JP2014093271A - Nonaqueous electrolytic secondary battery electrode, battery using the same, and method for manufacturing such electrode - Google Patents

Nonaqueous electrolytic secondary battery electrode, battery using the same, and method for manufacturing such electrode Download PDF

Info

Publication number
JP2014093271A
JP2014093271A JP2012244762A JP2012244762A JP2014093271A JP 2014093271 A JP2014093271 A JP 2014093271A JP 2012244762 A JP2012244762 A JP 2012244762A JP 2012244762 A JP2012244762 A JP 2012244762A JP 2014093271 A JP2014093271 A JP 2014093271A
Authority
JP
Japan
Prior art keywords
electrode
active material
secondary battery
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244762A
Other languages
Japanese (ja)
Other versions
JP6331246B2 (en
Inventor
Mitsuyasu Imazaki
充康 今▲崎▼
Yuichi Imamura
雄一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012244762A priority Critical patent/JP6331246B2/en
Publication of JP2014093271A publication Critical patent/JP2014093271A/en
Application granted granted Critical
Publication of JP6331246B2 publication Critical patent/JP6331246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture, by use of an active material mixture, a nonaqueous electrolytic secondary battery electrode which is stable in shape, provided that the active material mixture includes an electrode active material of a transition metal oxide and a binding material dispersed in water.SOLUTION: A method for manufacturing a nonaqueous electrolytic secondary battery electrode comprises the steps of: preparing an active material mixture by dispersing, in water, particles of a transition metal oxide and/or transition metal complex oxide which has an average particle diameter of 1-20 μm, and which lithium ions can be caused to intrude into and can be desorbed from, and particles of a binding material having an average particle diameter of 0.10-0.30 μm; and applying the active material mixture to a current collector, followed by drying.

Description

本発明は、非水電解質二次電池用電極、及びそれを用いた電池、並びに電極の製造方法に関するものである。   The present invention relates to an electrode for a nonaqueous electrolyte secondary battery, a battery using the same, and a method for producing the electrode.

リチウムイオン蓄電池はモバイル機器用電源として現在幅広く使用されている。リチウムイオン蓄電池は、既存のニッケル−カドミウム蓄電池やニッケル−水素蓄電池と比較して高エネルギー密度であるために、電気自動車や電力貯蔵などの大型電源用途としても期待されている。特に、活物質に遷移金属複合酸化物を用いる非水電解質二次電池はサイクル特性が良いこと及び安全性が高いことから注目を浴びている(例えば、非特許文献1参照)。   Lithium ion storage batteries are currently widely used as power sources for mobile devices. Lithium ion storage batteries are expected to be used for large power supplies such as electric vehicles and power storage because they have a higher energy density than existing nickel-cadmium storage batteries and nickel-hydrogen storage batteries. In particular, non-aqueous electrolyte secondary batteries using transition metal composite oxides as active materials are attracting attention because of their good cycle characteristics and high safety (see, for example, Non-Patent Document 1).

このような非水電解質二次電池において、正極の構造は、正極用活物質と導電材と、正極用活物質に形状安定性を持たせるための結着材(バインダー)とを練り合わせたものとを、集電体に貼り付けて成形した構造となっている。負極の構造も、正極用活物質の代わりに負極用活物質を用いること以外は正極と同様である。
前述した結着材として、有機ポリマー系の粒子が使用される。例えば特許文献1は、ポリメチルアクリレート粒子、アクリル酸エステル系粒子、ポリフッ化ビニリデン粒子などを、正極又は負極の活物質に対して用いられる結着材として開示している。特許文献2は、エチレン/ エチルアクリレートコポリマー粒子を開示している。特許文献3は、結着材としてPTFE粉末を添加したものを用いたリチウム二次電池を開示している。
In such a non-aqueous electrolyte secondary battery, the positive electrode has a structure in which a positive electrode active material, a conductive material, and a binder (binder) for imparting shape stability to the positive electrode active material are kneaded together. This is a structure in which is formed by attaching to a current collector. The structure of the negative electrode is the same as that of the positive electrode except that the negative electrode active material is used instead of the positive electrode active material.
Organic polymer particles are used as the binder described above. For example, Patent Document 1 discloses polymethyl acrylate particles, acrylate ester-based particles, polyvinylidene fluoride particles, and the like as a binder used for a positive electrode or negative electrode active material. U.S. Patent No. 6,099,077 discloses ethylene / ethyl acrylate copolymer particles. Patent Document 3 discloses a lithium secondary battery using a binder added with PTFE powder.

特開平8−7881号公報JP-A-8-7881 特開2004−172017号公報JP 2004-172017 A 特開平6−275277号公報JP-A-6-275277

高見、小杉、本多「耐久性と安全性に優れたハイブリッド自動車用新型二次電池SCiBTM」東芝レビューVol.63, No.12, pp.54-57 (2008)Takami, Kosugi, Honda "New Rechargeable Battery SCiBTM for Hybrid Vehicles with Excellent Durability and Safety" Toshiba Review Vol.63, No.12, pp.54-57 (2008)

しかしながら、遷移金属酸化物又は/及び遷移金属複合酸化物を正極又は負極の活物質として用いた二次電池の場合、正極又は負極の形状安定性に影響を与える、正極又は負極用活物質の粒子径の範囲と、結着材の粒子径の範囲との関係が、従来調査されていない。
例えば特許文献1の実施例は、正極として、粒子径10μmのコバルト酸リチウム活物質に、粒子径2μmのポリメチルアクリレート粒子、粒子径5μmのアクリル酸エステル系粒子などをそれぞれイソプロピルアルコールに分散させたものを塗工している。しかしこのような粒子径の大きな有機ポリマー系の粒子を使用すると、乾燥後、活物質の形状安定性が低下するおそれがある。
However, in the case of a secondary battery using a transition metal oxide or / and transition metal composite oxide as a positive electrode or negative electrode active material, particles of the positive electrode or negative electrode active material that affect the shape stability of the positive electrode or negative electrode The relationship between the range of the diameter and the range of the particle size of the binder has not been investigated conventionally.
For example, in the example of Patent Document 1, as a positive electrode, a lithium cobaltate active material having a particle diameter of 10 μm, polymethyl acrylate particles having a particle diameter of 2 μm, acrylic ester particles having a particle diameter of 5 μm, and the like are dispersed in isopropyl alcohol. I'm coating things. However, when such organic polymer particles having a large particle diameter are used, the shape stability of the active material may decrease after drying.

特許文献2(特開2004−172017号公報)は、実施例において、正極コバルト酸リチウム活物質に、粒子径0.18〜0.26μmのエチレン/ エチルアクリレートコポリマーの粒子をNMPに分散させたものを塗付して乾燥させて、ピール強度を測定している。しかし、正極用活物質の粒子径が開示されていないので、正極又は負極用活物質の粒子径の範囲と、結着材の粒子径の範囲との関係が求められているとは言えない。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-172017) discloses an example in which particles of an ethylene / ethyl acrylate copolymer having a particle diameter of 0.18 to 0.26 μm are dispersed in NMP in a positive electrode lithium cobaltate active material. Is applied and dried, and the peel strength is measured. However, since the particle diameter of the positive electrode active material is not disclosed, it cannot be said that the relationship between the particle diameter range of the positive electrode or negative electrode active material and the particle diameter range of the binder is required.

また特許文献2は、実施例において、粒子を分散させた溶液に、ポリフッ化ビニリデンなどを加えて溶解させている。このため、ポリフッ化ビニリデンなどを溶解させることができる有機溶媒が必要になり、特許文献2は前記NMPを用いている。しかし有機溶媒を分散剤に使用した場合は、溶媒自体のコストに加え、溶媒を回収する必要があるため、設備的にもコストが割高である。   In addition, in Patent Document 2, polyvinylidene fluoride or the like is added and dissolved in a solution in which particles are dispersed in Examples. For this reason, an organic solvent capable of dissolving polyvinylidene fluoride and the like is required, and Patent Document 2 uses the NMP. However, when an organic solvent is used as the dispersant, it is necessary to recover the solvent in addition to the cost of the solvent itself, so that the cost is high in terms of equipment.

特許文献3には、リチウム、コバルト、リンなどを含む複合酸化物からなる正極用活物質を用いたリチウム二次電池において、正極用活物質に対する結着材の粒子径比率を、0.02〜20倍、好ましくは0.1〜5倍で使用すれば、正極に不規則な空隙が生じることが抑制でき、割れや欠陥の発生が抑制される、と記載されている(段落[0021])。しかし、粒子径比率の好ましい範囲を規定しても、この粒子径比率の範囲に入る各粒子径の活物質と結着材との全ての組み合わせが、必ずしも良い結果を与えないことを、本願の発明者は確認している。   In Patent Document 3, in a lithium secondary battery using a positive electrode active material made of a composite oxide containing lithium, cobalt, phosphorus, etc., the particle diameter ratio of the binder to the positive electrode active material is set to 0.02 to 0.02%. It is described that, when used at 20 times, preferably 0.1 to 5 times, irregular voids can be suppressed in the positive electrode, and the occurrence of cracks and defects is suppressed (paragraph [0021]). . However, even if the preferable range of the particle size ratio is defined, all combinations of the active material and the binder having each particle size falling within the range of the particle size ratio do not necessarily give good results. The inventor has confirmed.

結局、何れの特許文献も、活物質の粒子径の好ましい範囲と、結着材の粒子径の好ましい範囲との組み合わせを示唆していない。
また、何れの特許文献も、正極用活物質と結着材との組み合わせを論じており、遷移金属酸化物又は/及び遷移金属複合酸化物系の負極用活物質については、活物質の粒子径の好ましい範囲と、結着材の粒子径の好ましい範囲との組み合わせを示唆していない。前記遷移金属酸化物又は/及び遷移金属複合酸化物系の負極用活物質は、粉体中に残存アルカリ成分が存在し、水で分散させると液がアルカリ性になる。また前記負極用活物質は絶縁体である。こういった点で前記各特許文献にあげられたコバルト酸リチウムなどの活物質と物性が異なっている。
After all, none of the patent documents suggests a combination of a preferable range of the particle diameter of the active material and a preferable range of the particle diameter of the binder.
In addition, each patent document discusses a combination of a positive electrode active material and a binder, and the transition metal oxide or / and transition metal composite oxide-based negative electrode active material has a particle diameter of the active material. It does not suggest a combination of the preferable range of and the preferable range of the particle diameter of the binder. The transition metal oxide and / or transition metal composite oxide-based negative electrode active material has a residual alkali component in the powder, and when dispersed with water, the liquid becomes alkaline. The negative electrode active material is an insulator. In this respect, the physical properties are different from those of the active materials such as lithium cobaltate listed in the above patent documents.

本発明は、前述した事情に鑑みてなされたもので、作製が容易であり、形状安定性に優れた非水電解質二次電池用電極及びそれを用いた電池を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an electrode for a nonaqueous electrolyte secondary battery that is easy to manufacture and excellent in shape stability, and a battery using the same.

本発明者が鋭意研究したところ、電極用の活物質である遷移金属酸化物の平均粒子径と、水に分散された結着材の平均粒子径とを、それぞれ一定範囲内とすることにより、低コストで、形状安定性の良好な電極を作製することが可能となることを見出した。この知見に基づき、本発明を完成するに至った。
本発明の非水電解質二次電池用電極は、平均粒子径が1μm以上20μm以下である、リチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物と、平均粒子径が0.10μm以上0.30μm以下の結着材とを含む活物質混合物を含むものである。
As a result of intensive research by the present inventors, the average particle diameter of the transition metal oxide, which is an active material for electrodes, and the average particle diameter of the binder dispersed in water are each within a certain range. It has been found that an electrode having good shape stability can be produced at low cost. Based on this finding, the present invention has been completed.
An electrode for a non-aqueous electrolyte secondary battery according to the present invention includes an average particle diameter of 1 μm or more and 20 μm or less, a transition metal oxide or / and a transition metal composite oxide capable of inserting / extracting lithium ions, and an average particle An active material mixture containing a binder having a diameter of 0.10 μm or more and 0.30 μm or less is included.

前記遷移金属がチタンであってもよく、前記遷移金属複合酸化物がスピネル型構造を有するチタン酸リチウム又は二酸化チタンであってもよい。また、チタンの一部を別の元素で置換したものであっても良い。
前記活物質混合物は負極に用いられる場合がある。
前述の結着材がテトラフルオロエチレン(PTFE)系、スチレン−ブタジエン共重合体(SBR)系、アクリル酸エステル系、メタクリル酸エステル系の何れか1種若しくは2種以上を混合した粒子からなることが好ましい。
The transition metal may be titanium, and the transition metal composite oxide may be lithium titanate or titanium dioxide having a spinel structure. Further, a part of titanium may be substituted with another element.
The active material mixture may be used for the negative electrode.
The aforementioned binder is made of particles obtained by mixing one or more of tetrafluoroethylene (PTFE), styrene-butadiene copolymer (SBR), acrylate ester, and methacrylate ester. Is preferred.

さらに本発明によれば、上記の非水電解質二次電池用電極を具えてなる非水電解質二次電池が提供される。
また、 本発明の非水電解質二次電池用電極の製造方法は、平均粒子径が1μm以上20μm以下である、リチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物と、平均粒子径が0.10μm以上0.30μm以下の結着材とを水に分散させる工程と、前記工程で得られた水に分散された活物質混合物を、集電体に塗工して水を除去する工程とを含む。
Furthermore, according to this invention, the nonaqueous electrolyte secondary battery which comprises said nonaqueous electrolyte secondary battery electrode is provided.
The method for producing an electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a transition metal oxide having an average particle diameter of 1 μm or more and 20 μm or less and capable of inserting / extracting lithium ions and / or transition metal composite oxidation. And the active material mixture dispersed in water obtained in the above step and the active material mixture applied to the current collector are coated with the binder and the binder having an average particle size of 0.10 μm or more and 0.30 μm or less. And removing the water.

前記活物質スラリーの固形分濃度は、低くても問題はないが、70重量%以上であれば、分散良く強固な電極とすることができる。また、従来の塗布方式での電極製造でも問題はないが、加圧による電極成形であれば、より強固な電極とすることができる。   There is no problem even if the solid content concentration of the active material slurry is low, but if it is 70% by weight or more, a solid electrode with good dispersion can be obtained. In addition, there is no problem in manufacturing an electrode by a conventional coating method, but if the electrode is formed by pressurization, a stronger electrode can be obtained.

本発明の非水電解質二次電池用電極は、平均粒子径が1μm以上20μm以下であるリチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物を電極用活物質として用い、水分散結着材の平均粒子径が0.1μm以上0.3μm以下のものを用いて製造されることにより、低コストで、形状安定性の良好な電極とすることができる。   The electrode for a non-aqueous electrolyte secondary battery according to the present invention comprises a transition metal oxide or / and a transition metal composite oxide having an average particle diameter of 1 μm or more and 20 μm or less capable of inserting / extracting lithium ions. And an aqueous dispersion binder having an average particle diameter of 0.1 μm or more and 0.3 μm or less can be manufactured at low cost and with good shape stability.

以下、本発明の実施の形態を説明する。なお、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
<電極>
本発明の非水電解質二次電池用電極は、少なくとも活物質混合物と集電体とで構成される。活物質混合物は、少なくとも、活物質(電極用活物質と言うこともある)及び結着材(結着材)を含み、必要に応じて導電助材を含んでよい。
Embodiments of the present invention will be described below. The scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.
<Electrode>
The electrode for a nonaqueous electrolyte secondary battery of the present invention is composed of at least an active material mixture and a current collector. The active material mixture includes at least an active material (sometimes referred to as an electrode active material) and a binder (binder), and may include a conductive aid as necessary.

活物質として、平均粒子径が1μm以上20μm以下であるリチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物が使用される。例えば、特に限定されないが、リチウムチタン酸化物、チタン酸化物、ニオブ酸化物、バナジウム酸化物、モリブデン酸化物などが挙げられる。特に、チタンを含有する複合酸化物はサイクルに対して安定で、スピネル型LiTi12、アナターゼ型TiO、TiO(B)等が好ましい。 As the active material, a transition metal oxide and / or transition metal composite oxide having an average particle diameter of 1 μm or more and 20 μm or less and capable of inserting / extracting lithium ions is used. For example, although not particularly limited, lithium titanium oxide, titanium oxide, niobium oxide, vanadium oxide, molybdenum oxide, and the like can be given. In particular, the composite oxide containing titanium is stable with respect to the cycle, and spinel type Li 4 Ti 5 O 12 , anatase type TiO 2 , TiO 2 (B) and the like are preferable.

結着材は平均粒子径が0.10μm以上0.30μm以下のものが使用され、水に分散されて用いられる。例えば、特に限定されないが、ポリテトラフルオロエチレン(PTFE)系、スチレン−ブタジエン共重合体(SBR)系、アクリル酸エステル系、ポリイミド系及びそれら誘導体からなる群から選ばれる少なくとも1種を用いることができる。これらに分散剤、増粘剤を加えても良い。   A binder having an average particle size of 0.10 μm or more and 0.30 μm or less is used by being dispersed in water. For example, although not particularly limited, it is possible to use at least one selected from the group consisting of polytetrafluoroethylene (PTFE), styrene-butadiene copolymer (SBR), acrylate ester, polyimide, and derivatives thereof. it can. You may add a dispersing agent and a thickener to these.

本発明において、電極に含まれる結着材の量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、活物質と導電助材との接着性が維持され、集電体との密着性を十分に得ることができる。
活物質には、必要に応じて導電助材を含有しても良い。導電助材としては、特に限定されないが、炭素材料又は/及び金属微粒子が好ましい。炭素材料として、例えば、天然黒鉛、人造黒鉛、気相成長炭素繊維、カーボンナノチューブ、アセチレンブラック、ケッチェンブラック、及びファーネスブラックなどが挙げられる。金属微粒子として、例えば、銅、アルミニウム、ニッケル及びこれら少なくとも1種を含む合金が挙げられる。また、無機材料の微粒子にめっきを施したものでも良い。これら炭素材料及び金属微粒子は1種類でも良いし、2種類以上用いても良い。
In the present invention, the amount of the binder contained in the electrode is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the adhesiveness of an active material and a conductive support material will be maintained, and adhesiveness with a collector can fully be acquired.
The active material may contain a conductive additive as necessary. Although it does not specifically limit as a conductive support material, A carbon material or / and a metal microparticle are preferable. Examples of the carbon material include natural graphite, artificial graphite, vapor-grown carbon fiber, carbon nanotube, acetylene black, ketjen black, and furnace black. Examples of the metal fine particles include copper, aluminum, nickel, and an alloy containing at least one of these. Further, the fine particles of inorganic material may be plated. These carbon materials and metal fine particles may be used alone or in combination of two or more.

導電助材の量は、活物質100重量部に対して、好ましくは1重量部以上30重量部以下、より好ましくは1重量部以上15重量部以下である。上記範囲であれば、電極の導電性が確保される。
本発明の非水電解質二次電池用電極に用いられる集電体は、例えば、銅、アルミニウム、ニッケル、チタン及びこれら少なくとも1種を含む合金または導電性を有する高分子が挙げられる。形状としては、箔状、メッシュ状、パンチング状、エキスパンド状、または発泡構造体が挙げられる。集電体の空隙度を「集電体を含む単位体積内に存在する孔の内容積の合計」と定義する。
The amount of the conductive additive is preferably 1 part by weight or more and 30 parts by weight or less, more preferably 1 part by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the active material. If it is the said range, the electroconductivity of an electrode will be ensured.
Examples of the current collector used in the electrode for the nonaqueous electrolyte secondary battery of the present invention include copper, aluminum, nickel, titanium, an alloy containing at least one of these, or a polymer having conductivity. Examples of the shape include a foil shape, a mesh shape, a punching shape, an expanded shape, and a foam structure. The porosity of the current collector is defined as “the total volume of the pores existing in the unit volume including the current collector”.

ここで、メッシュ状とは、金属または導電性高分子の繊維を織布あるいは不織布にしたものである。繊維の太さは50μm以上2000μm以下であることが好ましい。50μm未満の場合は集電体が破壊されやすい傾向がある。一方、2000μmより太い繊維を用いた場合、後述の空隙度とするには目開きが大きくなりすぎ、メッシュによる活物質混合物の保持が困難になる傾向がある。   Here, the mesh shape is a woven or non-woven fabric of metal or conductive polymer fibers. The thickness of the fiber is preferably 50 μm or more and 2000 μm or less. When the thickness is less than 50 μm, the current collector tends to be easily broken. On the other hand, when a fiber thicker than 2000 μm is used, the opening becomes too large to make the porosity described later, and it tends to be difficult to hold the active material mixture by the mesh.

パンチング状とは、板に円形、四角形、または六角形などの孔を開けたものであり、金属からなるものがパンチングメタルである。板状であるので、空隙度は開孔率(平面視して、板の単位面積あたりの孔の合計面積の割合)に対応する。開孔率は孔径と骨(地金の部分)の比率、孔の形状、及び孔の配列によって決定される。孔の形状は特に限定されないが、開孔率上昇の観点から、丸孔千鳥型(千鳥型の開き角は例えば60°)、角孔並列型が好ましい。   The punching shape is a plate in which holes such as a circle, a rectangle, or a hexagon are formed, and a metal made of metal is punching metal. Since it is plate-shaped, the porosity corresponds to the hole area ratio (the ratio of the total area of the holes per unit area of the plate in plan view). The hole area ratio is determined by the ratio between the hole diameter and the bone (metal part), the hole shape, and the hole arrangement. The shape of the hole is not particularly limited, but from the viewpoint of increasing the hole area ratio, a round hole zigzag type (open angle of the zigzag type is 60 °, for example) and a square hole parallel type are preferable.

エキスパンド状とは、板に千鳥状の切れ目を入れ、引き伸ばして網目状にしたもので、金属からなるものがエキスパンドメタルである。エキスパンドメタルの空隙度は開孔率に対応し、開孔率は孔径と骨の比率、孔の形状、及び孔の配列によって決定される。
発泡構造体とは、骨格がスポンジのように3次元の網目状になっているもので、その孔は連続または分散している。構造は孔径及び気孔率で決定される。連続孔の形状や孔径は特に限定されないが、高い比表面積を有する構造が好ましい。
The expanded shape is a staggered cut made on a plate and stretched to form a mesh. Expanded metal is made of metal. The porosity of the expanded metal corresponds to the hole area ratio, which is determined by the hole diameter / bone ratio, the hole shape, and the hole arrangement.
The foam structure has a three-dimensional network structure like a sponge, and the pores are continuous or dispersed. The structure is determined by the pore size and porosity. The shape and diameter of the continuous holes are not particularly limited, but a structure having a high specific surface area is preferable.

本発明の集電体に用いられる金属は、電極作動電位で安定であればよく、作動電位がリチウム基準で0.7V以下では、銅及びその合金が好ましく、0.7V以上ではアルミニウム及びその合金が好ましい。
本発明の電極は、例えば、活物質、導電助材、及び結着材を水に分散させた活物質混合物を集電体に担持することによって作製される。活物質混合物を集電体の空孔部及びその外面に充填及び塗布した後に、水を除去することによって電極を作製する。
The metal used for the current collector of the present invention is only required to be stable at the electrode operating potential. When the operating potential is 0.7 V or less on the basis of lithium, copper and its alloys are preferable, and when 0.7 V or more, aluminum and its alloys are used. Is preferred.
The electrode of the present invention is produced, for example, by supporting an active material mixture in which an active material, a conductive additive, and a binder are dispersed in water on a current collector. After filling and applying the active material mixture to the pores and the outer surface of the current collector, the electrode is prepared by removing water.

活物質混合物を作製する方法は、特に限定されないが、活物質、導電助材、結着材、及び水を均一に混合できることから、撹拌造粒装置、ボールミル、プラネタリミキサ、ジェットミル、薄膜旋回型ミキサーを用いることが好ましい。活物質混合物の混練方法は、特に限定されないが、活物質、導電助材を混合した後に、水に分散させた結着材を加えて作製しても良いし、活物質、導電助材、及び結着材を混合した後に水を加えて作製しても良い。   The method for producing the active material mixture is not particularly limited, but since the active material, conductive additive, binder, and water can be uniformly mixed, agitation granulator, ball mill, planetary mixer, jet mill, thin film swirl type It is preferable to use a mixer. The kneading method of the active material mixture is not particularly limited, and after mixing the active material and the conductive aid, it may be prepared by adding a binder dispersed in water, or the active material, the conductive aid, and You may produce by adding water, after mixing a binder.

集電体上への活物質混合物の担持方法は、特に限定されないが、例えば活物質混合物を集電体上へ分散させ、加圧して電極を形成後に水を除去する方法、活物質混合物のみでシートを形成し、集電体へ圧着させることで電極形成し水を除去する方法、活物質混合物をドクターブレード、ダイコータ等により塗布した後に溶媒を除去する方法、スプレーにより集電体に付着させた後に溶媒を除去する方法、活物質混合物に集電体を含浸させた後に溶媒を除去する方法が好ましい。特に、加圧・圧着等により電極を形成する方法が好ましい。水を除去する方法は、オーブンや真空オーブンを用いた乾燥が簡単であり好ましい。雰囲気としては、室温あるいは高温とした空気、不活性ガス、真空状態などが挙げられる。   The method for supporting the active material mixture on the current collector is not particularly limited. For example, the active material mixture is dispersed on the current collector and pressurized to form an electrode, and then water is removed. Forming a sheet and forming an electrode by pressure bonding to the current collector to remove water, a method of removing the solvent after applying the active material mixture with a doctor blade, die coater, etc., attached to the current collector by spraying A method of removing the solvent later and a method of removing the solvent after impregnating the current collector into the active material mixture are preferable. In particular, a method of forming an electrode by pressure, pressure bonding or the like is preferable. The method for removing water is preferable because it is easy to dry using an oven or a vacuum oven. As the atmosphere, air at room temperature or high temperature, an inert gas, a vacuum state, or the like can be given.

得られた電極は、非水電解質二次電池の負極として用いても良いし、正極として用いても良い。正極として用いる場合には、リチウムイオンをあらかじめ挿入しておいても良い。
<負極と正極の容量比及び面積比>
本発明の非水電解質二次電池用電極を用いて作製した二次電池における正極と負極の電気容量の比は、下記式(1)を満たすことが望ましい。
The obtained electrode may be used as a negative electrode of a nonaqueous electrolyte secondary battery or may be used as a positive electrode. When used as a positive electrode, lithium ions may be inserted in advance.
<Capacity ratio and area ratio of negative electrode to positive electrode>
As for the ratio of the electric capacity of the positive electrode and the negative electrode in the secondary battery produced using the electrode for nonaqueous electrolyte secondary battery of the present invention, it is desirable to satisfy the following formula (1).

0.7≦B/A≦1.3 (1)
但し、上記式(1)中、Aは正極1cmあたりの電気容量を示し、Bは負極1cmあたりの電気容量を示す。
B/Aが0.7未満である場合は、過充電時に負極の電位が負極集電体とリチウムが反応する電位またはリチウムの析出電位になる場合があり、一方、B/Aが1.3より大きい場合は電池反応に関与しない負極用活物質多いために副反応が起こる場合がある。
0.7 ≦ B / A ≦ 1.3 (1)
In the above formula (1), A represents the electric capacity per 1 cm 2 of the positive electrode, and B represents the electric capacity per 1 cm 2 of the negative electrode.
When B / A is less than 0.7, the potential of the negative electrode may become a potential at which the negative electrode current collector reacts with lithium or a lithium deposition potential during overcharging, while B / A is 1.3. If it is larger, a side reaction may occur due to the large amount of the negative electrode active material not involved in the battery reaction.

本発明の非水電解質二次電池における正極と負極との面積比は、特に限定されないが、下記式(2)を満たすことが好ましい。
1≦D/C≦1.2 (2)
但し、Cは正極の面積、Dは負極の面積を示す。D/Cが1未満である場合は、例えば先述のB/A=1の場合、負極の容量が正極よりも小さくなるため、過充電時に負極の電位がリチウムの析出電位になる恐れがある。一方、D/Cが1.2より大きい場合は、正極と接していない部分の負極が大きいため、電池反応に関与しない負極用活物質が副反応を起こす場合がある。正極及び負極の面積の制御は特に限定されないが、例えば、電極作製の際、塗工幅を制御することによって行うことができる。
Although the area ratio of the positive electrode to the negative electrode in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, it is preferable to satisfy the following formula (2).
1 ≦ D / C ≦ 1.2 (2)
However, C shows the area of a positive electrode, D shows the area of a negative electrode. When D / C is less than 1, for example, when B / A = 1 as described above, the capacity of the negative electrode is smaller than that of the positive electrode, so that the potential of the negative electrode may become a lithium deposition potential during overcharge. On the other hand, when D / C is larger than 1.2, the negative electrode in the portion not in contact with the positive electrode is large, and thus the negative electrode active material that does not participate in the battery reaction may cause a side reaction. Although control of the area of a positive electrode and a negative electrode is not specifically limited, For example, in the case of electrode preparation, it can carry out by controlling the coating width.

本発明の非水電解質二次電池に用いるセパレータと負極との面積比は特に限定されないが、下記式(3)を満たすことが好ましい。
1≦F/E≦1.5 (3)
但し、Eは負極の面積、Fはセパレータの面積を示す。F/Eが1未満である場合は、正極と負極とが接触し、1.5より大きい場合は外装に要する体積が大きくなり、電池の容量密度及び出力密度が低下する場合がある。
The area ratio between the separator and the negative electrode used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but preferably satisfies the following formula (3).
1 ≦ F / E ≦ 1.5 (3)
However, E shows the area of a negative electrode and F shows the area of a separator. When F / E is less than 1, the positive electrode and the negative electrode are in contact with each other. When F / E is greater than 1.5, the volume required for the exterior increases, and the capacity density and output density of the battery may decrease.

<セパレータ>
本発明の非水電解質二次電池に用いるセパレータとしては、多孔質材料または不織布等が挙げられる。セパレータの材質としては、電解液を構成する有機溶媒に対して溶解しないものが好ましく、具体的にはポリエチレンやポリプロピレンのようなポリオレフィン系ポリマー、ポリエチレンテレフタレートのようなポリエステル系ポリマー、セルロース、ガラスのような無機材料が挙げられる。
<Separator>
Examples of the separator used in the nonaqueous electrolyte secondary battery of the present invention include porous materials and nonwoven fabrics. The material of the separator is preferably one that does not dissolve in the organic solvent that constitutes the electrolytic solution. Specifically, a polyolefin polymer such as polyethylene or polypropylene, a polyester polymer such as polyethylene terephthalate, cellulose, or glass. Inorganic materials.

セパレータの厚みは1〜500μmが好ましい。1μm未満であるとセパレータの機械的強度の不足により破断し、内部短絡する傾向がある。一方、500μmより厚い場合、電池の内部抵抗と、正極・負極の電極間距離が増大することにより、電池の負荷特性が低下する傾向がある。より好ましい厚みは、10〜300μmである。
<非水電解質>
本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、非水溶媒に溶質を溶解させた電解液、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質などを用いることができる。
The thickness of the separator is preferably 1 to 500 μm. If it is less than 1 μm, it tends to break due to insufficient mechanical strength of the separator and cause an internal short circuit. On the other hand, when it is thicker than 500 μm, the load resistance of the battery tends to be lowered due to an increase in the internal resistance of the battery and the distance between the positive electrode and the negative electrode. A more preferable thickness is 10 to 300 μm.
<Nonaqueous electrolyte>
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, or an electrolytic solution in which a solute is dissolved in a non-aqueous solvent. A gel electrolyte or the like can be used.

非水溶媒としては、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン及び環状エーテルなどが例示される。鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル及び鎖状エーテルなどが例示される。また、上記に加えアセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いても良い。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は1種類で用いてもよいし、2種類以上混合しても用いてもよいが、後述の溶質を溶解させやすさ、リチウムイオンの伝導性の高さから、2種類以上混合した溶媒を用いることが好ましい。また、高分子に電解液をしみこませたゲル状電解質も用いることができる。   The non-aqueous solvent preferably includes a cyclic aprotic solvent and / or a chain aprotic solvent. Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones and cyclic ethers. Examples of the chain aprotic solvent include chain carbonates, chain carboxylic acid esters and chain ethers. In addition to the above, a solvent generally used as a solvent for nonaqueous electrolytes such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, sulfolane, dioxolane, propionic acid Methyl and the like can be used. These solvents may be used alone or as a mixture of two or more. However, in view of the ease of dissolving the solute described below and the high conductivity of lithium ions, a mixture of two or more of these solvents. Is preferably used. A gel electrolyte in which an electrolyte is impregnated in a polymer can also be used.

溶質は、特に限定されないが、例えば、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、LiN(SOCFなどは溶媒に溶解しやすいことから好ましい。電解液に含まれる溶質の濃度は、0.5mol/L以上2.0mol/L以下であることが好ましい。0.5mol/L未満では所望のリチウムイオン伝導性が発現しない場合があり、一方、2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。非水電解質には、難燃剤、安定化剤などの添加剤が微量含まれてもよい。 The solute is not particularly limited. For example, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), LiN (SO 2 CF 3 ) 2, etc. are dissolved in the solvent. It is preferable because it is easy to do. The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If it is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if it is higher than 2.0 mol / L, the solute may not be dissolved any more. The non-aqueous electrolyte may contain a trace amount of additives such as a flame retardant and a stabilizer.

<非水電解質二次電池>
本発明の非水電解質二次電池の正極及び負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、一方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよいが、バイポーラ型とする場合、集電体を介した正極と負極の液絡を防止するため、導電材料及び/または絶縁材料が正極と負極間に配置されている。また、バイポーラ電極である場合は、隣り合うバイポーラ電極の正極側と負極側との間にセパレータを配置し、各正極側と負極側とが対向した層内は、液絡を防止するため正極及び負極の周辺部に絶縁材料が配置されている。
<Nonaqueous electrolyte secondary battery>
The positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery of the present invention may be in the form in which the same electrode is formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on one side. In other words, in the case of a bipolar type, in order to prevent a liquid junction between the positive electrode and the negative electrode through the current collector, the conductive material and / or the insulating material is interposed between the positive electrode and the negative electrode. Has been placed. In the case of a bipolar electrode, a separator is disposed between the positive electrode side and the negative electrode side of the adjacent bipolar electrode, and the positive electrode and An insulating material is disposed around the negative electrode.

本発明の非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極、及びセパレータには、リチウムイオン伝導を担う非水電解質が含浸している。非水電解質としてゲル状のものを使用する場合は、電解質が正極及び負極に含浸していても、正極・負極間のみにある状態でもよい。ゲル状電解質により正極・負極間が直接接触していなければ、セパレータを使用する必要はない。   The nonaqueous electrolyte secondary battery of the present invention may be one obtained by winding or laminating a separator disposed between the positive electrode side and the negative electrode side. The positive electrode, the negative electrode, and the separator are impregnated with a nonaqueous electrolyte that is responsible for lithium ion conduction. In the case of using a gel-like nonaqueous electrolyte, the electrolyte may be impregnated in the positive electrode and the negative electrode, or may be in a state only between the positive electrode and the negative electrode. If the positive electrode and the negative electrode are not in direct contact with the gel electrolyte, it is not necessary to use a separator.

本発明の非水電解質二次電池に用いる非水電解質の量は、特に限定されないが、電池容量1Ahあたり、0.1mL以上であることが好ましい。0.1mL未満の場合、電極反応に伴うリチウムイオンの伝導が追いつかず、所望の電池性能が発現しない場合がある。
非水電解質は、あらかじめ正極、負極及びセパレータに含ませてもよいし、正極側と負極側との間にセパレータを配置したものを倦回、あるいは積層した後に添加してもよい。ゲル状の非水電解質を使用する場合は、モノマーを含浸させた後ゲル状にしても、予めゲル状にした後に正極と負極の間に配置してもよい。
The amount of the nonaqueous electrolyte used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, but is preferably 0.1 mL or more per 1 Ah of battery capacity. If it is less than 0.1 mL, the conduction of lithium ions accompanying the electrode reaction may not catch up, and the desired battery performance may not be exhibited.
The nonaqueous electrolyte may be added to the positive electrode, the negative electrode, and the separator in advance, or may be added after winding or laminating a separator disposed between the positive electrode side and the negative electrode side. When using a gel-like non-aqueous electrolyte, it may be gelled after impregnation with a monomer, or may be placed between the positive electrode and the negative electrode after gelling in advance.

本発明の非水電解質二次電池は、上記積層体を倦回、あるいは複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、シート形の金属缶で外装してもよい。外装には発生したガス等を放出するための機構が備わっていてもよい。また、劣化した当該非水電解質二次電池の機能を回復させるための添加剤を電池外部から注入する機構が備わっていてもよい。積層体の積層数は、所望の電池容量を発現するまで積層させることができる。積層の場合は、電極の積層方向に圧力が加えられていても良い。セル内部で圧力を加えても、外装の外側から圧力を加えても良い。   The non-aqueous electrolyte secondary battery of the present invention may be wound or laminated with a laminate film after the laminate is wound, or may be rectangular, elliptical, cylindrical, coin-shaped, button-shaped, or sheet-shaped. It may be packaged with a metal can. The exterior may be provided with a mechanism for releasing the generated gas or the like. Further, a mechanism for injecting an additive for recovering the function of the deteriorated nonaqueous electrolyte secondary battery from the outside of the battery may be provided. The number of stacked layers can be stacked until a desired battery capacity is exhibited. In the case of stacking, pressure may be applied in the stacking direction of the electrodes. Pressure may be applied inside the cell or may be applied from the outside of the exterior.

本発明の非水電解質二次電池は、複数接続することによって二次電池モジュールとすることができる。本発明のモジュールは、所望の大きさ、容量、電圧によって適宜直列、並列に接続することによって作製することができる。また、各電池の充電状態の確認、安全性向上のため、前記二次電池モジュールに制御回路が付属されていても良い。   The nonaqueous electrolyte secondary battery of the present invention can be made into a secondary battery module by connecting a plurality of nonaqueous electrolyte secondary batteries. The module of the present invention can be manufactured by connecting in series or in parallel as appropriate depending on the desired size, capacity, and voltage. Further, a control circuit may be attached to the secondary battery module in order to confirm the state of charge of each battery and improve safety.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。
(1)電極の製造
電極用活物質(LiTi12及びTiO(B))をそれぞれ100重量部に対して、導電助材(アセチレンブラック)を6.8重量部と、種々の水分散結着材(バインダー)の固形分換算6.8重量部とを混合して活物質混合物を作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples, In the range which does not change the summary, it can change suitably.
(1) Manufacture of electrodes The active materials for electrodes (Li 4 Ti 5 O 12 and TiO 2 (B)) are each 100 parts by weight, the conductive auxiliary material (acetylene black) is 6.8 parts by weight, An active material mixture was prepared by mixing 6.8 parts by weight in terms of solid content of the water-dispersed binder (binder).

電極用活物質(LiTi12)は、文献("Zero-Strain Insertion Material of Li [Li1/3Ti5/3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995))に記載されている方法で作製した。すなわち、まず二酸化チタンと水酸化リチウムを、チタンとリチウムとのモル比を5:4となるように混合し、次にこの混合物を窒素雰囲気下800℃で12時間加熱することによって作製することができる。 The active material for electrodes (Li 4 Ti 5 O 12 ) can be found in the literature ("Zero-Strain Insertion Material of Li [Li1 / 3Ti5 / 3] O4 for Rechargeable Lithium Cells" J. Electrochem. Soc., Volume 142, Issue 5, pp. 1431-1435 (1995)). That is, first, titanium dioxide and lithium hydroxide are mixed so that the molar ratio of titanium and lithium is 5: 4, and then this mixture is heated at 800 ° C. for 12 hours in a nitrogen atmosphere. it can.

電極用活物質 TiO(B)は、文献(Minoru Inaba,“TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries”, Journal of power sources, 189, 580 (2009) )に記載されている方法で作製した。すなわち、炭酸カリウムとアナターゼ型TiOをモル比1:4で混合し、空気中1000℃で24時間焼成を2回行うことによりKTiを得た後に、1M塩化水素溶液中で3日浸漬させることによりイオン交換を行い、500℃で30分脱水・乾燥させることにより作製した。 The active material for electrodes TiO 2 (B) is the literature (Minoru Inaba, “TiO2 (B) as a promising high potential negative electrode for large-size lithium-ion batteries”, Journal of power sources, 189, 580 (2009)). It was produced by the method described in 1. That is, potassium carbonate and anatase TiO 2 were mixed at a molar ratio of 1: 4, and K 2 Ti 4 O 9 was obtained by firing twice at 1000 ° C. for 24 hours in air, and then in 1M hydrogen chloride solution. Ion exchange was performed by soaking for 3 days, and it was prepared by dehydration and drying at 500 ° C. for 30 minutes.

電極用活物質(LiTi12)、電極用活物質TiO(B)の平均粒子径(D50)は、レーザー回折散乱法粒度分布測定装置により測定した。
水分散結着材として、ポリテトラフルオロエチレン(PTFE)、PTFEとテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)との1:1混合物、スチレン−ブタジエン共重合体(SBR)、アクリル酸エステル重合体の各粒子を用いた。
The average particle diameter (D50) of the electrode active material (Li 4 Ti 5 O 12 ) and the electrode active material TiO 2 (B) was measured by a laser diffraction scattering particle size distribution analyzer.
As water dispersion binder, polytetrafluoroethylene (PTFE), 1: 1 mixture of PTFE and tetrafluoroethylene-hexafluoropropylene copolymer (FEP), styrene-butadiene copolymer (SBR), acrylic ester Each particle of polymer was used.

各水分散結着材の平均粒子径(D50)は、レーザー回折散乱法粒度分布測定装置により測定した。
先ず電極用活物質と導電助材を自動乳鉢を用いて混合した。混合粉体をステンレスボウルに移し、水分散結着材(固形分濃度約50%)を加え、アルミナ乳棒を用いて予備混合した後、水を加えて固形分濃度75%に調整し、均一になるまで混合することにより、活物質混合物を作製した。
The average particle size (D50) of each water-dispersed binder was measured with a laser diffraction / scattering particle size distribution analyzer.
First, the electrode active material and the conductive additive were mixed using an automatic mortar. Transfer the mixed powder to a stainless steel bowl, add a water dispersion binder (solid content concentration of about 50%), pre-mix using an alumina pestle, and then add water to adjust the solid content concentration to 75%. The active material mixture was prepared by mixing until

前述の活物質混合物をアルミニウムエキスパンドメタル(目開き1mm×2mm、厚み0.1mm)上に分散し、上部から加圧することにより成形した後に、170℃で真空乾燥することにより電極を作製した。乾燥後、アルミニウムエキスパンドメタルを含む電極の厚さは0.5mmであった。実施例においては、この電極を電池用負極として使用した。   The above-mentioned active material mixture was dispersed on an aluminum expanded metal (aperture 1 mm × 2 mm, thickness 0.1 mm), molded by pressing from above, and then vacuum dried at 170 ° C. to produce an electrode. After drying, the thickness of the electrode containing aluminum expanded metal was 0.5 mm. In the examples, this electrode was used as a negative electrode for a battery.

各電極は、表1に示すとおり、電極用活物質の種類、電極用活物質の粒子径、結着材の種類、結着材の粒子径で分類した(実施例1〜12、比較例1〜4)。
(2)電極の状態
これらの電極(実施例1〜12、比較例1〜4)の状態を目視で観察した。その結果を表1に示す。落下の有無は、電極を持ち上げ、5分間保持することにより判定した。
As shown in Table 1, each electrode was classified by the type of electrode active material, the particle size of the electrode active material, the type of binder, and the particle size of binder (Examples 1 to 12, Comparative Example 1). ~ 4).
(2) State of electrode The state of these electrodes (Examples 1-12, Comparative Examples 1-4) was observed visually. The results are shown in Table 1. The presence or absence of the fall was determined by lifting the electrode and holding it for 5 minutes.

(3)対極(正極)の製造
正極用活物質のLi1.1Al0.1Mn1.8は、文献("Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries" Electrochemical and Solid-State Letters Volume9, Issue12, Pages A557 (2006))に記載されている方法で作製した。
(3) Production of Counter Electrode (Positive Electrode) Li 1.1 Al 0.1 Mn 1.8 O 4 as an active material for positive electrode is described in literature (“Lithium Aluminum Manganese Oxide Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries”). "Electrochemical and Solid-State Letters Volume 9, Issue 12, Pages A557 (2006)).

すなわち、二酸化マンガン、炭酸リチウム、水酸化アルミニウム、及びホウ酸の水分散液を調製し、スプレードライ法で混合粉末を作製した。このとき、二酸化マンガン、炭酸リチウム及び水酸化アルミニウムの量は、リチウム、アルミニウム及びマンガンのモル比が1.1:0.1:1.8となるように調製した。次に、この混合粉末を空気雰囲気下900℃で12時間加熱した後、再度650℃で24時間加熱した。最後に、この粉末を95℃の水で洗浄後、乾燥させることによって正極用活物質を作製した。   That is, an aqueous dispersion of manganese dioxide, lithium carbonate, aluminum hydroxide, and boric acid was prepared, and a mixed powder was prepared by a spray drying method. At this time, the amounts of manganese dioxide, lithium carbonate and aluminum hydroxide were adjusted so that the molar ratio of lithium, aluminum and manganese was 1.1: 0.1: 1.8. Next, the mixed powder was heated at 900 ° C. for 12 hours in an air atmosphere, and then again heated at 650 ° C. for 24 hours. Finally, the powder was washed with water at 95 ° C. and dried to prepare a positive electrode active material.

この正極用活物質を100重量部、導電助材(アセチレンブラック)を6.8重量部、及びPTFE結着材(ダイキン工業製)(固形分濃度50wt%)を固形分6.8重量部混合して活物質混合物を作製した。活物質混合物の作製方法は、前述の電極と同様に行った。すなわち、先ず電極用活物質と導電助材を自動乳鉢を用いて混合した。混合粉体をステンレスボウルに移し、水分散結着材(固形分濃度約50%)を加え、アルミナ乳棒を用いて予備混合した後、水を加えて固形分濃度75%に調整し、均一になるまで混合することにより、活物質混合物を作製した。この活物質混合物をアルミニウムエキスパンドメタル(目開き1mm×2mm、厚み0.1mm)上に分散し、上部から加圧することにより成形した後に、170℃で真空乾燥することにより電極を作製した。   100 parts by weight of this positive electrode active material, 6.8 parts by weight of conductive additive (acetylene black), and PTFE binder (manufactured by Daikin Industries) (solid content concentration 50 wt%) mixed with 6.8 parts by weight of solid content Thus, an active material mixture was prepared. The production method of the active material mixture was performed in the same manner as the above-described electrode. That is, first, the electrode active material and the conductive additive were mixed using an automatic mortar. Transfer the mixed powder to a stainless steel bowl, add a water dispersion binder (solid content concentration of about 50%), pre-mix using an alumina pestle, and then add water to adjust the solid content concentration to 75%. The active material mixture was prepared by mixing until This active material mixture was dispersed on an aluminum expanded metal (aperture 1 mm × 2 mm, thickness 0.1 mm), molded by pressing from above, and then vacuum dried at 170 ° C. to produce an electrode.

(4)非水電解質二次電池の作製
LiTi12/Li1.1Al0.1Mn1.8非水電解質二次電池またはTiO(B)/Li1.1Al0.1Mn1.8非水電解質二次電池を次のとおり作製した。
最初に、得られた正極/セパレータ/得られた負極、の順に積層した。負極は、それぞれ実施例1〜12、比較例1〜4に係るものである。セパレータはセルロース不織布(厚さ25μm、面積20cm)を2枚用いた。次に、正極及び負極に引き出し電極となるアルミニウムタブを振動溶接させた後に、袋状のアルミラミネートシートに入れた。
(4) Production of non-aqueous electrolyte secondary battery Li 4 Ti 5 O 12 / Li 1.1 Al 0.1 Mn 1.8 O 4 non-aqueous electrolyte secondary battery or TiO 2 (B) / Li 1.1 Al A 0.1 Mn 1.8 O 4 nonaqueous electrolyte secondary battery was fabricated as follows.
First, the obtained positive electrode / separator / obtained negative electrode were laminated in this order. A negative electrode concerns on Examples 1-12 and Comparative Examples 1-4, respectively. As the separator, two cellulose nonwoven fabrics (thickness 25 μm, area 20 cm 2 ) were used. Next, an aluminum tab serving as a lead electrode was vibration welded to the positive electrode and the negative electrode, and then placed in a bag-shaped aluminum laminate sheet.

袋の中に、非水電解液(プロピレンカーボネート/エチルメチルカーボネート=3/7vol%、LiPF 1mol/L)を1mL入れた後に、袋の出口を引き出し電極ごと熱封止することによって非水電解質二次電池を作製した。
(5)容量維持率測定
作製した非水電解質二次電池を外装の外側から金属板で挟んだ状態で、電圧1.5〜3V、8時間で充電または放電が終わる電流値(1/8Cレート)で充放電サイクル試験を行った。サイクルには充放電試験装置(HJ1005SD8、北斗電工社製)を用い、サイクル数は20サイクルとした。
After 1 mL of a non-aqueous electrolyte (propylene carbonate / ethyl methyl carbonate = 3/7 vol%, LiPF 6 1 mol / L) was placed in the bag, the non-aqueous electrolyte was sealed by pulling out the outlet of the bag and the electrode. A secondary battery was produced.
(5) Capacity maintenance rate measurement Current value (1 / 8C rate) when charging or discharging is completed in 8 hours with a voltage of 1.5 to 3 V in a state where the manufactured nonaqueous electrolyte secondary battery is sandwiched between metal plates from the outside of the exterior. The charge / discharge cycle test was conducted. A charge / discharge test apparatus (HJ1005SD8, manufactured by Hokuto Denko) was used for the cycle, and the number of cycles was 20 cycles.

(6)総合結果
製造された電極(実施例1〜12、比較例1〜4)について、電極の状態、容量維持率を表1に示す。
(6) Overall results Table 1 shows the electrode states and capacity retention ratios for the manufactured electrodes (Examples 1 to 12, Comparative Examples 1 to 4).

Figure 2014093271
Figure 2014093271

実施例3と比較例1に示すように電極用活物質の平均粒子径が20μmを超えると、同一の結着材を使用したとしても集電体から活物質の落下が起こる。また、比較例2に示すように、結着材粒子の平均粒子径が0.30μmを超えても、集電体から活物質の落下が起こる。
実施例5と比較例3に示すように、電極用活物質の平均粒子径が1μm未満である場合、同一の結着材を使用したとしても集電体から活物質の落下が起こる。
As shown in Example 3 and Comparative Example 1, when the average particle diameter of the electrode active material exceeds 20 μm, the active material falls from the current collector even if the same binder is used. Further, as shown in Comparative Example 2, even when the average particle diameter of the binder particles exceeds 0.30 μm, the active material falls from the current collector.
As shown in Example 5 and Comparative Example 3, when the average particle diameter of the electrode active material is less than 1 μm, the active material falls from the current collector even if the same binder is used.

実施例6と比較例4に示すように、結着材の平均粒子径が0.10μm未満である場合、同一の電極用活物質を使用したとしても集電体から活物質の落下が起こる。
電極用活物質の落下が無かった電極を用いた非水電解質二次電池は、20回のサイクル測定における、20サイクル目の放電容量の1サイクル目の放電容量に対する割合(容量維持率)はすべて90%以上と良好な結果を示した。
As shown in Example 6 and Comparative Example 4, when the average particle diameter of the binder is less than 0.10 μm, the active material falls from the current collector even when the same electrode active material is used.
In the non-aqueous electrolyte secondary battery using the electrode in which the active material for the electrode did not fall, the ratio of the discharge capacity at the 20th cycle to the discharge capacity at the 1st cycle (capacity maintenance ratio) in all 20 cycle measurements. The result was as good as 90% or more.

これらのことから、集電体と電極用活物質混合物との良好な接着性、形状安定性を付与するためには、平均粒子径が1〜20μmである電極用活物質と、平均粒子径が0.10〜0.30μmである結着材を組み合わせることが最適であることがわかる。
なお、電極用活物質の平均粒子径aと結着材の平均粒子径bとの比率b/aに関しては、「ある範囲内であれば電極の状態は良好、その範囲から出ていれば良好でない」とか、「あるしきい値以下であれば良好、そのしきい値を超えていれば良好でない」といった基準を適用することができない。計算すればわかるように、例えば比較例4の比率b/aは0.013、実施例1の比率b/aは0.028、比較例2の比率b/aは0.057であり、実施例7の比率b/aは0.17となっており、前記したような基準を当てはめることができないことが分かる。そこで本発明者は、電極用活物質の平均粒子径aと結着材の平均粒子径bとの比率b/aよりも、電極用活物質の平均粒子径aの範囲と結着材の平均粒子径bの範囲に注目し、それぞれの好ましい範囲を規定することとした。
From these things, in order to provide the favorable adhesiveness and shape stability of a collector and the active material mixture for electrodes, the active material for electrodes whose average particle diameter is 1-20 micrometers, and an average particle diameter are It can be seen that it is optimal to combine the binders of 0.10 to 0.30 μm.
In addition, regarding the ratio b / a between the average particle diameter a of the electrode active material and the average particle diameter b of the binder, “the electrode state is good within a certain range, and good if it is out of the range. It is not possible to apply a criterion such as “not good” or “good if it is below a certain threshold, not good if it exceeds that threshold”. As can be seen from the calculation, for example, the ratio b / a of Comparative Example 4 is 0.013, the ratio b / a of Example 1 is 0.028, and the ratio b / a of Comparative Example 2 is 0.057. The ratio b / a in Example 7 is 0.17, and it can be seen that the above-mentioned criterion cannot be applied. Therefore, the present inventor has determined that the range of the average particle diameter a of the electrode active material and the average of the binder are larger than the ratio b / a of the average particle diameter a of the electrode active material and the average particle diameter b of the binder. Paying attention to the range of the particle diameter b, each preferred range is defined.

Claims (10)

平均粒子径が1μm以上20μm以下である、リチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物と、平均粒子径が0.10μm以上0.30μm以下の結着材とを含む活物質混合物を含む、非水電解質二次電池用電極。   Binding with transition metal oxide and / or transition metal composite oxide having an average particle size of 1 μm or more and 20 μm or less and capable of insertion / extraction of lithium ions, and an average particle size of 0.10 μm or more and 0.30 μm or less The electrode for nonaqueous electrolyte secondary batteries containing the active material mixture containing material. 前記遷移金属がチタンである、請求項1に記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the transition metal is titanium. 前記遷移金属複合酸化物がスピネル型構造を有するチタン酸リチウムである請求項2に記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to claim 2, wherein the transition metal composite oxide is lithium titanate having a spinel structure. 前記遷移金属酸化物が二酸化チタンである請求項2に記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to claim 2, wherein the transition metal oxide is titanium dioxide. 前記活物質混合物は負極に用いられる請求項1〜請求項4のいずれか1項に記載の非水電解質二次電池用電極。   The electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the active material mixture is used for a negative electrode. 前記結着材がテトラフルオロエチレン系、スチレン−ブタジエンゴム系、アクリル酸エステル系、メタクリル酸エステル系の何れか1種若しくは2種以上を混合した粒子からなる請求項1〜請求項5のいずれか1項に記載の非水電解質二次電池用電極。   6. The binder according to claim 1, wherein the binder is made of particles obtained by mixing one or more of tetrafluoroethylene, styrene-butadiene rubber, acrylate ester, and methacrylate ester. 2. An electrode for a nonaqueous electrolyte secondary battery according to item 1. 請求項1〜請求項6のいずれか1項に記載の非水電解質二次電池用電極を用いた非水電解質二次電池。   The nonaqueous electrolyte secondary battery using the electrode for nonaqueous electrolyte secondary batteries of any one of Claims 1-6. 平均粒子径が1μm以上20μm以下である、リチウムイオンの挿入・脱離が可能な遷移金属酸化物又は/及び遷移金属複合酸化物と、平均粒子径が0.10μm以上0.30μm以下の結着材とを水に分散させて活物質混合物を得る工程と、
前記工程で得られた活物質混合物を、集電体に塗工して水を除去する工程と、を含む非水電解質二次電池用電極の製造方法。
Binding with transition metal oxide and / or transition metal composite oxide having an average particle size of 1 μm or more and 20 μm or less and capable of insertion / extraction of lithium ions, and an average particle size of 0.10 μm or more and 0.30 μm or less A step of dispersing the material in water to obtain an active material mixture;
Applying the active material mixture obtained in the step to a current collector to remove water, and a method for producing an electrode for a non-aqueous electrolyte secondary battery.
前記活物質混合物の固形分濃度が70%以上である請求項8に記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 8, wherein the solid content concentration of the active material mixture is 70% or more. 前記活物質混合物を加圧・成形して前記電極を作製する請求項8又は請求項9に記載の非水電解質二次電池用電極の製造方法。   The manufacturing method of the electrode for nonaqueous electrolyte secondary batteries of Claim 8 or Claim 9 which pressurizes and shape | molds the said active material mixture and produces the said electrode.
JP2012244762A 2012-11-06 2012-11-06 Nonaqueous electrolyte secondary battery electrode and battery using the same Active JP6331246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244762A JP6331246B2 (en) 2012-11-06 2012-11-06 Nonaqueous electrolyte secondary battery electrode and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244762A JP6331246B2 (en) 2012-11-06 2012-11-06 Nonaqueous electrolyte secondary battery electrode and battery using the same

Publications (2)

Publication Number Publication Date
JP2014093271A true JP2014093271A (en) 2014-05-19
JP6331246B2 JP6331246B2 (en) 2018-05-30

Family

ID=50937197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244762A Active JP6331246B2 (en) 2012-11-06 2012-11-06 Nonaqueous electrolyte secondary battery electrode and battery using the same

Country Status (1)

Country Link
JP (1) JP6331246B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021941A1 (en) * 2017-07-25 2019-01-31 株式会社村田製作所 Lithium ion secondary battery
WO2019021940A1 (en) * 2017-07-25 2019-01-31 株式会社村田製作所 Lithium-ion secondary cell

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226004A (en) * 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd Secondary battery
JPH11250937A (en) * 1998-02-27 1999-09-17 Fuji Film Celltec Kk Nonaqueous electrolyte secondary battery
JP2003100298A (en) * 2001-09-21 2003-04-04 Nippon Zeon Co Ltd Secondary battery and binder composition for electrode thereof
JP2007273405A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2009032538A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Negative electrode and lithium secondary battery
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
WO2011055760A1 (en) * 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
JP2011150931A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Binder composition for electrode of lithium secondary battery
JP2012018775A (en) * 2010-07-06 2012-01-26 Toyota Motor Corp Lithium ion secondary battery and battery pack
JP2012030989A (en) * 2010-07-28 2012-02-16 Hitachi Chem Co Ltd Titanium dioxide, method of manufacturing the same, electrode for lithium ion battery using the same, and lithium ion battery
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
WO2012043765A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2013179041A (en) * 2012-02-01 2013-09-09 Fujifilm Corp Composition for secondary battery electrode and secondary battery
WO2015025764A1 (en) * 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
JP2015159067A (en) * 2014-02-25 2015-09-03 富士フイルム株式会社 Composite solid electrolytic composition, battery electrode sheet arranged by use thereof, all-solid type secondary battery, and method for manufacturing battery electrode sheet and all-solid type secondary battery

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226004A (en) * 1991-09-13 1993-09-03 Asahi Chem Ind Co Ltd Secondary battery
JPH11250937A (en) * 1998-02-27 1999-09-17 Fuji Film Celltec Kk Nonaqueous electrolyte secondary battery
JP2003100298A (en) * 2001-09-21 2003-04-04 Nippon Zeon Co Ltd Secondary battery and binder composition for electrode thereof
JP2007273405A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2009032538A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Negative electrode and lithium secondary battery
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
WO2011055760A1 (en) * 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
JP2011150931A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Binder composition for electrode of lithium secondary battery
JP2012018775A (en) * 2010-07-06 2012-01-26 Toyota Motor Corp Lithium ion secondary battery and battery pack
JP2012030989A (en) * 2010-07-28 2012-02-16 Hitachi Chem Co Ltd Titanium dioxide, method of manufacturing the same, electrode for lithium ion battery using the same, and lithium ion battery
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
WO2012043765A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2013179041A (en) * 2012-02-01 2013-09-09 Fujifilm Corp Composition for secondary battery electrode and secondary battery
WO2015025764A1 (en) * 2013-08-19 2015-02-26 日本ケミコン株式会社 Electrochemical capacitor
JP2015159067A (en) * 2014-02-25 2015-09-03 富士フイルム株式会社 Composite solid electrolytic composition, battery electrode sheet arranged by use thereof, all-solid type secondary battery, and method for manufacturing battery electrode sheet and all-solid type secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021941A1 (en) * 2017-07-25 2019-01-31 株式会社村田製作所 Lithium ion secondary battery
WO2019021940A1 (en) * 2017-07-25 2019-01-31 株式会社村田製作所 Lithium-ion secondary cell
JPWO2019021940A1 (en) * 2017-07-25 2020-03-26 株式会社村田製作所 Lithium ion secondary battery
JPWO2019021941A1 (en) * 2017-07-25 2020-03-26 株式会社村田製作所 Lithium ion secondary battery
CN110998960A (en) * 2017-07-25 2020-04-10 株式会社村田制作所 Lithium ion secondary battery
US11228054B2 (en) 2017-07-25 2022-01-18 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
US11271250B2 (en) 2017-07-25 2022-03-08 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
CN110998960B (en) * 2017-07-25 2023-07-07 株式会社村田制作所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP6331246B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
WO2013176130A1 (en) Nonaqueous electrolyte secondary battery
JP6746506B2 (en) Non-aqueous electrolyte secondary battery
CN115172654B (en) Lithium supplementing negative electrode plate and secondary battery
US10516162B2 (en) Non-aqueous electrolyte secondary battery, and battery pack obtained by connecting plurality of non-aqueous electrolyte secondary batteries
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP6163613B2 (en) Lithium secondary battery
JP2009026514A (en) Nonaqueous electrolyte secondary battery
CA3040031C (en) Battery module for starting a power equipment
KR20130085915A (en) Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2013131427A (en) Laminated battery
KR101675610B1 (en) Lithium secondary battery
JP2014006971A (en) Nonaqueous electrolyte secondary battery and battery pack including the same
JPWO2015162885A1 (en) Nonaqueous electrolyte secondary battery
JP6136057B2 (en) Nonaqueous electrolyte secondary battery and secondary battery module
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
KR20210098314A (en) Non-aqueous electrolytic power storage device and method for manufacturing non-aqueous electrolytic power storage device
WO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using same
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
JP6331246B2 (en) Nonaqueous electrolyte secondary battery electrode and battery using the same
JP2007242348A (en) Lithium-ion secondary battery
JP2013191484A (en) Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2015225761A (en) Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
JP2014093272A (en) Electrode active material mixture, electrode formed by use thereof, and nonaqueous electrolytic secondary battery
JP2016207583A (en) Sheet-like active material particle-containing molding for secondary battery electrode, secondary battery electrode, and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R150 Certificate of patent or registration of utility model

Ref document number: 6331246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250