JP2003100298A - Secondary battery and binder composition for electrode thereof - Google Patents

Secondary battery and binder composition for electrode thereof

Info

Publication number
JP2003100298A
JP2003100298A JP2001288321A JP2001288321A JP2003100298A JP 2003100298 A JP2003100298 A JP 2003100298A JP 2001288321 A JP2001288321 A JP 2001288321A JP 2001288321 A JP2001288321 A JP 2001288321A JP 2003100298 A JP2003100298 A JP 2003100298A
Authority
JP
Japan
Prior art keywords
polymer
secondary battery
parts
binder composition
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001288321A
Other languages
Japanese (ja)
Other versions
JP4273687B2 (en
Inventor
Atsuhiro Kanzaki
敦浩 神崎
Takao Suzuki
隆雄 鈴木
Katsuya Nakamura
勝也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2001288321A priority Critical patent/JP4273687B2/en
Publication of JP2003100298A publication Critical patent/JP2003100298A/en
Application granted granted Critical
Publication of JP4273687B2 publication Critical patent/JP4273687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binder composition with which an electrode of large bondability between a current collector and an active material is obtained, and a secondary battery having a large battery capacity and a superior charging/discharging rate characteristics is obtained using the electrode. SOLUTION: A liquid medium dispersed solution (1) contains a polymer in which the size of the most frequent particles in primary particles is more than 0.01 μm and less than 0.25 μm. A liquid medium dispersed solution (2) contains a polymer in which the size of the most frequent particles in primary particles is more than 0.25 μm and less than 3 μm. The dispersed solutions (1) and (2) are mixed in the ratio of 70 to 99% and 1 to 30% in terms of respective polymer weights to form the binder composition for the electrode of the secondary battery (Mixing both dispersed solutions (1), (2) results in a dispersed solution with a polymer weight ratio of 100%.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池電極に用
いられるバインダー組成物、電極用スラリー、二次電池
電極および二次電池に関する。
TECHNICAL FIELD The present invention relates to a binder composition used for a secondary battery electrode, a slurry for electrodes, a secondary battery electrode and a secondary battery.

【0002】[0002]

【従来の技術】近年、ノート型パソコン、携帯電話、P
DA(Personal Digital Assis
tant)などの携帯端末の普及が著しい。これら携帯
端末の電源に用いられている二次電池には、ニッケル水
素二次電池、リチウムイオン二次電池などが多用されて
いる。携帯端末は、より快適な携帯性が求められて小型
化、薄型化、軽量化、高性能化が急速に進み、その結
果、携帯端末は様々な場で利用されるようになってい
る。また、電池に対しても、携帯端末に対するのと同様
に、小型化、薄型化、軽量化、高性能化が要求されてい
る。
2. Description of the Related Art In recent years, notebook computers, mobile phones, P
DA (Personal Digital Assist)
The popularity of mobile terminals such as tan t) is remarkable. As a secondary battery used as a power source for these portable terminals, a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used. As portable terminals are required to be more comfortable to carry, they are rapidly becoming smaller, thinner, lighter and more sophisticated, and as a result, portable terminals are used in various places. Further, with respect to the battery, similarly to the mobile terminal, there is a demand for downsizing, thinning, weight reduction, and high performance.

【0003】電池の高性能化のために、電極、電解液、
その他の電池部材の改良が検討されており、電極につい
ては、電極活物質(以下、単に「活物質」ということが
ある。)や集電体そのものの検討の他、活物質などを集
電体に結着するためのバインダーとなる重合体の検討も
行われている。電極は、通常、水や有機液体等の液状媒
体にバインダーとなる重合体を分散または溶解させたバ
インダー組成物に活物質および必要に応じて導電性カー
ボン等の導電付与剤を混合してスラリーを得、このスラ
リーを集電体に塗布し、乾燥して製造される。
To improve the performance of batteries, electrodes, electrolytes,
Improvements in other battery members are being studied. For electrodes, in addition to studying the electrode active material (hereinafter sometimes simply referred to as "active material") and the current collector itself, the active material is used as the current collector. A polymer that serves as a binder for binding to is also studied. The electrode is usually a slurry obtained by mixing a binder composition in which a polymer serving as a binder is dispersed or dissolved in a liquid medium such as water or an organic liquid with an active material and optionally a conductivity-imparting agent such as conductive carbon to form a slurry. Then, the slurry is applied to a current collector and dried to produce the product.

【0004】電池の高性能化については、最近では携帯
端末の使用時間の延長や充電時間の短縮などの要望が高
まり、電池の高容量化と充電速度(レート特性)の向上
が急務となっている。電池容量は、活物質の量に支配さ
れ、レート特性は電子の移動の容易さに影響される。電
池という限られた空間内で活物質を増加させるには、非
導電性であるために電子の移動を妨げる傾向があるバイ
ンダー(重合体)の量を抑えることが有効であるが、バ
インダー量を少なくすると活物質の結着が損なわれるの
で、バインダーの低減には限りがある。また、電子の易
動度を向上するために導電付与剤を多く添加すると、電
池容積の制約から相対的に活物質使用量を抑えることに
なるので、電池容量の向上は望みにくい。このように、
これまで、電池の高容量化とレート特性の向上とを両立
させることは困難であった。
With respect to high performance of batteries, demands for extension of operating time of mobile terminals and reduction of charging time have recently been increasing, and it is an urgent task to increase the capacity of batteries and improve charging speed (rate characteristics). There is. Battery capacity is governed by the amount of active material, and rate characteristics are affected by the ease of electron transfer. In order to increase the active material in the limited space of the battery, it is effective to suppress the amount of binder (polymer) that tends to hinder the movement of electrons due to its non-conductivity. If the amount is reduced, the binding of the active material is impaired, so the amount of the binder is limited. Further, if a large amount of a conductivity-imparting agent is added in order to improve electron mobility, the amount of active material used is relatively suppressed due to the restriction of battery volume, so it is difficult to expect improvement in battery capacity. in this way,
Up to now, it has been difficult to achieve both high capacity and improved rate characteristics of the battery.

【0005】[0005]

【発明が解決しようとする課題】上記状況のもと、本発
明の目的は、少ないバインダー使用量にもかかわらず、
電池容量が高く、レート特性に優れた二次電池を実現す
る二次電池電極用バインダー組成物、二次電池電極用ス
ラリーおよび二次電池電極を提供することである。
Under the above circumstances, the object of the present invention is to provide a small amount of binder,
A binder composition for a secondary battery electrode, a slurry for a secondary battery electrode, and a secondary battery electrode that realize a secondary battery having a high battery capacity and excellent rate characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、電極活物質のバインダ
ーとして、それぞれ特定粒径範囲に最頻粒径がある小粒
径の重合体粒子と大粒径の重合体粒子を、特定の割合で
混合したバインダー組成物を用いることにより、上記目
的を達成できることを見出し、この知見に基づいて本発
明を完成するに到った。かくして本発明によれば、
(1)一次粒子の最頻粒径が0.01μm以上、0.2
5μm未満である重合体の液状媒体分散液(I)を重合
体換算で70〜99重量部と、一次粒子の最頻粒径が
0.25μm以上、3μm未満である重合体の液状分散
液(II)を重合体換算で1〜30重量部とを混合して
なる二次電池電極用バインダー組成物(但し、分散液
(I)と分散液(II)とを混合後の重合体は、合計で
100重量部である。)、
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that, as a binder of an electrode active material, a heavy-weight compound having a small particle size having a most frequent particle size in a specific particle size range. It was found that the above object can be achieved by using a binder composition in which coalesced particles and large-sized polymer particles are mixed in a specific ratio, and the present invention has been completed based on this finding. Thus, according to the invention,
(1) The most frequent particle size of the primary particles is 0.01 μm or more, 0.2
70 to 99 parts by weight of the polymer liquid medium dispersion liquid (I) having a particle size of less than 5 μm in terms of polymer, and the polymer liquid dispersion liquid having a mode of primary particles having a mode particle size of 0.25 μm or more and less than 3 μm ( II) 1 to 30 parts by weight in terms of polymer is mixed with the binder composition for a secondary battery electrode (however, the polymer after mixing the dispersion liquid (I) and the dispersion liquid (II) is Is 100 parts by weight.),

【0007】(2)重合体が液状媒体に粒子状となって
分散してなる二次電池電極用バインダー組成物であっ
て、前記重合体の一次粒子が、0.01μm以上、0.
25μm未満の粒径区間に70〜99容積%、および、
0.25μm以上、3μm未満の粒径区間に1〜30容
積%存在する二次電池電極用バインダー組成物、(3)
前記液状媒体が80〜350℃の標準沸点を有するもの
である(1)または(2)記載の二次電池電極用バイン
ダー組成物、(4)(1)〜(3)のいずれかに記載の
二次電池電極用バインダー組成物と、電極活物質とを含
有する二次電池電極用スラリー、
(2) A binder composition for a secondary battery electrode, comprising a polymer dispersed in a liquid medium in the form of particles, wherein the polymer primary particles have a particle size of 0.01 μm or more and a particle size of 0.
70-99% by volume in the particle size range of less than 25 μm, and
A binder composition for a secondary battery electrode, which is present in an amount of 0.25 μm or more and less than 3 μm in an amount of 1 to 30% by volume, (3)
The binder composition for a secondary battery electrode according to (1) or (2), wherein the liquid medium has a standard boiling point of 80 to 350 ° C., and (4) (1) to (3). Secondary battery electrode binder composition, and a secondary battery electrode slurry containing an electrode active material,

【0008】(5)重合体の電極活物質への吸着量が、
電極活物質1g当り、1〜50mgである(4)記載の
二次電池電極用スラリー、(6)集電体に、重合体と電
極活物質とを含有する混合層を結着してなる二次電池電
極であって、重合体の一次粒子が、0.01μm以上、
0.25μm未満の粒径区間に70〜99容積%、およ
び、0.25μm以上、3μm未満の粒径区間に1〜3
0容積%存在することを特徴とする二次電池電極、
(7)(6)に記載の二次電池電極を有する二次電池が
提供される。
(5) The adsorption amount of the polymer on the electrode active material is
1 to 50 mg per 1 g of the electrode active material, the slurry for a secondary battery electrode according to (4), (6) a current collector and a mixed layer containing a polymer and an electrode active material bound together. A secondary battery electrode, wherein the polymer primary particles are 0.01 μm or more,
70 to 99% by volume in the particle size section of less than 0.25 μm, and 1 to 3 in the particle size section of 0.25 μm or more and less than 3 μm.
Secondary battery electrode, characterized in that 0% by volume is present,
(7) A secondary battery having the secondary battery electrode according to (6) is provided.

【0009】[0009]

【発明の実施の形態】本発明の二次電池電極用バインダ
ー組成物(以下、単に「バインダー組成物」と記すこと
がある。)は、電極活物質などを集電体に結着するため
のバインダーとなる重合体が液状媒体中に粒子状となっ
て分散してなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The binder composition for a secondary battery electrode of the present invention (hereinafter sometimes simply referred to as "binder composition") is for binding an electrode active material or the like to a current collector. The polymer serving as a binder is dispersed in the liquid medium in the form of particles.

【0010】バインダー組成物に使用できる重合体には
特に限定はなく、例えば、(メタ)アクリル酸エステル
(共)重合体、スチレン−(メタ)アクリル酸エステル
共重合体、スチレン−ブタジエン共重合体、アクリロニ
トリル−ブタジエン共重合体、ポリブタジエン等が挙げ
られる。
The polymer which can be used in the binder composition is not particularly limited, and examples thereof include (meth) acrylic acid ester (co) polymers, styrene- (meth) acrylic acid ester copolymers and styrene-butadiene copolymers. , Acrylonitrile-butadiene copolymer, polybutadiene and the like.

【0011】本発明のバインダー組成物に用いる重合体
のガラス転移温度(以下、「Tg」ということがあ
る。)は、通常、−80〜+50℃、好ましくは−75
〜+30℃、より好ましくは−70〜+10℃のゴム質
重合体であると望ましい。Tgが低すぎる重合体を用い
ると、電池容量の低下を招くことがあり、Tgが高すぎ
る重合体を用いると結着力が小さくなったり、電池特性
の温度による変化が大きくなったりする可能性がある。
The glass transition temperature (hereinafter sometimes referred to as "Tg") of the polymer used in the binder composition of the present invention is usually -80 to + 50 ° C, preferably -75.
It is desirable that it is a rubbery polymer having a temperature of ˜ + 30 ° C., more preferably −70 to + 10 ° C. If a polymer having a too low Tg is used, the battery capacity may be lowered, and if a polymer having a too high Tg is used, the binding force may be decreased, or the change in battery characteristics with temperature may be large. is there.

【0012】本発明バインダーとして用いられる重合体
の、電極活物質1g当りへの吸着量が、通常、1〜50
mg、好ましくは2〜45mgである。バインダーの活
物質への吸着量が1mgより小さいと、活物質の結着に
必要なバインダーを用いても遊離の重合体が発生して活
物質使用量を抑制することがある。逆に、バインダーの
活物質への吸着量が50mgより大きいと、バインダー
が多量に必要となり、電池容積によって活物質量が制限
されて電池容量が抑えられる可能性がある。
The amount of the polymer used as the binder of the present invention is usually 1 to 50 per 1 g of the electrode active material.
mg, preferably 2-45 mg. When the amount of the binder adsorbed on the active material is less than 1 mg, a free polymer may be generated to suppress the amount of the active material used even if the binder required for binding the active material is used. On the contrary, if the amount of the binder adsorbed to the active material is larger than 50 mg, a large amount of the binder is required, and the amount of the active material may be limited by the battery volume, which may reduce the battery capacity.

【0013】電極活物質へのバインダーである重合体の
吸着量は、下記の方法により求めることができる。約1
0gの電極活物質と固形分換算で約2gのバインダー組
成物を秤量してビーカーに仕込み、更にバインダー組成
物に用いられる液状媒体(以下、「分散媒」ということ
がある。)を、これらの合計が約100gとなるよう加
える。このとき、重合体と分散媒との合計重量に対する
重合体の濃度C(初期濃度、単位はmg/g)およ
び重合体と分散媒との合計重量に対する活物質の濃度m
(単位はg/g)を計算する。振とう機で振とうして電
極活物質に重合体を十分に吸着させた後、遠心分離機で
固形分(重合体を吸着した活物質)と分離液(分散媒に
遊離重合体粒子が分散している分散液)に分ける。次い
で、分離液中の遊離重合体の重量を測定し、これを当初
の重合体と分散媒との合計重量で除して遊離バインダー
濃度C(平衡濃度、単位はmg/g)を求める。電
極活物質への重合体の吸着量W(単位 mg/g)を下
式により求める。 W=(C−C)/m 本発明に用いるバインダーは前記した重合体分散液を混
合することにより、活物質表面に吸着する際の充填密度
が高く、少量の使用でも効果的に活物質表面がバインダ
ーで被覆されるので集電体に強く結着される。分散液中
の重合体のガラス転移温度は分散液を塗布し、乾燥して
得たキャストフィルムを用いて示差走査熱量計によって
測定することで求められる。
The amount of the binder polymer adsorbed on the electrode active material can be determined by the following method. About 1
0 g of the electrode active material and about 2 g of the binder composition in terms of solid content were weighed and charged into a beaker, and the liquid medium used in the binder composition (hereinafter sometimes referred to as “dispersion medium”) was used. Add so that the total is about 100 g. At this time, the concentration C 0 of the polymer with respect to the total weight of the polymer and the dispersion medium (initial concentration, the unit is mg / g) and the concentration m of the active material with respect to the total weight of the polymer and the dispersion medium.
(Unit is g / g) is calculated. Shake with a shaker to sufficiently adsorb the polymer on the electrode active material, then centrifuge to separate the solid content (active material with adsorbed polymer) and the separation liquid (free polymer particles dispersed in the dispersion medium). Dispersion). Then, the weight of the free polymer in the separated liquid is measured, and this is divided by the total weight of the initial polymer and the dispersion medium to obtain the free binder concentration C e (equilibrium concentration, unit: mg / g). The amount W of polymer adsorbed on the electrode active material (unit: mg / g) is calculated by the following formula. W = (C 0 -C e ) / m The binder used in the present invention has a high packing density when adsorbed on the surface of the active material by mixing the above-mentioned polymer dispersion liquid, and is effective even when used in a small amount. Since the surface of the substance is covered with the binder, it is strongly bound to the current collector. The glass transition temperature of the polymer in the dispersion liquid can be determined by measuring the glass transition temperature with a differential scanning calorimeter using a cast film obtained by coating the dispersion liquid and drying it.

【0014】本発明のバインダー組成物に用いることの
できる液状媒体(分散媒)としては、水のほか大気圧で
の沸点が80〜350℃である非水系媒体が好ましい。
このような非水系媒体としては、例えば、N−メチルピ
ロリドン、ジメチルホルムアミド、ジメチルアセトアミ
ドなどのアミド類;トルエン、キシレン、n−ドデカ
ン、テトラリンなどの炭化水素類;2−エチル−1−ヘ
キサノール、1−ノナノール、ラウリルアルコールなど
のアルコール類;メチルエチルケトン、シクロヘキサノ
ン、ホロン、アセトフェノン、イソホロンなどのケトン
類;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳
酸エチル、乳酸ブチルなどのエステル類;o−トルイジ
ン、m−トルイジン、p−トルイジンなどのアミン類;
N,N−ジメチルアセトアミド、ジメチルホルムアミ
ドなどのアミド類;γ−ブチロラクトン、δ−ブチロラ
クトンなどのラクトン類;ジメチルスルホキシド、スル
ホランなどのスルホキシド・スルホン類などが挙げられ
る。これらの中でも水およびN−メチルピロリドンが好
ましい。
The liquid medium (dispersion medium) that can be used in the binder composition of the present invention is preferably water or a non-aqueous medium having a boiling point of 80 to 350 ° C. at atmospheric pressure.
Examples of such a non-aqueous medium include amides such as N-methylpyrrolidone, dimethylformamide and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane and tetralin; 2-ethyl-1-hexanol, 1 -Alcohols such as nonanol and lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate and butyl lactate; o-toluidine, m-toluidine , Amines such as p-toluidine;
Examples thereof include amides such as N, N-dimethylacetamide and dimethylformamide; lactones such as γ-butyrolactone and δ-butyrolactone; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane. Of these, water and N-methylpyrrolidone are preferable.

【0015】本発明のバインダー組成物は、一次粒子の
最頻粒径が0.01μm以上、0.25μm未満である
重合体の液状媒体分散液(I)を重合体換算で70〜9
9重量部と一次粒子の最頻粒径が0.25μm以上、3
μm未満である重合体の液状媒体分散液(II)を重合
体換算で1〜30重量部とを混合してなる二次電池電極
用バインダー組成物(但し、分散液(I)と分散液(I
I)とを混合後の重合体は、合計で100重量部であ
る。)である。
In the binder composition of the present invention, the liquid medium dispersion liquid (I) of a polymer having a primary particle mode particle size of 0.01 μm or more and less than 0.25 μm is 70 to 9 in terms of polymer.
9 parts by weight and the mode particle size of primary particles is 0.25 μm or more, 3
A binder composition for a secondary battery electrode, which is obtained by mixing 1 to 30 parts by weight of a polymer liquid medium dispersion liquid (II) having a particle size of less than μm in terms of polymer (provided that the dispersion liquid (I) and the dispersion liquid ( I
The total amount of the polymer after mixing with I) is 100 parts by weight. ).

【0016】一次粒子の最頻粒径が0.01μm以上、
0.25μm未満である重合体の液状媒体分散液(I)
が70重量部より少なくなる(一次粒子の最頻粒径が
0.25μm以上、3μm未満である重合体の分散液が
重合体基準で30重量部よりも多くなることと同じ)
と、結着力が小さくなって、レート特性が低下する可能
性があり、逆に多くなると、多量のバインダーが必要で
高い電池容量が得られないことがある。
The most frequent particle size of the primary particles is 0.01 μm or more,
Liquid medium dispersion liquid (I) of polymer having a size of less than 0.25 μm
Is less than 70 parts by weight (the same as the amount of the polymer dispersion in which the mode particle diameter of primary particles is 0.25 μm or more and less than 3 μm is more than 30 parts by weight based on the polymer).
If so, the binding force may be reduced and the rate characteristics may be deteriorated. On the other hand, if the binding force is increased, a large amount of binder may be required and a high battery capacity may not be obtained.

【0017】また、前記重合体の一次粒子は、次ぎの
〔1〕および〔2〕の要件を満たしていることが好まし
い。 〔1〕0.01μm以上、0.25μm未満の粒径区間
に重合体の一次粒子が、通常70〜99容積%、好まし
くは75〜97容積%、より好ましくは80〜97容積
%存在すること。 〔2〕0.25μm以上、3μm未満の粒径区間に重合
体の一次粒子が、通常1〜30容積%、好ましくは3〜
25容積%、より好ましくは3〜20容積%存在するこ
と。
The primary particles of the polymer preferably satisfy the following requirements [1] and [2]. [1] Primary particles of the polymer are usually present in an amount of from 70 to 99% by volume, preferably from 75 to 97% by volume, more preferably from 80 to 97% by volume in a particle size section of 0.01 μm or more and less than 0.25 μm. . [2] The primary particles of the polymer are contained in a particle size range of 0.25 μm or more and less than 3 μm, usually 1 to 30% by volume, preferably 3 to
25% by volume, more preferably 3-20% by volume.

【0018】上記〔1〕の要件における重合体の一次粒
子の存在割合が過度に小さいと結着力が小さくなって、
レート特性が低下する可能性があり、逆に、過度に大き
いと多量のバインダーが必要で高い電池容量が得られな
いことがある。上記〔2〕の要件における重合体の一次
粒子の存在割合が過度に小さいと電池容量の低下を招く
可能性があり、逆に、過度に大きいと結着力が小さくな
る可能性がある。
If the abundance ratio of the primary particles of the polymer in the above requirement [1] is too small, the binding force becomes small,
There is a possibility that the rate characteristic may be deteriorated. On the contrary, if it is excessively large, a large amount of binder may be required and a high battery capacity may not be obtained. If the abundance ratio of the polymer primary particles in the above requirement [2] is too small, the battery capacity may decrease, and conversely, if it is too large, the binding force may decrease.

【0019】重合体粒子の最頻粒径及び粒径分布の測定
法は、特に限定されず、例えば、コールターカウンター
やマイクロトラック、透過型電子顕微鏡などが挙げられ
る。
The method of measuring the most frequent particle size and the particle size distribution of the polymer particles is not particularly limited, and examples thereof include a Coulter counter, a Microtrac, and a transmission electron microscope.

【0020】前記バインダーである重合体の製造法は、
特に限定されず、例えば、乳化重合、播種乳化重合、懸
濁重合、播種懸濁重合、溶液析出重合などが挙げられ
る。重合体を溶剤に溶解ないし膨潤させ、該溶媒と相溶
しない媒体中で攪拌混合した後、脱溶剤する溶解分散法
も可能である。また、これらにより得られた重合体粒子
に対して化学修飾や電子線照射などの物理的変性を行っ
ても良い。
The method for producing the binder polymer is as follows:
It is not particularly limited, and examples thereof include emulsion polymerization, seed emulsion polymerization, suspension polymerization, seed suspension polymerization, and solution precipitation polymerization. A dissolution / dispersion method in which the polymer is dissolved or swollen in a solvent, the mixture is stirred and mixed in a medium incompatible with the solvent, and then the solvent is removed is also possible. Further, the polymer particles obtained by these may be subjected to physical modification such as chemical modification or electron beam irradiation.

【0021】前記〔1〕および〔2〕の要件を満たして
いるバインダー組成物は、小粒径重合体粒子成分と大粒
径重合体粒子成分とを前記重合法により別々に得て、そ
れらを混合することによって2段階で得てもよいが、前
記重合法のうち、乳化重合、懸濁重合などを反応中に重
合系に新たに分散安定剤を添加することにより1段階で
得ることもできる。
The binder composition satisfying the above requirements [1] and [2] is obtained by separately obtaining a small particle size polymer particle component and a large particle size polymer particle component by the above-mentioned polymerization method, and preparing them. Although it may be obtained in two steps by mixing, it can also be obtained in one step by newly adding a dispersion stabilizer to the polymerization system during the reaction such as emulsion polymerization and suspension polymerization among the above-mentioned polymerization methods. .

【0022】前記バインダーである重合体を得るための
重合性不飽和単量体としては、上記の粒径分布上の条件
を満たす重合体粒子を与えることのできる単量体であれ
ば特に限定されない。かかる単量体の例としては、アク
リル酸エチル、アクリル酸ブチル、アクリル酸2−エチ
ルヘキシル、アクリル酸2−ヒドロキシエチル、アクリ
ル酸エトキシエチル、メタクリル酸メチル、メタクリル
酸2−エチルヘキシル、メタクリル酸n−デシル、メタ
クリル酸2−ヒドロキシエチル、クロトン酸イソアミ
ル、クロトン酸 n-ヘキシル、メタクリル酸ジメチルア
ミノエチル、マレイン酸モノメチル等のエチレン性不飽
和カルボン酸エステル;1,3−ブタジエン、1,3−
ペンタジエン、2,3−ペンタジエン、イソプレン、
1,3−ヘキサジエン、2,3−ジメチル−1,3−ブ
タジエン、2−エチル−1,3−ブタジエン、1,3−
ヘプタジエン等の共役ジエン化合物;アクリル酸、メタ
クリル酸、クロトン酸、イタコン酸、マレイン酸、無水
マレイン酸等のエチレン性不飽和カルボン酸;スチレ
ン、α―メチルスチレン、2、4−ジメチルスチレン、
エチルスチレン、ビニルナフタレン等の芳香族ビニル化
合物;アクリロニトリル、メタクリロニトリル等のシア
ノ基含有ビニル化合物;酢酸ビニル、プロピオン酸ビニ
ル等のビニルエステル化合物;エチルビニルエーテル、
セチルビニルエーテル、ヒドロキシブチルビニルエーテ
ル等のビニルエーテル化合物などを挙げることができ
る。これらは1種または2種以上使用することができ
る。
The polymerizable unsaturated monomer for obtaining the polymer that is the binder is not particularly limited as long as it is a monomer that can give polymer particles satisfying the above particle size distribution requirements. . Examples of such monomers include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, ethoxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, n-decyl methacrylate. , 2-hydroxyethyl methacrylate, isoamyl crotonic acid, n-hexyl crotonic acid, dimethylaminoethyl methacrylate, monomethyl maleate and other ethylenically unsaturated carboxylic acid esters; 1,3-butadiene, 1,3-
Pentadiene, 2,3-pentadiene, isoprene,
1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-
Conjugated diene compounds such as heptadiene; ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride; styrene, α-methylstyrene, 2,4-dimethylstyrene,
Aromatic vinyl compounds such as ethylstyrene and vinylnaphthalene; cyano group-containing vinyl compounds such as acrylonitrile and methacrylonitrile; vinyl ester compounds such as vinyl acetate and vinyl propionate; ethyl vinyl ether,
Examples thereof include vinyl ether compounds such as cetyl vinyl ether and hydroxybutyl vinyl ether. These may be used alone or in combination of two or more.

【0023】また、上記単量体を主とし、これに少量の
架橋性単量体を加えて重合することにより、バインダー
となる重合体に架橋構造を付与することは、重合体が分
散媒や電解液に溶解しにくくなるので好ましい。かかる
架橋性単量体としては、ジビニルベンゼンなどのジビニ
ル化合物;ジメタクリル酸ジエチレングリコール、ジメ
タクリル酸エチレングリコールなどの多官能ジメタクリ
ル酸エステル;トリメタクリル酸トリメチロールプロパ
ンなどの多官能トリメタクリル酸エステル;ジアクリル
酸ポリエチレングリコール、ジアクリル酸1,3−ブチ
レングリコールなどの多官能ジアクリル酸エステル;ト
リアクリル酸トリメチロールプロパンなどの多官能トリ
アクリル酸エステルなどが挙げられる。架橋性単量体
は、重合性単量体全体に対して、通常、0.1〜20重
量%、好ましくは0.5〜15重量%の割合で使用され
る。
In order to impart a cross-linking structure to a polymer serving as a binder by polymerizing the above-mentioned monomer as a main component and adding a small amount of the cross-linking monomer thereto, the polymer may be a dispersion medium or a dispersion medium. It is preferable because it becomes difficult to dissolve in the electrolytic solution. Examples of such crosslinkable monomers include divinyl compounds such as divinylbenzene; polyfunctional dimethacrylates such as diethylene glycol dimethacrylate and ethylene glycol dimethacrylate; polyfunctional trimethacrylates such as trimethylolpropane trimethacrylate; Examples thereof include polyfunctional diacrylic acid esters such as polyethylene glycol diacrylate and 1,3-butylene glycol diacrylate; and polyfunctional triacrylic acid esters such as trimethylolpropane triacrylate. The crosslinkable monomer is usually used in a proportion of 0.1 to 20% by weight, preferably 0.5 to 15% by weight, based on the whole polymerizable monomer.

【0024】さらに上記した乳化重合や懸濁重合などに
よって得られる重合体の水性分散液には、アンモニア、
アルカリ金属(リチウム、ナトリウム、カリウム、ルビ
ジウム、セシウムなど)水酸化物、無機アンモニウム化
合物(塩化アンモニウムなど)、有機アミン化合物(エ
タノールアミン、ジエチルアミンなど)などの水溶液を
加えてpH調整することができる。なかでも、アンモニ
アまたはアルカリ金属水酸化物を用いてpH5〜13、
好ましくは6〜12の範囲になるように調整すること
は、集電体と活物質との結着性を向上させるので好まし
い。
Further, an aqueous dispersion of the polymer obtained by the above-mentioned emulsion polymerization or suspension polymerization contains ammonia,
The pH can be adjusted by adding an aqueous solution of an alkali metal (lithium, sodium, potassium, rubidium, cesium, etc.) hydroxide, an inorganic ammonium compound (ammonium chloride, etc.), an organic amine compound (ethanolamine, diethylamine, etc.). Above all, using ammonia or alkali metal hydroxide, pH 5 to 13,
It is preferable to adjust the amount to be in the range of 6 to 12 because the binding property between the current collector and the active material is improved.

【0025】本発明のバインダー組成物を調製する方法
は特に制限されない。乳化重合などによって得られた重
合体の水性分散液をそのままバインダー組成物として用
いることができるが、水を非水系液状媒体に分散媒置換
して、非水系液状媒体に重合体を分散させた組成物とす
ることもできる。バインダーである重合体が粉末粒子の
場合に、これを分散媒に分散させて本発明のバインダー
組成物を調製してもよい。また、分散媒置換する場合
は、水性分散液に非水系液状媒体を加えた後、分散媒中
の水分を蒸留、限外濾過などにより除去する。残存水分
が5重量%以下、好ましくは0.5重量%以下になるま
で除去して分散媒に用いると、優れた初期電池容量が得
られる。バインダー組成物における、全重合体成分の濃
度、即ち固形分濃度は、通常、0.5〜80重量%、好
ましくは1〜70重量%、より好ましくは1〜60重量
%である。
The method for preparing the binder composition of the present invention is not particularly limited. An aqueous dispersion of a polymer obtained by emulsion polymerization or the like can be used as it is as a binder composition, but the composition is obtained by substituting the non-aqueous liquid medium with water as a dispersion medium and dispersing the polymer in the non-aqueous liquid medium. It can also be a thing. When the polymer as a binder is powder particles, the powder may be dispersed in a dispersion medium to prepare the binder composition of the present invention. When the dispersion medium is replaced, the non-aqueous liquid medium is added to the aqueous dispersion, and then the water in the dispersion medium is removed by distillation, ultrafiltration or the like. When used as a dispersion medium after removing the residual water until the residual water content is 5% by weight or less, preferably 0.5% by weight or less, excellent initial battery capacity can be obtained. The concentration of all polymer components in the binder composition, that is, the solid content concentration is usually 0.5 to 80% by weight, preferably 1 to 70% by weight, and more preferably 1 to 60% by weight.

【0026】本発明のバインダー組成物には、塗工性を
改善するため増粘剤を添加することができる。増粘剤の
例としては、カルボキシメチルセルロース、メチルセル
ロース、ヒドロキシプロピルセルロースなどのセルロー
ス類、およびこれらのアンモニウム塩またはアルカリ金
属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アク
リル酸などのポリカルボン酸類、およびこれらのアルカ
リ金属塩;ポリビニルアルコール、変性ポリビニルアル
コール、エチレン−ビニルアルコール共重合体などのポ
リビニルアルコール系(共)重合体;(メタ)アクリル
酸、マレイン酸及びフマル酸等の不飽和カルボン酸とビ
ニルエステルとの共重合体の鹸化物;などの水溶性ポリ
マーが挙げられる。
A thickener may be added to the binder composition of the present invention in order to improve coatability. Examples of the thickener include celluloses such as carboxymethyl cellulose, methyl cellulose and hydroxypropyl cellulose, and ammonium salts or alkali metal salts thereof; polycarboxylic acids such as poly (meth) acrylic acid and modified poly (meth) acrylic acid. , And alkali metal salts thereof; polyvinyl alcohol-based (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, ethylene-vinyl alcohol copolymer; and unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid and fumaric acid. And a water-soluble polymer such as a saponified product of a vinyl ester copolymer.

【0027】特に好ましい例としては、カルボキシメチ
ルセルロースのアルカリ金属塩、ポリ(メタ)アクリル
酸のアルカリ金属塩などである。本発明のバインダー組
成物が増粘剤を含有する場合、増粘剤の使用割合は、全
重合体重量(全固形分重量)に対して、通常、5〜95
重量%、好ましくは10〜80重量%、より好ましくは
20〜75重量%である。
Particularly preferable examples are alkali metal salts of carboxymethyl cellulose and alkali metal salts of poly (meth) acrylic acid. When the binder composition of the present invention contains a thickener, the proportion of the thickener used is usually 5 to 95 relative to the total polymer weight (total solid content weight).
%, Preferably 10 to 80% by weight, more preferably 20 to 75% by weight.

【0028】本発明の二次電池電極用スラリー(以下、
単に「スラリー」と記すことがある。)は、上述した本
発明のバインダー組成物に電極活物質および必要に応じ
て導電付与剤などの添加剤を混合、分散して得られるも
ので、集電体に塗布して二次電池電極を製造するための
ものである。
The secondary battery electrode slurry of the present invention (hereinafter, referred to as
Sometimes referred to simply as "slurry". ) Is obtained by mixing and dispersing an electrode active material and, if necessary, an additive such as a conductivity-imparting agent in the binder composition of the present invention described above, and is applied to a current collector to form a secondary battery electrode. It is for manufacturing.

【0029】電極活物質は、二次電池の種類により異な
る。リチウムイオン二次電池の場合、負極活物質、正極
活物質とも、通常のリチウムイオン二次電池電極の製造
に使用されるものであればいずれであっても用いること
ができる。すなわち、負極活物質としては、アモルファ
スカーボン、グラファイト、天然黒鉛、メソカーボンマ
イクロビーズ(MCMB)、ピッチ系炭素繊維などの炭
素質材料、ポリアセン等の導電性高分子、A
(但し、Aはアルカリ金属または遷移金属、Bは
コバルト、ニッケル、アルミニウム、スズ、マンガンな
どの遷移金属から選択された少なくとも一種、Oは酸素
原子を表し、X、YおよびZはそれぞれ1.10>X>
0.05、4.00>Y>0.85、5.00>Z>
1.5の範囲の数である。)で表される複合金属酸化物
やその他の金属酸化物などが例示される。
The electrode active material varies depending on the type of secondary battery. In the case of a lithium-ion secondary battery, both the negative electrode active material and the positive electrode active material can be used as long as they are used in the production of ordinary lithium-ion secondary battery electrodes. That is, as the negative electrode active material, amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous material such as pitch-based carbon fiber, conductive polymer such as polyacene, A X B Y
O Z (where A is an alkali metal or a transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin and manganese, O is an oxygen atom, and X, Y and Z are each 1 10>X>
0.05, 4.00>Y> 0.85, 5.00>Z>
It is a number in the range of 1.5. Examples thereof include complex metal oxides represented by) and other metal oxides.

【0030】リチウムイオン二次電池の正極活物質とし
ては、TiS、TiS、非晶質MoS、C
、非晶質VO−P
MoO、V、V13などの遷移金
属酸化物やLiCoO、LiNiO、LiMn
、LiMnなどのリチウム含有複合金
属酸化物などが例示される。さらに、ポリアセチレン、
ポリp−フェニレンなどの導電性高分子など有機系化合
物を用いることもできる。
As the positive electrode active material of the lithium ion secondary battery, TiS 2 , TiS 3 , amorphous MoS 3 and C are used.
u 2 V 2 O 3, amorphous V 2 O-P 2 O 5 ,
Transition metal oxides such as MoO 2 , V 2 O 5 , and V 6 O 13 , LiCoO 2 , LiNiO 2 , and LiMn.
Examples thereof include lithium-containing composite metal oxides such as O 2 and LiMn 2 O 4 . In addition, polyacetylene,
It is also possible to use an organic compound such as a conductive polymer such as poly-p-phenylene.

【0031】ニッケル水素二次電池の場合、活物質は、
通常のニッケル水素二次電池で使用されるものであれ
ば、いずれも用いることができ、負極活物質としては、
水素吸蔵合金を用いることが出来る。また、正極活物質
としては、オキシ水酸化ニッケル、水酸化ニッケルなど
を用いることができる。
In the case of a nickel-hydrogen secondary battery, the active material is
Any of those used in ordinary nickel-hydrogen secondary batteries can be used, and as the negative electrode active material,
A hydrogen storage alloy can be used. Further, as the positive electrode active material, nickel oxyhydroxide, nickel hydroxide or the like can be used.

【0032】本発明においてバインダーとなる重合体の
使用量は、活物質100重量部あたり、正極では、通
常、0.2〜2重量部、好ましくは0.5〜1.2重量
部であり、負極では、通常、0.3〜3重量部、好まし
くは0.5〜1.8重量部である。本発明でのバインダ
ー使用量が従来のバインダーの半分から1/10程度の
少ない量でも所定の結着力を得ることができるため、本
発明の二次電池電極を用いた二次電池は高い容量と充電
速度が得られる。
The amount of the polymer used as the binder in the present invention is usually 0.2 to 2 parts by weight, preferably 0.5 to 1.2 parts by weight, for the positive electrode, per 100 parts by weight of the active material. In the negative electrode, it is generally 0.3 to 3 parts by weight, preferably 0.5 to 1.8 parts by weight. Since the predetermined binding force can be obtained even when the amount of the binder used in the present invention is about half to 1/10 of the conventional binder, the secondary battery using the secondary battery electrode of the present invention has a high capacity. The charging speed is obtained.

【0033】本発明の二次電池電極用スラリーに必要に
応じて添加される導電付与剤としては、リチウムイオン
二次電池ではグラファイト、活性炭などのカーボンが用
いられる。ニッケル水素二次電池では、正極では酸化コ
バルト、負極ではニッケル粉末、酸化コバルト、酸化チ
タン、カーボンなどを挙げることができる。上記両電池
において、カーボンとしては、アセチレンブラック、フ
ァーネスブラック、黒鉛、炭素繊維、フラーレン類を挙
げることができる。中でも、アセチレンブラック、ファ
ーネスブラックが好ましい。導電付与剤の使用量は、通
常、活物質100重量部あたり1〜20重量部、好まし
くは2〜10重量部である。
Carbon, such as graphite and activated carbon, is used in the lithium ion secondary battery as the conductivity-imparting agent that is optionally added to the secondary battery electrode slurry of the present invention. Examples of the nickel-hydrogen secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode. In both of the above batteries, examples of carbon include acetylene black, furnace black, graphite, carbon fiber, and fullerenes. Of these, acetylene black and furnace black are preferable. The conductivity-imparting agent is usually used in an amount of 1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the active material.

【0034】スラリー調製のための混合攪拌には、スラ
リー中に、電極活物質の凝集体が残らないような混合機
と、必要にして十分な分散条件とを選択する必要があ
る。分散の程度は粒ゲージにより測定可能であるが、少
なくとも100μmより大きい凝集物が無くなるように
混合分散すべきである。混合機としては、ボールミル、
サンドミル、顔料分散機、擂潰機、超音波分散機、ホモ
ジナイザー、プラネタリーミキサー、ホバートミキサー
などが例示される。
For mixing and stirring for preparing the slurry, it is necessary to select a mixer that does not leave an aggregate of the electrode active material in the slurry and a necessary and sufficient dispersion condition. Although the degree of dispersion can be measured by a particle gauge, it should be mixed and dispersed so that aggregates at least larger than 100 μm are eliminated. As a mixer, a ball mill,
A sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer and the like are exemplified.

【0035】本発明の二次電池用電極は、金属箔などの
集電体に、本発明の二次電池電極用スラリーを塗布し、
乾燥することにより、バインダーおよび活物質を、さら
に必要により加えられた増粘剤、導電付与剤などを含有
する混合層を結着させてなるものである。本発明の二次
電池用電極は、下記に示すように正極、負極のいずれに
も使用することができる。集電体は、導電性材料からな
るものであれば特に制限されない。リチウムイオン二次
電池では、鉄、銅、アルミニウム、ニッケル、ステンレ
スなどの金属製のものであるが、特に正極にアルミニウ
ムを、負極に銅を用いた場合、本発明のバインダー組成
物の効果が最もよく現れる。ニッケル水素二次電池で
は、パンチングメタル、エキスパンドメタル、金網、発
泡金属、網状金属繊維焼結体、金属メッキ樹脂板などを
挙げることが出来る。集電体の形状は特に制限されない
が、通常、厚さ0.001〜0.5mm程度のシート状
のものである。
The secondary battery electrode of the present invention is obtained by applying the secondary battery electrode slurry of the present invention to a current collector such as a metal foil,
By drying, a binder and an active material are further bound to a mixed layer containing a thickener, a conductivity-imparting agent, and the like, which are added if necessary. The secondary battery electrode of the present invention can be used as either a positive electrode or a negative electrode as shown below. The current collector is not particularly limited as long as it is made of a conductive material. The lithium-ion secondary battery is made of a metal such as iron, copper, aluminum, nickel, and stainless. However, when aluminum is used for the positive electrode and copper is used for the negative electrode, the effect of the binder composition of the present invention is most effective. It often appears. Examples of the nickel-hydrogen secondary battery include punching metal, expanded metal, wire mesh, foam metal, reticulated metal fiber sintered body, and metal-plated resin plate. The shape of the current collector is not particularly limited, but is usually a sheet having a thickness of about 0.001 to 0.5 mm.

【0036】スラリーの集電体への塗布方法は特に制限
されない。例えば、ドクターブレード法、ディップ法、
リバースロール法、ダイレクトロール法、グラビア法、
エクストルージョン法、浸漬法、ハケ塗り法などの方法
が挙げられる。塗布するスラリー量も特に制限されない
が、液状媒体を乾燥して除去した後に形成される、活物
質、バインダーなどからなる混合層の厚さが、通常、
0.005〜5mm、好ましくは0.01〜2mmにな
る量が一般的である。乾燥方法も特に制限されず、例え
ば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤
外線や電子線などの照射による乾燥法が挙げられる。乾
燥速度は、通常は応力集中によって活物質層に亀裂が入
ったり、活物質層が集電体から剥離したりしない程度の
速度範囲の中で、できるだけ早く液状媒体が除去できる
ように調整する。更に、乾燥後の集電体をプレスするこ
とにより電極の活物質の密度を高めてもよい。プレス方
法は、金型プレスやロールプレスなどの方法が挙げられ
る。
The method for applying the slurry to the current collector is not particularly limited. For example, doctor blade method, dip method,
Reverse roll method, direct roll method, gravure method,
Examples of the method include an extrusion method, a dipping method, and a brush coating method. The amount of the slurry to be applied is not particularly limited, but the thickness of the mixed layer formed of the active material, the binder, etc., which is formed after the liquid medium is dried and removed, is usually
The amount is generally 0.005 to 5 mm, preferably 0.01 to 2 mm. The drying method is not particularly limited, and examples thereof include drying with warm air, hot air, and low humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying speed is usually adjusted so that the liquid medium can be removed as soon as possible within a speed range in which the active material layer is not cracked due to stress concentration and the active material layer is not separated from the current collector. Further, the density of the electrode active material may be increased by pressing the dried current collector. Examples of the pressing method include a die pressing method and a roll pressing method.

【0037】本発明の二次電池は、上記の二次電池電極
や電解液を含み、セパレーター等の部品を用いて、常法
に従って製造されるものである。具体的な製造方法とし
ては、例えば、負極と正極とをセパレーターを介して重
ね合わせ、これを電池形状に応じて巻く、折るなどして
電池容器に入れ、電池容器に電解液を注入して封口す
る。電池の形状は、コイン型、ボタン型、シート型、円
筒型、角形、扁平型など何れであってもよい。
The secondary battery of the present invention contains the above-mentioned secondary battery electrode and electrolytic solution and is manufactured by a conventional method using parts such as a separator. As a specific manufacturing method, for example, a negative electrode and a positive electrode are stacked via a separator, which is wound or folded according to the shape of the battery, put into a battery container by folding, etc., and the electrolytic solution is injected into the battery container for sealing. To do. The shape of the battery may be any of coin type, button type, sheet type, cylindrical type, prismatic type, flat type and the like.

【0038】電解液は、通常の二次電池に用いられるも
のであれば、液状でもゲル状でもよく、負極活物質、正
極活物質の種類に応じて電池としての機能を発揮するも
のを選択すればよい。電解質としては、リチウムイオン
二次電池では、従来より公知のリチウム塩がいずれも使
用でき、LiClO、LiBF、LiP
、LiCF CO、LiAsF、LiS
bF、LiB10Cl10、LiAlCl、L
iCl、LiBr、LiB(C、Li
CFSO、LiCHSO、LiC
3、Li(CFSON、低
級脂肪酸カルボン酸リチウムなどが挙げられる。また、
ニッケル水素二次電池では、例えば、従来公知の濃度が
5モル/リットル以上の水酸化カリウム水溶液を使用す
ることができる。
The electrolytic solution is used in ordinary secondary batteries.
If so, it may be liquid or gel, and the negative electrode active material
It also functions as a battery depending on the type of polar active material.
You can select. Lithium ion as the electrolyte
In the secondary battery, any conventionally known lithium salt is used.
Can be used, LiClOFour, LiBF6, LiP
F6, LiCFThree COTwo, LiAsF6, LiS
bF6, LiB10Cl10, LiAlClFour, L
iCl, LiBr, LiB (CTwoH5)Four, Li
CFThreeSOThree, LiCHThreeSOThree, LiCFour
F9SThree3, Li (CFThreeSOTwo)TwoN, low
Lithium fatty acid carboxylate and the like can be mentioned. Also,
In a nickel-hydrogen secondary battery, for example, the conventionally known concentration is
Use an aqueous solution of potassium hydroxide of 5 mol / liter or more
You can

【0039】この電解質を溶解させる溶媒は特に限定さ
れるものではない。具体例としてはプロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、ジ
エチルカーボネートなどのカーボネート類;γ−ブチル
ラクトンなどのラクトン類;トリメトキシメタン、1,
2−ジメトキシエタン、ジエチルエーテル、2−エトキ
シエタン、テトラヒドロフラン、2−メチルテトラヒド
ロフランなどのエーテル類;ジメチルスルホキシドなど
のスルホキシド類等が挙げられ、これらは単独もしくは
二種以上の混合溶媒として使用することができる。
The solvent that dissolves this electrolyte is not particularly limited. Specific examples include propylene carbonate, ethylene carbonate, butylene carbonate,
Carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate; lactones such as γ-butyl lactone; trimethoxymethane, 1,
Examples thereof include ethers such as 2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide, and these may be used alone or as a mixed solvent of two or more kinds. it can.

【0040】[0040]

【実施例】以下に、実施例を挙げて本発明を説明する
が、本発明はこれに限定されるものではない。尚、本実
施例に於ける部および%は、特記がない限り重量基準で
ある。実施例および比較例に中のバインダー組成物の特
性ならびに電極および電池の製造と評価は、以下の方法
により行なった。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. The parts and% in the examples are based on weight unless otherwise specified. The properties of the binder compositions in Examples and Comparative Examples and the production and evaluation of electrodes and batteries were performed by the following methods.

【0041】〔バインダー組成物特性〕 (1)粒径分布 レーザー光を用いた光回折による粒度分布測定装置コー
ルターLS230およびLS−100(共にコールター
社製)を用いて重合体の粒径分布を測定し、データは体
積基準で計算した。 (2)ガラス転移温度(Tg) バインダーとなる重合体のTgは、示差走査型熱量計
(DSC)により、昇温速度10℃/分で測定した。単
位 ℃。 (3)活物質への吸着 負極の場合は比表面積5m/g、平均粒径25μm
の人造黒鉛(日本黒鉛株式会社製)、正極の場合は比表
面積1.5m/g、平均粒径10μmのコバルト酸
リチウムを活物質として使用して、前述の方法により、
電極活物質への重合体の吸着量Wを算出した。単位 m
g/g−活物質。
[Characteristics of Binder Composition] (1) Particle Size Distribution The particle size distribution of the polymer is measured using a particle size distribution analyzer Coulter LS230 and LS-100 (both manufactured by Coulter Co.) by light diffraction using laser light. However, the data was calculated on a volume basis. (2) Glass transition temperature (Tg) The Tg of the polymer serving as the binder was measured by a differential scanning calorimeter (DSC) at a heating rate of 10 ° C / min. Unit: ° C. (3) Adsorption to active material In case of negative electrode, specific surface area 5 m 2 / g, average particle diameter 25 μm
Of artificial graphite (manufactured by Nippon Graphite Co., Ltd.), and in the case of a positive electrode, lithium cobalt oxide having a specific surface area of 1.5 m 2 / g and an average particle diameter of 10 μm is used as an active material,
The amount W of the polymer adsorbed on the electrode active material was calculated. Unit m
g / g-active material.

【0042】〔電極および電池の製造と評価〕 (4)リチウムイオン二次電池電極の製造 正極および負極を次ぎの方法で作製した。すなわち、正
極スラリーをアルミニウム箔(厚さ20μm)に、また
負極スラリーを銅箔(厚さ18μm)に、ドクターブレ
ード法によってそれぞれの片面に均一に塗布し、乾燥機
で120℃、15分間乾燥した後、さらに真空乾燥機に
て5mmHg、120℃で2時間減圧乾燥した後、2軸
のロールプレスによって活物質密度が正極3.4g/c
、負極1.4g/cmとなるように圧縮し、
共に混合層の厚みが100μmの電極を得た。
[Production and Evaluation of Electrode and Battery] (4) Production of Lithium Ion Secondary Battery Electrode A positive electrode and a negative electrode were produced by the following method. That is, the positive electrode slurry was uniformly applied to an aluminum foil (thickness 20 μm) and the negative electrode slurry was applied to a copper foil (thickness 18 μm) on one side of each by a doctor blade method and dried at 120 ° C. for 15 minutes. After that, it was further dried in a vacuum dryer at 5 mmHg and 120 ° C. under reduced pressure for 2 hours, and then the active material density was positive electrode 3.4 g / c by a biaxial roll press.
m 3 and the negative electrode were compressed to 1.4 g / cm 3 ,
In each case, an electrode having a mixed layer thickness of 100 μm was obtained.

【0043】(5)リチウムイオン二次電池の製造 正極および負極を直径15mmの円形に切り抜き、直径
18mm、厚さ25μmの円形ポリプロピレン製多孔膜
からなるセパレーターを介在させて、互いに活物質が対
向し、外装容器底面に正極のアルミニウム箔または金属
リチウムが接触するように配置し、さらに負極の銅箔ま
たは金属リチウム上にエキスパンドメタルを入れ、ポリ
プロピレン製パッキンを設置したステンレス鋼製のコイ
ン型外装容器(直径20mm、高さ1.8mm、ステン
レス鋼厚さ0.25mm)中に収納した。この容器中に
下記の電解液を空気が残らないように注入し、ポリプロ
ピレン製パッキンを介して外装容器に厚さ0.2mmの
ステンレス鋼のキャップをかぶせて固定し、電池缶を封
止して、直径20mm、厚さ約2mmのコイン型電池を
製造した。電解液はエチレンカーボネート/エチルメチ
ルカーボネート=33/67(20℃での体積比)にL
iPFの1モル/リットルを溶解した溶液を用い
た。
(5) Production of Lithium Ion Secondary Battery The positive electrode and the negative electrode were cut into a circular shape having a diameter of 15 mm, and the active materials face each other with a separator made of a circular polypropylene porous film having a diameter of 18 mm and a thickness of 25 μm interposed. , Placed so that the positive electrode aluminum foil or metallic lithium comes into contact with the bottom of the outer container, and further put the expanded metal on the negative electrode copper foil or metallic lithium, and install the polypropylene packing into the stainless steel coin type outer container ( Diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm). The following electrolytic solution was poured into this container so that air would not remain, and a 0.2 mm-thick stainless steel cap was put on the outer container via a polypropylene packing to fix it, and the battery can was sealed. A coin-type battery having a diameter of 20 mm and a thickness of about 2 mm was manufactured. The electrolytic solution is L in ethylene carbonate / ethyl methyl carbonate = 33/67 (volume ratio at 20 ° C.)
A solution in which 1 mol / l of iPF 6 was dissolved was used.

【0044】(6)結着力の試験 二次電池電極から、塗布方向に長さ100mm、幅25
mmの長方形を切り出して試験片とする。試験片の混合
層面全面にセロハンテープを貼り付けた後、試験片の一
端のセロハンテープ端と集電体箔端を上下に引張り速度
50mm/分で引っ張って剥がしたときの応力を測定す
る。応力が大きいほど混合層の集電体への結着力が大き
いと判断する。単位 g/cm。
(6) Bonding force test From the secondary battery electrode, length 100 mm in the coating direction, width 25
A rectangle of mm is cut out and used as a test piece. After sticking the cellophane tape on the entire surface of the mixed layer of the test piece, the stress when the cellophane tape end at one end of the test piece and the current collector foil end are pulled up and down at a pulling speed of 50 mm / min and peeled off is measured. It is judged that the greater the stress, the greater the binding force of the mixed layer to the current collector. Unit: g / cm.

【0045】(7)電池容量の測定 電池容量の測定は、負極では、25℃で充放電レートを
0.1Cとし、定電流法(電流密度:0.5mA/g−
活物質)で、1.2Vに充電し、0Vまで放電する充放
電を各5回繰り返し、その都度電池容量を測定する。繰
り返し測定した電池容量の平均値を評価結果とする。正
極では、25℃で充放電レートを0.1Cとし、定電流
法(電流密度:0.5mA/g−活物質)で1.2Vに
充電し、3Vまで放電する充放電を各5回測定して、負
極と同様にして求める。単位は(mAh/g)である。
(7) Measurement of battery capacity The battery capacity was measured at a negative electrode at 25 ° C. with a charge / discharge rate of 0.1 C and a constant current method (current density: 0.5 mA / g-
The active material) is charged to 1.2 V and discharged to 0 V, charging and discharging are repeated 5 times, and the battery capacity is measured each time. The average value of the battery capacity measured repeatedly is used as the evaluation result. In the positive electrode, the charge / discharge rate was set to 0.1 C at 25 ° C., the charge / discharge was performed to 1.2 V by the constant current method (current density: 0.5 mA / g-active material), and discharge to 3 V was measured 5 times each. Then, it is obtained in the same manner as the negative electrode. The unit is (mAh / g).

【0046】(8)充放電サイクル特性 コイン型電池を用いて25℃雰囲気で、負極試験は、正
極を金属リチウムとして、0Vから1.2Vまで、正極
試験は、負極を金属リチウムとして、3Vから4.2V
まで、いずれも0.1Cの定電流法によって5サイクル
目の放電容量〔単位=mAh/g:活物質当たり(以
下、電気容量に関しては同じ)〕と50サイクル目の放
電容量(単位=mAh/g)を測定し、5サイクル目の
放電容量に対する50サイクル目の放電容量の割合を百
分率で算出した値であり、この値が大きいほど放電容量
減が少なく、良い結果である。
(8) Charging / discharging cycle characteristics Using a coin-type battery in an atmosphere of 25 ° C., a negative electrode test was carried out from 0 V to 1.2 V with metallic lithium as the positive electrode, and a positive electrode test was carried out from 3 V with metallic lithium as the negative electrode. 4.2V
Up to the discharge capacity at the 5th cycle [unit = mAh / g: per active material (hereinafter, the same applies to the electric capacity)] and discharge capacity at the 50th cycle (unit = mAh / This is a value obtained by measuring g) and calculating the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 5th cycle as a percentage. The larger this value is, the smaller the decrease in discharge capacity is, which is a good result.

【0047】〔重合体分散液の合成例1〕反応器に水1
00部と、ブタジエン42部、スチレン30部、アクリ
ロニトリル8部、メタクリル酸メチル18部およびイタ
コン酸2部からなる単量体100部と、連鎖移動剤とし
てt−ドデシルメルカプタン1部と、界面活性剤として
アルキルジフェニルエーテルジスルホン酸ナトリウム
1.5部と、開始剤として過硫酸カリウム0.4部と、
炭酸ナトリウム0.3部とを仕込み、攪拌しながら70
℃で8時間重合し、重合転化率96%で反応を終了し
た。続いて、この反応器に水10部と、ブタジエン14
部と、スチレン15部およびメタクリル酸メチル6部か
らなる単量体類と、界面活性剤としてアルキルジフェニ
ルエーテルジスルホン酸ナトリウム0.1部と、開始剤
として過硫酸カリウム0.2部と、炭酸ナトリウム0.
1部とを添加して80℃にて8時間重合反応を継続した
後、反応を終了させた。このときの重合転化率は98%
であった。重合体分散液から未反応単量体を除去し、濃
縮後、10%水酸化ナトリウム水溶液及び水を添加し
て、重合体分散液の固形分濃度及びpHを調整し、固形
分濃度41%、pH7.2の重合体分散液(A)を得
た。重合体粒子の最頻粒径(モード径)は0.15μm
であった。
Synthesis Example 1 of Polymer Dispersion Liquid 1 in the reactor
00 parts, 42 parts of butadiene, 30 parts of styrene, 8 parts of acrylonitrile, 18 parts of methyl methacrylate and 2 parts of itaconic acid, 100 parts of a monomer, 1 part of t-dodecyl mercaptan as a chain transfer agent, and a surfactant. And 1.5 parts of sodium alkyl diphenyl ether disulfonate as an initiator and 0.4 parts of potassium persulfate as an initiator,
Charge with 0.3 parts of sodium carbonate and stir 70
Polymerization was performed at 8 ° C. for 8 hours, and the reaction was completed at a polymerization conversion rate of 96%. Subsequently, 10 parts of water and 14 parts of butadiene were added to the reactor.
Parts, monomers consisting of 15 parts of styrene and 6 parts of methyl methacrylate, 0.1 part of sodium alkyldiphenyl ether disulfonate as a surfactant, 0.2 part of potassium persulfate as an initiator, and 0 sodium carbonate. .
1 part was added and the polymerization reaction was continued at 80 ° C. for 8 hours, and then the reaction was terminated. Polymerization conversion rate at this time is 98%
Met. After removing unreacted monomers from the polymer dispersion and concentrating, 10% sodium hydroxide aqueous solution and water were added to adjust the solid content concentration and pH of the polymer dispersion, and the solid content concentration was 41%. A polymer dispersion (A) having a pH of 7.2 was obtained. The most frequent particle size (mode diameter) of polymer particles is 0.15 μm
Met.

【0048】〔重合体分散液の合成例2〕反応器に水1
00部と、ブタジエン100部と、連鎖移動剤としてt
−ドデシルメルカプン0.5部と、界面活性剤としてロ
ジン酸カリウム2.5部と、開始剤として過硫酸カリウ
ム0.2部および炭酸ナトリウム0.5部を仕込み、温
度60℃で50時間重合反応を継続した後、反応を終了
させた。このときの重合転化率は97%であった。重合
体分散液から未反応単量体を除去した後、水を添加し
て、重合体分散液の固形分濃度を調整して、固形分濃度
50%の重合体分散液(B)を得た。重合体粒子の最頻
粒径は0.35μmであった。
[Synthesis Example 2 of Polymer Dispersion] Water 1 was added to the reactor.
00 parts, 100 parts of butadiene and t as a chain transfer agent
-Prepare 0.5 parts of dodecyl mercapun, 2.5 parts of potassium rosinate as a surfactant, 0.2 parts of potassium persulfate and 0.5 parts of sodium carbonate as an initiator, and polymerize at a temperature of 60 ° C for 50 hours. After continuing the reaction, the reaction was terminated. The polymerization conversion rate at this time was 97%. After removing unreacted monomers from the polymer dispersion liquid, water was added to adjust the solid content concentration of the polymer dispersion liquid to obtain a polymer dispersion liquid (B) having a solid content concentration of 50%. . The most frequent particle size of the polymer particles was 0.35 μm.

【0049】〔重合体分散液の合成例3〕反応器に水2
00部と、ブタジエン70部およびスチレン30部から
なる単量体100部と、連鎖移動剤としてt−ドデシル
メルカプタン0.2部と、界面活性剤としてロジン酸カ
リウム4.5部およびアルキルナフタレンスルホン酸ナ
トリウム0.2部と、開始剤系としてパラメンタンハイ
ドロパーオキサイド0.07部、ナトリウムハイドロサ
ルファイト0.01部、エチレンジアミンテトラアセテ
ィックアシッド四ナトリウム塩0.025部、ソジウム
ホルムアルデヒドスルホキシレート0.06部、硫酸鉄
0.04部及び炭酸ナトリウム0.2部を仕込み、温度
5℃にて重合反応を開始し、サンプリングを継続して行
い、重合転化率が62%になった時点で重合反応を終了
させた。重合体分散液から未反応単量体を除去し、濃縮
後、水を添加して、重合体分散液の固形分濃度を調整し
て、固形分濃度32%の重合体分散液(C)を得た。重
合体粒子の最頻粒径は0.10μmであった。
[Synthesis Example 3 of Polymer Dispersion] Water 2 was added to the reactor.
00 parts, 100 parts of a monomer consisting of 70 parts of butadiene and 30 parts of styrene, 0.2 part of t-dodecyl mercaptan as a chain transfer agent, 4.5 parts of potassium rosinate and an alkylnaphthalenesulfonic acid as a surfactant. 0.2 part of sodium, 0.07 part of paramenthane hydroperoxide as an initiator system, 0.01 part of sodium hydrosulfite, 0.025 part of ethylenediamine tetraacetic acid tetrasodium salt, and 0 of sodium formaldehyde sulfoxylate. 0.06 part of iron sulfate, 0.04 part of iron sulfate and 0.2 part of sodium carbonate were charged, the polymerization reaction was started at a temperature of 5 ° C., sampling was continued, and the polymerization was performed at a polymerization conversion rate of 62%. The reaction was completed. After removing the unreacted monomer from the polymer dispersion and concentrating it, water is added to adjust the solid content concentration of the polymer dispersion to obtain a polymer dispersion (C) having a solid content concentration of 32%. Obtained. The most frequent particle size of the polymer particles was 0.10 μm.

【0050】〔重合体分散液の合成例4〕反応器に、重
合体分散液(C)6部およびブタジエン2部を仕込み、
60℃で2時間攪拌混合した。重合体分散液からブタジ
エンを回収し、濃縮後、水を添加して、重合体分散液を
調整して、固形分濃度45%の重合体分散液(D)を得
た。重合体粒子の最頻粒径は0.31μmであった。
Synthesis Example 4 of Polymer Dispersion Liquid A reactor was charged with 6 parts of the polymer dispersion liquid (C) and 2 parts of butadiene,
The mixture was stirred and mixed at 60 ° C. for 2 hours. Butadiene was recovered from the polymer dispersion, concentrated, and then water was added to adjust the polymer dispersion to obtain a polymer dispersion (D) having a solid content concentration of 45%. The most frequent particle size of the polymer particles was 0.31 μm.

【0051】〔重合体分散液の合成例5〕反応器に水2
40部と、2−エチルヘキシルアクリレート85部、ア
クリロニトリル11部、メトキシポリエチレングリコー
ルメタクリレート2部、トリエチレングリコールジメタ
クリレート2部からなる単量体類100部と、重合開始
剤として過硫酸カリウム1.5部とを仕込み、攪拌しな
がら80℃に加熱して重合反応を開始し、サンプリング
を継続して行い、重合転化率98%になった時点で冷却
して反応を終了させた。重合体分散液から未反応単量体
を除去し、濃縮後、10%水酸化ナトリウム水溶液及び
水を添加して、重合体分散液の固形分濃度及びpHを調
整して、固形分濃度40%、pH7.3の重合体分散液
(E)を得た。重合体粒子の最頻粒径は0.15μmで
あった。
Synthesis Example 5 of Polymer Dispersion Liquid 2 in the reactor
40 parts, 85 parts of 2-ethylhexyl acrylate, 11 parts of acrylonitrile, 2 parts of methoxy polyethylene glycol methacrylate, 2 parts of triethylene glycol dimethacrylate, 100 parts of monomers, and 1.5 parts of potassium persulfate as a polymerization initiator. Was charged, and the mixture was heated to 80 ° C. with stirring to start the polymerization reaction, sampling was continued, and the reaction was terminated by cooling when the polymerization conversion rate reached 98%. After removing unreacted monomers from the polymer dispersion and concentrating, 10% sodium hydroxide aqueous solution and water are added to adjust the solid content concentration and pH of the polymer dispersion to a solid content concentration of 40%. A polymer dispersion (E) having a pH of 7.3 was obtained. The most frequent particle size of the polymer particles was 0.15 μm.

【0052】〔重合体分散液の合成例6〕反応器に水2
50部と、ブチルアクリレート45部、メチルメタクリ
レート54部およびメタクリル酸1部からなる単量体1
00部と、ポリビニルアルコール5部とを仕込み、70
℃で懸濁重合を行い、サンプリングを継続して行い、重
合転化率が95%になった時点で反応を終了した。重合
体分散液から未反応単量体を除去し、濃縮後、10%水
酸化ナトリウム水溶液及び水を添加して、重合体分散液
の固形分濃度及びpHを調整して、固形分濃度38%、
pH7.2の重合体分散液(F)を得た。重合体粒子の
最頻粒径は1.7μmであった。
[Synthesis Example 6 of Polymer Dispersion] Water 2 was added to the reactor.
Monomer 1 consisting of 50 parts, butyl acrylate 45 parts, methyl methacrylate 54 parts and methacrylic acid 1 part
70 parts and polyvinyl alcohol 5 parts were charged, and 70 parts
Suspension polymerization was carried out at 0 ° C., sampling was continued, and the reaction was terminated when the conversion of polymerization reached 95%. After removing unreacted monomers from the polymer dispersion and concentrating, 10% aqueous sodium hydroxide solution and water are added to adjust the solid content concentration and pH of the polymer dispersion to a solid content concentration of 38%. ,
A polymer dispersion (F) having a pH of 7.2 was obtained. The most frequent particle size of the polymer particles was 1.7 μm.

【0053】〔重合体分散液の合成例7〕反応器に水2
00部と、ブタジエン100部と、連鎖移動剤としてt
−ドデシルメルカプタン0.5部と、界面活性剤として
ロジン酸カリウム2部、開始剤として過硫酸カリウム
0.3部及び炭酸ナトリウム0.3部とを仕込み、温度
60℃で重合を開始し、サンプリングを継続して行い、
重合転化率が50%と80%になった時点でロジン酸カ
リウム1部ずつ添加し、重合転化率が95%になった時
点で反応を終了させた。重合体分散液から未反応単量体
を除去し、濃縮後、水を添加して、重合体分散液の固形
分濃度を調整し、固形分濃度32%の重合体分散液
(G)を得た。重合体粒子の最頻粒径は0.08μmで
あった。
Synthesis Example 7 of Polymer Dispersion Liquid 2 in a reactor
00 parts, 100 parts of butadiene and t as a chain transfer agent
-Prepare 0.5 parts of dodecyl mercaptan, 2 parts of potassium rosinate as a surfactant, 0.3 parts of potassium persulfate and 0.3 parts of sodium carbonate as an initiator, start polymerization at a temperature of 60 ° C, and sample. Continuously,
When the polymerization conversion rate reached 50% and 80%, 1 part of potassium rosinate was added, and the reaction was terminated when the polymerization conversion rate reached 95%. After removing unreacted monomer from the polymer dispersion and concentrating it, water is added to adjust the solid content concentration of the polymer dispersion to obtain a polymer dispersion (G) having a solid content concentration of 32%. It was The most frequent particle size of the polymer particles was 0.08 μm.

【0054】〔実施例1〕重合体分散液(A)と重合体
分散液(B)とを固形分の重量比90:10で混合し
て、固形分濃度42%のバインダー組成物を得た。この
バインダー組成物の粒径分布を測定したところ、粒径が
0.01μm以上、0.25μm未満の粒子は88.8
容積%、0.25μm以上、3μm未満の粒子は11.
2容積%であった。また、ガラス転移温度は−15℃、
電極活物質1gへの重合体の吸着量は18mgであっ
た。この組成物4.8部を、吸着量測定に使ったと同じ
黒鉛100部、カルボキシメチルセルロース〔セロゲン
WSC、第一工業製薬(株)製〕2%水溶液75部およ
び水100部とともに自動乳鉢(石川式擂潰機、石川工
場社製)で20分間混合した。水25部を添加してさら
に2分間混合して、固形分濃度34%の負極スラリーを
得た。負極スラリーの粘度は、ブルックフィールド粘度
計〔BM型、ローター#4、60rpm、トキメック社
製〕で3500mPa・sであった。この負極スラリー
を厚さ18μmの銅箔にドクターブレードで乾燥厚さ1
20μm程度になるように塗布し120℃のホットプレ
ート上で乾燥した後、ロールプレス装置で密度1.4g
/cmに圧密処理して負極(1)を得た。負極
(1)のバインダー結着力、ならびに、負極(1)およ
び正極である金属リチウムを組み込んだ二次電池の電池
容量およびレート特性を表1に記す。
Example 1 The polymer dispersion liquid (A) and the polymer dispersion liquid (B) were mixed at a solid content weight ratio of 90:10 to obtain a binder composition having a solid content concentration of 42%. . When the particle size distribution of this binder composition was measured, particles having a particle size of 0.01 μm or more and less than 0.25 μm were 88.8.
Particles having a volume percentage of 0.25 μm or more and less than 3 μm are 11.
It was 2% by volume. The glass transition temperature is -15 ° C,
The amount of the polymer adsorbed on 1 g of the electrode active material was 18 mg. An automatic mortar (Ishikawa formula) was used together with 4.8 parts of this composition, 100 parts of the same graphite used for measuring the amount of adsorption, 75 parts of 2% aqueous solution of carboxymethyl cellulose [Serogen WSC, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.] and 100 parts of water. It was mixed for 20 minutes with a crusher, manufactured by Ishikawa Factory. 25 parts of water was added and further mixed for 2 minutes to obtain a negative electrode slurry having a solid content concentration of 34%. The viscosity of the negative electrode slurry was 3500 mPa · s with a Brookfield viscometer [BM type, rotor # 4, 60 rpm, manufactured by Tokimec]. This negative electrode slurry was dried on a 18 μm thick copper foil with a doctor blade to a thickness of 1
After coating to a thickness of about 20 μm and drying on a hot plate at 120 ° C, the density is 1.4 g using a roll press machine.
/ Cm 3 was subjected to a consolidation treatment to obtain a negative electrode (1). Table 1 shows the binder binding force of the negative electrode (1), and the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (1) and the positive electrode metallic lithium.

【0055】〔実施例2〕実施例1において、重合体分
散液(A)を重合体分散液(C)に、重合体分散液
(B)を重合体分散液(D)にそれぞれ変更して固形分
濃度33%のバインダー組成物を得、該組成物の量4.
8部を6.1部に変えた以外は実施例1と同様に操作し
て負極(2)を得た。バインダー組成物の粒径分布は、
粒径が0.01μm以上、0.25μm未満の粒子が9
2.7容積%、0.25μm以上、3μm未満の粒子が
7.3容積%であった。このとき、負極スラリーは、固
形分濃度34%、粘度3100mPa・sであった。負
極(2)の製造に使用したバインダー組成物の特性、負
極(2)のバインダー結着力、ならびに、負極(2)お
よび正極である金属リチウムを組み込んだ二次電池の電
池容量およびレート特性を表1に記す。
Example 2 In Example 1, the polymer dispersion liquid (A) was changed to the polymer dispersion liquid (C), and the polymer dispersion liquid (B) was changed to the polymer dispersion liquid (D). 3. A binder composition having a solid content concentration of 33% was obtained, and the amount of the composition was 4.
A negative electrode (2) was obtained in the same manner as in Example 1 except that 8 parts was changed to 6.1 parts. The particle size distribution of the binder composition is
9 particles with a particle size of 0.01 μm or more and less than 0.25 μm
2.7% by volume, and particles having a size of 0.25 μm or more and less than 3 μm were 7.3% by volume. At this time, the negative electrode slurry had a solid content concentration of 34% and a viscosity of 3100 mPa · s. The characteristics of the binder composition used for the production of the negative electrode (2), the binder binding force of the negative electrode (2), and the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (2) and metallic lithium as the positive electrode are shown. Note 1.

【0056】〔実施例3〕重合体分散液(E)と重合体
分散液(F)とを固形分の重量比90:10で混合し
て、固形分濃度40%のバインダー組成物を得た。バイ
ンダー組成物の粒径分布は、粒径が0.01μm以上、
0.25μm未満の粒子が90.2容積%、0.25μ
m以上、3μm未満の粒子が9.8容積%であった。バ
インダー組成物の特性を表1に示す。該バインダー組成
物3部、カルボキシメチルセルロース(第一工業製薬
製、セロゲン7A)5%水溶液16部、アセチレンブラ
ック2部、グラファイト粉末3部および水11部を自動
乳鉢で20分間混合した後、吸着量測定に使ったと同じ
LiCoO100部を添加して10分間混合して、
固形分濃度79%、粘度2800mPa・sの正極スラ
リーを得た。この正極スラリーを厚さ21μmのアルミ
箔にドクターブレードで乾燥厚さ120μm程度になる
ように塗布し120℃のホットプレート上で乾燥した
後、ロールプレス装置で密度3.4g/cm に圧密
処理して正極(3)を得た。正極(3)のバインダー結
着力、ならびに、正極(3)および負極である金属リチ
ウムを組み込んだ二次電池の電池容量およびレート特性
を表1に記す。
Example 3 The polymer dispersion (E) and the polymer dispersion (F) were mixed at a solid content weight ratio of 90:10 to obtain a binder composition having a solid content concentration of 40%. . The particle size distribution of the binder composition is 0.01 μm or more,
90.2% by volume of particles less than 0.25 μm, 0.25 μm
Particles of m or more and less than 3 μm were 9.8% by volume. The properties of the binder composition are shown in Table 1. After mixing 3 parts of the binder composition, 16 parts of 5% aqueous solution of carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., serogen 7A), 2 parts of acetylene black, 3 parts of graphite powder and 11 parts of water in an automatic mortar for 20 minutes, the adsorbed amount 100 parts of the same LiCoO 2 used for the measurement was added and mixed for 10 minutes,
A positive electrode slurry having a solid content concentration of 79% and a viscosity of 2800 mPa · s was obtained. This positive electrode slurry was applied to a 21 μm thick aluminum foil with a doctor blade to a dry thickness of about 120 μm, dried on a hot plate at 120 ° C., and then compacted to a density of 3.4 g / cm 3 with a roll press machine. Thus, a positive electrode (3) was obtained. Table 1 shows the binder binding force of the positive electrode (3), and the battery capacity and rate characteristics of the secondary battery incorporating the positive electrode (3) and the metal lithium as the negative electrode.

【0057】〔実施例4〕実施例1において、重合体分
散液(A)と重合体分散液(B)を固形分重量比90:
10で混合して得られた固形分濃度42%のバインダー
組成物4.8部を用いる代わりに、重合体分散液(A)
と重合体分散液(B)を固形分重量比75:25で混合
して得られた固形分濃度43%のバインダー組成物4.
7部を使った以外は実施例1と同様に操作して負極
(4)を得た。バインダー組成物の粒径分布は、粒径が
0.01μm以上、0.25μm未満の粒子が73.9
容積%、0.25μm以上、3μm未満の粒子が26.
1容積%であった。このとき、負極スラリーは、固形分
濃度34%、粘度3400mPa・sであった。負極
(4)の製造に使用したバインダー組成物の特性、負極
(4)のバインダー結着力、ならびに、負極(4)およ
び正極である金属リチウムを組み込んだ二次電池の電池
容量およびレート特性を表1に記す。
Example 4 In Example 1, the polymer dispersion liquid (A) and the polymer dispersion liquid (B) were mixed in a solid content weight ratio of 90:
Instead of using 4.8 parts of the binder composition having a solid content concentration of 42% obtained by mixing in 10 the polymer dispersion (A)
And a polymer dispersion (B) at a solid content weight ratio of 75:25 to obtain a binder composition having a solid content concentration of 43%.
A negative electrode (4) was obtained in the same manner as in Example 1 except that 7 parts were used. Regarding the particle size distribution of the binder composition, particles having a particle size of 0.01 μm or more and less than 0.25 μm are 73.9.
26% of particles having a volume percentage of 0.25 μm or more and less than 3 μm.
It was 1% by volume. At this time, the negative electrode slurry had a solid content concentration of 34% and a viscosity of 3,400 mPa · s. The characteristics of the binder composition used for the production of the negative electrode (4), the binder binding force of the negative electrode (4), and the battery capacity and rate characteristics of a secondary battery incorporating the negative electrode (4) and metallic lithium as the positive electrode are shown. Note 1.

【0058】〔実施例5〕重合体分散液(A)と重合体
分散液(B)を固形分重量比96:4の重量割合で混合
してバインダー組成物を得た。その組成物100部に対
して3倍容量のN−メチルピロリドン(以下、「NM
P」と記すことがある。)を混合し、ロータリーエバポ
レーターを用いて減圧下で80℃にて水を留去した後、
粘度調整のためNMPを更に加えて、NMPを分散媒と
する固形分濃度9%のバインダー組成物を得た。NMP
を分散媒とするバインダー組成物の特性、特に粒径分布
を測定することは困難なので、表1にはNMP置換前の
バインダー組成物の特性値を示す。バインダー組成物の
粒径分布は、粒径が0.01μm以上、0.25μm未
満の粒子が96.2容積%、0.25μm以上、3μm
未満の粒子が3.8容積%であった。該NMP置換のバ
インダー組成物23部を吸着量測定に使ったと同じ黒鉛
100部、エチレン−ビニルアルコールコポリマー(エ
チレン単位40mol%)10%NMP溶液20部およ
びNMP140部とともに自動乳鉢で20分間混合し
た。NMP20部を添加してさらに2分間混合して、固
形分濃度34%、粘度2900mPa・sの負極スラリ
ーを得た。この負極スラリーを厚さ18μmの銅箔にド
クターブレードで乾燥厚さが100μm程度になるよう
に塗布し120℃のホットプレート上で乾燥した後、ロ
ールプレス装置で密度1.4g/ccに圧密処理して負
極(5)を得た。負極(5)のバインダー結着力、なら
びに、負極(5)および正極である金属リチウムを組み
込んだ二次電池の電池容量およびレート特性を表1に記
す。
Example 5 The polymer dispersion liquid (A) and the polymer dispersion liquid (B) were mixed at a solid content weight ratio of 96: 4 to obtain a binder composition. Three times the volume of N-methylpyrrolidone (hereinafter referred to as "NM
It may be written as "P". ) Are mixed and the water is distilled off at 80 ° C. under reduced pressure using a rotary evaporator,
NMP was further added for viscosity adjustment to obtain a binder composition having NMP as a dispersion medium and a solid content concentration of 9%. NMP
Since it is difficult to measure the characteristics of the binder composition using the dispersion medium as the dispersion medium, particularly the particle size distribution, Table 1 shows the characteristic values of the binder composition before NMP substitution. Regarding the particle size distribution of the binder composition, particles having a particle size of 0.01 μm or more and less than 0.25 μm are 96.2% by volume, 0.25 μm or more and 3 μm.
Less than 3.8% by volume of particles. Twenty-three parts of the NMP-substituted binder composition was mixed with 100 parts of the same graphite used for measuring the amount of adsorption, 20 parts of a 10% NMP solution of ethylene-vinyl alcohol copolymer (40 mol% of ethylene unit) and 140 parts of NMP in an automatic mortar for 20 minutes. 20 parts of NMP was added and further mixed for 2 minutes to obtain a negative electrode slurry having a solid content concentration of 34% and a viscosity of 2900 mPa · s. This negative electrode slurry was applied to a copper foil having a thickness of 18 μm by a doctor blade so that the dry thickness was about 100 μm, dried on a hot plate at 120 ° C., and then compacted to a density of 1.4 g / cc with a roll press machine. Thus, a negative electrode (5) was obtained. Table 1 shows the binder binding force of the negative electrode (5), and the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (5) and the positive electrode metallic lithium.

【0059】〔実施例6〕重合体分散液(E)と重合体
分散液(F)とを固形分重量比90:10で混合してバ
インダー組成物を得た。バインダー組成物の粒径分布
は、粒径が0.01μm以上、0.25μm未満の粒子
が90.1容積%、0.25μm以上、3μm未満の粒
子が9.9容積%であった。その組成物100部に対し
て3倍容量のNMPを混合し、ロータリーエバポレータ
ーを用いて減圧下で80℃にて水を留去した後、粘度調
整のためNMPを更に加えて、NMPを分散媒とする固
形分濃度8%のバインダー組成物を得た。実施例5と同
様の理由で、表1には、NMP置換前のバインダー組成
物の特性値を示す。該NMP置換のバインダー組成物1
5部を、10%のエチレン−ビニルアルコール共重合体
(エチレン単位40mol%)NMP溶液18部、アセ
チレンブラック3部およびNMP5部とともに自動乳鉢
で20分間混合した。次に吸着量測定に使ったと同じL
iCoO100部を添加して10分間混合し、更に
NMP9部を添加して10分間混合して、固形分濃度7
8%、粘度2400mPa・sの正極スラリーを得た。
この正極スラリーを厚さ21μmのアルミ箔にドクター
ブレードで乾燥厚さが120μm程度になるように塗布
し120℃のホットプレート上で乾燥した後、ロールプ
レス装置で密度3.4g/ccに圧密処理して正極
(6)を得た。正極(6)のバインダー結着力、ならび
に、正極(6)および、負極である金属リチウムを組み
込んだ二次電池の電池容量、およびレート特性を表1に
示す。
Example 6 The polymer dispersion (E) and the polymer dispersion (F) were mixed at a solid content weight ratio of 90:10 to obtain a binder composition. Regarding the particle size distribution of the binder composition, particles having a particle size of 0.01 μm or more and less than 0.25 μm were 90.1% by volume, and particles having a particle size of 0.25 μm or more and less than 3 μm were 9.9% by volume. After mixing 3 parts by volume of NMP with 100 parts of the composition and distilling off water at 80 ° C. under reduced pressure using a rotary evaporator, NMP was further added to adjust the viscosity, and NMP was added as a dispersion medium. A binder composition having a solid content concentration of 8% was obtained. For the same reason as in Example 5, Table 1 shows characteristic values of the binder composition before NMP substitution. The NMP-substituted binder composition 1
5 parts were mixed with 18 parts of a 10% ethylene-vinyl alcohol copolymer (40 mol% of ethylene unit) NMP solution, 3 parts of acetylene black and 5 parts of NMP in an automatic mortar for 20 minutes. Next, the same L used to measure the adsorption amount
Add 100 parts of iCoO 2 and mix for 10 minutes, then add 9 parts of NMP and mix for 10 minutes to obtain a solid content of 7
A positive electrode slurry having a viscosity of 2400 mPa · s and 8% was obtained.
This positive electrode slurry was applied to a 21 μm thick aluminum foil with a doctor blade to a dry thickness of about 120 μm, dried on a hot plate at 120 ° C., and then compacted to a density of 3.4 g / cc with a roll press machine. Thus, a positive electrode (6) was obtained. Table 1 shows the binder binding force of the positive electrode (6), and the battery capacity and rate characteristics of the secondary battery incorporating the positive electrode (6) and the negative electrode, metallic lithium.

【0060】〔比較例1〕実施例1において、重合体分
散液(A)と重合体分散液(B)を混合して得たバイン
ダー組成物4.8部に代えて重合体分散液(A)4.9
部を使った以外は実施例1と同様にして、負極(7)を
得た。バインダー組成物の粒径分布は、粒径が0.01
μm以上、0.25μm未満の粒子が99.8容積%、
0.25μm以上、3μm未満の粒子が0.2容積%で
あった。負極スラリーは、固形分濃度34%、粘度36
00mPa・sであった。負極(7)の製造に使用した
バインダー組成物の特性、負極(7)のバインダー結着
力、ならびに、負極(7)および正極である金属リチウ
ムを組み込んだ二次電池の電池容量およびレート特性を
表1に記す。
[Comparative Example 1] In Example 1, the polymer dispersion (A) was replaced with 4.8 parts of the binder composition obtained by mixing the polymer dispersion (A) and the polymer dispersion (B). ) 4.9
A negative electrode (7) was obtained in the same manner as in Example 1 except that parts were used. The particle size distribution of the binder composition is 0.01
99.8% by volume of particles having a size of at least μm and less than 0.25 μm,
Particles having a size of 0.25 μm or more and less than 3 μm were 0.2% by volume. The negative electrode slurry has a solid content concentration of 34% and a viscosity of 36.
It was 00 mPa · s. The characteristics of the binder composition used in the production of the negative electrode (7), the binder binding force of the negative electrode (7), and the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (7) and metallic lithium as the positive electrode are shown. Note 1.

【0061】〔比較例2〕実施例1において、重合体分
散液(A)と重合体分散液(B)を混合して得たバイン
ダー組成物4.8部に代えて重合体分散液(B)4部を
使った以外は実施例1と同様にして負極(8)を得た。
バインダー組成物の粒径分布は、粒径が0.01μm以
上、0.25μm未満の粒子が1.6容積%、0.25
μm以上、3μm未満の粒子が98.4容積%であっ
た。負極スラリーは、固形分濃度34%、粘度3200
mPa・sであった。負極(8)の製造に使用したバイ
ンダー組成物の特性、負極(8)のバインダー結着力、
ならびに、負極(8)および正極である金属リチウムを
組み込んだ二次電池の電池容量およびレート特性を表1
に記す。
[Comparative Example 2] In Example 1, instead of 4.8 parts of the binder composition obtained by mixing the polymer dispersion (A) and the polymer dispersion (B), the polymer dispersion (B ) A negative electrode (8) was obtained in the same manner as in Example 1 except that 4 parts were used.
The particle size distribution of the binder composition is such that particles having a particle size of 0.01 μm or more and less than 0.25 μm are 1.6% by volume, 0.25
Particles having a size of μm or more and less than 3 μm were 98.4% by volume. The negative electrode slurry has a solid content concentration of 34% and a viscosity of 3200.
It was mPa · s. Characteristics of the binder composition used in the production of the negative electrode (8), the binder binding force of the negative electrode (8),
Table 1 shows the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (8) and the positive electrode metallic lithium.
Note.

【0062】〔比較例3〕実施例1において、重合体分
散液(A)と重合体分散液(B)を混合して得たバイン
ダー組成物4.8部に代えて重合体分散液(G)を使っ
た以外は実施例1と同様にして負極(9)を得た。バイ
ンダー組成物の粒径分布は、粒径が0.01μm以上、
0.25μm未満の粒子が100容積%、0.25μm
以上、3μm未満の粒子が0容積%であった。負極スラ
リーは、固形分濃度34%、粘度3700mPa・sで
あった。負極(9)の製造に使用したバインダー組成物
の特性、負極(9)のバインダー結着力、ならびに、負
極(9)および正極である金属リチウムを組み込んだ二
次電池の電池容量およびレート特性を表1に記す。
[Comparative Example 3] The polymer dispersion liquid (G) was used in place of the binder composition 4.8 parts obtained in Example 1 by mixing the polymer dispersion liquid (A) and the polymer dispersion liquid (B). A negative electrode (9) was obtained in the same manner as in Example 1 except that (1) was used. The particle size distribution of the binder composition is 0.01 μm or more,
100% by volume of particles less than 0.25 μm, 0.25 μm
As described above, 0% by volume of particles less than 3 μm was used. The negative electrode slurry had a solid content concentration of 34% and a viscosity of 3700 mPa · s. The characteristics of the binder composition used for the production of the negative electrode (9), the binder binding force of the negative electrode (9), and the battery capacity and rate characteristics of the secondary battery incorporating the negative electrode (9) and metallic lithium as the positive electrode are shown. Note 1.

【0063】〔比較例4〕実施例3において、重合体分
散液(E)と重合体分散液(F)を混合して得たバイン
ダー組成物3部に代えて重合体分散液(E)3部を使っ
た以外は実施例3と同様にして正極(10)を得た。バ
インダー組成物の粒径分布は、粒径が0.01μm以
上、0.25μm未満の粒子が99.7容積%、0.2
5μm以上、3μm未満の粒子が0.3容積%であっ
た。正極スラリーは、固形分濃度79%、粘度3000
mPa・sであった。正極(10)の製造に使用したバ
インダー組成物の特性、正極(10)のバインダー結着
力、ならびに、正極(10)および負極である金属リチ
ウムを組み込んだ二次電池の電池容量およびレート特性
を表1に記す。
Comparative Example 4 Polymer dispersion liquid (E) 3 was used instead of 3 parts of the binder composition obtained by mixing the polymer dispersion liquid (E) and the polymer dispersion liquid (F) in Example 3. A positive electrode (10) was obtained in the same manner as in Example 3 except that parts were used. Regarding the particle size distribution of the binder composition, particles having a particle size of 0.01 μm or more and less than 0.25 μm are 99.7% by volume, 0.2
Particles having a size of 5 μm or more and less than 3 μm were 0.3% by volume. The positive electrode slurry has a solid content concentration of 79% and a viscosity of 3000.
It was mPa · s. The characteristics of the binder composition used to manufacture the positive electrode (10), the binder binding force of the positive electrode (10), and the battery capacity and rate characteristics of a secondary battery incorporating the positive electrode (10) and metallic lithium as the negative electrode are shown. Note 1.

【0064】〔比較例5〕実施例3において、重合体分
散液(E)と重合体分散液(F)の混合で得たバインダ
ー組成物3部に代えて重合体分散液(F)3.2部を使
った以外は実施例3と同様にして、正極(11)を得
た。バインダー組成物の粒径分布は、粒径が0.01μ
m以上、0.25μm未満の粒子が0.2容積%、0.
25μm以上、3μm未満の粒子が99.8容積%であ
った。正極スラリーは、固形分濃度79%、粘度270
0mPa・sであった。正極(11)の製造に使用した
バインダー組成物の特性、正極(11)のバインダー結
着力、ならびに、正極(11)および負極である金属リ
チウムを組み込んだ二次電池の電池容量およびレート特
性を表1に記す。
[Comparative Example 5] In Example 3, the polymer dispersion liquid (E) was replaced with 3 parts of the binder composition obtained by mixing the polymer dispersion liquid (E) and the polymer dispersion liquid (F). A positive electrode (11) was obtained in the same manner as in Example 3 except that 2 parts were used. The particle size distribution of the binder composition is 0.01 μm.
m or more and less than 0.25 μm, 0.2% by volume, 0.
The particles having a size of 25 μm or more and less than 3 μm were 99.8% by volume. The positive electrode slurry has a solid content concentration of 79% and a viscosity of 270.
It was 0 mPa · s. Shows the characteristics of the binder composition used to manufacture the positive electrode (11), the binder binding force of the positive electrode (11), and the battery capacity and rate characteristics of a secondary battery incorporating the positive electrode (11) and metallic lithium as the negative electrode. Note 1.

【0065】〔比較例6〕実施例3において、重合体分
散液(E)と重合体分散液(F)を混合して得たバイン
ダー組成物3部に代えて重合体分散液(G)3.8部を
使った以外は実施例3と同様にして正極(12)を得
た。バインダー組成物の粒径分布は、粒径が0.01μ
m以上、0.25μm未満の粒子が100容積%、0.
25μm以上、3μm未満の粒子が0容積%であった。
正極スラリーは、固形分濃度79%、粘度3100mP
a・sであった。正極(12)の製造に使用したバイン
ダー組成物の特性、正極(12)のバインダー結着力、
ならびに、正極(12)および負極である金属リチウム
を組み込んだ二次電池の電池容量およびレート特性を表
1に記す。
[Comparative Example 6] In Example 3, instead of 3 parts of the binder composition obtained by mixing the polymer dispersion liquid (E) and the polymer dispersion liquid (F), the polymer dispersion liquid (G) 3 was used. A positive electrode (12) was obtained in the same manner as in Example 3 except that 0.8 part was used. The particle size distribution of the binder composition is 0.01 μm.
m or more and less than 0.25 μm is 100% by volume, 0.
Particles of 25 μm or more and less than 3 μm were 0% by volume.
The positive electrode slurry has a solid content concentration of 79% and a viscosity of 3100 mP.
It was a.s. Characteristics of the binder composition used for producing the positive electrode (12), binder binding force of the positive electrode (12),
In addition, Table 1 shows the battery capacity and rate characteristics of the secondary battery incorporating the positive electrode (12) and the negative electrode metallic lithium.

【0066】[0066]

【表1】 [Table 1]

【0067】表1から以下のことがわかる。一次粒子の
最頻粒径が0.25μm以上、3μm未満である重合体
分散液(II)を混合しない比較例1、3、4および6
のバインダー組成物は、電極での集電体への結着力が小
さく、得られる電池の電池容量が小さく、レート特性も
悪くなった。一次粒子の最頻粒径が0.01μm以上、
0.25μm未満である重合体分散液(I)を混合しな
い比較例2及び5のバインダー組成物は、電極での集電
体への結着力が小さく、得られる電池の電池容量が小さ
く、レート特性も悪くなった。
The following can be seen from Table 1. Comparative Examples 1, 3, 4 and 6 in which the polymer dispersion liquid (II) having a primary particle mode particle size of 0.25 μm or more and less than 3 μm was not mixed.
The binder composition of (1) had a small binding force to the collector at the electrode, the battery capacity of the obtained battery was small, and the rate characteristics were poor. The most frequent particle size of the primary particles is 0.01 μm or more,
The binder compositions of Comparative Examples 2 and 5 in which the polymer dispersion (I) having a size of less than 0.25 μm was not mixed, the binding force to the current collector at the electrode was small, the battery capacity of the obtained battery was small, and the rate was low. The characteristics have also deteriorated.

【0068】これに対して本発明で得られる実施例1〜
6のバインダー組成物では、電極での集電体への結着力
が大きく、得られる電池の電池容量が大きく、レート特
性も優れることが分かる。
On the other hand, Examples 1 to 1 obtained in the present invention
It can be seen that the binder composition of No. 6 has a large binding force to the current collector at the electrode, a large battery capacity of the obtained battery, and excellent rate characteristics.

【0069】[0069]

【発明の効果】本発明のバインダー組成物を用いて電極
を作製すると、集電体および活物質間の結着性が大き
く、電池容量が大きく、レート特性の優れた二次電池が
得られる。
When an electrode is produced using the binder composition of the present invention, a secondary battery having a large binding property between the current collector and the active material, a large battery capacity and an excellent rate characteristic can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 勝也 神奈川県川崎市川崎区夜光一丁目2番1号 日本ゼオン株式会社総合開発センター内 Fターム(参考) 5H050 AA00 AA08 BA14 BA17 CA02 CA07 CA11 CB03 CB07 CB16 DA11 EA23 FA17 GA02 GA10 HA01 HA05 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuya Nakamura             1-2-1, Yokou, Kawasaki-ku, Kawasaki-shi, Kanagawa               Zeon Corporation, General Development Center F-term (reference) 5H050 AA00 AA08 BA14 BA17 CA02                       CA07 CA11 CB03 CB07 CB16                       DA11 EA23 FA17 GA02 GA10                       HA01 HA05 HA14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子の最頻粒径が0.01μm以
上、0.25μm未満である重合体の液状媒体分散液
(I)を重合体換算で70〜99重量部と、一次粒子の
最頻粒径が0.25μm以上、3μm未満である重合体
の液状媒体分散液(II)を重合体換算で1〜30重量
部とを混合してなる二次電池電極用バインダー組成物
(但し、分散液(I)と分散液(II)とを混合後の重
合体は、合計で100重量部である。)。
1. A liquid medium dispersion (I) of a polymer having a modal particle size of primary particles of 0.01 μm or more and less than 0.25 μm is added in an amount of 70 to 99 parts by weight in terms of polymer, and A binder composition for a secondary battery electrode, which is obtained by mixing a liquid medium dispersion liquid (II) of a polymer having a frequent particle size of 0.25 μm or more and less than 3 μm with 1 to 30 parts by weight of the polymer (however, The total amount of the polymer after mixing the dispersion liquid (I) and the dispersion liquid (II) is 100 parts by weight).
【請求項2】 重合体が液状媒体に粒子状となって分散
してなる二次電池電極用バインダー組成物であって、 前記重合体の一次粒子が、0.01μm以上、0.25
μm未満の粒径区間に70〜99容積%、および、0.
25μm以上、3μm未満の粒径区間に1〜30容積%
存在する二次電池電極用バインダー組成物。
2. A binder composition for secondary battery electrodes, comprising a polymer dispersed in a liquid medium in the form of particles, wherein the primary particles of the polymer are 0.01 μm or more and 0.25.
70-99% by volume in the particle size range of less than μm, and 0.
1 to 30% by volume in the particle size section of 25 μm or more and less than 3 μm
An existing binder composition for secondary battery electrodes.
【請求項3】 前記液状媒体が80〜350℃の標準沸
点を有するものである請求項1または2記載の二次電池
電極用バインダー組成物。
3. The binder composition for a secondary battery electrode according to claim 1, wherein the liquid medium has a normal boiling point of 80 to 350 ° C.
【請求項4】 請求項1〜3のいずれかに記載の二次電
池電極用バインダー組成物と、電極活物質とを含有する
二次電池電極用スラリー。
4. A slurry for a secondary battery electrode, comprising the binder composition for a secondary battery electrode according to claim 1, and an electrode active material.
【請求項5】 重合体の電極活物質への吸着量が、電極
活物質1g当り、1〜50mgである請求項4記載の二
次電池電極用スラリー。
5. The secondary battery electrode slurry according to claim 4, wherein the amount of the polymer adsorbed on the electrode active material is 1 to 50 mg per 1 g of the electrode active material.
【請求項6】 集電体に、重合体と電極活物質とを含有
する混合層を結着してなる二次電池電極であって、 重合体の一次粒子が、0.01μm以上、0.25μm
未満の粒径区間に70〜99容積%、および、0.25
μm以上、3μm未満の粒径区間に1〜30容積%存在
することを特徴とする二次電池電極。
6. A secondary battery electrode comprising a current collector and a mixed layer containing a polymer and an electrode active material bound to the current collector, wherein the polymer primary particles have a particle size of 0.01 μm or more. 25 μm
70-99% by volume in the particle size range of less than, and 0.25
A secondary battery electrode, characterized in that 1 to 30% by volume is present in a particle size section of ≧ 3 μm and <3 μm.
【請求項7】 請求項6記載の二次電池電極を有する二
次電池。
7. A secondary battery having the secondary battery electrode according to claim 6.
JP2001288321A 2001-09-21 2001-09-21 Binder composition for secondary battery electrode and secondary battery Expired - Lifetime JP4273687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288321A JP4273687B2 (en) 2001-09-21 2001-09-21 Binder composition for secondary battery electrode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288321A JP4273687B2 (en) 2001-09-21 2001-09-21 Binder composition for secondary battery electrode and secondary battery

Publications (2)

Publication Number Publication Date
JP2003100298A true JP2003100298A (en) 2003-04-04
JP4273687B2 JP4273687B2 (en) 2009-06-03

Family

ID=19110992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288321A Expired - Lifetime JP4273687B2 (en) 2001-09-21 2001-09-21 Binder composition for secondary battery electrode and secondary battery

Country Status (1)

Country Link
JP (1) JP4273687B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005041225A1 (en) * 2003-10-24 2007-06-21 日本ゼオン株式会社 Binder for electric double layer capacitor electrode
JP2010129369A (en) * 2008-11-27 2010-06-10 Jsr Corp Binder for energy device electrode and method for producing the same
JP2010182439A (en) * 2009-02-03 2010-08-19 Nippon A&L Inc Binder for secondary battery electrode
JP2011076917A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Binder composition for electrode, slurry composition for electrode, electrode and battery
JPWO2010016568A1 (en) * 2008-08-08 2012-01-26 日本ゼオン株式会社 Lithium ion capacitor binder, lithium ion capacitor electrode and lithium ion capacitor
WO2012111472A1 (en) 2011-02-15 2012-08-23 Jsr株式会社 Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
WO2013008564A1 (en) * 2011-07-14 2013-01-17 Jsr株式会社 Binder composition for electrodes
WO2013081152A1 (en) 2011-12-02 2013-06-06 三菱レイヨン株式会社 Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP2014093271A (en) * 2012-11-06 2014-05-19 Kaneka Corp Nonaqueous electrolytic secondary battery electrode, battery using the same, and method for manufacturing such electrode
US20140154569A1 (en) * 2011-08-03 2014-06-05 Zeon Corporation Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
JP2014209503A (en) * 2009-03-30 2014-11-06 Jsr株式会社 Composition for electrochemical device electrode binder
KR20160113585A (en) 2014-01-29 2016-09-30 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
US20160289439A1 (en) * 2013-11-27 2016-10-06 Kureha Corporation Aqueous vinylidene fluoride-based polymer composition and use thereof
JP2017069062A (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
WO2017056489A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
KR20180054592A (en) 2015-09-30 2018-05-24 니폰 제온 가부시키가이샤 A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
WO2018155712A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
WO2020004526A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method for producing same, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP6911985B1 (en) * 2020-08-31 2021-07-28 日本ゼオン株式会社 Dispersant composition for electrochemical element, conductive material dispersion for electrochemical element, slurry composition for electrochemical element electrode and its manufacturing method, electrode for electrochemical element, and electrochemical element
CN114695896A (en) * 2022-03-14 2022-07-01 电子科技大学 Self-assembly high-barrier film packaging method of electronic device

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939600B2 (en) 2003-10-24 2011-05-10 Zeon Corporation Binder for electric double layer capacitor electrode
JPWO2005041225A1 (en) * 2003-10-24 2007-06-21 日本ゼオン株式会社 Binder for electric double layer capacitor electrode
JPWO2010016568A1 (en) * 2008-08-08 2012-01-26 日本ゼオン株式会社 Lithium ion capacitor binder, lithium ion capacitor electrode and lithium ion capacitor
JP5651470B2 (en) * 2008-08-08 2015-01-14 日本ゼオン株式会社 Lithium ion capacitor binder, lithium ion capacitor electrode and lithium ion capacitor
JP2010129369A (en) * 2008-11-27 2010-06-10 Jsr Corp Binder for energy device electrode and method for producing the same
JP2010182439A (en) * 2009-02-03 2010-08-19 Nippon A&L Inc Binder for secondary battery electrode
JP2014209503A (en) * 2009-03-30 2014-11-06 Jsr株式会社 Composition for electrochemical device electrode binder
JP2011076917A (en) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd Binder composition for electrode, slurry composition for electrode, electrode and battery
CN103460453A (en) * 2011-02-15 2013-12-18 Jsr株式会社 Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
JPWO2012111472A1 (en) * 2011-02-15 2014-07-03 Jsr株式会社 Electrode for power storage device, slurry for electrode, binder composition for electrode, and power storage device
JP2013016505A (en) * 2011-02-15 2013-01-24 Jsr Corp Binder composition for electrode
WO2012111472A1 (en) 2011-02-15 2012-08-23 Jsr株式会社 Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
JP5093544B2 (en) * 2011-02-15 2012-12-12 Jsr株式会社 Electrode for power storage device, slurry for electrode, binder composition for electrode, and power storage device
JP2013012491A (en) * 2011-02-15 2013-01-17 Jsr Corp Slurry for electrode for power storage device, electrode for power storage device, and power storage device
JP5163919B1 (en) * 2011-07-14 2013-03-13 Jsr株式会社 Electrode binder composition
WO2013008564A1 (en) * 2011-07-14 2013-01-17 Jsr株式会社 Binder composition for electrodes
US10014528B2 (en) * 2011-08-03 2018-07-03 Zeon Corporation Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
US20140154569A1 (en) * 2011-08-03 2014-06-05 Zeon Corporation Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
WO2013081152A1 (en) 2011-12-02 2013-06-06 三菱レイヨン株式会社 Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20160102093A (en) 2011-12-02 2016-08-26 미쯔비시 레이온 가부시끼가이샤 Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US10361434B2 (en) 2011-12-02 2019-07-23 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US9774038B2 (en) 2011-12-02 2017-09-26 Mitsubishi Chemical Corporation Binder resin for nonaqueous secondary battery electrode, binder resin composition for nonaqueous secondary battery electrode slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP5686332B2 (en) * 2012-10-12 2015-03-18 独立行政法人産業技術総合研究所 Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
JPWO2014057627A1 (en) * 2012-10-12 2016-08-25 国立研究開発法人産業技術総合研究所 Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
US10164259B2 (en) 2012-10-12 2018-12-25 National Institute Of Advanced Industrial Science And Technology Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
JP2014093271A (en) * 2012-11-06 2014-05-19 Kaneka Corp Nonaqueous electrolytic secondary battery electrode, battery using the same, and method for manufacturing such electrode
US20160289439A1 (en) * 2013-11-27 2016-10-06 Kureha Corporation Aqueous vinylidene fluoride-based polymer composition and use thereof
KR20160113585A (en) 2014-01-29 2016-09-30 제온 코포레이션 Slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2017069062A (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery
CN108140838B (en) * 2015-09-30 2021-07-23 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition, electrode, and nonaqueous secondary battery
CN108140838A (en) * 2015-09-30 2018-06-08 日本瑞翁株式会社 Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery
US11387457B2 (en) 2015-09-30 2022-07-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20180063078A (en) 2015-09-30 2018-06-11 니폰 제온 가부시키가이샤 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20180054592A (en) 2015-09-30 2018-05-24 니폰 제온 가부시키가이샤 A binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery,
WO2017056489A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
US10593948B2 (en) 2015-09-30 2020-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2018155712A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
WO2018154786A1 (en) * 2017-02-27 2018-08-30 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JPWO2018155712A1 (en) * 2017-02-27 2019-12-26 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
WO2020004526A1 (en) * 2018-06-29 2020-01-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method for producing same, non-aqueous secondary battery electrode, and non-aqueous secondary battery
CN112189272A (en) * 2018-06-29 2021-01-05 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode and method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
US11929507B2 (en) 2018-06-29 2024-03-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2020004526A1 (en) * 2018-06-29 2021-08-02 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and its manufacturing method, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP7359145B2 (en) 2018-06-29 2023-10-11 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes and manufacturing method thereof, electrode for non-aqueous secondary batteries, and non-aqueous secondary battery
WO2022045266A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Dispersant composition for electrochemical element, electroconductive material dispersion for electrochemical element, slurry composition for electrochemical element electrode and method for manufacturing same, electrode for electrochemical element, and electrochemical element
CN115485886A (en) * 2020-08-31 2022-12-16 日本瑞翁株式会社 Dispersant composition for electrochemical device, conductive material dispersion for electrochemical device, slurry composition for electrochemical device electrode and method for producing same, electrode for electrochemical device, and electrochemical device
JP2022041225A (en) * 2020-08-31 2022-03-11 日本ゼオン株式会社 Dispersant composition for electrochemical element, conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode and manufacturing method thereof, electrode for electrochemical element, and electrochemical element
JP6911985B1 (en) * 2020-08-31 2021-07-28 日本ゼオン株式会社 Dispersant composition for electrochemical element, conductive material dispersion for electrochemical element, slurry composition for electrochemical element electrode and its manufacturing method, electrode for electrochemical element, and electrochemical element
CN114695896A (en) * 2022-03-14 2022-07-01 电子科技大学 Self-assembly high-barrier film packaging method of electronic device
CN114695896B (en) * 2022-03-14 2023-07-18 电子科技大学 Self-assembled high-barrier film packaging method of electronic device

Also Published As

Publication number Publication date
JP4273687B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4273687B2 (en) Binder composition for secondary battery electrode and secondary battery
KR101460930B1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
JP4433509B2 (en) Binder composition for lithium ion secondary battery electrode and use thereof
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
JP4218244B2 (en) Slurry composition for secondary battery electrode, secondary battery electrode and secondary battery
JPWO2002039518A1 (en) Slurry composition for secondary battery positive electrode, secondary battery positive electrode and secondary battery
TW201611396A (en) Binder composition for storage device electrode, slurry for storage device electrode, storage device electrode, and storage device
JP2002042819A (en) Binder for secondary battery electrode, secondary battery electrode and secondary battery
WO2013099990A1 (en) Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
JP2004185826A (en) Slurry composition for electrode, electrode and secondary battery
JPH11149929A (en) Battery binder composition, battery electrode slurry, lithium secondary battery electrode, and lithium secondary battery
JP2002231251A (en) Binder composition for lithium ion secondary battery electrode and lithium ion secondary battery
JP4200349B2 (en) Slurry composition for electrode, electrode and lithium ion secondary battery
JP4412443B2 (en) Thickener for lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2004227974A (en) Slurry composition for electrode, electrode and secondary battery
JP5707804B2 (en) Slurry composition for positive electrode of non-aqueous electrolyte secondary battery
JP2001176517A (en) Method of manufacturing lithium ion secondary battery, electrode and battery
WO2012144439A1 (en) Electrode for electrical storage device, and electrical storage device
JP2006107959A (en) Electrode and its manufacturing method
JP5924501B2 (en) Slurry for power storage device electrode, power storage device electrode, and method for manufacturing power storage device
JP2001283855A (en) Binder composite of electrode for lithium-ion secondary battery, slurry, electrode, and battery
JPH11273682A (en) Slurry for electrode of lithium ion secondary battery, binder composition, electrode and battery
JPH11283631A (en) Electrode slurry of lithium ion secondary battery, binder composition, electrode, and battery
JPH11283630A (en) Electrode slurry of lithium ion secondary battery, binder composition, electrode, and battery
JP2005063825A (en) Slurry composition for positive electrode of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4273687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term