JPWO2004006361A1 - Method for producing slurry composition for secondary battery electrode - Google Patents

Method for producing slurry composition for secondary battery electrode Download PDF

Info

Publication number
JPWO2004006361A1
JPWO2004006361A1 JP2004519231A JP2004519231A JPWO2004006361A1 JP WO2004006361 A1 JPWO2004006361 A1 JP WO2004006361A1 JP 2004519231 A JP2004519231 A JP 2004519231A JP 2004519231 A JP2004519231 A JP 2004519231A JP WO2004006361 A1 JPWO2004006361 A1 JP WO2004006361A1
Authority
JP
Japan
Prior art keywords
polymer
slurry composition
solvent
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004519231A
Other languages
Japanese (ja)
Other versions
JP4470735B2 (en
Inventor
鈴木 隆雄
隆雄 鈴木
雅裕 山川
雅裕 山川
中村 勝也
勝也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2004006361A1 publication Critical patent/JPWO2004006361A1/en
Application granted granted Critical
Publication of JP4470735B2 publication Critical patent/JP4470735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

溶媒(SA)に対する不溶分を50重量%以上含有するポリマー(A)の溶媒(SA)分散液と電極活物質とを混練し、次いで、得られた混練液と、ポリマー(B)の溶媒(SB)溶液とを混練することよりなる二次電池電極用スラリー組成物の製造方法。この方法により得られるスラリー組成物は、粘度の経時変化が少なく、結着性が良好であり、この組成物を集電体に塗布して乾燥すると、表面が平滑で厚さが均一な混合層を有する二次電池電極が形成される。A solvent (SA) dispersion of polymer (A) containing an insoluble content in the solvent (SA) of 50% by weight or more and the electrode active material are kneaded, and then the obtained kneaded liquid and the solvent of polymer (B) ( SB) A method for producing a slurry composition for a secondary battery electrode, comprising kneading a solution. The slurry composition obtained by this method has little change in viscosity with time and good binding properties. When this composition is applied to a current collector and dried, it is a mixed layer having a smooth surface and a uniform thickness. A secondary battery electrode is formed.

Description

本発明は、二次電池電極用スラリー組成物の製造方法に関し、さらに詳しくは、粘度の経時変化が少なく、集電体に塗工して塗膜表面の平滑な電極が得られる二次電池電極用スラリー組成物の製造方法に関する。  The present invention relates to a method for producing a slurry composition for a secondary battery electrode, and more particularly, a secondary battery electrode in which a change in viscosity with time is small and an electrode having a smooth coating surface can be obtained by coating on a current collector. The present invention relates to a method for producing a slurry composition.

ノート型パソコン、携帯電話、PDAなどの携帯端末が広く普及しており、これらの電源にリチウムイオン二次電池が多用されている。最近、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、これに伴い電池の高性能化、特に容量の増大と充電速度(レート特性)の向上が強く求められている。
リチウムイオン二次電池は、正極と負極とをセパレーターを介して配置し、電解液とともに容器内に収納した構造を有する。正極および負極(両者を総称して「二次電池電極」、略称して「電極」と記すことがある。)は、電極活物質(以下、単に「活物質」と記すことがある。)と、必要に応じて使用される導電性付与剤などとを二次電池電極用バインダーポリマー(以下、単に「バインダー」と記すことがある。)によりアルミニウムや銅などの集電体に結着させたものである。電極は、通常、バインダーを液状媒体に溶解または分散させ、これに活物質、導電性付与剤などを混合して得られる二次電池電極用スラリー組成物(以下、単に「スラリー組成物」と記すことがある。)を集電体に塗布して、該液状媒体を乾燥などにより除去して、混合層として結着させて形成される。
ところが、スラリー組成物中の各成分の分散が不十分であったり、スラリー組成物の粘度が経時変化したりしてスラリー組成物の分散状態が不均一になるという問題があった。不均一なスラリー組成物を用いて電極を作成すると、電極の表面が平滑にならないで電池性能が低下したり、活物質の結着性が低下して集電体から活物質が剥離する問題が生じる。
高度に分散したスラリー組成物を得る方法として、特開平8−195201号公報には、増粘剤溶液に結着剤を分散させた混合液に、活物質および導電性付与剤を添加して混練、分散させる方法が提案されている。しかしながらこの製造方法では導電性付与剤の分散が不十分になったり、電極表面の平滑性が依然十分でないなどの問題があった。
また、特開平9−204917号公報にはスラリー組成物の製造方法として、各成分を混練する工程と、混練して得たスラリー組成物を所定時間放置して増粘させる工程と、増粘したスラリー組成物を再び混練する工程とを有する方法が提案されている。しかしこの方法では工程が煩雑であり、またスラリー組成物の製造に長時間を要して生産性が低下するなどの問題があった。
さらに、特開2000−348713号公報には、活物質と導電性付与剤とに、増粘剤を少なくとも2回以上に分割添加して混練し、次いで結着剤を添加して混練する、水を媒体とするスラリー組成物の製造方法が提案されている。しかし、この方法でも、結着剤の種類によっては、結着剤自体の分散が十分でないため粘度の経時変化が大きかったり、結着性が低下したりする問題があった。
Mobile terminals such as notebook personal computers, mobile phones, and PDAs are widely used, and lithium ion secondary batteries are frequently used for these power sources. Recently, demands for extending the use time of mobile terminals and shortening the charging time have increased, and accordingly, there has been a strong demand for higher performance of batteries, in particular, increased capacity and improved charging speed (rate characteristics).
A lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator and are housed in a container together with an electrolytic solution. A positive electrode and a negative electrode (both are collectively referred to as “secondary battery electrode”, and abbreviated as “electrode”) are referred to as an electrode active material (hereinafter, simply referred to as “active material”). In addition, a conductivity-imparting agent used as necessary is bound to a current collector such as aluminum or copper by a binder polymer for a secondary battery electrode (hereinafter sometimes simply referred to as “binder”). Is. The electrode is usually a slurry composition for secondary battery electrodes (hereinafter simply referred to as “slurry composition”) obtained by dissolving or dispersing a binder in a liquid medium and mixing an active material, a conductivity-imparting agent and the like. Is applied to a current collector, the liquid medium is removed by drying or the like, and bound as a mixed layer.
However, there has been a problem that the dispersion of each component in the slurry composition is insufficiently dispersed, or the viscosity of the slurry composition changes with time, resulting in a non-uniform dispersion state of the slurry composition. If an electrode is created using a non-uniform slurry composition, the surface of the electrode will not be smooth and battery performance will be degraded, or the active material will be degraded and the active material will peel off from the current collector. Arise.
As a method for obtaining a highly dispersed slurry composition, Japanese Patent Application Laid-Open No. 8-195201 discloses that an active material and a conductivity-imparting agent are added to a mixed solution in which a binder is dispersed in a thickener solution and kneaded. A method of dispersing is proposed. However, this production method has problems such as insufficient dispersion of the conductivity-imparting agent and insufficient smoothness of the electrode surface.
JP-A-9-204917 discloses a method for producing a slurry composition, a step of kneading each component, a step of allowing the slurry composition obtained by kneading to stand for a predetermined time, and a thickening step. And a method of re-kneading the slurry composition. However, this method has a problem that the process is complicated and the production of the slurry composition takes a long time and the productivity is lowered.
Furthermore, JP-A-2000-348713 discloses that a thickener is added to an active material and a conductivity-imparting agent at least twice and kneaded, and then a binder is added and kneaded. There has been proposed a method for producing a slurry composition using the above as a medium. However, even with this method, depending on the type of the binder, there is a problem that the dispersion of the binder itself is not sufficient, so that the change in viscosity with time is large or the binding property is lowered.

かかる状況のもとで、本発明の目的は、粘度の経時変化が少なく、結着性が良好で、かつ、表面が平滑な混合層を有する電極を与える二次電池電極用スラリー組成物の製造方法を提供することにある。
本発明者らは活物質や導電性付与剤が高度に分散したスラリー組成物を得る方法を鋭意検討した結果、溶媒に溶解し難いポリマーバインダーを分散させた分散液と活物質とを混練し、次いで、この混練液に、該溶媒に可溶なポリマーバインダーを溶解させた溶液を混合する手順を採ることにより、高度に分散したスラリー組成物が得られ、このスラリー組成物を用いて電極を製造すると凝集塊のない平滑な混合層を有する電極が得られることを見出し、この知見に基づいて更に検討を進め、本発明を完成するに到った。
かくして、本発明によれば、溶媒(S)に対する不溶分を50重量%以上含有するポリマー(A)の溶媒(S)分散液と電極活物質とを混練し、次いで、得られた混練液と、ポリマー(B)の溶媒(S)溶液とを混練することよりなる二次電池電極用スラリー組成物の製造方法が提供される。
さらに、本発明によれば、上記のように製造されたスラリー組成物を、集電体に塗布して乾燥することよりなる二次電池電極の製造方法が提供される。
Under such circumstances, an object of the present invention is to produce a slurry composition for a secondary battery electrode that provides an electrode having a mixed layer with little change in viscosity over time, good binding properties, and a smooth surface. It is to provide a method.
As a result of earnestly studying a method for obtaining a slurry composition in which an active material and a conductivity imparting agent are highly dispersed, the present inventors kneaded a dispersion in which a polymer binder that is difficult to dissolve in a solvent is dispersed, and the active material, Next, a highly dispersed slurry composition is obtained by mixing the kneaded liquid with a solution in which a polymer binder soluble in the solvent is dissolved, and an electrode is manufactured using the slurry composition. Then, it discovered that the electrode which has a smooth mixed layer without an agglomerate was obtained, and further examination advanced based on this knowledge, and came to complete this invention.
Thus, according to the present invention, the solvent (S A ) dispersion of the polymer (A) containing at least 50% by weight of the insoluble matter with respect to the solvent (S A ) and the electrode active material are kneaded, and then the obtained kneading A method for producing a slurry composition for a secondary battery electrode, comprising kneading a liquid and a solvent (S B ) solution of a polymer (B) is provided.
Furthermore, according to this invention, the manufacturing method of the secondary battery electrode which consists of apply | coating to a collector and drying the slurry composition manufactured as mentioned above is provided.

本発明の二次電池電極用スラリー組成物の製造方法は、溶媒(S)に対する不溶分を50重量%以上含有するポリマー(A)の溶媒(S)分散液と電極活物質とを混練し、次いで、得られた混練液と、ポリマー(B)の溶媒(S)溶液とを混練することよりなる。
先ず、本発明で使用する材料について説明する。
本発明で用いる溶媒(S)および溶媒(S)としては、水および、大気圧下での沸点が80〜350℃である非水系溶媒が好ましい。このような非水系溶媒としては、例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;トルエン、キシレン、n−ドデカン、テトラリンなどの炭化水素類;2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコールなどのアルコール類;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン類;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル類;o−トルイジン、m−トルイジン、p−トルイジンなどのアミン類;γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などが挙げられる。これらの中でも、水およびアミド類がより好ましく、N−メチルピロリドンが特に好ましい。
これらの溶媒(S)および(S)は、それぞれ、一種単独で、または二種以上を組合わせて用いることができる。なお、ポリマー(A)の分散液に用いる溶媒(S)と、ポリマー(B)の溶液に用いる溶媒(S)は同じ組成であることが好ましいが、それぞれ異なっていても、ポリマー(A)の分散液とポリマー(B)の溶液を混合した後の溶媒組成に対し、ポリマー(A)の不溶分が50重量%以上であり、かつポリマー(B)が可溶であれば用いることができる。
本発明では、二種のポリマーをバインダーとして用いる。ポリマーバインダーの一方の成分であるポリマー(A)としては、種類は特に限定されないが、溶媒(S)に不溶な成分を50重量%以上含有するポリマーを用いる。ポリマー(A)の溶媒(S)に不溶な成分は、好ましくは60重量%以上、より好ましくは70重量%以上であり、かつ好ましくは90重量%以下、より好ましくは87重量%以下である。溶媒(S)に対する不溶分がこの範囲であると、ポリマー(A)がスラリー組成物中で粒子状または繊維状を保持し、その結果、活物質の表面を膜状に覆い隠して電池反応を阻害することがなくなると推測される。溶媒(S)に対する不溶分が過度に少量であるとポリマー(A)が膜状化することに加え、活物質の結着持続性が低下して繰り返し充放電による容量減が起こるおそれがある。逆に、溶媒(S)に対する不溶分が過度に多量であるポリマー(A)を用いると、バインダーの結着性低下などのおそれがある。
ここで、溶媒(S)に対する不溶分の量は、溶媒20ミリリットルにポリマー0.2gを温度60℃で72時間浸漬した後、80メッシュの篩でろ過し、篩上の成分を乾燥して求めたポリマー重量の浸漬前のポリマー重量に対する百分率として表わされる。
溶媒(S)に対する不溶分を上記のように多量に含有するポリマー(A)は、単官能エチレン性不飽和モノマーおよび/または共役ジエンと、多官能エチレン性不飽和モノマーとの架橋共重合体であることが好ましい。
多官能エチレン性不飽和モノマーとしては、ジビニルベンゼンなどのジビニル化合物;ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレートなどのジメタクリル酸エステル類;トリメチロールプロパントリメタクリレートなどのトリメタクリル酸エステル類;ジエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレートなどのジアクリル酸エステル類;トリメチロールプロパントリアクリレートなどのトリアクリル酸エステル類などが好ましい。また、1,4−ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエンなどの非共役ジエン類も用いることができる。これらの多官能エチレン性不飽和モノマーは、単独でまたは2種以上を組合わせ用いることができる。
多官能エチレン性不飽和モノマーの割合は、ポリマー(A)製造用モノマー全量に対し、通常、0.3〜5重量%、好ましくは0.5〜3重量%である。
ポリマー(A)の製造に用いる単官能エチレン性不飽和モノマーとしては、エチレン、プロピレン、1−ブテン、イソブテン、3−メチル−1−ブテンなどのα−オレフィン類;(メタ)アクリロニトリル(アクリロニトリルまたはメタクリロニトリルの意。)などの不飽和ニトリル化合物;
(メタ)アクリル酸メチル(アクリル酸メチルまたはメタクリル酸メチルを表す。以下同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシルなどの(メタ)アクリル酸エステル類;クロトン酸メチル、クロトン酸2−エチルヘキシル、クロトン酸ヒドロキシプロピルなどのクロトン酸エステル類;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどのアルコキシ基含有(メタ)アクリル酸エステル類;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどのアミノ基含有(メタ)アクリル酸エステル類;(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシプロピルなどの水酸基含有(メタ)アクリル酸エステル;アルキル基にリン酸基、スルホン酸基、ホウ酸基などを有する(メタ)アクリル酸エステル;アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸などのカルボキシル基含有ビニル化合物およびジカルボン酸無水物;スチレン、α−メチルスチレンなどの芳香族ビニル化合物;などが挙げられる。
共役ジエン類としては、1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエンなどが挙げられる。これらの単官能エチレン性不飽和モノマーおよび共役ジエンは、単独でまたは2種以上を組合わせ用いることができる。
共役ジエンを用いる場合は、多官能エチレン性不飽和モノマーを用いない場合でも、重合温度、重合転化率および分子量調整剤の量などの重合条件を適宜調整することにより架橋重合体を得ることができる。
ポリマー(A)のガラス転移温度(Tg)は、好ましくは−80〜0℃、より好ましくは−60〜−5℃である。Tgが高すぎると、電極の柔軟性が低下し、充放電を繰り返した際に活物質の集電体からの剥離が起きやすくなる。また、Tgが低すぎると電池容量が低下する場合がある。
ポリマー(A)が上記範囲のTgを有するようにするために、ポリマー分子の構成繰り返し単位として、例えばアクリル酸2−エチルヘキシル(単独重合体のTgは−85℃)、アクリル酸n−ブチル(同−54℃)、メタクリル酸n−デシル(同−65℃)、1,3−ブタジエン、イソプレンなどの、単独重合体のTgが0℃以下となる単量体の繰り返し単位を持つことが好ましい。
ポリマー(A)の好ましい例としては、アクリル酸2−エチルヘキシル/メタクリル酸/アクリロニトリル/ジエチレングリコールジメタクリレート共重合体、アクリル酸ブチル/アクリル酸/トリメチロールプロパントリメタクリレート共重合体などのアクリルゴム、アクリロニトリル/ブタジエン共重合ゴムなどが挙げられる。
ポリマー(A)は、異なる単量体組成のポリマー(A)の混合物であってもよい。また、ポリマー(A)の溶媒(S)分散液には、本発明の効果が損なわれない限り、溶媒(S)に対する不溶分が50重量%未満のポリマーが少量含まれてもよい。
ポリマー(A)の平均粒径は、好ましくは0.005〜1000μm、より好ましくは0.01〜100μm、特に好ましくは0.05〜10μmである。平均粒径が大きすぎるとバインダーとして必要な量が多くなりすぎ、電極の内部抵抗が増加する。逆に、平均粒径が小さすぎると活物質の表面を覆い隠して電池反応を阻害してしまう。
ここで、平均粒径は、透過型電子顕微鏡写真で無作為に選んだポリマー粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。
ポリマー(A)の製造方法は特に限定されず、例えば、乳化重合法、懸濁重合法、分散重合法または溶液重合法などの公知の重合法により重合して得ることができるが、乳化重合法で製造することが、溶媒(S)に分散したときの粒子径の制御が容易であるので好ましい。
ポリマーバインダーのもう一方の成分であるポリマー(B)は、スラリー組成物の媒体である溶媒(S)に可溶なポリマーである。ポリマー(B)は、溶媒(S)に不溶な成分を含まなければ限定されないが、スラリー組成物を集電体に塗布して混合層を形成しやすいようにスラリーの粘度を増加させるポリマーバインダーが好ましい。
ポリマー(B)の製造には、単官能エチレン性不飽和モノマーおよび/または共役ジエンが用いられ、それらの具体例としては、前記ポリマー(A)の製造に用いられるものとして例示したものが挙げられる。これらのモノマーは単独でまたは2種以上を組合わせ用いることができる。
上記ポリマー(B)の例としては、アクリロニトリル/ブタジエン共重合体およびその水素化物、エチレン/アクリル酸メチル共重合体、スチレン/ブタジエン共重合体、ブタジエンゴム、エチレン/ビニルアルコール共重合体、アクリロニトリル/エチレン共重合体、アクリロニトリル/(メタ)アクリル酸メチル共重合体などが挙げられる。
ポリマー(B)は、フッ素含有ポリマーであってもよい。フッ素含有ポリマーは、フッ素含有単官能エチレン性モノマー単位を50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上含むポリマーである。フッ素含有モノマーとしては、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、パーフルオロアルキルビニルエーテルなどが挙げられるが、フッ化ビニリデンが好ましい。フッ化ビニリデン以外のフッ素含有モノマーを使用する場合は、その全量が全フッ素含有モノマーの好ましくは30モル%以下、より好ましくは20モル%以下となるようにフッ化ビニリデンと併せて使用する。
上記フッ素含有ポリマーは、フッ素非含有モノマー単位を50モル%以下、好ましくは30モル%以下、より好ましくは20モル%以下有していてもよい。フッ素非含有モノマー単位の含有量が多すぎると、電解液に対する耐溶剤性が低下して電極から活物質が脱落しやすくなるおそれがある。
フッ素含有単官能エチレン性モノマーと共重合可能なモノマーとしては、エチレン、プロピレン、1−ブテンなどの1−オレフィン;(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシルなどの(メタ)アクリル酸エステル類;スチレン、α−メチルスチレン、p−t−ブチルスチレンなどの芳香族ビニル化合物;(メタ)アクリロニトリルなどの不飽和ニトリル化合物;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミドなどの(メタ)アクリルアミド化合物;などのフッ素を含まない単官能エチレン性不飽和モノマーが挙げられる。
本発明において、ポリマー(B)は、異なる組成のポリマー(B)の混合物であってもよい。また、ポリマー(B)の溶媒(S)溶液には、本発明の効果を損なわない範囲において、溶媒(S)に不溶なポリマーを少量含んでいてもよい。
上記ポリマー(B)の製造方法は特に限定されない。例えば、乳化重合法、懸濁重合法、分散重合法、溶液重合法などの公知の重合法により得ることができる。
ポリマー(A)およびポリマー(B)を合わせたポリマーバインダーの総量は、活物質100重量部に対して、好ましくは0.1〜5重量部、より好ましくは0.2〜3重量部、特に好ましくは0.5〜2重量部である。バインダー総量が少なすぎると電極から活物質が脱落しやすくなるおそれがあり、逆に多すぎると活物質がバインダーに覆い隠されて電池反応が阻害される可能性がある。
ポリマー(A)とポリマー(B)の重量比は、好ましくは5/1〜1/5、より好ましくは3/1〜1/3、特に好ましくは2/1〜1/2である。ポリマー(A)の割合を過度に大きくすると、結着性は向上するものの、スラリー組成物の流動性が低下し、電極に塗布して得られる混合層が平滑でなくなるおそれがある。逆に、ポリマー(A)の割合を過度に小さくするとバインダーが活物質の表面を覆い隠して電池反応を阻害する可能性がある。
本発明で使用する電極活物質は、二次電池の種類により異なる。
リチウムイオン二次電池の場合、負極活物質、正極活物質とも、通常のリチウムイオン二次電池電極の製造に使用されるものであればいずれであっても用いることができる。
リチウムイオン二次電池の負極活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料、ポリアセンなどの導電性高分子などが例示される。
正極活物質としては、LiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoSなどの遷移金属硫化物;Cu、非晶質VO−P、MoO、V、V13などの遷移金属酸化物;が例示される。さらに、ポリアセチレン、ポリp−フェニレンなどの導電性高分子など有機系化合物を用いることもできる。
ニッケル水素二次電池の場合、負極活物質、正極活物質とも、通常のニッケル水素二次電池で使用されるものであれば、いずれも用いることができ、負極活物質としては、水素吸蔵合金を用いることができる。また、正極活物質としては、オキシ水酸化ニッケル、水酸化ニッケルなどを用いることができる。
ポリマー(B)の溶媒(S)溶液は、導電性付与剤を含有せしめたものであることが好ましい。導電性付与剤としては、リチウムイオン二次電池ではカーボンが用いられる。ニッケル水素二次電池で用いられる導電性付与剤は、正極では酸化コバルト、負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどを挙げることができる。
上記両電池において、導電性付与剤であるカーボンとしては、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、活性炭、フラーレン類を挙げることができる。中でも、アセチレンブラック、ファーネスブラックが好ましい。
導電性付与剤の使用量は、活物質100重量部あたり、通常、1〜20重量部、好ましくは2〜10重量部である。
次に、スラリー組成物の製造プロセスについて説明する。本発明においては、溶媒(S)に対する不溶分を50重量%以上含有するポリマー(A)の溶媒(S)分散液と電極活物質とを混練して混合液を調製し、これとは別個に、ポリマー(B)の溶媒(S)溶液を調製し、次いで、これら両液を混練するという手順を採ることが肝要である。これに対して、ポリマー(A)とポリマー(B)とを先に混合する手順を採ったり、活物質とポリマー(B)とを先に混合する手順を採ると、粘度の経時変化が大きくなったり、結着性が低下したりするおそれがある。
ポリマー(A)と活物質との混合液を調製するための溶媒(S)量は、活物質の種類により異なり、活物質が吸着可能な「吸液量」に対して好ましくは80〜120重量%、より好ましくは85〜110重量%、特に好ましくは90〜100重量%となる量である。該混合液の溶媒量が活物質の吸液量の80重量%より少ないと、混練時に活物質が粉体状になるため、せん断が効かず、活物質とポリマー(A)との混合が不均一になり、その結果、流動性の劣ったスラリー組成物となるおそれがある。逆に、該混合液の溶媒量が活物質の吸液量の120重量%より多いと、混合液の粘度が低くて剪断が効かず、その結果、流動性の劣ったスラリー組成物となるおそれがある。
活物質の吸液量は、ASTM D 281に準じて次の方法で測定することができる。すなわち、シャーレに採取した活物質20gをスパチュラーで掻き回しながら溶媒を0.5mlづつ滴下し、活物質の粉末が固いケーキ状にまとまる溶媒量を求め、活物質100g当りの重量に換算する。この測定を3回行い、平均値を吸液量とする。
本発明方法において、ポリマー(A)を溶媒(S)に分散させるための、および、ポリマー(B)を溶媒(S)に溶解させるための混合機や混練時間は特に限定されない。これらを行う場合の混合機としては、例えば、攪拌機付き混合槽、プラネタリーミキサー、リボンブレンダーが用いられる。
また、ポリマー(A)を分散させる方法としては、溶媒(S)が非水系溶媒である場合は、製造効率の良さなどから、通常の方法によってポリマー(A)の粒子が水に分散されたポリマーの水分散体を製造した後、ポリマーの水分散体中の水を非水系溶媒に置換する方法が好ましい。置換方法としては、ポリマー(A)の水分散体に非水系溶媒を加えた後、分散媒中の水分を、例えば蒸留法または分散媒相転換法により除去する方法などが挙げられる。
導電性付与剤を使用する場合は、予めポリマー(B)の溶液に導電性付与剤を分散させ、混合液として用いるのが好ましい。
ポリマー(B)の溶媒(S)溶液に導電性付与剤を含有せしめた混合液を調製する際は、混合液の固形分濃度が30〜40重量%、特には33〜38重量%となるように溶媒(S)量を調節して混練するのが好ましい。なお、ここで固形分濃度とは、ポリマー(B)と導電性付与剤との合計量の混合液全量に対する割合である。固形分濃度がこの範囲であると導電性付与剤を均一に混合することが容易になる。
本発明の製造方法では、上記のようにして調製したポリマー(A)の分散液と活物質とを混練してなる混合液と、ポリマー(B)の溶液とを混練してスラリー組成物を製造する。混練に際し、バインダーや電極活物質および導電性付与剤の種類に応じ、塗工に好適な粘度になるように溶媒(S)または(S)を追加してもよい。
スラリー組成物の最適な粘度は、集電体に塗布する塗工機の種類や塗工ラインの形状によっても異なるが、温度23℃においてBrookfield L型粘度計でローター番号4、回転数30rpmで1分間回転後の粘度が、通常、1500〜8000mPa・s、好ましくは2000〜6000mPa・sである。スラリー組成物の粘度が過度に低いと、経時に伴ってスラリーに沈降が生じたり塗工時に液ダレを起こすおそれがあり、逆に、粘度が過度に高いと、塗膜の厚みムラや混合層表面の平滑性低下を起こす可能性がある。
ポリマー(A)の分散液と活物質とを混練してなる混合液とポリマー(B)の溶液とを混練するとき、ならびにポリマー(A)の溶媒(S)分散液と活物質とを混練して混合液を調製するとき、およびポリマー(B)の溶媒(S)溶液に導電性付与剤を分散させるときの混合機や混練時間は特に限定されないが、高剪断の混合機を用いて活物質や導電性付与剤の粒子とバインダーのポリマーとを均一に混合させることが好ましい。
高剪断の混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが例示されるが、この中でもプラネタリーミキサーが好ましい。
高剪断の混合機での混合条件は特に限定されないが、混合温度は、通常、15〜50℃、混合時間は、通常、60〜180分である。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物が無くなるように混合し、分散させることが好ましい。
本発明方法によって得られたスラリー組成物は、粘度の経時変化が少なく、結着性が良好であり、表面が平滑で厚さが均一な二次電池電極混合層を与える。
二次電池電極は、本発明方法で得られた二次電池電極用スラリー組成物を、集電体に塗布して乾燥する方法により製造することができる。すなわち、二次電池電極は、集電体に、バインダー、活物質、および必要により加えられた導電性付与剤、増粘剤などを均一に含有する混合層を結着させて形成される。
上記方法で得られる二次電池電極は、正極、負極のいずれにも使用することができるが、正極に使用するのが好ましく、リチウムイオン二次電池の正極に用いるのが特に好ましい。
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池では、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製のものであるが、特に正極にアルミニウムを、負極に銅を用いた場合、本発明の方法により製造されたスラリー組成物の効果が最もよく現れる。ニッケル水素二次電池では、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などを挙げることができる。
集電体の形状は特に制限されないが、通常、厚さ0.001〜0.5mm程度のシート状のものである。
スラリー組成物の集電体への塗布方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。塗布するスラリー組成物量も特に制限されないが、液状媒体を乾燥して除去した後に形成される、活物質、バインダーなどからなる乾燥後の混合層の厚さが、通常、0.005〜5mm、好ましくは0.01〜2mmになる量が一般的である。
集電体に塗布されたスラリー組成物の乾燥方法も特に制限されず、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥方法が例として挙げられる。
さらに、乾燥後の電極をロールプレスなどの方法でプレスすることにより電極の活物質の密度を高めてもよい。
二次電池は、上記方法で得られた二次電池電極、電解液、セパレーターなどの部品を用いて、常法に従って製造して製造することができる。例えば、負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
電解液は、通常の二次電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを選択すればよい。
電解質としては、リチウムイオン二次電池では、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFCOなどが挙げられる。
この電解質を溶解させる溶媒は特に限定されるものではない。具体例としてはエチレンカーボネート、エチルメチルカーボネート、プロピレンカーボネートなどのカーボネート類;γ−ブチロラクトンなどのラクトン類;1,2−ジメトキシエタン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類などが挙げられ、これらは単独もしくは二種以上の混合溶媒として使用することができる。
また、ニッケル水素二次電池では、例えば、従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
Method of manufacturing a secondary battery electrode slurry composition of the present invention, solvent solvent (S A) of the insoluble matter with respect to (S A) polymer containing at least 50 wt% (A) mixing the dispersion and the electrode active material Then, the obtained kneading liquid and the solvent (S B ) solution of the polymer (B) are kneaded.
First, materials used in the present invention will be described.
As the solvent (S A ) and the solvent (S B ) used in the present invention, water and a non-aqueous solvent having a boiling point of 80 to 350 ° C. under atmospheric pressure are preferable. Examples of such non-aqueous solvents include amides such as N-methylpyrrolidone, dimethylformamide, and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane, and tetralin; 2-ethyl-1-hexanol, 1 Alcohols such as nonanol and lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate and butyl lactate; o-toluidine, m-toluidine And amines such as p-toluidine; lactones such as γ-butyrolactone and δ-butyrolactone; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane. Among these, water and amides are more preferable, and N-methylpyrrolidone is particularly preferable.
These solvents (S A ) and (S B ) can be used singly or in combination of two or more. The solvent (S A ) used for the dispersion liquid of the polymer ( A ) and the solvent (S B ) used for the solution of the polymer (B) preferably have the same composition. ) And the polymer (B) solution are mixed, and the insoluble content of the polymer (A) is 50% by weight or more and the polymer (B) is soluble. it can.
In the present invention, two kinds of polymers are used as binders. The type of polymer (A) which is one component of the polymer binder is not particularly limited, but a polymer containing 50% by weight or more of a component insoluble in the solvent (S A ) is used. Components insoluble in the solvent (S A) of the polymer (A) is preferably 60 wt% or more, more is preferably 70 wt% or more, and preferably 90 wt% or less, more preferably 87 wt% or less . When the insoluble content with respect to the solvent (S A ) is within this range, the polymer (A) retains particles or fibers in the slurry composition, and as a result, the surface of the active material is covered with a film and the battery reaction It is presumed that it will no longer inhibit. If the insoluble content in the solvent (S A ) is too small, the polymer (A) may become a film, and the binding durability of the active material may be lowered, resulting in a decrease in capacity due to repeated charge and discharge. . On the other hand, when the polymer (A) having an excessively large amount of insoluble matter with respect to the solvent (S A ) is used, there is a possibility that the binding property of the binder is lowered.
Here, the amount of insoluble matter with respect to the solvent (S A ) was determined by immersing 0.2 g of polymer in 20 ml of solvent at a temperature of 60 ° C. for 72 hours, filtering with an 80 mesh sieve, and drying the components on the sieve. It is expressed as a percentage of the determined polymer weight with respect to the polymer weight before immersion.
The polymer (A) containing a large amount of insoluble matter with respect to the solvent (S A ) as described above is a crosslinked copolymer of a monofunctional ethylenically unsaturated monomer and / or conjugated diene and a polyfunctional ethylenically unsaturated monomer. It is preferable that
Polyfunctional ethylenically unsaturated monomers include divinyl compounds such as divinylbenzene; dimethacrylic acid esters such as diethylene glycol dimethacrylate and ethylene glycol dimethacrylate; trimethacrylic acid esters such as trimethylolpropane trimethacrylate; diethylene glycol diacrylate, Diacrylic acid esters such as 1,3-butylene glycol diacrylate; triacrylic acid esters such as trimethylolpropane triacrylate are preferable. Further, non-conjugated dienes such as 1,4-hexadiene, ethylidene norbornene and dicyclopentadiene can also be used. These polyfunctional ethylenically unsaturated monomers can be used alone or in combination of two or more.
The ratio of the polyfunctional ethylenically unsaturated monomer is usually 0.3 to 5% by weight, preferably 0.5 to 3% by weight, based on the total amount of the monomer for producing the polymer (A).
Monofunctional ethylenically unsaturated monomers used for the production of the polymer (A) include α-olefins such as ethylene, propylene, 1-butene, isobutene and 3-methyl-1-butene; (meth) acrylonitrile (acrylonitrile or methacrylate) Unsaturated nitrile compounds such as nitrile;)
Methyl (meth) acrylate (represents methyl acrylate or methyl methacrylate; the same applies hereinafter), ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic acid 2- (Meth) acrylic acid esters such as ethylhexyl; crotonic acid esters such as methyl crotonate, 2-ethylhexyl crotonate, and hydroxypropyl crotonate; alkoxy such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Group-containing (meth) acrylic acid esters; amino group-containing (meth) acrylic acid esters such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; 2-hydroxypropyl (meth) acrylate, ( Hydroxypropyl acrylate Any hydroxyl group-containing (meth) acrylic acid ester; (meth) acrylic acid ester having phosphoric acid group, sulfonic acid group, boric acid group, etc. in alkyl group; acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid Carboxyl group-containing vinyl compounds such as acids and dicarboxylic acid anhydrides; aromatic vinyl compounds such as styrene and α-methylstyrene; and the like.
Examples of the conjugated dienes include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and the like. These monofunctional ethylenically unsaturated monomers and conjugated dienes can be used alone or in combination of two or more.
When a conjugated diene is used, a crosslinked polymer can be obtained by appropriately adjusting the polymerization conditions such as the polymerization temperature, the polymerization conversion rate and the amount of the molecular weight modifier, even when a polyfunctional ethylenically unsaturated monomer is not used. .
The glass transition temperature (Tg) of the polymer (A) is preferably -80 to 0 ° C, more preferably -60 to -5 ° C. When Tg is too high, the flexibility of the electrode is lowered, and the active material is easily separated from the current collector when charging and discharging are repeated. Moreover, when Tg is too low, battery capacity may be reduced.
In order for the polymer (A) to have a Tg in the above range, as a constitutional repeating unit of the polymer molecule, for example, 2-ethylhexyl acrylate (Tg of a homopolymer is −85 ° C.), n-butyl acrylate (same as above) −54 ° C.), n-decyl methacrylate (-65 ° C.), 1,3-butadiene, isoprene, and the like, and preferably has a repeating unit of a monomer having a Tg of 0 ° C. or less.
Preferred examples of the polymer (A) include acrylic rubber such as 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / diethylene glycol dimethacrylate copolymer, butyl acrylate / acrylic acid / trimethylolpropane trimethacrylate copolymer, acrylonitrile / Examples thereof include butadiene copolymer rubber.
The polymer (A) may be a mixture of polymers (A) having different monomer compositions. In addition, the solvent (S A ) dispersion of the polymer (A) may contain a small amount of a polymer having an insoluble content in the solvent (S A ) of less than 50% by weight as long as the effects of the present invention are not impaired.
The average particle diameter of the polymer (A) is preferably 0.005 to 1000 μm, more preferably 0.01 to 100 μm, and particularly preferably 0.05 to 10 μm. If the average particle size is too large, the amount necessary for the binder becomes too large, and the internal resistance of the electrode increases. Conversely, if the average particle size is too small, the surface of the active material is covered and the battery reaction is inhibited.
Here, the average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 polymer particles randomly selected in a transmission electron micrograph.
The production method of the polymer (A) is not particularly limited, and can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method. It is preferable that the particle diameter is easily controlled because it is easy to control the particle diameter when dispersed in the solvent (S A ).
The polymer (B) that is the other component of the polymer binder is a polymer that is soluble in the solvent (S B ) that is the medium of the slurry composition. The polymer (B) is not limited as long as it does not contain a component insoluble in the solvent (S B ), but the polymer binder increases the viscosity of the slurry so that the slurry composition can be easily applied to the current collector to form a mixed layer. Is preferred.
Monofunctional ethylenically unsaturated monomers and / or conjugated dienes are used for the production of the polymer (B), and specific examples thereof include those exemplified as those used for the production of the polymer (A). . These monomers can be used alone or in combination of two or more.
Examples of the polymer (B) include acrylonitrile / butadiene copolymer and its hydride, ethylene / methyl acrylate copolymer, styrene / butadiene copolymer, butadiene rubber, ethylene / vinyl alcohol copolymer, acrylonitrile / An ethylene copolymer, an acrylonitrile / methyl (meth) acrylate copolymer, etc. are mentioned.
The polymer (B) may be a fluorine-containing polymer. The fluorine-containing polymer is a polymer containing 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more of fluorine-containing monofunctional ethylenic monomer units. Examples of the fluorine-containing monomer include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride chloride, vinyl fluoride, and perfluoroalkyl vinyl ether, and vinylidene fluoride is preferable. When a fluorine-containing monomer other than vinylidene fluoride is used, it is used in combination with vinylidene fluoride so that the total amount thereof is preferably 30 mol% or less, more preferably 20 mol% or less of the total fluorine-containing monomer.
The fluorine-containing polymer may have a fluorine-free monomer unit of 50 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less. When there is too much content of a fluorine-free monomer unit, there exists a possibility that the solvent resistance with respect to electrolyte solution may fall, and an active material may fall out from an electrode easily.
Monomers that can be copolymerized with fluorine-containing monofunctional ethylenic monomers include 1-olefins such as ethylene, propylene, and 1-butene; methyl (meth) acrylate, butyl (meth) acrylate, and (meth) acrylic acid 2- (Meth) acrylic acid esters such as ethylhexyl; aromatic vinyl compounds such as styrene, α-methylstyrene, pt-butylstyrene; unsaturated nitrile compounds such as (meth) acrylonitrile; (meth) acrylamide, N-methylol Monofunctional ethylenically unsaturated monomers not containing fluorine such as (meth) acrylamide compounds such as (meth) acrylamide and N-butoxymethyl (meth) acrylamide;
In the present invention, the polymer (B) may be a mixture of polymers (B) having different compositions. Further, the solvent (S B ) solution of the polymer (B) may contain a small amount of a polymer insoluble in the solvent (S B ) as long as the effects of the present invention are not impaired.
The method for producing the polymer (B) is not particularly limited. For example, it can be obtained by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method.
The total amount of the polymer binder including the polymer (A) and the polymer (B) is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 3 parts by weight, particularly preferably 100 parts by weight of the active material. Is 0.5 to 2 parts by weight. If the total amount of the binder is too small, the active material may be easily removed from the electrode. Conversely, if the amount is too large, the active material may be covered with the binder and the battery reaction may be inhibited.
The weight ratio of the polymer (A) to the polymer (B) is preferably 5/1 to 1/5, more preferably 3/1 to 1/3, and particularly preferably 2/1 to 1/2. When the ratio of the polymer (A) is excessively increased, the binding property is improved, but the fluidity of the slurry composition is lowered, and the mixed layer obtained by applying to the electrode may not be smooth. On the contrary, if the ratio of the polymer (A) is too small, the binder may cover the surface of the active material and inhibit the battery reaction.
The electrode active material used in the present invention varies depending on the type of secondary battery.
In the case of a lithium ion secondary battery, both the negative electrode active material and the positive electrode active material can be used as long as they are used for the production of a normal lithium ion secondary battery electrode.
Examples of the negative electrode active material of the lithium ion secondary battery include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene. .
Examples of positive electrode active materials include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 ; transition metal sulfides such as TiS 2 , TiS 3 , and amorphous MoS 3 ; Cu 2 V 2 And transition metal oxides such as O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 . Furthermore, organic compounds such as conductive polymers such as polyacetylene and poly-p-phenylene can also be used.
In the case of a nickel metal hydride secondary battery, both the negative electrode active material and the positive electrode active material can be used as long as they are used in ordinary nickel metal hydride secondary batteries. As the negative electrode active material, a hydrogen storage alloy is used. Can be used. As the positive electrode active material, nickel oxyhydroxide, nickel hydroxide, or the like can be used.
The solvent (S B ) solution of the polymer (B) preferably contains a conductivity imparting agent. As a conductivity imparting agent, carbon is used in a lithium ion secondary battery. Examples of the conductivity-imparting agent used in the nickel-metal hydride secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode.
In both the batteries, examples of carbon that is a conductivity imparting agent include acetylene black, furnace black, graphite, carbon fiber, activated carbon, and fullerenes. Of these, acetylene black and furnace black are preferable.
The usage-amount of an electroconductivity imparting agent is 1-20 weight part normally per 100 weight part of active materials, Preferably it is 2-10 weight part.
Next, the manufacturing process of a slurry composition is demonstrated. In the present invention, the solvent (S A) the insolubles were prepared solvent (S A) dispersion liquid and the electrode active material and the mixture was kneaded polymer (A) containing more than 50 wt% with respect to which A It is important to prepare a solvent (S B ) solution of the polymer (B) separately and then knead these two solutions. On the other hand, if the procedure of mixing the polymer (A) and the polymer (B) first, or the procedure of mixing the active material and the polymer (B) first, the change in viscosity with time increases. Or the binding property may be reduced.
The amount of the solvent (S A ) for preparing the mixed liquid of the polymer (A) and the active material varies depending on the type of the active material, and is preferably 80 to 120 with respect to the “liquid absorption amount” that the active material can adsorb. The amount is such that the amount becomes wt%, more preferably 85 to 110 wt%, particularly preferably 90 to 100 wt%. If the amount of the solvent in the mixed solution is less than 80% by weight of the absorbed amount of the active material, the active material becomes powdery at the time of kneading, so that shearing does not work and mixing of the active material and the polymer (A) is not possible. It may become uniform and, as a result, may be a slurry composition with poor fluidity. On the contrary, if the amount of the solvent in the mixed solution is more than 120% by weight of the absorbed amount of the active material, the viscosity of the mixed solution is low and shearing does not work, resulting in a slurry composition with poor fluidity. There is.
The liquid absorption amount of the active material can be measured by the following method according to ASTM D281. That is, 20 g of the active material collected in the petri dish is dropped by 0.5 ml while stirring with a spatula, and the amount of the solvent in which the active material powder is gathered into a hard cake is determined and converted to the weight per 100 g of the active material. This measurement is performed three times, and the average value is taken as the liquid absorption.
In the method of the present invention, the mixer and kneading time for dispersing the polymer (A) in the solvent (S A ) and for dissolving the polymer (B) in the solvent (S B ) are not particularly limited. For example, a mixing tank with a stirrer, a planetary mixer, or a ribbon blender may be used as a mixer when performing these.
Further, as a method of dispersing the polymer (A), when the solvent (S A ) is a non-aqueous solvent, the polymer (A) particles are dispersed in water by a normal method from the viewpoint of good production efficiency. A method of replacing the water in the polymer aqueous dispersion with a non-aqueous solvent after producing the polymer aqueous dispersion is preferred. Examples of the substitution method include a method in which a non-aqueous solvent is added to the aqueous dispersion of the polymer (A), and then water in the dispersion medium is removed by, for example, a distillation method or a dispersion medium phase conversion method.
When using a conductivity-imparting agent, it is preferable to disperse the conductivity-imparting agent in the polymer (B) solution in advance and use it as a mixed solution.
When preparing a mixed solution in which a conductivity-imparting agent is contained in a solvent (S B ) solution of the polymer (B), the solid content concentration of the mixed solution is 30 to 40% by weight, particularly 33 to 38% by weight. Thus, it is preferable to knead by adjusting the amount of the solvent (S B ). In addition, solid content concentration here is a ratio with respect to the liquid mixture whole quantity of the total amount of a polymer (B) and an electroconductivity imparting agent. When the solid content concentration is within this range, it becomes easy to uniformly mix the conductivity-imparting agent.
In the production method of the present invention, a slurry composition is produced by kneading a mixed liquid prepared by kneading the dispersion of polymer (A) and the active material prepared as described above and a solution of polymer (B). To do. In kneading, a solvent (S A ) or (S B ) may be added so as to obtain a viscosity suitable for coating depending on the types of binder, electrode active material, and conductivity imparting agent.
The optimum viscosity of the slurry composition varies depending on the type of coating machine applied to the current collector and the shape of the coating line. However, at a temperature of 23 ° C., the Brookfield L-type viscometer has a rotor number of 4 and a rotational speed of 30 rpm. The viscosity after the minute rotation is usually 1500 to 8000 mPa · s, preferably 2000 to 6000 mPa · s. If the viscosity of the slurry composition is excessively low, there is a risk of sedimentation of the slurry with time or dripping during coating. Conversely, if the viscosity is excessively high, uneven coating thickness or mixed layers The surface smoothness may be reduced.
When kneading a mixed solution obtained by kneading a dispersion of polymer (A) and an active material and a solution of polymer (B), and kneading a solvent (S A ) dispersion of polymer (A) and an active material The mixing machine and kneading time when the conductivity imparting agent is dispersed in the solvent (S B ) solution of the polymer (B) are not particularly limited, but a high shear mixer is used. It is preferable to mix the particles of the active material or conductivity imparting agent and the binder polymer uniformly.
Examples of the high shear mixer include a ball mill, a sand mill, a pigment disperser, a pulverizer, an ultrasonic disperser, a homogenizer, and a planetary mixer. Among these, a planetary mixer is preferable.
The mixing conditions in the high shear mixer are not particularly limited, but the mixing temperature is usually 15 to 50 ° C., and the mixing time is usually 60 to 180 minutes. The degree of dispersion can be measured with a particle gauge, but it is preferable to mix and disperse so that aggregates larger than at least 100 μm are eliminated.
The slurry composition obtained by the method of the present invention gives a secondary battery electrode mixed layer with little change in viscosity with time, good binding, smooth surface and uniform thickness.
The secondary battery electrode can be produced by a method in which the slurry composition for a secondary battery electrode obtained by the method of the present invention is applied to a current collector and dried. That is, the secondary battery electrode is formed by binding a current collector to a mixed layer that uniformly contains a binder, an active material, and a conductivity-imparting agent, a thickener, and the like that are added as necessary.
Although the secondary battery electrode obtained by the said method can be used for any of a positive electrode and a negative electrode, it is preferable to use for a positive electrode and it is especially preferable to use for the positive electrode of a lithium ion secondary battery.
The current collector is not particularly limited as long as it is made of a conductive material. The lithium ion secondary battery is made of a metal such as iron, copper, aluminum, nickel, and stainless steel. Especially when aluminum is used for the positive electrode and copper is used for the negative electrode, the slurry composition manufactured by the method of the present invention. The effects of objects are most apparent. In a nickel metal hydride secondary battery, a punching metal, an expanded metal, a wire net, a foam metal, a reticulated metal fiber sintered body, a metal plating resin plate, and the like can be given.
The shape of the current collector is not particularly limited, but is usually a sheet shape having a thickness of about 0.001 to 0.5 mm.
The method for applying the slurry composition to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. The amount of the slurry composition to be applied is not particularly limited, but the thickness of the mixed layer after drying, which is formed after drying and removing the liquid medium, composed of an active material, a binder and the like is usually 0.005 to 5 mm, preferably Is generally in an amount of 0.01 to 2 mm.
The drying method of the slurry composition applied to the current collector is not particularly limited, and examples thereof include drying by hot air, hot air, low-humidity air, vacuum drying, and (dry) infrared or electron beam irradiation. Can be mentioned.
Furthermore, you may raise the density of the active material of an electrode by pressing the electrode after drying by methods, such as a roll press.
A secondary battery can be manufactured and manufactured according to a conventional method using components such as a secondary battery electrode, an electrolytic solution, and a separator obtained by the above method. For example, a negative electrode and a positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in a battery container, and an electrolytic solution is injected into the battery container and sealed. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
The electrolyte solution may be liquid or gel as long as it is used for a normal secondary battery, and an electrolyte that functions as a battery may be selected according to the type of the negative electrode active material and the positive electrode active material.
As the electrolyte, any conventionally known lithium salt can be used in the lithium ion secondary battery, and examples thereof include LiClO 4 , LiBF 4 , LiPF 6 , and LiCF 3 CO 2 .
The solvent for dissolving the electrolyte is not particularly limited. Specific examples include carbonates such as ethylene carbonate, ethyl methyl carbonate, and propylene carbonate; lactones such as γ-butyrolactone; ethers such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran, and 2-methyltetrahydrofuran; dimethyl sulfoxide, and the like. These sulfoxides can be used, and these can be used alone or as a mixed solvent of two or more.
Moreover, in a nickel metal hydride secondary battery, for example, a potassium hydroxide aqueous solution having a conventionally known concentration of 5 mol / liter or more can be used.

以下に、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。
なお、以下で記す「部」および「%」は、特記しない限り重量基準である。
実施例および比較例における操作および試験は以下の方法によった。
〔スラリー構成成分およびスラリー組成物の特性〕
(1)ガラス転移温度(Tg)
ポリマーのTgは、示差走査型熱量計(DSC)により、昇温速度10℃/分で測定した。
(2)N−メチルピロリドン(NMP)不溶分量
ポリマーのNMP不溶分量は、ポリマー0.2gをNMP20ミリリットルに60℃で72時間浸漬した後、80メッシュの篩でろ過し、篩上の成分を乾燥して求めた重量の、浸漬前の重量に対する百分率で示した。
(3)平均粒径
ポリマーの平均粒径は、透過型電子顕微鏡写真で無作為に選んだポリマー粒子100個の径を測定し、その平均値として算出される個数平均粒子径として求めた。単位は(μm)である。
(4)ポリマー組成
ポリマーを構成する各繰り返し単位の含有量は、H−および13C−NMR測定により求めた。単位は(モル%)である。
(5)活物質の吸液量
シャーレに採取した活物質20gをスパチュラーで掻き回しながらNMPを0.5mlづつ滴下し、活物質の粉末が固いケーキ状にまとまるNMP量を測定し、活物質100g当りの重量に換算する。3回の測定の平均値を吸液量とする。
(6)スラリー組成物粘度、スラリー粘度維持率
スラリー組成物の粘度は、スラリー組成物の調製後23℃に貯蔵し、1時間後と24時間後に、温度23℃においてBrookfield L型粘度計でローター番号4、回転数30rpmで1分間回転後に測定した。単位は(mPa・s)である。また、24時間目の粘度値の1時間目の粘度値に対する百分率をスラリー粘度維持率(%)とした。
〔二次電池電極の特性〕
(7)リチウムイオン二次電池正極の作製
実施例、比較例において調製したリチウムイオン二次電池正極用スラリー組成物をアルミニウム箔(厚さ20μm)にドクターブレード法によって均一に塗布し、乾燥機にて温度120℃で15分間乾燥した。さらに真空乾燥機にて0.6kPa、120℃で2時間減圧乾燥した後、2軸のロールプレスによって電極密度が3.2g/cmとなるように圧縮してリチウムイオン二次電池正極を得た。
(8)算術平均粗さ(Ra)
JIS B0601に基づいて、電極混合層の表面の20μm四方の算術平均粗さ(Ra)を、原子間力顕微鏡で観測した。
(9)剥離強度
上記(7)に記す方法で得たリチウムイオン二次電池正極から、長さ100mm、幅25mmの長方形を塗布方向が長辺となるように切り出して試験片とする。試験片の混合層全面にセロハンテープを貼り付けた後、試験片の一端のセロハンテープ端と集電体箔端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力(N/cm)を測定する。応力が大きいほど混合層の剥離強度が大きいと判断する。
〔二次電池の特性〕
(10)リチウムイオン二次電池の製造
負極としては金属リチウムを使用した。上記(7)に記す方法で得たアルミニウム正極および金属リチウム負極を直径15mmの円形に切抜き、正極の電極層面側に直径18mm、厚さ25μmの円形ポリプロピレン製多孔膜からなるセパレーター、負極の金属リチウムを順に積層し、外装容器底面に正極のアルミニウム箔が接触するように配置し、さらに負極の上にエキスパンドメタルを入れ、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に下記の電解液を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップを被せて固定し、電池缶を封止して直径20mm、厚さ約2mmのコイン型電池を製造した。電解液はエチレンカーボネート/エチルメチルカーボネート=33/67(20℃での体積比)にLiPFを1モル/リットルの濃度で溶解した溶液を用いた。
(11)電池容量
電池容量の測定は、25℃で充放電レートを0.1Cとし、定電流法(電流密度:0.5mA/g−活物質)で1.2Vに充電し、3Vまで放電する充放電を各5回繰り返し、その都度電池容量を測定する。繰り返し測定した電池容量の平均値を評価結果とする。単位は〔mAh/g:活物質当たり(以下、電池容量に関しては同じ)〕である。
(12)レート特性
測定条件を、定電流量を1Cに変更したほかは、電池容量の測定と同様に定電流法で充放電を行い、3サイクル目の放電容量〔単位=mAh/g〕を測定した。3サイクル目における0.1Cでの放電容量に対する1Cでの放電容量の割合を百分率で算出した。この値が大きいほど、高速充放電が可能なことを示す。
実施例および比較例においてバインダーとして用いた各ポリマーの組成(単位:モル%)を表1に示す。ポリマーA−1,2およびB−1〜3はいずれも乳化重合法により製造した。ポリフッ化ビニリデンは市販品を使用した。

Figure 2004006361
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
The “parts” and “%” described below are based on weight unless otherwise specified.
The operations and tests in Examples and Comparative Examples were performed according to the following methods.
[Characteristics of slurry constituents and slurry composition]
(1) Glass transition temperature (Tg)
The Tg of the polymer was measured with a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min.
(2) N-methylpyrrolidone (NMP) insoluble content The NMP insoluble content of the polymer was obtained by immersing 0.2 g of the polymer in 20 ml of NMP at 60 ° C. for 72 hours and then filtering with an 80 mesh sieve to dry the components on the sieve. The weight obtained in this way was expressed as a percentage of the weight before immersion.
(3) Average particle diameter The average particle diameter of the polymer was determined as the number average particle diameter calculated as an average value by measuring the diameter of 100 polymer particles randomly selected from a transmission electron micrograph. The unit is (μm).
(4) Polymer composition The content of each repeating unit constituting the polymer was determined by 1 H- and 13 C-NMR measurements. The unit is (mol%).
(5) Amount of active material absorbed 20 mg of active material collected in a petri dish was dropped by 0.5 ml each while stirring with a spatula, and the amount of NMP in which the active material powder gathered into a hard cake was measured. Convert to weight. The average value of three measurements is taken as the liquid absorption.
(6) Slurry composition viscosity, slurry viscosity maintenance ratio The viscosity of the slurry composition is stored at 23 ° C. after preparation of the slurry composition, and after 1 hour and 24 hours, the rotor is measured with a Brookfield L-type viscometer at a temperature of 23 ° C. No. 4 and measured after rotating at 30 rpm for 1 minute. The unit is (mPa · s). The percentage of the viscosity value at 24 hours to the viscosity value at 1 hour was defined as the slurry viscosity maintenance rate (%).
[Characteristics of secondary battery electrode]
(7) Preparation of positive electrode for lithium ion secondary battery The slurry composition for the positive electrode of lithium ion secondary battery prepared in Examples and Comparative Examples was uniformly applied to an aluminum foil (thickness 20 μm) by a doctor blade method, and then applied to a dryer. And dried at 120 ° C. for 15 minutes. Furthermore, after drying under reduced pressure at 0.6 kPa and 120 ° C. for 2 hours in a vacuum dryer, the electrode density is compressed to 3.2 g / cm 3 by a biaxial roll press to obtain a lithium ion secondary battery positive electrode. It was.
(8) Arithmetic mean roughness (Ra)
Based on JIS B0601, the 20 μm square arithmetic average roughness (Ra) of the surface of the electrode mixed layer was observed with an atomic force microscope.
(9) Peel strength From the lithium ion secondary battery positive electrode obtained by the method described in (7) above, a rectangle having a length of 100 mm and a width of 25 mm is cut out so that the coating direction becomes the long side to obtain a test piece. After applying the cellophane tape to the entire mixed layer of the test piece, the stress (N / cm) when the cellophane tape end and the current collector foil end at one end of the test piece are pulled and pulled vertically at a pulling speed of 50 mm / min. ). It is determined that the greater the stress, the greater the peel strength of the mixed layer.
[Characteristics of secondary battery]
(10) Production of lithium ion secondary battery Metal lithium was used as the negative electrode. The aluminum positive electrode and metal lithium negative electrode obtained by the method described in (7) above are cut out into a circle having a diameter of 15 mm, a separator comprising a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 μm on the electrode layer surface side of the positive electrode, and metal lithium as the negative electrode Are placed in order, the aluminum foil of the positive electrode is placed in contact with the bottom of the outer container, and an expanded metal is placed on the negative electrode, and a coin-shaped outer container made of stainless steel (20 mm in diameter, high In a thickness of 1.8 mm and a stainless steel thickness of 0.25 mm). Inject the following electrolyte into the container so that no air remains, fix the outer container with a 0.2 mm thick stainless steel cap through a polypropylene packing, and seal the battery can. A coin-type battery having a diameter of 20 mm and a thickness of about 2 mm was manufactured. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in ethylene carbonate / ethyl methyl carbonate = 33/67 (volume ratio at 20 ° C.) was used.
(11) Battery capacity The battery capacity was measured at 25 ° C. with a charge / discharge rate of 0.1 C, charged to 1.2 V by the constant current method (current density: 0.5 mA / g-active material), and discharged to 3 V. The charging / discharging is repeated 5 times, and the battery capacity is measured each time. The average value of the battery capacity measured repeatedly is taken as the evaluation result. The unit is [mAh / g: per active material (hereinafter the same regarding the battery capacity)].
(12) Rate characteristics Except for changing the constant current amount to 1C, charge / discharge was performed by the constant current method in the same manner as the battery capacity measurement, and the discharge capacity [unit = mAh / g] at the third cycle was set. It was measured. The ratio of the discharge capacity at 1C to the discharge capacity at 0.1C in the third cycle was calculated as a percentage. It shows that high-speed charge / discharge is possible, so that this value is large.
Table 1 shows the composition (unit: mol%) of each polymer used as a binder in Examples and Comparative Examples. Polymers A-1, 2 and B-1 to 3 were all produced by an emulsion polymerization method. A commercially available polyvinylidene fluoride was used.
Figure 2004006361

0.4部のポリマーA−1をNMP15.6部に分散させた分散液とコバルト酸リチウム(LiCoO、活物質(i)、吸液量15.6g)100部とを2対のスパイラルフック型攪拌翼を有するプラネタリーミキサーで60分間混練して混合液aを調製した。混合液aの固形分濃度は86.6%であった。別途、6.3部のNMPに0.2部のポリマーB−1と0.2部のポリマーB−3を溶解させた溶液に導電性付与剤のアセチレンブラック(電気化学工業社製、デンカブラック粒状)3部を添加して固形分濃度35.1%で前記と同種のプラネタリーミキサーで混練し、NMP1.8部を加えて固形分濃度29.6%の混合液bを作製した。前記プラネタリーミキサーを用いて混合液aに混合液bを加えて、さらに30分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。スラリー組成物の固形分濃度は81.4%であった。スラリー粘度は、1時間目2200mPa・s、24時間目2270mPa・sで、スラリー粘度変化率は103%であった。
この24時間経過後のスラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した結果を表2に記す。
Two pairs of spiral hooks were prepared by dispersing 0.4 part of Polymer A-1 in 15.6 parts of NMP and 100 parts of lithium cobaltate (LiCoO 2 , active material (i), liquid absorption 15.6 g). A mixed solution a was prepared by kneading for 60 minutes with a planetary mixer having a mold stirring blade. The solid content concentration of the mixed solution a was 86.6%. Separately, acetylene black (made by Denki Kagaku Kogyo Co., Ltd., Denka Black) was added to a solution prepared by dissolving 0.2 part of polymer B-1 and 0.2 part of polymer B-3 in 6.3 parts of NMP. (Particulate) 3 parts were added and kneaded with a planetary mixer of the same kind as described above at a solid content concentration of 35.1%, and 1.8 parts of NMP was added to prepare a mixed solution b having a solid content concentration of 29.6%. The liquid mixture b was added to the liquid mixture a using the planetary mixer, and the mixture was further kneaded for 30 minutes to obtain a slurry composition for a lithium ion secondary battery positive electrode. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 2200 mPa · s at the first hour and 2270 mPa · s at the 24th hour, and the change rate of the slurry viscosity was 103%.
Table 2 shows the results of testing the characteristics of the secondary battery electrode and secondary battery prepared using the slurry composition after the lapse of 24 hours.

実施例2〜6Examples 2-6

表2に示す成分および量の配合で実施例1と同様にしてスラリー組成物を調製した。混合液bの調製における表記のNMP量の内、ポリマー(B)溶解に6.3部を用い、導電性付与剤混合後に残量を添加した。ただし、実施例3においてはポリマー(B)の溶解に表記量をすべて用いた。スラリー組成物、スラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した。試験結果を表2に記す。

Figure 2004006361
Figure 2004006361
表2に見られるように、吸液量の異なる3種の活物質に対して溶媒に難溶なポリマーと可溶なポリマーの両者をバインダーに用い、本発明の方法に則って製造したスラリー組成物は、製造1時間後および24時間後共に低くて安定した粘度(経時変化が少)を示し、これらのスラリー組成物を塗布して作製した電極混合層は表面が平滑で、剥離強度は十分大きくて結着性は良好であった。また、これらの電極を用いたリチウムイオン二次電池は高容量で、かつ、高レート特性であった(実施例1〜6)。
比較例1
23.7部のNMPに0.2部のポリマーB−1と0.2部のポリマーB−3を溶解させ、さらに、0.4部のポリマーA−1を分散させ、さらに、アセチレンブラック3部ならびに活物質(i)100部を添加し、2対のスパイラルフック型攪拌翼を有するプラネタリーミキサーで90分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。スラリー組成物の固形分濃度は81.4%であった。スラリー粘度は、1時間目13400mPa・s、24時間目2010mPa・sで、スラリー粘度変化率は15%であった。
この24時間経過後のスラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した結果を表3に記す。
比較例2
16.9部のNMPに0.2部のポリマーB−1と0.2部のポリマーB−3を溶解させ、次いで0.4部のポリマーA−1を添加して分散させ、この分散液とアセチレンブラック3部と活物質(i)100部とを2対のスパイラルフック型攪拌翼を有するプラネタリーミキサーで60分間混練し、NMPを6.8部加えて、さらに30分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。スラリー組成物の固形分濃度は81.4%であった。スラリー粘度は、1時間目12800mPa・s、24時間目2120mPa・sで、スラリー粘度変化率は17%であった。
この24時間経過後のスラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した結果を表3に記す。
比較例3
NMP16.1部に0.1部のポリマーB−1と0.1部のポリマーB−3を溶解させ、この溶液とアセチレンブラック3部と活物質(i)100部とを2対のスパイラルフック型攪拌翼を有するプラネタリーミキサーで30分間混練し、これに、0.1部のポリマーB−1と0.1部のポリマーB−3をNMP3部に溶解した溶液を加えて、さらに30分間混練した。ここに、NMP4.6部に0.4部のポリマーA−1を分散させた分散液を添加して、さらに30分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。スラリー組成物の固形分濃度は81.4%であった。スラリー粘度は、1時間目18400mPa・s、24時間目2050mPa・sで、スラリー粘度変化率は11%であった。
この24時間経過後のスラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した結果を表3に記す。
比較例4
NMP15.8部に0.2部のポリマーB−1をと0.2部のポリマーB−3を溶解させ、この溶液と活物質(i)100部とを2対のスパイラルフック型攪拌翼を有するプラネタリーミキサーで60分間混練して混合液cを調製した。混合液cの固形分濃度は86.4%であった。別途、NMP7.9部に0.4部のポリマーA−1を分散させた分散液にアセチレンブラック3部を添加してプラネタリーミキサーで分散し、固形分濃度30.0%の混合液dを作製した。前記プラネタリーミキサーを用いて混合液cに混合液dを加えて、さらに30分間混練してリチウムイオン二次電池正極用スラリー組成物を得た。スラリー組成物の固形分濃度は81.4%であった。スラリー粘度は、1時間目8950mPa・s、24時間目1980mPa・sで、スラリー粘度変化率は22%であった。
この24時間経過後のスラリー組成物を用いて作製した二次電池電極および二次電池の特性を試験した結果を表3に記す。
Figure 2004006361
表3に示すように、上記発明例(実施例1〜6)と同じ成分を同じ量使用しても、本発明と異なる手順で製造したスラリー組成物はいずれも不具合を呈した。すなわち、溶媒以外の全成分を全量の溶媒に順次添加して混練する方法で、あるいは、約7割量の溶媒に順次添加して混練してから残量の溶媒を加える方法で得られたスラリー組成物は、粘度の初期値が高い上にその後急激に低下して安定せず、電極混合層は表面が粗く、剥離強度が著しく小さく、これらの電極を用いた二次電池は、電池容量、レート特性ともに低かった(比較例1、2)。
また、ポリマー(B)と導電性付与剤と活物質とを先に混合した混合液にポリマー(A)を分散させた液を加える方法で調製したスラリー組成物は、粘度の初期値が8〜9倍と高く、経時で激しく低下した。このスラリー組成物を用いて得られた電極および二次電池は、比較例1および2と同様な欠陥を呈した(比較例3)。
さらに、ポリマー(B)を溶解して活物質を分散させた混合液に、別途調製したポリマー(A)および導電性付与剤を分散させた液を添加して混練する、本発明とは逆の配合手順を採ると、スラリー組成物の粘度は本発明例の約4倍の初期値を示した後に大きく低下し、電極および二次電池は比較例1〜3と同様な欠点を有するものであった(比較例4)。A slurry composition was prepared in the same manner as in Example 1 with the ingredients and amounts shown in Table 2. Of the indicated NMP amount in the preparation of the mixed solution b, 6.3 parts were used for dissolving the polymer (B), and the remaining amount was added after mixing the conductivity-imparting agent. However, in Example 3, all the indicated amounts were used for dissolving the polymer (B). The characteristics of the slurry composition, the secondary battery electrode produced using the slurry composition, and the secondary battery were tested. The test results are shown in Table 2.
Figure 2004006361
Figure 2004006361
As can be seen in Table 2, a slurry composition produced in accordance with the method of the present invention using both a polymer that is hardly soluble in a solvent and a soluble polymer for three types of active materials having different liquid absorption amounts. The product shows a low and stable viscosity (low change with time) after 1 hour and 24 hours after production, and the electrode mixed layer produced by applying these slurry compositions has a smooth surface and sufficient peel strength. It was large and had good binding properties. Moreover, the lithium ion secondary battery using these electrodes was high capacity | capacitance and was a high rate characteristic (Examples 1-6).
Comparative Example 1
In 23.7 parts of NMP, 0.2 part of polymer B-1 and 0.2 part of polymer B-3 are dissolved, 0.4 part of polymer A-1 is further dispersed, and acetylene black 3 And 100 parts of active material (i) were added and kneaded for 90 minutes with a planetary mixer having two pairs of spiral hook type stirring blades to obtain a slurry composition for a positive electrode of a lithium ion secondary battery. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 13400 mPa · s in the first hour and 2010 mPa · s in the 24th hour, and the rate of change in slurry viscosity was 15%.
Table 3 shows the results of testing the characteristics of the secondary battery electrode and secondary battery prepared using the slurry composition after the lapse of 24 hours.
Comparative Example 2
In 16.9 parts of NMP, 0.2 part of polymer B-1 and 0.2 part of polymer B-3 are dissolved, and then 0.4 part of polymer A-1 is added and dispersed. 3 parts of acetylene black and 100 parts of active material (i) are kneaded for 60 minutes with a planetary mixer having two pairs of spiral hook type stirring blades, 6.8 parts of NMP is added, and further kneaded for 30 minutes. A slurry composition for an ion secondary battery positive electrode was obtained. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 12800 mPa · s in the first hour and 2120 mPa · s in the 24th hour, and the rate of change in slurry viscosity was 17%.
Table 3 shows the results of testing the characteristics of the secondary battery electrode and secondary battery prepared using the slurry composition after the lapse of 24 hours.
Comparative Example 3
In 0.11 part of NMP, 0.1 part of polymer B-1 and 0.1 part of polymer B-3 are dissolved, and this solution, 3 parts of acetylene black and 100 parts of active material (i) are combined into two pairs of spiral hooks. Kneading with a planetary mixer having a mold stirring blade for 30 minutes, and then adding a solution of 0.1 part of polymer B-1 and 0.1 part of polymer B-3 in 3 parts of NMP, and further 30 minutes Kneaded. To this, a dispersion in which 0.4 part of polymer A-1 was dispersed in 4.6 parts of NMP was added and further kneaded for 30 minutes to obtain a slurry composition for a lithium ion secondary battery positive electrode. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 18400 mPa · s in the first hour, 2050 mPa · s in the 24th hour, and the rate of change in slurry viscosity was 11%.
Table 3 shows the results of testing the characteristics of the secondary battery electrode and secondary battery prepared using the slurry composition after the lapse of 24 hours.
Comparative Example 4
In 15.8 parts of NMP, 0.2 part of polymer B-1 and 0.2 part of polymer B-3 are dissolved, and 100 parts of this solution and active material (i) are mixed with two pairs of spiral hook type stirring blades. A mixed solution c was prepared by kneading for 60 minutes with a planetary mixer. The solid content concentration of the mixed solution c was 86.4%. Separately, 3 parts of acetylene black was added to a dispersion obtained by dispersing 0.4 part of the polymer A-1 in 7.9 parts of NMP, and dispersed with a planetary mixer, to obtain a mixed liquid d having a solid content concentration of 30.0%. Produced. The liquid mixture d was added to the liquid mixture c using the planetary mixer, and the mixture was further kneaded for 30 minutes to obtain a slurry composition for a lithium ion secondary battery positive electrode. The solid content concentration of the slurry composition was 81.4%. The slurry viscosity was 8950 mPa · s at 1 hour and 1980 mPa · s at 24 hour, and the rate of change in slurry viscosity was 22%.
Table 3 shows the results of testing the characteristics of the secondary battery electrode and secondary battery prepared using the slurry composition after the lapse of 24 hours.
Figure 2004006361
As shown in Table 3, even when the same amount of the same components as those of the above inventive examples (Examples 1 to 6) were used, all the slurry compositions produced by procedures different from the present invention exhibited defects. That is, a slurry obtained by a method in which all components other than the solvent are sequentially added to the total amount of the solvent and kneaded, or a method in which about 70% of the solvent is sequentially added and kneaded and then the remaining amount of the solvent is added. The composition has a high initial viscosity value and then suddenly decreases and does not stabilize, the electrode mixture layer has a rough surface, and the peel strength is remarkably small.The secondary battery using these electrodes has a battery capacity, Both rate characteristics were low (Comparative Examples 1 and 2).
In addition, the slurry composition prepared by adding the liquid in which the polymer (A) is dispersed in the mixed liquid in which the polymer (B), the conductivity-imparting agent, and the active material are previously mixed has an initial viscosity value of 8 to It was 9 times higher, and decreased dramatically over time. The electrode and secondary battery obtained using this slurry composition exhibited the same defects as in Comparative Examples 1 and 2 (Comparative Example 3).
Furthermore, a liquid in which the polymer (A) and the conductivity-imparting agent separately prepared are added and kneaded into the mixed liquid in which the polymer (B) is dissolved and the active material is dispersed, which is opposite to the present invention. When the blending procedure was adopted, the viscosity of the slurry composition dropped substantially after showing an initial value about 4 times that of the present invention example, and the electrode and the secondary battery had the same defects as in Comparative Examples 1 to 3. (Comparative Example 4).

本発明方法によって得られるスラリー組成物は、粘度の経時変化が少なく、結着性が良好であり、この組成物を集電体に塗布して乾燥すると、表面が平滑で厚さが均一な混合層を有する二次電池電極が形成される。
上記の二次電池電極は、正極、負極のいずれにも使用することができるが、正極に使用するのが好ましく、リチウムイオン二次電池の正極に用いるのが特に好ましい。
The slurry composition obtained by the method of the present invention has little change in viscosity with time and good binding properties. When this composition is applied to a current collector and dried, the surface has a smooth surface and a uniform thickness. A secondary battery electrode having a layer is formed.
The secondary battery electrode can be used for both the positive electrode and the negative electrode, but is preferably used for the positive electrode, and particularly preferably used for the positive electrode of the lithium ion secondary battery.

Claims (19)

溶媒(S)に対する不溶分を50重量%以上含有するポリマー(A)の溶媒(S)分散液と電極活物質とを混練し、次いで、得られた混練液と、ポリマー(B)の溶媒(S)溶液とを混練することよりなる二次電池電極用スラリー組成物の製造方法。The solvent insoluble matter with respect to (S A) by kneading the solvent (S A) dispersion liquid and the electrode active material of the polymer (A) containing more than 50 wt%, then the kneading liquid obtained, the polymer (B) method of manufacturing a solvent (S B) with a solution consisting of kneading secondary battery electrode slurry composition. ポリマー(A)の溶媒(S)に対する不溶分が50重量%以上90重量%以下である請求の範囲1に記載のスラリー組成物の製造方法。The method for producing a slurry composition according to claim 1, wherein an insoluble content of the polymer (A) with respect to the solvent (S A ) is 50% by weight or more and 90% by weight or less. ポリマー(A)の溶媒(S)に対する不溶分が50重量%以上87重量%以下である請求の範囲1に記載のスラリー組成物の製造方法。The method for producing a slurry composition according to claim 1, wherein an insoluble content of the polymer (A) with respect to the solvent (S A ) is 50% by weight or more and 87% by weight or less. ポリマー(A)が単官能エチレン性不飽和モノマーおよび共役ジエンの中から選ばれた少なくとも一種のモノマーと多官能エチレン性不飽和モノマーとの架橋共重合体である請求の範囲1〜3のいずれかに記載のスラリー組成物の製造方法。The polymer (A) is a cross-linked copolymer of at least one monomer selected from a monofunctional ethylenically unsaturated monomer and a conjugated diene and a polyfunctional ethylenically unsaturated monomer. The manufacturing method of the slurry composition as described in above. ポリマー(A)のガラス転移温度(Tg)が−80℃〜0℃の範囲である請求の範囲1〜4のいずれかに記載のスラリー組成物の製造方法。The manufacturing method of the slurry composition in any one of Claims 1-4 whose glass transition temperature (Tg) of a polymer (A) is the range of -80 degreeC-0 degreeC. ポリマー(A)の平均粒径が0.005μm〜1,000μmの範囲である請求の範囲1〜5のいずれかに記載のスラリー組成物の製造方法。The method for producing a slurry composition according to any one of claims 1 to 5, wherein the average particle size of the polymer (A) is in the range of 0.005 µm to 1,000 µm. ポリマー(B)が単官能エチレン性不飽和モノマーおよび共役ジエンの中から選ばれた少なくとも一種のモノマーの重合体である請求の範囲1〜6のいずれかに記載のスラリー組成物の製造方法。The method for producing a slurry composition according to any one of claims 1 to 6, wherein the polymer (B) is a polymer of at least one monomer selected from a monofunctional ethylenically unsaturated monomer and a conjugated diene. ポリマー(B)が、フッ素含有単官能エチレン性モノマー単位を50モル%以上含有するフッ素含有ポリマーを含む請求の範囲1〜7のいずれかに記載のスラリー組成物の製造方法。The method for producing a slurry composition according to any one of claims 1 to 7, wherein the polymer (B) comprises a fluorine-containing polymer containing 50 mol% or more of a fluorine-containing monofunctional ethylenic monomer unit. ポリマー(A)とポリマー(B)との総量が、活物質100重量部に対して、0.1〜5重量部の範囲である請求の範囲1〜8のいずれかに記載のスラリー組成物の製造方法。The slurry composition according to any one of claims 1 to 8, wherein the total amount of the polymer (A) and the polymer (B) is in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the active material. Production method. ポリマー(A)とポリマー(B)の重量比[(A)/(B)]が5/1〜1/5の範囲である請求の範囲1〜9のいずれかに記載のスラリー組成物の製造方法。The slurry composition according to any one of claims 1 to 9, wherein the weight ratio [(A) / (B)] of the polymer (A) to the polymer (B) is in the range of 5/1 to 1/5. Method. 溶媒(S)および溶媒(S)が、水および、大気圧下での沸点が80℃〜350℃である非水系溶媒の中から選ばれる請求の範囲1〜10のいずれかに記載のスラリー組成物の製造方法。The solvent (S A ) and the solvent (S B ) are selected from water and a non-aqueous solvent having a boiling point of 80 ° C. to 350 ° C. under atmospheric pressure. A method for producing a slurry composition. 溶媒(S)と溶媒(S)が同一の組成を有するものである請求の範囲1〜11のいずれかに記載のスラリー組成物の製造方法。The method for producing a slurry composition according to any one of claims 1 to 11, wherein the solvent (S A ) and the solvent (S B ) have the same composition. ポリマー(B)の溶媒(S)溶液が、さらに導電性付与剤を含有せしめたものである請求の範囲1〜12のいずれかに記載のスラリー組成物の製造方法。The method for producing a slurry composition according to any one of claims 1 to 12, wherein the solvent (S B ) solution of the polymer (B) further contains a conductivity imparting agent. 導電性付与剤を含有せしめた、ポリマー(B)の溶媒(S)溶液が、固形分濃度30〜40重量%で混練を行って得られたものである請求の範囲13に記載のスラリー組成物の製造方法。The slurry composition according to claim 13, wherein the solvent (S B ) solution of the polymer (B) containing a conductivity imparting agent is obtained by kneading at a solid content concentration of 30 to 40% by weight. Manufacturing method. 導電性付与剤の量が活物質100重量部当たり1〜20重量部である請求の範囲13または14に記載のスラリー組成物の製造方法。The method for producing a slurry composition according to claim 13 or 14, wherein the amount of the conductivity imparting agent is 1 to 20 parts by weight per 100 parts by weight of the active material. ポリマー(A)の溶媒(S)分散液と電極活物質との混練における溶媒(S)の量が、電極活物質の吸液量の80〜120重量%である請求の範囲1〜15のいずれかに記載のスラリー組成物の製造方法。The amount of the solvent (S A ) in the kneading of the solvent (S A ) dispersion of the polymer (A) and the electrode active material is 80 to 120% by weight of the liquid absorption amount of the electrode active material. The manufacturing method of the slurry composition in any one of. 請求の範囲1〜16のいずれかに記載の製造方法で製造された二次電池電極用スラリー組成物。The slurry composition for secondary battery electrodes manufactured with the manufacturing method in any one of Claims 1-16. 請求の範囲17に記載のスラリー組成物を、集電体に塗布して乾燥することよりなる二次電池電極の製造方法。A method for producing a secondary battery electrode, comprising applying the slurry composition according to claim 17 to a current collector and drying. 集電体上に、該スラリー組成物に由来する厚さ0.005mm〜5mmの混合層を形成せしめる請求の範囲18に記載の二次電池電極の製造方法。The method for producing a secondary battery electrode according to claim 18, wherein a mixed layer having a thickness of 0.005 mm to 5 mm derived from the slurry composition is formed on the current collector.
JP2004519231A 2002-07-02 2003-07-02 Method for producing slurry composition for secondary battery electrode Expired - Fee Related JP4470735B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002193952 2002-07-02
JP2002193952 2002-07-02
PCT/JP2003/008401 WO2004006361A1 (en) 2002-07-02 2003-07-02 Method for preparing slurry composition for electrode of secondary cell

Publications (2)

Publication Number Publication Date
JPWO2004006361A1 true JPWO2004006361A1 (en) 2005-12-15
JP4470735B2 JP4470735B2 (en) 2010-06-02

Family

ID=30112293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004519231A Expired - Fee Related JP4470735B2 (en) 2002-07-02 2003-07-02 Method for producing slurry composition for secondary battery electrode

Country Status (4)

Country Link
JP (1) JP4470735B2 (en)
KR (1) KR101083129B1 (en)
CN (1) CN1290211C (en)
WO (1) WO2004006361A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765253B2 (en) * 2003-02-20 2011-09-07 三菱化学株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery negative electrode and lithium secondary battery
JP5440888B2 (en) * 2009-11-18 2014-03-12 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
WO2011077500A1 (en) * 2009-12-25 2011-06-30 日本エイアンドエル株式会社 Binder for secondary battery electrode
JP6933478B2 (en) 2017-03-21 2021-09-08 株式会社クレハ Gel electrolyte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154113A (en) * 1997-08-07 1999-02-26 Toray Ind Inc Manufacture of mix for electrode of nonaqueous secondary battery
JP4138923B2 (en) * 1997-12-01 2008-08-27 Tdk株式会社 Electrode manufacturing method
JPH11213989A (en) * 1998-01-20 1999-08-06 Toyota Central Res & Dev Lab Inc Manufacture of positive electrode material for lithium secondary battery
TW519777B (en) * 1999-10-18 2003-02-01 Zeon Corp The binder composition for the secondary battery electrode of lithium ion and its utilization
JP2002141060A (en) * 2000-11-02 2002-05-17 Matsushita Electric Ind Co Ltd Manufacturing method of negative electrode mixture and non-aqueous system secondary battery using the same
WO2002039518A1 (en) 2000-11-13 2002-05-16 Zeon Corporation Slurry composition for secondary cell positive electrode, secondary cell positive electrode and secondary cell

Also Published As

Publication number Publication date
CN1290211C (en) 2006-12-13
CN1666360A (en) 2005-09-07
JP4470735B2 (en) 2010-06-02
KR101083129B1 (en) 2011-11-11
WO2004006361A1 (en) 2004-01-15
KR20050016713A (en) 2005-02-21

Similar Documents

Publication Publication Date Title
JP4218244B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
CN100435391C (en) Slurry composition for electrode, electrode and secondary cell
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
EP1249882B1 (en) Binder for use in electrolyte of lithium ion secondary cell and use thereof
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
US6770397B1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
KR101460930B1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
JP4311002B2 (en) Slurry composition for electrode, electrode and secondary battery
CN107204446B (en) Lithium ion battery anode material and preparation method thereof
JPWO2002039518A1 (en) Slurry composition for secondary battery positive electrode, secondary battery positive electrode and secondary battery
JP2971451B1 (en) Lithium secondary battery
JP2003100298A (en) Secondary battery and binder composition for electrode thereof
JP4200349B2 (en) Slurry composition for electrode, electrode and lithium ion secondary battery
JP4207443B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
JP4415453B2 (en) Binder for lithium ion secondary battery electrode and use thereof
JP3067544B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP4751497B2 (en) Lithium ion secondary battery electrode manufacturing method, electrode and battery
JP4470735B2 (en) Method for producing slurry composition for secondary battery electrode
JPWO2020137591A1 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP4329169B2 (en) Binder for lithium ion secondary battery electrode and use thereof
JP2006107959A (en) Electrode and its manufacturing method
JP6870771B1 (en) Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
JPH11283631A (en) Electrode slurry of lithium ion secondary battery, binder composition, electrode, and battery
JPH11273682A (en) Slurry for electrode of lithium ion secondary battery, binder composition, electrode and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees