や無機系絶縁被膜が施された電磁鋼板に塗布した場合には、通常の絶縁被膜と電磁鋼板との間で剥離が発生し、接着強度が低下するといった問題が発生する場合もあることが判明した。 In addition, when a heat-resistant adhesive coating is applied to a normal organic / inorganic mixed insulating coating or an electromagnetic steel plate with an inorganic insulating coating, peeling occurs between the normal insulating coating and the electromagnetic steel plate. It has been found that problems such as a decrease in adhesive strength may occur.
エポキシ樹脂の内部応力を低下させる技術としては、現在までに様々な方法が開示、示唆されているが、例えば特許文献3に、ガラス転移温度が室温に達しない重合体の微粒子が系中に存在して成ることを特徴とするエポキシ樹脂組成物を用いる技術がある。接着被膜では、モーターやトランスの鉄芯として使用されるため、ジュール熱の発生による温度上昇に対する耐熱性が必要である。上記公報に記載される発明では、耐熱性を保持した上で内部応力を低下させることが可能である。 As a technique for reducing the internal stress of an epoxy resin, various methods have been disclosed and suggested so far. For example, in Patent Document 3, polymer fine particles whose glass transition temperature does not reach room temperature exist in the system. There is a technique using an epoxy resin composition characterized by comprising: Since the adhesive coating is used as an iron core of a motor or a transformer, it needs heat resistance against a temperature rise due to generation of Joule heat. In the invention described in the above publication, it is possible to reduce internal stress while maintaining heat resistance.
しかし、上記特許文献3に開示された技術は、エポキシ樹脂の内部応力を低下させる効果に関しては非常に有用な技術であるが、接着剤と電磁鋼板の絶縁被膜の両方の特性を必要とする接着被膜を想定したものでは無く、また接着被膜が必要とする耐蝕性やブロッキング性といった諸特性を満足させる技術でも無いため、接着被膜としては問題点が多い。 However, although the technique disclosed in Patent Document 3 is a very useful technique with respect to the effect of reducing the internal stress of the epoxy resin, it requires adhesion that requires the characteristics of both the adhesive and the insulating coating of the electrical steel sheet. There are many problems as an adhesive coating because it is not intended to be a coating, nor is it a technology that satisfies various properties such as corrosion resistance and blocking properties required by the adhesive coating.
本発明者等は、様々な実験により、これらの膜厚を薄くした場合の問題点が接着被膜を塗布することにより発生する、いわゆる内部応力が大きいことにあることを見出し、接着被膜の内部応力を低下させることにより解決できることを見出した。 Through various experiments, the present inventors have found that the problem when these film thicknesses are reduced is that the so-called internal stress generated by applying the adhesive coating is large, and the internal stress of the adhesive coating is It was found that the problem can be solved by lowering.
本発明者等は、接着被膜の内部応力を低下させるために必要な知見を見出し、薄膜時の接着被膜の接着面を押し開く方向の接着強度を向上させ、また通常の絶縁被膜を施した上に接着被膜を形成した場合の接着強度の低下を防止し得る接着用被膜を見出し、本発明を完成させた。 The inventors have found the knowledge necessary to reduce the internal stress of the adhesive coating, improve the adhesive strength in the direction to open the adhesive surface of the adhesive coating in the case of a thin film, and applied a normal insulating coating The present inventors have completed the present invention by finding an adhesive coating capable of preventing a decrease in adhesive strength when an adhesive coating is formed on the substrate.
すなわち本発明は、以下の構成を要旨とする。 That is, the gist of the present invention is as follows.
(1)表面に、加熱及び/又は加圧により接着能を発揮する絶縁被膜を有する電磁鋼板であって、該被膜が、ガラス転移点(Tg)80℃から150℃のエポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および粒径が0.01μmから0.5μmの微粒子状重合体が分散した混合物を含むことを特徴とする接着用表面被覆電磁鋼板。 (1) An electrical steel sheet having an insulating coating that exhibits adhesion by heating and / or pressurization on the surface, and the coating has an epoxy resin or epoxy resin modified at a glass transition point (Tg) of 80 ° C to 150 ° C. A surface-coated electrical steel sheet for bonding, comprising: a body, an epoxy resin curing agent, and a mixture in which a particulate polymer having a particle size of 0.01 μm to 0.5 μm is dispersed.
(2)上記微粒子状重合体のTgが10℃から80℃であることを特徴とする前項(1)に記載の接着用表面被覆電磁鋼板。 (2) The surface-coated electrical steel sheet for bonding as described in the above item (1), wherein Tg of the particulate polymer is 10 ° C to 80 ° C.
(3)上記微粒子状重合体がアクリル系樹脂であることを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。 (3) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, wherein the particulate polymer is an acrylic resin.
(4)エポキシ樹脂100重量部に対し、微粒子状重合体を1〜30重量部含有することを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。 (4) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, which contains 1 to 30 parts by weight of a particulate polymer with respect to 100 parts by weight of the epoxy resin.
(5)上記エポキシ樹脂が予めアクリル系樹脂とエステル化反応により変性したものであることを特徴とする前記(1)に記載の接着用表面被覆電磁鋼板。 (5) The surface-coated electromagnetic steel sheet for bonding as described in (1) above, wherein the epoxy resin is previously modified with an acrylic resin by an esterification reaction.
(6)表面に有機無機混合絶縁被膜あるいは無機系絶縁被膜を形成した電磁鋼板に、エポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および微粒子状重合体が分散した接着能を有する絶縁被膜を形成することを特徴とする前記(1)から(5)のいずれか1項に記載の接着用表面被覆電磁鋼板。 (6) Forming an insulating film having adhesive ability in which an epoxy resin or an epoxy resin modified material, an epoxy resin curing agent and a fine particle polymer are dispersed on a magnetic steel sheet having an organic-inorganic mixed insulating film or an inorganic insulating film formed on the surface The surface-coated electrical steel sheet for bonding according to any one of (1) to (5), wherein:
本発明によれば、ガラス転移点(Tg)80℃から150℃のエポキシ樹脂またはエポキシ樹脂変性体とエポキシ樹脂硬化剤および粒径が0.01から0.5μmの微粒子状重合体が分散した混合物を用いることにより、薄塗りでも接着強度の低下を少なくすることが可能で、接着面を押し開く方向の接着強度も十分に確保でき、さらに通常の絶縁被膜上に塗布した場合にも接着強度低下を低減することが可能である。 According to the present invention, a mixture in which an epoxy resin having a glass transition point (Tg) of 80 ° C. to 150 ° C. or a modified epoxy resin, an epoxy resin curing agent, and a particulate polymer having a particle size of 0.01 to 0.5 μm is used is used. This makes it possible to reduce the decrease in adhesive strength even with a thin coating, assuring sufficient adhesive strength in the direction of pushing the adhesive surface open, and reducing the decrease in adhesive strength even when coated on a normal insulating coating It is possible.
以下、本発明を実施する具体的形態について説明する。 Hereinafter, specific modes for carrying out the present invention will be described.
本発明における被膜では、エポキシ樹脂あるいはエポキシ樹脂変性体中にエポキシ樹脂硬化剤と粒径が0.01から0.5μmの範囲の特定の有機樹脂粒子が分散していることが必要である。 In the coating according to the present invention, it is necessary that an epoxy resin curing agent and specific organic resin particles having a particle size in the range of 0.01 to 0.5 μm are dispersed in the epoxy resin or the modified epoxy resin.
本発明で使用するエポキシ樹脂とは、硬化後のガラス転移点(Tg)が80℃から150℃の範囲にあるもので、硬化反応前には常温で液体、好ましくは固体のもので単量体中に平均で1つ以上のエポキシ基を有するものであれば特に限定するものではないが、エポキシ当量が100〜5000のものが好適である。 The epoxy resin used in the present invention has a glass transition point (Tg) after curing in the range of 80 ° C. to 150 ° C., and is a liquid at room temperature before the curing reaction, preferably a solid monomer. Although it will not specifically limit if it has one or more epoxy groups on the average, A thing with an epoxy equivalent of 100-5000 is suitable.
具体的には、ビスフェノールA,F,AD型、フェノールノボラック型、オルソクレゾールノボラック型、フェノール系化合物変性型などがあり、単量体中に芳香環構造を持つものが好適である。 Specifically, there are bisphenol A, F, AD type, phenol novolac type, orthocresol novolak type, phenolic compound modified type and the like, and those having an aromatic ring structure in the monomer are preferable.
本発明における被膜では、エポキシ樹脂だけで無く、エポキシ樹脂の変性体を用いても良い。エポキシ樹脂を変性体とする方法については特に限定するものでは無いが、特定の置換基を主鎖に用いたり、エポキシ樹脂末端のエポキシ基や側鎖の水酸基に各種化合物を結合させたりしたものである。特に、接着被膜としては、樹脂成分が溶融後にエポキシ樹脂の硬化反応が進行することが望ましいことから、変性体としては、エポキシ樹脂にアクリル系樹脂をエステル化反応させたアクリル変性エポキシ樹脂が好適である。 In the coating according to the present invention, not only an epoxy resin but also a modified epoxy resin may be used. There is no particular limitation on the method of modifying the epoxy resin, but a specific substituent is used for the main chain, or various compounds are bonded to the epoxy group at the end of the epoxy resin or the hydroxyl group of the side chain. is there. In particular, as the adhesive film, it is desirable that the curing reaction of the epoxy resin proceeds after the resin component is melted. Therefore, as the modified body, an acrylic modified epoxy resin obtained by esterifying an acrylic resin with an epoxy resin is suitable. is there.
上記エポキシ樹脂変性体に用いるアクリル系樹脂としては、カルボキシル基含有ビニルポリマーを含む重合性モノマーの重合物が好適である。具体的には、α,β−エチレン性不飽和カルボン酸のアルキルエステル、ヒドロキシルアルキルエステル及びN−ヒドロキシアルキルアミドの中から選ばれる1種の単量体とカルボキシル基を有するα,β−エチレン性不飽和単量体とスチレン系ビニル単量体から成り、これらの混合物を有機溶媒中で通常のラジカル重合開始剤を用いて共重合せしめることにより得ることができるものである。 As the acrylic resin used for the modified epoxy resin, a polymer of a polymerizable monomer containing a carboxyl group-containing vinyl polymer is suitable. Specifically, α, β-ethylenic acid having one monomer selected from alkyl ester, hydroxyl alkyl ester and N-hydroxyalkylamide of α, β-ethylenically unsaturated carboxylic acid and carboxyl group It consists of an unsaturated monomer and a styrene vinyl monomer, and can be obtained by copolymerizing these mixtures in an organic solvent using a normal radical polymerization initiator.
本発明で使用する、α,β−エチレン性不飽和カルボン酸のアルキルエステルとしては、例えば、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸nアミル、アクリル酸nヘキシル、アクリル酸イソオクチル、アクリル酸nオクチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸2エチルブチル、アクリル酸2エチルヘキシル、アクリル酸デシルなど)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソブチル、メタクリル酸nブチル、メタクリル酸nアミル、メタクリル酸nヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸nオクチル、メタクリル酸デシルオクチル、メタクリル酸2エチルヘキシル、メタクリル酸デシルなど)が有る。 Examples of the alkyl ester of α, β-ethylenically unsaturated carboxylic acid used in the present invention include acrylic acid esters (methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, N-amyl acrylate, n-hexyl acrylate, isooctyl acrylate, n-octyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, 2-ethylbutyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc.), methacrylates ( Methyl methacrylate, ethyl methacrylate, propyl methacrylate, isobutyl methacrylate, nbutyl methacrylate, n amyl methacrylate, n hexyl methacrylate, lauryl methacrylate, stearyl methacrylate, n methacrylate Octyl, decyl octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, and the like.
α,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステルとしては、例えばアクリル酸2ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸3ヒドロキシブチル、アクリル酸2,2ビス(ヒドロキシメチル)エチル、メタクリル酸2ヒドロキシエチル、メタクリル酸3ヒドロキシブチル、メタクリル酸ヒドロキシプロピル、メタクリル酸2,3ジヒドロキシプロピルなどが有る。 Examples of the hydroxyalkyl ester of α, β-ethylenically unsaturated carboxylic acid include 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 3-hydroxybutyl acrylate, 2,2-bis (hydroxymethyl) ethyl acrylate, methacrylic acid 2 Examples include hydroxyethyl, 3-hydroxybutyl methacrylate, hydroxypropyl methacrylate, 2,3-dihydroxypropyl methacrylate, and the like.
α,β−エチレン性不飽和カルボン酸のN−ヒドロキシルアルキルアミドとしては、例えばN−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−ブトキシメチルアクリルアミド、N−ブトキシメチルメタクリルアミドなどの、N置換アクリル系単量体が有る。 Examples of N-hydroxylalkylamides of α, β-ethylenically unsaturated carboxylic acids include N-substituted acrylics such as N-methylolacrylamide, N-methylolmethacrylamide, N-butoxymethylacrylamide, and N-butoxymethylmethacrylamide. There are monomers.
本発明では、上記α,β−エチレン性不飽和カルボン酸単量体の中から選ばれる少なくとも1種以上の単量体を含有することが望ましい。 In the present invention, it is desirable to contain at least one monomer selected from the above α, β-ethylenically unsaturated carboxylic acid monomers.
次に、カルボキシル基を有するα,β−エチレン性不飽和単量体としては、例えばアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸などが挙げられる。 Next, examples of the α, β-ethylenically unsaturated monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and cinnamic acid. Is mentioned.
スチレン系ビニル単量体としては、例えばスチレン、ビニルトルエン、t−ブチルスチレンなどが挙げられる。 Examples of the styrenic vinyl monomer include styrene, vinyl toluene, t-butyl styrene and the like.
上記カルボキシル基含有ビニルポリマーの製造法においては、特に限定するものではないが、カルボキシル基を有するα,β−エチレン性不飽和単量体を全単量体に対して10〜60質量%、特に好ましくは15〜30質量%とし、共重合温度としては50〜150℃、特に好ましくは60〜90℃で行うのが良い。 In the method for producing the carboxyl group-containing vinyl polymer, although not particularly limited, the α, β-ethylenically unsaturated monomer having a carboxyl group is 10 to 60% by mass based on the total monomers, particularly The content is preferably 15 to 30% by mass, and the copolymerization temperature is 50 to 150 ° C, particularly preferably 60 to 90 ° C.
硬化後のエポキシ樹脂あるいはエポキシ樹脂変性体のTgを80℃から150℃に限定する理由は、80℃未満では接着後の耐熱性に劣り、モーターやトランスの駆動時の発熱に耐えられないためであり、150℃超では被膜が硬く成り過ぎて接着強度が低下したり、モーターやトランスとして使用する時の振動などにより劣化が進行し過ぎるためである。特に好適には90〜120℃の範囲、さらに好適には110〜120℃である。この範囲により微粒子状重合体がエポキシ樹脂中に分散することにより内部応力が低減する。 The reason for limiting the Tg of the cured epoxy resin or modified epoxy resin to 80 ° C to 150 ° C is that if it is less than 80 ° C, the heat resistance after bonding is inferior and it cannot withstand the heat generated when driving a motor or transformer. If the temperature exceeds 150 ° C., the film becomes too hard and the adhesive strength is lowered, or the deterioration is excessive due to vibrations when used as a motor or a transformer. It is particularly preferably in the range of 90 to 120 ° C, more preferably 110 to 120 ° C. With this range, the internal stress is reduced by dispersing the fine particle polymer in the epoxy resin.
次に本発明で用いる微粒子状重合体とは、粒径が0.01μmから0.5μmの範囲のもので、エポキシ樹脂中に分散状態で安定的に存在できるものが使用可能である。本発明で使用できる微粒子重合体の種類としては、アクリル樹脂、酢酸ビニル、ポリエステル、ポリウレタン、ポリエチレン、ポリプロピレン、ポリカーボネートなどが好適である。 Next, the fine particle polymer used in the present invention has a particle diameter in the range of 0.01 μm to 0.5 μm, and a polymer that can stably exist in a dispersed state in the epoxy resin can be used. As the kind of fine particle polymer that can be used in the present invention, acrylic resin, vinyl acetate, polyester, polyurethane, polyethylene, polypropylene, polycarbonate and the like are suitable.
具体的には、アクリル樹脂としては、アクリル酸エステル類(アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸nブチル、アクリル酸nアミル、アクリル酸nヘキシル、アクリル酸イソオクチル、アクリル酸nオクチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸2エチルブチル、アクリル酸2エチルヘキシル、アクリル酸デシルなど)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソブチル、メタクリル酸nブチル、メタクリル酸nアミル、メタクリル酸nヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸nオクチル、メタクリル酸デシルオクチル、メタクリル酸2エチルヘキシル、メタクリル酸デシルなど)、アクリル酸2ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸3ヒドロキシブチル、アクリル酸2,2ビス(ヒドロキシメチル)エチル、メタクリル酸2ヒドロキシエチル、メタクリル酸3ヒドロキシブチル、メタクリル酸ヒドロキシプロピル、メタクリル酸2,3ジヒドロキシプロピル、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−ブトキシメチルアクリルアミド、N−ブトキシメチルメタクリルアミド、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸、スチレン、ビニルトルエン、t−ブチルスチレンなどの単量体を1段ないし2段以上のプロセスにて乳化重合せしめたものである。 Specifically, acrylic resins include acrylic acid esters (methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, nbutyl acrylate, n-amyl acrylate, n-hexyl acrylate, isooctyl acrylate, N-octyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, 2-ethylbutyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc.), methacrylates (methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacrylic acid) Isobutyl, nbutyl methacrylate, n amyl methacrylate, n hexyl methacrylate, lauryl methacrylate, stearyl methacrylate, n octyl methacrylate, decyl octyl methacrylate, methacrylic acid 2 Tilhexyl, decyl methacrylate, etc.), 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 3-hydroxybutyl acrylate, 2,2-bis (hydroxymethyl) ethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxybutyl methacrylate, methacryl Hydroxypropyl acid, 2,3 dihydroxypropyl methacrylate, N-methylolacrylamide, N-methylolmethacrylamide, N-butoxymethylacrylamide, N-butoxymethylmethacrylamide, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumar Monomers such as acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid, styrene, vinyltoluene, and t-butylstyrene are emulsion-polymerized in one or more stages. It is.
酢酸ビニルとしては、酢酸ビニル、酢酸ビニル・ベオバ共重合体、酢酸ビニル・エチレン共重合体などである。 Examples of vinyl acetate include vinyl acetate, vinyl acetate / veova copolymer, vinyl acetate / ethylene copolymer, and the like.
ポリウレタンとしては、単量体中にウレタン結合を有するもので、主にイソシアネート化合物とポリオール類あるいはポリエーテルとの化学反応により得られるものが使用可能であり、トリレンジイソシアネート、ジフェニルメタン4,4ジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルプロパン1−メチル2−イソシアノ4−カルバメート、ポリメチレンポリフェニルイソシアネート、メタキシリレンジイソシアネートなどのイソシアネート化合物と、ポリエチレングリコール、ポリプロピレングリコール、ポリエーテルトリオールなどのポリオール類、ポリエーテルを化合したものである。 As the polyurethane, those having a urethane bond in the monomer and those obtained mainly by a chemical reaction between an isocyanate compound and a polyol or a polyether can be used. Tolylene diisocyanate, diphenylmethane 4,4 diisocyanate, Compound of isocyanate compounds such as hexamethylene diisocyanate, trimethylpropane 1-methyl 2-isocyano 4-carbamate, polymethylene polyphenyl isocyanate, metaxylylene diisocyanate, polyols such as polyethylene glycol, polypropylene glycol, polyether triol, and polyether. It is a thing.
ポリエステルとしては、2塩基酸と2価のアルコールを反応させた一般的なものが使用可能で、具体的には、2塩基酸としては、無水マレイン酸、フマル酸、アジピン酸、無水フタル酸、イソフタル酸、2価のアルコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,3ブチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、ビスフェノールジオキシエチルエーテルなどが使用可能である。 As the polyester, a general one obtained by reacting a dibasic acid and a divalent alcohol can be used. Specifically, as the dibasic acid, maleic anhydride, fumaric acid, adipic acid, phthalic anhydride, As isophthalic acid and divalent alcohol, ethylene glycol, propylene glycol, diethylene glycol, 1,3 butylene glycol, dipropylene glycol, neopentyl glycol, bisphenol dioxyethyl ether, and the like can be used.
本発明で用いる微粒子状重合体は、粒径が0.01μmから0.5μmの範囲にある必要がある。粒径が0.01μm未満では、本発明の膜厚が薄い時でも接着強度が向上するという効果が得られず、0.5μm超でも、エポキシ樹脂同士の溶融を妨害し、接着強度を低下させるからである。 The fine particle polymer used in the present invention needs to have a particle size in the range of 0.01 μm to 0.5 μm. If the particle size is less than 0.01 μm, the effect of improving the adhesive strength cannot be obtained even when the film thickness of the present invention is thin, and even if it exceeds 0.5 μm, the melting of the epoxy resins is hindered and the adhesive strength is reduced. is there.
本発明者等は、接着被膜においては微粒子状重合体の分散時の粒径の方がより重要な働きをしており、0.01μmから0.5μmという非常に狭い範囲の微粒子重合体を用いることによって、接着被膜に要求される諸特性を満足できることを見出した。 The inventors of the present invention have a more important function of the particle size at the time of dispersion of the fine polymer in the adhesive coating, and by using a fine polymer in a very narrow range of 0.01 μm to 0.5 μm. The inventors have found that various properties required for an adhesive coating can be satisfied.
その理由としては、接着被膜では数μm、厚くても十数μmという非常に膜厚が薄いために、エポキシ樹脂中に均一に微粒子が分散するためには、自ずからその大きさに限界があり、例えば膜厚よりも大きな粒径の微粒子を添加せしめた場合には、塗布乾燥時に微粒子の構成成分のみの領域が現れることにより「島−海構造」が形成不能となることから、本発明の効果が得られないと推定される。従って、効果の得られる微粒子重合体の粒径が非常に狭い範囲に限られ、本発明者らが検討した結果では、好適には0.05μm以上、さらに好適には0.1μm以上、特に好適には0.2μmから0.4μmの範囲である。 The reason for this is that the adhesive film has a very small thickness of several μm and even a few tens of μm, so there is a limit to its size in order to uniformly disperse the fine particles in the epoxy resin, For example, when a fine particle having a particle size larger than the film thickness is added, the region of only the constituent component of the fine particle appears at the time of coating and drying, so that the “island-sea structure” cannot be formed. It is estimated that is not obtained. Therefore, the particle size of the fine particle polymer that is effective is limited to a very narrow range, and as a result of examination by the present inventors, it is preferably 0.05 μm or more, more preferably 0.1 μm or more, and particularly preferably It is in the range of 0.2 μm to 0.4 μm.
本発明で用いる微粒子状重合体は、ガラス転移点が10℃から80℃の範囲が好適である。ガラス転移点が10℃未満の場合、スリット作業や打抜き加工時に被膜に疵が付き易くなる傾向があり、80℃超の場合には被膜が白化する恐れがある。より好適なガラス転移点は、その下限については、25℃以上、35℃以上、45℃以上、さらには55℃以上であり、また、その上限については、70℃以下、65℃以下である。 The fine particle polymer used in the present invention preferably has a glass transition point in the range of 10 ° C to 80 ° C. If the glass transition point is less than 10 ° C, the coating tends to be easily wrinkled during slitting or punching, and if it exceeds 80 ° C, the coating may be whitened. More preferable glass transition points are 25 ° C. or more, 35 ° C. or more, 45 ° C. or more, and further 55 ° C. or more for the lower limit, and 70 ° C. or less and 65 ° C. or less for the upper limit.
本発明の微粒子状重合体をエポキシ樹脂中に分散させる方法については、特に限定するものではなく、各樹脂を機械的に混合したり、それぞれをエマルジョンとしてから混合したり、あるいはアクリル変性エポキシ樹脂溶液中で乳化重合することによりアクリル樹脂を微粒子状重合体としても良い。 The method for dispersing the fine particle polymer of the present invention in the epoxy resin is not particularly limited, and each resin is mixed mechanically, mixed as an emulsion, or an acrylic-modified epoxy resin solution. The acrylic resin may be made into a fine particle polymer by emulsion polymerization in the medium.
微粒子重合体の形態としては、一般的には球状が望ましいが、中空型や卵型などの異型あるいは内部と外周側で組成の異なるいわゆるハイブリッド型でも良い。また、エポキシ樹脂との相溶性によっては、明確な外観を呈しない場合もある。スリットなどの加工時に、部分的に過大な圧力がかかる可能性を考慮すると、エポキシ樹脂と微粒子状重合体の界面密着性は高いほうが加工性が良好であることから、明確な外観を呈しなくても構わない。 The shape of the fine particle polymer is generally preferably spherical, but may be a hollow type or an egg type or a so-called hybrid type having a different composition between the inside and the outer periphery. Further, depending on the compatibility with the epoxy resin, a clear appearance may not be exhibited. Considering the possibility that excessive pressure is partially applied during processing such as slits, the higher the interfacial adhesion between the epoxy resin and the fine particle polymer, the better the workability, so it does not exhibit a clear appearance. It doesn't matter.
微粒子状重合体の添加量としては、エポキシ樹脂100重量部に対して、1〜30重量部が適当である。1重量部未満では本発明の効果が現れず、30重量部超では微粒子状重合体同士の凝集や沈殿が発生し易く、取り扱いに支障が生じるためである。 The addition amount of the particulate polymer is suitably 1 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin. When the amount is less than 1 part by weight, the effect of the present invention does not appear. When the amount exceeds 30 parts by weight, aggregation and precipitation of the particulate polymers are likely to occur, resulting in trouble in handling.
本発明で使用するエポキシ樹脂硬化剤とは、エポキシ樹脂を硬化させ得るもので、通常、所定温度に加熱することにより硬化反応を開始するものである。具体的には、酸無水物系硬化剤(無水フタル酸、ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、無水ピロメリット酸、パイロメリット酸無水物など)、脂肪族アミン(ジエチレントリアミン、トリエチレンテトラミン、ポリアミド、2エチル4メチルイミダゾールなど)、メタフェニレンジアミン、ジシアンジアミド、有機酸ジヒドラジド、アミンイミド、ケテミン、第3アミン塩、3フッ化ホウ素アミン塩、ナイロン、メラミン樹脂、フェノール樹脂、キシレン樹脂、NBR、ポリサルファイド、アニリン樹脂、ブロックイソシアネート、アクリル樹脂などが挙げられる。特に良好な特性を示すものは、メラミン樹脂、レゾール型フェノール樹脂、ブロックイソシアネート、アクリル樹脂などである。 The epoxy resin curing agent used in the present invention can cure an epoxy resin, and usually initiates a curing reaction by heating to a predetermined temperature. Specifically, acid anhydride curing agents (phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, pyromellitic anhydride, pyromellitic anhydride, etc.), aliphatic amines (diethylenetriamine, triethylene) Tetramine, polyamide, 2ethyl 4-methylimidazole, etc.), metaphenylenediamine, dicyandiamide, organic acid dihydrazide, amine imide, ketamine, tertiary amine salt, boron trifluoride amine salt, nylon, melamine resin, phenol resin, xylene resin, NBR , Polysulfide, aniline resin, blocked isocyanate, acrylic resin and the like. Those having particularly good characteristics are melamine resin, resol type phenol resin, blocked isocyanate, acrylic resin and the like.
エポキシ樹脂硬化剤の重量比はエポキシ樹脂とのエステル化反応生成物100重量部に対して1〜30重量部が良好である。エポキシ樹脂硬化剤が1重量部未満の場合では接着後の被膜の耐熱性が劣る傾向に有り、30重量部超では塗布乾燥後に硬化剤が被膜表面近傍に濃縮し白濁する傾向に有る。 The weight ratio of the epoxy resin curing agent is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the esterification reaction product with the epoxy resin. When the epoxy resin curing agent is less than 1 part by weight, the heat resistance of the film after adhesion tends to be inferior, and when it exceeds 30 parts by weight, the curing agent tends to concentrate near the surface of the film after coating and drying and become cloudy.
また、被膜量としては1〜6g/m2が良く、特に1〜3g/m2が好ましい。1g/m2未満では接着強度が低下する傾向に有り、6g/m2超では占積率が劣る傾向にあるからである。 As the coating amount better 1 to 6 g / m 2, in particular 1 to 3 g / m 2 is preferred. This is because if it is less than 1 g / m 2 , the adhesive strength tends to decrease, and if it exceeds 6 g / m 2 , the space factor tends to be inferior.
次に、電磁鋼板に被膜を形成する時の焼き付け設定条件は、特に限定するものではないが、通常行われているような150〜800℃に設定した乾燥炉で、短時間に板温で100〜300℃とするのが良い。 Next, the baking setting conditions when forming the coating on the electromagnetic steel sheet are not particularly limited, but in a drying furnace set to 150 to 800 ° C. as usual, the plate temperature is set to 100 in a short time. It should be ~ 300 ° C.
本発明のメカニズムは内部応力の低減によるものと想定されるが、詳細は明らかではなく、前記特開昭62-50361号公報に開示された技術では、室温以下のガラス転移点が有効であるが、接着被膜においては、微粒子状重合体のガラス転移点はむしろ10℃から80℃の範囲が良く、さらには微粒子状重合体の粒径が接着強度に大きく影響する理由は詳細には明らかではない。しかし、接着被膜の場合には有機樹脂と比較すると非常に熱膨張係数が小さく、剛性の大きい鋼板の表面にエポキシ樹脂層が非常に薄く形成された状態で使用されており、一般的な有機樹脂の内部応力低減機構とは、異なる要因が働くものと推定される。 Although the mechanism of the present invention is assumed to be due to the reduction of internal stress, the details are not clear, and in the technique disclosed in JP-A-62-50361, a glass transition point below room temperature is effective. In the adhesive coating, the glass transition point of the particulate polymer is preferably in the range of 10 ° C. to 80 ° C. Further, the reason why the particle size of the particulate polymer greatly affects the adhesive strength is not clear in detail. . However, in the case of adhesive coatings, the thermal expansion coefficient is very small compared to organic resins, and the epoxy resin layer is formed on the surface of a steel plate with high rigidity, so that it is used with a general organic resin. It is estimated that a different factor works from the internal stress reduction mechanism.
図1は、本発明に基づく樹脂組成物を塗布焼付した接着用表面被覆鋼板を200℃×10kgf/cm2×30分間の条件で接着したサンプル(No.2)と、従来例に基づくサンプルについて接着したサンプル(No.1)の接着部破断面を走査型電子顕微鏡にて観察したものである。従来例に基づくサンプル図1Aでは、破断した部分が滑らかな面を呈しており、亀裂の伝播が素早く生じたことが伺える。 FIG. 1 shows a sample (No. 2) obtained by adhering a surface-coated steel sheet for adhesion coated with a resin composition according to the present invention at 200 ° C. × 10 kgf / cm 2 × 30 minutes, and a sample based on a conventional example. The bonded part fracture surface of the adhered sample (No. 1) is observed with a scanning electron microscope. In the sample FIG. 1A based on the conventional example, the broken part has a smooth surface, and it can be seen that the propagation of the crack occurred quickly.
それに対し、本発明に基づくサンプル図1Bでは、破断した部分にミクロ的な凹凸が生じており、亀裂の伝播経路が入り組んでいる。 On the other hand, in the sample FIG. 1B based on the present invention, microscopic unevenness is generated in the broken portion, and the propagation path of the crack is complicated.
これらの観察結果から、本発明に基づく樹脂組成物の場合には、エポキシ樹脂連続相中にアクリル樹脂微粒子が均一に分散したいわゆる「島−海構造」が形成されることにより、亀裂の伝播が遅延し、従って接着強度が向上したとも推定される。 From these observation results, in the case of the resin composition according to the present invention, the so-called “island-sea structure” in which the acrylic resin fine particles are uniformly dispersed in the epoxy resin continuous phase is formed, so that the propagation of cracks is achieved. It is also assumed that there was a delay, and hence the adhesive strength was improved.
さらに、剪断接着強度と本発明で実施する押割り試験の接着強度では、異なる挙動を示す。すなわち、剪断強度試験では鋼板の接着面に対して垂直方向の力が働かないのに対し、押割り試験では接着面に対して垂直方向に働く成分があり、当然接着被膜の剥離挙動が変化するが、現実のモーター等の積層鉄芯に働く電磁力を考慮した場合、押割り試験の方がより実際の積層鉄芯に必要とされる強度であると想定される。 Further, the shear adhesive strength and the adhesive strength of the split test performed in the present invention show different behaviors. In other words, in the shear strength test, a force perpendicular to the bonding surface of the steel sheet does not work, whereas in the split test, there is a component that works perpendicular to the bonding surface, and naturally the peeling behavior of the adhesive coating changes. However, when the electromagnetic force acting on the laminated iron core of an actual motor or the like is taken into consideration, it is assumed that the cracking test is the strength required for the actual laminated iron core.
通常、押割り方向の強度測定方法としてはピール強度測定法が一般的である。ところが、本発明者らが検討した結果、電磁鋼板を用いてピール強度を測定した場合には、サンプルに折れが発生するため接着したサンプル同士を滑らかに剥離させることが困難で、バラツキが非常に大きくなり測定が困難である。 Usually, the peel strength measurement method is generally used as the strength measurement method in the split direction. However, as a result of the study by the present inventors, when the peel strength is measured using a magnetic steel sheet, it is difficult to smoothly peel off the adhered samples because the samples are bent, and the variation is very large. It becomes large and difficult to measure.
また、ピール強度測定用に薄鋼板を調製する方法では、様々な鋼成分を添加する電磁鋼板とは表面状態が異なるため、実際の積層鉄芯とは異なる挙動となる心配がある。 Further, in the method of preparing a thin steel plate for measuring peel strength, the surface state is different from that of an electromagnetic steel plate to which various steel components are added, so that there is a concern that the behavior differs from that of an actual laminated iron core.
そこで本発明者らは、押割り方向の接着強度測定方法として積層接着した鉄芯サンプルに楔を押し込むことにより、押割り方向の接着強度を測定できることを見出した。前記特開昭62-50361号公報では接着強度の測定方法として、ピール試験法(ASTM D1876)が使用されているが、本発明では電磁鋼板用として押し割り試験方法を創案し、従来例と比較した。図2に従来法であるピール試験方法と本発明で測定した押し割り試験法を示す。 Therefore, the present inventors have found that the adhesive strength in the split direction can be measured by pushing a wedge into the iron core sample laminated and bonded as a method for measuring the adhesive strength in the split direction. In the Japanese Patent Laid-Open No. 62-50361, the peel test method (ASTM D1876) is used as a method for measuring the adhesive strength, but in the present invention, a split split test method was created for an electromagnetic steel sheet and compared with the conventional example. . FIG. 2 shows a conventional peel test method and a split split test method measured according to the present invention.
公知の方法で処理した、仕上げ焼鈍後の無方向性電磁鋼板(板厚0.5mm、シリコン量0.5%)のコイルを通常の絶縁被膜を塗布せず、そのままの状態のものを供試材とした。次に表1に示すエポキシ樹脂エマルジョンとエポキシ樹脂硬化剤、および表2に示す微粒子状重合体を順次混合し、表3に示す処理液を作製した。それぞれの処理液をゴムロール方式の塗布装置で塗布した後、板温160℃で被膜の塗布量が表中に記載する量になるように焼き付け処理を行った。 A non-oriented electrical steel sheet (plate thickness: 0.5 mm, silicon content: 0.5%) after finish annealing, processed by a known method, was used as it was without applying a normal insulation coating. . Next, the epoxy resin emulsion shown in Table 1, the epoxy resin curing agent, and the particulate polymer shown in Table 2 were sequentially mixed to prepare the treatment liquid shown in Table 3. Each of the treatment liquids was applied with a rubber roll type coating device, and then baked at a plate temperature of 160 ° C. so that the coating amount was the amount described in the table.
このコイルから試料を切り出し、被膜諸特性を評価した。その結果を表4に示す。次に通常の電磁鋼板に塗布されるクロム酸マグネシウム・アクリル樹脂系の有機無機混合被膜を1g/m2になるよう塗布焼付したコイルを供試材とした場合を表5に示す。なお、塗布量を膜厚に換算するには、例えば塗布量が多い場合と少ない場合や鋼板の表面粗度が異なる場合などで換算式を変更する必要があるが、本発明で塗布される場合では、1g/m2で約0.6μm〜1μmである。 A sample was cut out from this coil, and the coating properties were evaluated. The results are shown in Table 4. Next, Table 5 shows the case where a coil obtained by applying and baking a magnesium chromate / acrylic resin-based organic / inorganic mixed coating applied to a normal electromagnetic steel sheet to 1 g / m 2 is used as a test material. In order to convert the coating amount into a film thickness, for example, when the coating amount is large and small, or when the surface roughness of the steel sheet is different, it is necessary to change the conversion formula. Then, it is about 0.6 μm to 1 μm at 1 g / m 2 .
接着面を押し開く方向の接着強度に付いては、各溶液を所定量塗布焼付したコイルから2cm×3cmの大きさに切り出した試料を40枚積層した後専用冶具で固定し、200℃×10kgf/cm2×30分間加熱加圧して接着した積層鉄芯を作製した後、積層面の中央部に楔型圧子を押し付け、積層鉄芯が分離する時の荷重を測定した。 For the adhesive strength in the direction to push the adhesive surface open, stack 40 samples cut into a size of 2cm x 3cm from a coil coated with a predetermined amount of each solution, and then fix it with a special jig, 200 ° C x 10kgf After producing a laminated iron core which was bonded by heating / pressing for 30 minutes / cm 2 , a wedge-type indenter was pressed against the center of the laminated surface, and the load when the laminated iron core was separated was measured.
* :エポキシ3は、変性したアクリル樹脂が硬化剤として機能する ため、硬化剤は添加せず。 * : Epoxy 3 does not contain a curing agent because the modified acrylic resin functions as a curing agent.
*:表1,2中の略号の説明
BPA:ビスフェノールA型エポキシ、NR:ノボラック型エポキシ、PR:フェノールレゾ ール型硬化剤、AR:アミノ樹脂硬化剤、EA:アクリル酸エチル、MMA:メタクリル酸メ チル、St:スチレン、BA:アクリル酸ブチル、PVA:酢酸ビニル、PA:ポリエチレン、P U:ポリウレタン、HPMA:メタクリル酸ヒドロキシプロピル、MA:アクリル酸、EHMA: メタクリル酸2−エチルヘキシル
*:表中の部は樹脂固形分換算で重量部
*: Explanation of abbreviations in Tables 1 and 2
BPA: bisphenol A type epoxy, NR: novolak type epoxy, PR: phenol resin type curing agent, AR: amino resin curing agent, EA: ethyl acrylate, MMA: methyl methacrylate, St: styrene, BA: acrylic Butyl acid, PVA: Vinyl acetate, PA: Polyethylene, PU: Polyurethane, HPMA: Hydroxypropyl methacrylate, MA: Acrylic acid, EHMA: 2-ethylhexyl methacrylate *: Parts in the table are parts by weight in terms of resin solids
(注)a:圧力10kg/cm2、温度200℃で60秒間圧着後、常温でせん断接着力を測定。
b:上記a条件で接着後、150℃に加熱した状態で接着強度を測定。
c:2cm×3cmに剪断したサンプルを40枚積層し、200℃×10kgf/cm2×30分間の条 件で接着した後、積層面の中央部に楔(先端角7°)を押し込み、その時の最 大荷重を測定した。
d:常温にて72時間20kg/cm2で加圧した後、粘着の度合いを評価した。
全く粘着しなかったものを◎、若干粘着したものを○、粘着するが手で剥がす のに力を必要としないものを△、手で剥がすのに力が必要なものを×とし、○ 以上を合格とした。
(Note) a: After pressure bonding at a pressure of 10 kg / cm 2 and a temperature of 200 ° C. for 60 seconds, the shear adhesive strength is measured at room temperature.
b: After bonding under the above condition a, the adhesive strength was measured in a state heated to 150 ° C.
c: After stacking 40 samples sheared to 2cm x 3cm and bonding them under the conditions of 200 ° C x 10kgf / cm 2 x 30 minutes, a wedge (tip angle 7 °) was pushed into the center of the laminated surface. The maximum load was measured.
d: After pressurizing at 20 kg / cm 2 for 72 hours at room temperature, the degree of adhesion was evaluated.
◎ for those that did not stick at all, ◯ for those that were slightly sticky, △ for those that were sticky but did not require force to peel off by hand, × for those that needed force to peel by hand, and ○ or more Passed.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003025742 | 2003-02-03 | ||
JP2003025742 | 2003-02-03 | ||
PCT/JP2004/000802 WO2004070080A1 (en) | 2003-02-03 | 2004-01-29 | Flat rolled magnetic steel sheet or strip having its surface coated for bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2004070080A1 true JPWO2004070080A1 (en) | 2006-05-25 |
JP4143090B2 JP4143090B2 (en) | 2008-09-03 |
Family
ID=32844117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005504797A Expired - Fee Related JP4143090B2 (en) | 2003-02-03 | 2004-01-29 | Surface coated electrical steel sheet for bonding |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP4143090B2 (en) |
KR (1) | KR100698431B1 (en) |
CN (1) | CN100476030C (en) |
MY (1) | MY153191A (en) |
TW (1) | TWI231775B (en) |
WO (1) | WO2004070080A1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101009869B1 (en) * | 2006-03-27 | 2011-01-19 | 가부시키가이샤 고베 세이코쇼 | Precoated metal plate |
CN102066610B (en) * | 2008-06-20 | 2014-06-11 | 新日铁住金株式会社 | Non-oriented electromagnetic steel plate and manufacturing method thereof |
JP5750275B2 (en) * | 2011-02-17 | 2015-07-15 | Jfeスチール株式会社 | Insulated steel sheet and laminated iron core |
JP5675418B2 (en) * | 2011-02-17 | 2015-02-25 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating, method for producing the same, and laminated iron core |
CN103490569B (en) * | 2013-09-09 | 2016-08-10 | 陕西航空电气有限责任公司 | A kind of processing method of high-speed engine rotor core assembly |
WO2016017132A1 (en) * | 2014-07-29 | 2016-02-04 | Jfeスチール株式会社 | Electromagnetic steel sheet for lamination, laminate electromagnetic steel sheet, production method for laminate electromagnetic steel sheet, and iron core for vehicle motor |
CN109791831B (en) * | 2016-09-29 | 2021-10-12 | 株式会社东芝 | Magnetic core |
EP3569405A1 (en) * | 2018-05-18 | 2019-11-20 | voestalpine Stahl GmbH | Magnetic circuit band or sheet, method for manufacturing such a magnetic circuit band or sheet and stack of same |
KR102223865B1 (en) | 2018-09-27 | 2021-03-04 | 주식회사 포스코 | Electrical steel sheet laminate |
EA202192066A1 (en) | 2018-12-17 | 2021-11-19 | Ниппон Стил Корпорейшн | CORE AND ELECTRIC MOTOR |
CA3131675C (en) | 2018-12-17 | 2024-04-16 | Nippon Steel Corporation | Adhesively-laminated core for stator, method of manufacturing same, and electric motor |
EP3902126A4 (en) | 2018-12-17 | 2022-11-30 | Nippon Steel Corporation | Adhered/layered core for stator and rotating electrical machine |
CN113196634B (en) | 2018-12-17 | 2024-10-18 | 日本制铁株式会社 | Laminated iron core and rotary electric machine |
WO2020129941A1 (en) | 2018-12-17 | 2020-06-25 | 日本製鉄株式会社 | Laminated core, laminated core manufacturing method, and rotating electrical machine |
US11863017B2 (en) | 2018-12-17 | 2024-01-02 | Nippon Steel Corporation | Laminated core and electric motor |
CA3131673C (en) * | 2018-12-17 | 2024-02-20 | Nippon Steel Corporation | Laminated core, method of manufacturing same, and electric motor |
WO2020129935A1 (en) | 2018-12-17 | 2020-06-25 | 日本製鉄株式会社 | Laminated core and rotating machine |
US11923130B2 (en) | 2018-12-17 | 2024-03-05 | Nippon Steel Corporation | Laminated core and electric motor |
CN113016119A (en) | 2018-12-17 | 2021-06-22 | 日本制铁株式会社 | Laminated iron core and rotating electrical machine |
BR112021009844A2 (en) | 2018-12-17 | 2021-08-17 | Nippon Steel Corporation | laminated core and rotating electrical machine |
EP3902106A4 (en) | 2018-12-17 | 2022-11-30 | Nippon Steel Corporation | Glue lamination core and method for manufacturing same, and rotating electrical machine |
CN113169595A (en) | 2018-12-17 | 2021-07-23 | 日本制铁株式会社 | Laminated iron core, iron core block, rotating electrical machine, and method for manufacturing iron core block |
EA202192072A1 (en) | 2018-12-17 | 2021-11-09 | Ниппон Стил Корпорейшн | CORE AND ELECTRIC MOTOR |
WO2021256531A1 (en) | 2020-06-17 | 2021-12-23 | 日本製鉄株式会社 | Coating composition for electromagnetic steel sheets, electromagnetic steel sheet, laminated core and dynamo-electric machine |
CN115702260A (en) | 2020-06-17 | 2023-02-14 | 日本制铁株式会社 | Coating composition for electromagnetic steel sheet, laminated iron core, and rotating electrical machine |
JP7360079B2 (en) | 2020-06-17 | 2023-10-12 | 日本製鉄株式会社 | Coating composition for electrical steel sheets, electrical steel sheets, laminated cores, and rotating electric machines |
MX2022010916A (en) | 2020-06-17 | 2022-09-29 | Nippon Steel Corp | Layered core manufacturing method. |
KR20230008865A (en) | 2020-06-17 | 2023-01-16 | 닛폰세이테츠 가부시키가이샤 | Coating composition for electrical steel sheet, electrical steel sheet, laminated core and rotating electric machine |
JP7095819B2 (en) * | 2020-06-17 | 2022-07-05 | 日本製鉄株式会社 | Electrical steel sheets, laminated cores and rotary electric machines |
CN115768924A (en) | 2020-06-17 | 2023-03-07 | 日本制铁株式会社 | Coating composition for electromagnetic steel sheet, surface-coated electromagnetic steel sheet for adhesion, and laminated iron core |
CN111909645A (en) * | 2020-07-24 | 2020-11-10 | 江苏科化新材料科技有限公司 | Epoxy resin composition for motor rotor encapsulation |
CN116144240B (en) | 2021-11-22 | 2024-04-05 | 宝山钢铁股份有限公司 | Light-viscosity silicon steel environment-friendly insulating paint, silicon steel plate and manufacturing method thereof |
CN115449323B (en) * | 2022-05-13 | 2023-09-12 | 广东恒大新材料科技有限公司 | High-performance magnetic steel bonding epoxy adhesive and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2613726B2 (en) * | 1992-12-22 | 1997-05-28 | 新日本製鐵株式会社 | Manufacturing method of surface coated electrical steel sheet for bonding |
JP2937734B2 (en) * | 1994-03-23 | 1999-08-23 | 川崎製鉄株式会社 | Method for producing surface-coated electrical steel sheet for heat bonding |
JP2953952B2 (en) * | 1994-05-17 | 1999-09-27 | 川崎製鉄株式会社 | Surface coated electromagnetic steel sheet for heat bonding and method for producing the same |
JP3613809B2 (en) * | 1994-07-11 | 2005-01-26 | Jfeスチール株式会社 | Method for producing surface-coated electrical steel sheet for heat bonding |
-
2004
- 2004-01-29 CN CNB2004800034464A patent/CN100476030C/en not_active Expired - Lifetime
- 2004-01-29 WO PCT/JP2004/000802 patent/WO2004070080A1/en active Application Filing
- 2004-01-29 KR KR1020057014201A patent/KR100698431B1/en active IP Right Grant
- 2004-01-29 JP JP2005504797A patent/JP4143090B2/en not_active Expired - Fee Related
- 2004-01-31 MY MYPI20040301A patent/MY153191A/en unknown
- 2004-02-02 TW TW093102303A patent/TWI231775B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP4143090B2 (en) | 2008-09-03 |
KR100698431B1 (en) | 2007-03-22 |
KR20050097967A (en) | 2005-10-10 |
TWI231775B (en) | 2005-05-01 |
CN1748045A (en) | 2006-03-15 |
CN100476030C (en) | 2009-04-08 |
WO2004070080A1 (en) | 2004-08-19 |
MY153191A (en) | 2015-01-29 |
TW200418581A (en) | 2004-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4143090B2 (en) | Surface coated electrical steel sheet for bonding | |
JP6694057B2 (en) | Composition | |
JP6589172B1 (en) | Laminated iron core | |
JP2016121309A (en) | Pressure-sensitive adhesive sheet and optical member | |
JP7074033B2 (en) | Adhesive layer, adhesive sheet and laminate | |
JP2008260825A (en) | Double-sided-adhesive tape and acrylic adhesive composition | |
CN105121573A (en) | Galvanized metal bonding adhesive formulation and process for the use thereof | |
JP6613027B2 (en) | Adhesive sheet and optical member | |
JPH07336969A (en) | Electromagnet steel plate bonded core and manufacturing method | |
JP7346887B2 (en) | Adhesive composition, adhesive, adhesive sheet, and laminate | |
JP2003331673A (en) | Tape-like insulating material, insulating article and water-dispersed acrylic adhesive for the insulating material | |
JP2000173816A (en) | Surface covered electromagnetic steel sheet for sticking and its manufacture | |
JP2894789B2 (en) | Damping thin leaf | |
WO2014050369A1 (en) | Adhesive tape and method for producing adhesive tape | |
JP3016670B2 (en) | Damping thin leaf | |
JP2000265137A (en) | Pressure-sensitive adhesive composition and its bonding sheets | |
JP2020100806A (en) | Adhesive composition, and adhesive including the same, adhesive sheet, and laminate | |
JP7484557B2 (en) | Adhesive composition, adhesive sheet and laminate | |
JP7447565B2 (en) | Adhesive compositions, adhesives, adhesive sheets and laminates | |
WO2019167712A1 (en) | Double-sided pressure-sensitive adhesive sheet and use thereof | |
WO2018025807A1 (en) | (meth)acrylic copolymer and manufacturing method of same, adhesive composition and adhesive sheet | |
JP7331505B2 (en) | Adhesive layer, adhesive sheet and laminate | |
JP7091996B2 (en) | Adhesive composition, adhesives using it, adhesive sheets, and laminates. | |
JP2024069115A (en) | Adhesive sheet, adhesive and adhesive composition | |
JP2022096750A (en) | Adhesive composition, adhesive including the same, adhesive sheet, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080527 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4143090 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |