WO2012144439A1 - Electrode for electrical storage device, and electrical storage device - Google Patents

Electrode for electrical storage device, and electrical storage device Download PDF

Info

Publication number
WO2012144439A1
WO2012144439A1 PCT/JP2012/060134 JP2012060134W WO2012144439A1 WO 2012144439 A1 WO2012144439 A1 WO 2012144439A1 JP 2012060134 W JP2012060134 W JP 2012060134W WO 2012144439 A1 WO2012144439 A1 WO 2012144439A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
storage device
material layer
polymer
Prior art date
Application number
PCT/JP2012/060134
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 梶原
達朗 本多
真希 前川
修 小瀬
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2013510978A priority Critical patent/JPWO2012144439A1/en
Publication of WO2012144439A1 publication Critical patent/WO2012144439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for an electricity storage device and an electricity storage device including the electrode.
  • lithium ion batteries and lithium ion capacitors are expected as power storage devices having high voltage and high energy density.
  • An electrode for an electricity storage device used for such an electricity storage device is produced by applying and drying a mixture of polymer particles and active material particles on the surface of a current collector. Properties required for such polymer particles include bonding between the active material particles and adhesion between the active material particles and the current collector (hereinafter also simply referred to as “binding property”), and a step of winding the electrode. Scratch resistance of the active material (hereinafter also simply referred to as “active material layer”) applied by the subsequent cutting, etc. And so on).
  • binding property bonding between the active material particles and adhesion between the active material particles and the current collector
  • active material layer Scratch resistance of the active material
  • polymer particles used for producing an active material layer are non-conductive and therefore tend to hinder the movement of electrons. For this reason, reducing the amount of polymer particles used is effective in improving the electrical characteristics of the electricity storage device. However, if the amount of the polymer particles used is reduced, the above-described binding property and powder falling property are deteriorated, and the workability is greatly deteriorated, which is not practical. For this reason, there is a limit in reducing the amount of polymer particles used, and there is a trade-off relationship between improvement in electrical characteristics.
  • the polymer component is unevenly distributed along the thickness direction of the active material layer. For example, when the polymer component in the active material layer is relatively reduced at the interface between the current collector and the active material layer, the adhesion between the current collector and the active material layer is significantly reduced. It has been known.
  • Japanese Patent Application Laid-Open No. 10-270013 discloses that an active material layer is coated on a current collector in the vicinity of the current collector. A technique for increasing the concentration of the polymer component is disclosed.
  • some embodiments according to the present invention provide an electrode for an electricity storage device that is excellent in binding properties and powder-off properties and has excellent electrical characteristics by solving the above-described problems.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the electrode for an electricity storage device according to the present invention is: An electrode for an electricity storage device comprising a current collector and an active material layer formed on a surface of the current collector, The active material layer includes at least a polymer and an active material, The active material layer has a polymer distribution coefficient of 1.1 to 3.
  • the active material may contain a silicon active material.
  • the active material layer was formed by applying a slurry for an electrode containing at least (A) polymer particles, (B) active material particles, and (C) water on the surface of the current collector, and then drying the electrode slurry. It may include a first layer and a second layer formed by applying the electrode slurry to the surface of the first layer and further drying.
  • the thickness of the first layer can be smaller than the thickness of the second layer.
  • One or more layers may be formed on the second layer by applying the electrode slurry and further drying the slurry.
  • the ratio (Db / Da) of the average particle diameter (Da) of the (A) polymer particles to the average particle diameter (Db) of the (B) active material particles is in the range of 20-100. Can be.
  • the distribution of the polymer particles (A) is 2 to 60% by volume in a particle diameter section of 0.01 ⁇ m or more and less than 0.25 ⁇ m, and 40 to 98% by volume in a particle diameter section of 0.25 ⁇ m or more and 0.5 ⁇ m or less. Can have.
  • the average particle diameter (Db) of the (B) active material particles may be 1 to 200 ⁇ m.
  • One aspect of the electricity storage device according to the present invention is: The power storage device electrode according to any one of Application Examples 1 to 9 is provided.
  • the binding property between the current collector and the active material layer is good, the powdering property is excellent, and the electrical characteristics are also excellent.
  • the electricity storage device provided with such an electrode for electricity storage devices the charge / discharge rate characteristic which is one of the electrical characteristics is improved.
  • FIG. 1 is a cross-sectional view schematically showing an electricity storage device electrode according to the present embodiment.
  • Electrode for electricity storage device 1.1. Configuration and Features FIG. 1 is a cross-sectional view schematically showing an electricity storage device electrode according to the present embodiment. As shown in FIG. 1, the electrode 100 for an electricity storage device includes a current collector 10 and an active material layer 20 formed on the surface of the current collector 10.
  • the shape of the current collector 10 is not particularly limited, but usually a sheet-like one having a thickness of about 0.001 to 0.5 mm is used.
  • the current collector 10 is not particularly limited as long as it is made of a conductive material.
  • metal foils such as iron, copper, aluminum, nickel, and stainless steel can be used, and it is preferable to use aluminum for the positive electrode and copper for the negative electrode.
  • a nickel metal hydride secondary battery a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, and the like can be given.
  • the active material layer 20 is a layer formed by applying an electrode slurry, which will be described later, to the surface of the current collector 10 and further drying it. Since the slurry for electrodes contains (A) polymer particles and (B) active material particles, the active material layer 20 includes at least a polymer and an active material.
  • the thickness of the active material layer 20 is not particularly limited, but is usually 0.005 to 5 mm, preferably 0.01 to 2 mm.
  • the method for applying the electrode slurry to the surface of the current collector 10 is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, an immersion method, and a brush coating method. What is necessary is just to adjust suitably the quantity of the slurry for electrodes to apply
  • the method for drying the applied electrode slurry is not particularly limited. For example, drying by warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams or the like can be mentioned.
  • the drying speed is usually adjusted so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector.
  • the density of the electrode for the electricity storage device may be increased by pressing the dried current collector.
  • the pressing method include a mold press and a roll press.
  • the electrode 100 for an electricity storage device is characterized in that the polymer distribution coefficient of the active material layer 20 is in the range of 1.1 to 3, which is in the range of 1.2 to 2.5. Preferably, it is in the range of 1.4 to 2.
  • the “polymer distribution coefficient” is a coefficient defined by the following measurement method.
  • the active material layer 20 is formed on one surface of the current collector 10 by the method described above. This is divided into two to produce two electrodes 100 for an electricity storage device having the same active material layer 20.
  • a double-sided tape (product number “NW-25” manufactured by Nichiban Co., Ltd.) is pasted on an aluminum plate prepared in advance, and a Kapton tape (product number “650S” manufactured by Terraoka Co., Ltd.) is further applied on the double-sided tape. )) With the adhesive side facing up.
  • the current collector 10 is faced up and the aluminum plate produced in (3) is fixed on a horizontal plane, and then the current collector 10 is directed upward so that the angle with the aluminum plate is 90 degrees.
  • the current collector 10 is peeled off from the adhesive surface between the current collector 10 and the active material layer 20.
  • From both sides of the peeled interface that is, from the surface of the active material layer remaining on the current collector 10 to a depth of 1.5 ⁇ m (all remaining if only a thickness of 1.5 ⁇ m or less remains)
  • the active material layer 20 and the active material layer 20 having a depth of 1.5 ⁇ m from the surface of the active material layer remaining on the adhesive tape side are scraped off, and this is designated as “measurement sample A”.
  • a polymer distribution coefficient is 1, it will represent that the polymer component in the active material layer 20 is distributed uniformly. Further, if the polymer distribution coefficient is a value exceeding 1, the polymer component is unevenly distributed in the vicinity of the peeling interface between the current collector 10 and the active material layer 20, and if the polymer distribution coefficient is less than 1, the current collector is present. It can be interpreted that the polymer component in the vicinity of the peeling interface between 10 and the active material layer 20 is sparse.
  • an active material repeatedly expands and contracts in volume as lithium ions are stored and released.
  • an active material such as a carbonaceous material or a silicon material undergoes a large volume change due to insertion and extraction of lithium ions.
  • the electrode for an electricity storage device has an active material layer containing such an active material, the active material layer repeatedly expands and contracts as the electricity storage device is charged and discharged, and therefore the active material layer does not change in volume at all. There was a problem that the charge and discharge characteristics deteriorated rapidly due to peeling from the electric body.
  • the polymer distribution coefficient of the active material layer is 1.1 to 3 as in the electrode for the electricity storage device according to the present embodiment, the polymer component is sufficiently near the interface between the current collector and the active material layer. Therefore, even if the active material layer repeats a large volume expansion and contraction, the binding property between the current collector and the active material layer can be sufficiently maintained, and the powder falling property is excellent.
  • An electrode for an electricity storage device that is also excellent in electrical characteristics can be obtained.
  • the electrode for an electricity storage device according to the present embodiment has excellent binding properties and good charge / discharge characteristics. Show.
  • the density of the active material layer 20 is preferably 1.2 to 1.8 g / cm 3 , and preferably 1.3 to 1.7 g / cm 3. Is more preferably 1.4 to 1.6 g / cm 3 . If the density of the active material layer is in the above range, particularly the lower limit value or more, the polymer component sufficiently functions as a binder in the active material layer, so that the active material layer is agglomerated and peeled off, resulting in a decrease in powder fallability. Can be prevented. In addition, when the density of the active material layer is equal to or less than the upper limit value, the active material layer can sufficiently follow the flexibility of the current collector, and therefore, interface peeling between the current collector and the active material layer can be prevented.
  • the “density of the active material layer” is a value measured by the following measuring method. That is, by the method described above, an active material layer having an area C (cm 2 ) and a thickness D ( ⁇ m) is formed on one surface of the current collector to produce an electrode for an electricity storage device.
  • the thickness of the active material layer 20 when the thickness of the active material layer 20 is T, the unit included in the active material layer 20 from the surface in contact with the current collector 10 to the thickness direction T / 2.
  • the polymer content per volume is Ma (g / cm 3 )
  • the polymer content per unit volume contained in the active material layer 20 from the thickness direction T / 2 to T is Mb (g / cm 3). 3 )
  • the ratio (Ma / Mb) is preferably in the range of 3 to 6, and more preferably in the range of 3.5 to 5.
  • the ratio (Ma / Mb) When the ratio (Ma / Mb) is in the above range, the binding property between the current collector and the active material layer is good, and an electrode for an electricity storage device that is excellent in powder fall-off property and excellent in electrical characteristics can be obtained.
  • the ratio (Ma / Mb) is less than the above range, the polymer component that functions as a binder is relatively less at the interface between the current collector and the active material layer, and thus the adhesion between the current collector and the active material layer. Tends to decrease.
  • the ratio (Ma / Mb) exceeds the above range, the binder component as an insulator is localized at the interface between the current collector and the active material layer, thereby increasing the internal resistance of the electrode and impairing the electrical characteristics. There is a tendency to be.
  • the ratio (Ma / Mb) is calculated from the following measurement method.
  • an electricity storage device electrode 100 in which the active material layer 20 is formed on one surface of the current collector 10 is prepared.
  • the active material layer 20 is cut from the surface in contact with the current collector 10 in the thickness direction T / 2. If it cannot be cut, the upper layer portion from the thickness direction T / 2 to T may be scraped off.
  • the active material layer 20 cut or scraped in this way is referred to as “measurement sample B”.
  • all the active material layer 20 remaining on the current collector 10 is scraped off, and this is referred to as “measurement sample A”.
  • the electricity storage device electrode 100 according to the present embodiment is preferably produced by a method in which an active material layer 20 is formed by multilayer coating of electrode slurry described later. Hereinafter, this method will be specifically described.
  • an electrode slurry described later is applied to the surface of the current collector 10, and is preferably dried at a temperature of 100 ° C. or higher to form a first layer that is a lower layer of the active material layer 20.
  • an electrode slurry which will be described later, to the surface of the first layer, it is preferably dried at a temperature of 100 ° C. or higher to form a second layer that is an upper layer of the active material layer. That is, the active material layer 20 is formed by applying a slurry for electrodes described later on the surface of the current collector 10 in a multilayer manner.
  • the first layer of the active material layer 20 is considered to have a porous structure. Then, it is considered that the electrode slurry is infiltrated into the first layer by applying the electrode slurry to the surface of the first layer. Thereby, the content of the polymer component in the first layer in contact with the current collector 10 is increased. Therefore, according to this method, it is possible to easily produce an electrode for an electricity storage device in which the binding property between the current collector and the active material layer is good.
  • the thickness of the first layer is preferably thinner than the thickness of the second layer. Since a large amount of water is contained in the electrode slurry described later, it is considered that when the electrode slurry is applied to the surface of the first layer, water penetrates into the first layer. The second layer formed by drying in this state tends to have a rough surface. However, by making the thickness of the first layer thinner than the thickness of the second layer, the amount of water soaked becomes appropriate, and a good surface state in which the surface roughness of the second layer is reduced can be formed.
  • one or more layers serving as the upper layer of the active material layer 20 are formed on the second layer by applying an electrode slurry described later, and preferably drying at a temperature of 100 ° C. or higher. Further, it may be formed.
  • the active material layer 20 is formed by collecting, on the surface of the current collector 10, an electrode slurry containing (A) polymer particles, (B) active material particles, and (C) water. It is formed by applying to the surface of the body 10 and further drying.
  • a slurry for an electrode that can be used for producing an electrode for an electricity storage device according to the present embodiment will be described in detail.
  • the electrode slurry used in the present embodiment is a dispersion for forming an active material layer by coating and drying on the surface of a current collector.
  • the electrode slurry used in the present embodiment is a ratio (Db / Da) between the average particle diameter (Da) of the polymer particles (A) and the average particle diameter (Db) of the active material particles (B). Is preferably in the range of 20 to 100, more preferably in the range of 25 to 95, and particularly preferably in the range of 30 to 90.
  • the component (A) and / or the component (B) has surface tension. It has been confirmed that the film moves along the thickness direction of the coating film (hereinafter, also referred to as “migration”). Specifically, the component (A) and / or the component (B) tend to move to the side opposite to the surface in contact with the current collector of the coating film, that is, the gas-solid interface side where water evaporates.
  • the electrode characteristics are deteriorated or the adhesion between the current collector and the active material layer is impaired.
  • a problem occurs.
  • the component (A) acting as a binder bleeds (transfers) to the gas-solid interface side of the active material layer, and the amount of the component (A) at the interface between the current collector and the active material layer is relatively small.
  • the electrical characteristics deteriorate due to the inhibition of the penetration of the electrolytic solution into the active material layer, and the binding between the current collector and the active material layer tends to decrease and peeling tends to occur. is there.
  • the smoothness of the surface of the active material layer tends to be impaired by bleeding of the component (A).
  • the electrode slurry used in the present embodiment preferably has a spinnability of 30 to 80%, more preferably 33 to 79%, and particularly preferably 35 to 78%. .
  • the spinnability is less than the above range, the leveling property is insufficient when the electrode slurry is applied onto the current collector, so that it is difficult to obtain the uniformity of the electrode thickness. If such an electrode having a non-uniform thickness is used, an in-plane distribution of charge / discharge reaction occurs, making it difficult to achieve stable battery performance.
  • the spinnability exceeds the above range, dripping easily occurs when the electrode slurry is applied onto the current collector, and it is difficult to obtain an electrode with stable quality. If the spinnability is within the above range, the occurrence of these problems can be suppressed, and an electrode having both good electrical characteristics and binding properties can be produced.
  • A Polymer particles
  • the polymer particles contained in the electrode slurry used in the present embodiment are components that function as a binder for binding the active material particles to the current collector (B). is there.
  • the average particle diameter (Da) of the polymer particles is preferably in the range of 0.05 to 0.4 ⁇ m, more preferably in the range of 0.06 to 0.39 ⁇ m, and 0.07 to A range of 0.38 ⁇ m is particularly preferable.
  • the average particle diameter (Da) of the polymer particles is in the above range, the balance of the adsorption amount of the (A) polymer particles to the (B) active material particle surface becomes good, and the occurrence of migration is suppressed. be able to.
  • the polymer particles preferably satisfy the following requirements [1] and [2].
  • Polymer particles should be present in a particle size interval of 0.25 ⁇ m to 0.5 ⁇ m in an amount of 40 to 98% by volume, preferably 45 to 97% by volume, more preferably 50 to 96% by volume.
  • the ratio of the polymer particles in the above requirements [1] and [2] is in the above range, it is possible to effectively suppress the uneven distribution of the polymer particles at the interface between the obtained active material layer and air. Therefore, the penetration of the electrolytic solution into the active material layer can be promoted. This is preferable because electrical characteristics such as charge / discharge characteristics are improved and the binding between the current collector and the active material layer can be improved to prevent peeling and the like. Furthermore, when the abundance ratio of the polymer particles in the above requirements [1] and [2] is in the above range, there is a tendency that the powder falling property can be improved.
  • the average particle diameter (Da) and particle size distribution of the polymer particles are measured by using a particle size distribution measuring apparatus based on the light scattering method.
  • a particle size distribution measuring apparatus examples include Coulter LS230, LS100, LS13 320 (manufactured by Coulter, Inc.) and FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.).
  • This particle size distribution measuring apparatus is not intended to evaluate only primary particles of polymer particles, but also evaluates secondary particles formed by aggregation of primary particles. Therefore, the particle size distribution obtained by this particle size distribution measuring apparatus can be used as an index of the dispersion state of the (A) polymer particles contained in the electrode slurry.
  • the polymer constituting the polymer particles is not particularly limited as long as it functions as a binder for binding the active material particles to the current collector (B).
  • (meth) acrylic acid Known materials such as ester (co) polymers, styrene- (meth) acrylic acid ester copolymers, styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, and polybutadiene can be used.
  • the polymer is preferably a rubbery polymer having a glass transition temperature (hereinafter referred to as “Tg”) of ⁇ 80 to + 50 ° C., more preferably ⁇ 75 to + 30 ° C., particularly preferably ⁇ 70 to + 10 ° C. It is preferable that If a polymer with a Tg too low is used, the battery capacity may be reduced. If a polymer with a Tg too high is used, the binding force may be reduced, or the battery characteristics may vary greatly with temperature. is there.
  • Tg glass transition temperature
  • the method for producing the polymer particles is not particularly limited, and examples thereof include emulsion polymerization, seeding emulsion polymerization, suspension polymerization, seeding suspension polymerization, and solution precipitation polymerization.
  • a solution-dispersion method is also possible in which polymer particles are dissolved or swollen in a solvent, stirred and mixed in a medium incompatible with the solvent, and then desolvated.
  • the polymer particles can be synthesized in one stage by separately adding a dispersion stabilizer to the polymerization system during the reaction using emulsion polymerization or suspension polymerization among the above polymerization methods. 2 to 60% by volume in a particle size interval of 0.01 ⁇ m or more and less than 0.25 ⁇ m and 40 to 40 ⁇ m in a particle size interval of 0.25 ⁇ m or more and 0.5 ⁇ m or less so as to satisfy the above requirements [1] and [2].
  • a method of synthesizing a liquid medium dispersion in which polymer particles having a distribution of 98% by volume are dispersed in a liquid medium in one step is preferable from the viewpoint of improving productivity.
  • Such a dispersion can be prepared by controlling the particle size distribution of the polymer particles by the known synthesis method described above.
  • the (A) polymer particles not only use a liquid medium dispersion containing the polymer particles synthesized in one stage as described above, but also include small particle size polymer particle components and large particle size polymer particles. It is also possible to obtain the components in two stages by separately obtaining the components by the polymerization method and mixing them.
  • the liquid particles of the polymer particles having a mode diameter of 0.01 ⁇ m or more and less than 0.25 ⁇ m are used.
  • a method of mixing 40 to 98 parts by mass is used.
  • the polymer particles after mixing the liquid medium dispersion (I) and the liquid medium dispersion (II) are 100 parts by mass in total.
  • the "moderate particle size" is the median value of the most frequent interval obtained from the particle size distribution measured using a particle size distribution measuring apparatus based on the light scattering method for the liquid medium dispersion.
  • liquid medium dispersion (I) of polymer particles having a mode particle size of 0.01 ⁇ m or more and less than 0.25 ⁇ m is more than 60 parts by mass based on the polymer particles (mode particle size)
  • the liquid medium dispersion of polymer particles having a particle size of 0.25 ⁇ m to 0.5 ⁇ m is less than 40 parts by mass with respect to the polymer particles), and the electrode slurry is applied to the current collector and dried.
  • the liquid medium is evaporated, relatively small polymer particles move (migrate) toward the air interface due to the influence of the surface tension accompanying the evaporation of the liquid medium.
  • the polymer particles are unevenly distributed on the electrode surface, there is a tendency that transfer of electrons with the electrolytic solution is hindered.
  • the amount of polymer particles is relatively small, so that the adhesive force between the active material layer and the current collector tends to decrease and the binding property tends to be impaired. is there.
  • the electrical characteristics and the binding property between the active material layer and the current collector tend to be impaired.
  • Examples of the polymerizable unsaturated monomer (A) for obtaining polymer particles include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, ethoxyethyl acrylate, and methyl methacrylate.
  • Ethylenically unsaturated carboxylic acid esters such as 2-ethylhexyl methacrylate, n-decyl methacrylate, 2-hydroxyethyl methacrylate, isoamyl crotonic acid, n-hexyl crotonic acid, dimethylaminoethyl methacrylate, monomethyl maleate; , 3-butadiene, 1,3-pentadiene, 2,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3 -Conjugated diene compounds such as heptadiene; acrylic acid, meta Ethylenically unsaturated carboxylic acids such as lauric acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride; aromatic vinyl compounds such as styrene, ⁇ -methylstyren
  • the polymer particles are given a crosslinked structure by dissolving the polymer particles in a dispersion solvent or an electrolytic solution. This is preferable in that it is difficult to perform.
  • crosslinkable monomers examples include divinyl compounds such as divinylbenzene; polyfunctional dimethacrylates such as diethylene glycol dimethacrylate and ethylene glycol dimethacrylate; polyfunctional trimethacrylates such as trimethylolpropane trimethacrylate; Examples thereof include polyfunctional diacrylates such as polyethylene glycol diacrylate and 1,3-butylene glycol diacrylate; polyfunctional triacrylates such as trimethylolpropane triacrylate.
  • the crosslinkable monomer is usually used in a proportion of 0.1 to 20% by mass, preferably 0.5 to 15% by mass, based on the entire polymerizable monomer.
  • liquid medium dispersions of polymer particles obtained by emulsion polymerization or suspension polymerization described above include ammonia, alkali metal (lithium, sodium, potassium, rubidium, cesium, etc.) hydroxide, inorganic ammonium compounds (ammonium chloride).
  • alkali metal lithium, sodium, potassium, rubidium, cesium, etc.
  • inorganic ammonium compounds ammonium chloride.
  • Etc. an aqueous solution of an organic amine compound (ethanolamine, diethylamine, etc.) can be added to adjust the pH.
  • the binding between the current collector and the active material layer can be improved by adjusting the pH to be in the range of 5 to 13, preferably 6 to 12, using ammonia or alkali metal hydroxide. Is preferable.
  • the polymer particles (A) used in the electrode slurry can be used as polymer particles as they are, as a liquid medium dispersion of polymer particles obtained by emulsion polymerization or suspension polymerization. It is not limited to this.
  • the dispersion medium used in the polymerization is a non-aqueous liquid medium
  • the non-aqueous liquid medium may be replaced with water to disperse the polymer particles in water.
  • the polymer particles are powder particles, they may be dispersed in a dispersion medium to prepare the electrode slurry according to the present embodiment.
  • the content of (A) polymer particles in the electrode slurry used in the present embodiment is usually 0.3 to 10 parts by mass in the positive electrode with respect to 100 parts by mass of (B) active material particles, The amount is preferably 0.5 to 5 parts by mass.
  • the negative electrode is usually 0.2 to 5 parts by mass, preferably 0.5 to 2.5 parts by mass. According to the slurry for electrodes used in the present embodiment, a sufficient binding force can be obtained even when the content of the polymer particles is set to a small amount of about half to 1/10 of the conventional amount. An electric storage device using the electrode according to the above can obtain a high capacity and a charging speed.
  • the material constituting the active material particles (B) contained in the electrode slurry used in the present embodiment is not particularly limited, and an optimal material is appropriately selected according to the type of the target power storage device. can do.
  • an optimal material is appropriately selected according to the type of the target power storage device. can do.
  • both of the negative electrode active material and the positive electrode active material can be those used for manufacturing an electrode of a normal lithium ion secondary battery.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers; conductive polymers such as polyacene;
  • a X B Y O Z (however, , A is an alkali metal or transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin and manganese, O represents an oxygen atom, and X, Y and Z are each 1.10>X> 0.05, 4.00>Y> 0.85, 5.00>Z> 1.5)
  • Si-containing alloy Si Examples include compounded compounds containing other metal oxides and the like.
  • silicon (Si) as an active material as an anode active material
  • silicon can occlude up to 22 pieces of lithium per 5 atoms (5Si + 22Li ⁇ Li 22 Si 5).
  • the theoretical silicon capacity reaches 4200 mAh / g.
  • silicon undergoes a large volume change when it occludes lithium.
  • the graphite-based negative electrode active material expands in volume up to about 1.2 times by occlusion of lithium, whereas the silicon-based active material increases in volume up to about 4.4 times by occlusion of lithium. Volume expansion.
  • the silicon-based active material is pulverized, repeatedly peeled off from the current collector, and separated from the active material by repeated expansion and contraction, and the conductive network inside the active material layer is severed. Therefore, the cycle characteristics are extremely deteriorated in a short time.
  • the above-mentioned problem does not occur, and the electrode for an electricity storage device that exhibits good electrical characteristics Can be produced.
  • the polymer particles can firmly bind the silicon-based active material, and at the same time, even if the silicon-based active material expands by occluding lithium, the (A) polymer particles expand. This is considered to be because the silicon-based active material can be kept in a state of being shrunk and firmly bound.
  • the silicon-based active material refers to an active material mainly composed of silicon (Si), and more specifically refers to an active material having a silicon content of 90% by mass or more.
  • the amount of silicon-based active material used is that from the viewpoint of maintaining sufficient binding properties, When the mass is 100 parts by mass, it is preferably 4 to 40 parts by mass, more preferably 5 to 35 parts by mass, and particularly preferably 5 to 30 parts by mass. If the amount of the silicon-based active material used relative to the total mass of the active material particles is within the above range, the volume expansion of the carbon-based active material is smaller than the volume expansion of the silicon-based active material due to charge / discharge. Expansion and contraction accompanying charging / discharging of the active material layer containing the substance can be suppressed, and adhesion between the active material layer and the current collector can be further improved.
  • the carbon-based active material used in combination with the silicon-based active material the above-described carbonaceous materials can be preferably used, and among them, graphite is more preferable.
  • any material that can occlude / release lithium ions can be used without particular limitation.
  • sulfides such as TiS 2 , TiS 3 , MoS 3 , LiFeS 2 , Cu 2 V 2 O 3 , V 2 O—P 2 O 5 , MoO 2 , V 2 O 5 , V 6 O 13 , LiCoO 2 , Transition metal oxides such as LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 0.4 Mn 1.6 O 4 , LiCo 0.3 Ni 0.7 O 2 , V 2 O 5 , MnO 2 , LiCoPO 4 , Spinel structures such as olipine-based oxides such as LiFePO 4 , LiCoPO 4 F and LiFePO 4 F, Li 4 Ti 5 O 12 , Li 4 Fe 0.5 Ti 5 O 12 and Li 4 Zn 0.5 Ti 5 O 12 Examples thereof include lithium titanium oxides and mixtures thereof.
  • organic compounds such as conductive polyimide
  • any active material used in a normal nickel metal hydride secondary battery can be used.
  • a hydrogen storage alloy can be used as the negative electrode active material.
  • nickel oxyhydroxide, nickel hydroxide, or the like can be used as the positive electrode active material.
  • the average particle diameter (Db) of the active material particles is selected so as to satisfy the ratio (Db / Da) described above, but is usually in the range of 1 to 200 ⁇ m, and in the range of 10 to 100 ⁇ m. Preferably, it is in the range of 20 to 50 ⁇ m.
  • the average particle diameter (Db) of the active material particles means that the particle size distribution is measured using a particle size distribution measuring apparatus based on a laser diffraction method, and the cumulative frequency is 50% in volume percentage. It is a value of a particle diameter (D50).
  • a laser diffraction particle size distribution measuring apparatus examples include HORIBA LA-300 series, HORIBA LA-920 series (above, manufactured by Horiba, Ltd.), and the like. This particle size distribution measuring apparatus does not only evaluate the primary particles of the active material particles, but also evaluates secondary particles formed by aggregation of the primary particles. Therefore, the average particle diameter (Db) obtained by this particle size distribution measuring apparatus can be used as an index of the dispersion state of (B) active material particles contained in the electrode slurry.
  • the average particle diameter (Db) of the active material particles (B) is determined by centrifuging the slurry for the electrode to precipitate the active material particles (B), and then removing the supernatant liquid to settle the active material particles (B) It is obtained by measuring the substance particles by the above method.
  • the electrode slurry used in the present embodiment contains (C) water.
  • C) water By containing water, the stability of the electrode slurry is improved, and the electrode can be produced with good reproducibility. Further, the drying rate is faster than that of a high boiling point solvent (for example, N-methylpyrrolidone, etc.) generally used in electrode slurries, and improvement in productivity and migration suppression can be expected by shortening the drying time.
  • a high boiling point solvent for example, N-methylpyrrolidone, etc.
  • the conductivity-imparting agent carbon such as graphite and activated carbon is used in the lithium ion secondary battery.
  • nickel metal hydride secondary battery cobalt oxide is used for the positive electrode, and nickel powder, cobalt oxide, titanium oxide, carbon, or the like is used for the negative electrode.
  • examples of carbon include ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerenes. Among these, ketjen black, acetylene black, and furnace black are preferable.
  • the amount of the conductivity-imparting agent used is usually 1 to 20 parts by mass, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material particles (B).
  • a non-aqueous medium having a normal boiling point of 80 to 350 ° C. may be added from the viewpoint of improving the coating property.
  • the non-aqueous medium include amides such as N-methylpyrrolidone, dimethylformamide and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane and tetralin; 2-ethyl-1-hexanol, 1-nonanol Alcohols such as lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate and butyl lactate; o-toluidine, m-toluidine, p Amines such as toluidine; amides such as N, N-
  • a thickener may be added to the electrode slurry used in the present embodiment from the viewpoint of improving the coatability.
  • the thickener include celluloses such as carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof; polycarboxylic acids such as poly (meth) acrylic acid and modified poly (meth) acrylic acid Acids, and alkali metal salts thereof; polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, and fumaric acid Water-soluble polymers such as a saponified product of a copolymer of an acid and a vinyl ester; Among these, particularly preferred thickeners are alkali metal salts of carboxymethyl cellulose, alkali metal salts of poly (meth) acrylic acid, and the like.
  • the use ratio of the thickener is usually 5 to 200% by mass, preferably based on the total polymer particle mass (total solid content). Is 10 to 150% by mass, more preferably 20 to 100% by mass.
  • the slurry for an electrode used in the present embodiment includes (A) polymer particles, (B) active material particles, (C) water, and additives used as necessary. Can be prepared by mixing. These can be mixed and stirred using a normal method, and for example, a stirrer, a defoaming machine, a bead mill, a high-pressure homogenizer, or the like can be used. The preparation of the electrode slurry is preferably performed under reduced pressure. Thereby, it can prevent that a bubble arises in the electrode layer obtained.
  • the mixing and stirring for preparing the electrode slurry used in the present embodiment includes a mixer capable of stirring to such an extent that no agglomerates of active material particles remain in the slurry, and sufficient dispersion conditions as necessary. It is necessary to select.
  • the degree of dispersion can be measured with a particle gauge, but should be mixed and dispersed so that there are no aggregates larger than at least 100 ⁇ m.
  • the mixer include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
  • the power storage device includes the above-described power storage device electrode, and further includes an electrolytic solution and is manufactured according to a conventional method using components such as a separator.
  • a negative electrode and a positive electrode are overlapped via a separator, and this is wound into a battery container according to a battery shape, put into a battery container, an electrolyte is injected into the battery container, and sealing is performed.
  • the method of doing is mentioned.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the electrolytic solution may be liquid or gel as long as it is used for a normal power storage device, and may be selected from those exhibiting a function as a battery according to the type of the negative electrode active material and the positive electrode active material.
  • any conventionally known lithium salts can be used, LiClO 4, LiBF 4, LiPF 6, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid carboxylate, etc.
  • a potassium hydroxide aqueous solution having a conventionally known concentration of 5 mol / liter or more can be used.
  • the solvent for dissolving the electrolyte is not particularly limited.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, Examples include ethers such as 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide, and these can be used alone or as a mixture of two or more.
  • Synthesis and preparation of polymer particle dispersions 3.1.1. Synthesis of polymer particle dispersion A In a reactor, 100 parts of water, 42 parts of butadiene, 30 parts of styrene, 8 parts of acrylonitrile, 18 parts of methyl methacrylate and 2 parts of itaconic acid, and a chain transfer agent 1 part of t-dodecyl mercaptan as a surfactant, 1.5 parts of sodium alkyldiphenyl ether disulfonate as a surfactant, 0.4 part of potassium persulfate as an initiator, and 0.3 part of sodium carbonate were added with stirring. Polymerization was performed at 0 ° C.
  • the reaction was terminated at a polymerization conversion of 96%.
  • the reactor was started with 10 parts of water, 14 parts of butadiene, 15 parts of styrene and 6 parts of methyl methacrylate, 0.1 part of sodium alkyldiphenyl ether disulfonate as a surfactant, After adding 0.2 parts of potassium persulfate and 0.1 part of sodium carbonate as an agent and continuing the polymerization reaction at 80 ° C. for 8 hours, the reaction was terminated. The polymerization conversion rate at this time was 98%.
  • a polymer particle dispersion is classified as “liquid medium dispersion (II)” (same in Table 1).
  • Polymer particle dispersion C mode diameter 0.40 ⁇ m -Polymer particle dispersion
  • D mode diameter 0.26 ⁇ m
  • Polymer Particle Dispersions P1 to P9 Polymer Particle Dispersion A and Polymer Particle Dispersion B obtained as described above are mixed at a solid content mass ratio of 10:90 to disperse polymer particles.
  • a liquid P1 was obtained.
  • the obtained polymer particle dispersion P1 was measured for particle size distribution using a particle size distribution measuring apparatus (manufactured by Otsuka Electronics Co., Ltd., model “FPAR-1000”) based on the dynamic light scattering method.
  • the average particle diameter (Da) of the combined particle dispersion P1 was 0.35 ⁇ m.
  • the polymer particle dispersion P1 contains 11% by volume of polymer particles having a particle size of 0.01 ⁇ m or more and less than 0.25 ⁇ m, and 89 volumes of polymer particles having a particle size of 0.25 ⁇ m or more and 0.5 ⁇ m or less. % Content was confirmed. The data was calculated on a volume basis.
  • polymer particle dispersions P2 to P9 were prepared in the same manner as the polymer particle dispersion P1, and their particle size distribution was measured. The measurement results are also shown in Table 1.
  • the electrode slurry S1 was prepared by stirring and mixing for 5 minutes at 1800 rpm and 1800 rpm for 1.5 minutes under vacuum.
  • (A) the average particle diameter (Da) of the polymer particles is determined by centrifuging a part of the obtained electrode slurry, and measuring the supernatant liquid using a dynamic light scattering method as a measurement principle. It is a value obtained by measuring the particle size distribution using a distribution measuring apparatus (manufactured by Otsuka Electronics Co., Ltd., type “FPAR-1000”).
  • the graphite used as the active material particles (B) is a fine product by grinding commercially available graphite (manufactured by Hitachi Chemical Co., Ltd., product name “MAGD”) in an agate mortar and changing the grinding time. By performing the conversion, graphites having different average particle diameters (Db) described in Table 2 were obtained.
  • the average particle diameter (Db) of the graphite used as (B) active material particles described in Table 2 is obtained by centrifuging the obtained electrode slurry, allowing the graphite to settle, and removing the supernatant liquid. It is a value obtained by measuring the product with a laser diffraction particle size distribution measuring device (HORIBA LA-300 series, manufactured by Horiba, Ltd.).
  • a silicon powder (99.6%) having an average particle diameter of 10 microns obtained by grinding and crushing a silicon ingot in an agate mortar and a commercially available graphite (product name “MAGD, manufactured by Hitachi Chemical Co., Ltd.) )) was mixed at a mass ratio shown in Table 3, and pulverized in nitrogen for 3 hours in a medium stirring mill apparatus. Then, it cooled to room temperature and took out in the air, without performing an antioxidant coating process, and obtained the mixed particle of the graphite and the silicon active material.
  • Mixed particles of graphite and silicon active material having different average particle diameters (Db) shown in Table 3 were obtained.
  • the average particle diameter (Db) of the mixed particles of graphite and silicon active material used as (B) active material particles shown in Table 3 is determined by centrifuging the obtained slurry for electrodes and graphite and silicon active material. And the supernatant liquid is removed, and the sediment is measured with a laser diffraction particle size distribution analyzer (HORIBA LA-300 series, manufactured by Horiba, Ltd.).
  • Electrode slurries S2 to S17 were prepared in the same manner as the electrode slurry S1 except that the compositions shown in Tables 2 and 3 were used. The characteristics of the prepared electrode slurry are also shown in Tables 2 and 3.
  • Example Doctor blade S1 prepared on the surface of a current collector made of copper foil with the electrode slurry S1 prepared in the above section "3.2. Preparation of electrode slurry” was dried so that the film thickness after drying was 40 ⁇ m. The film was uniformly coated by the method and dried at 120 ° C. for 20 minutes. Furthermore, the same electrode slurry S1 was uniformly applied by a doctor blade method so that the total film thickness after drying was 80 ⁇ m, and dried at 120 ° C. for 20 minutes. Finally, an electrode for an electricity storage device of Example 1 was obtained by pressing with a roll press machine (manufactured by Tester Sangyo Co., Ltd., gap-adjustable roll press machine “SA-601”).
  • SA-601 gap-adjustable roll press machine
  • Example 2 to 12 and Comparative Examples 1 to 5 were obtained in the same manner as for the electricity storage device electrode 1.
  • the polymer distribution coefficient of the active material layer, the ratio (Ma / Mb) and the density in the active material layer in the obtained electrode for an electricity storage device are shown together in Tables 2 and 3.
  • the polymer distribution coefficient of the active material layer in the obtained electrode for an electricity storage device was calculated as follows. First, the obtained electrode for an electricity storage device was divided into two. Next, double-sided tape (product number “NW-25”, manufactured by Nichiban Co., Ltd.) is 120 mm on an aluminum plate of 70 mm ⁇ 150 mm prepared in advance, and Kapton tape (product number, manufactured by Terraoka Co., Ltd.) on the double-sided tape. A fixing stage was prepared by attaching “650S”) with the adhesive surface facing upward. On the fixing stage, the active material layer side of the test piece obtained by cutting the obtained electrode for an electricity storage device into a size of 20 mm ⁇ 100 mm was attached and pressure-bonded with a roller.
  • double-sided tape product number “NW-25”, manufactured by Nichiban Co., Ltd.
  • Kapton tape product number, manufactured by Terraoka Co., Ltd.
  • the fixed stage to which the test piece was fixed was placed on a horizontal plane, and the test piece was pulled upward at a constant speed so that the angle with the fixing stage was 90 degrees, and the current collector was peeled off from the adhesive surface. . Thereafter, the active material layer having a depth of 1.5 ⁇ m from the surface of the active material layer remaining on the current collector side and a depth of 1.5 ⁇ m from the surface of the active material layer remaining on the adhesive tape side is scraped, and this is measured sample A It was. On the other hand, the entire active material layer was scraped off from the other divided electrode, and this was used as measurement sample B.
  • the mass A (g) of the current collector, the mass B (g) of the produced power storage device electrode, the area C (cm 2 ) of the active material layer formed on the current collector, and the thickness D ( ⁇ m) ) was measured, and the density (g / cm 3 ) of the active material layer was calculated by the following formula (2).
  • Active material layer density (g / cm 3 ) (B (g) -A ( g)) / (C (cm 2) ⁇ D ( ⁇ m) ⁇ 10 -4) ⁇ (2)
  • the upper layer (up to 40 ⁇ m from the surface) of the active material layer was scraped, and this was designated as “measurement sample B”. Further, the active material layer remaining on the current collector was scraped off and used as “measurement sample A”.
  • Each of the measurement sample A and the measurement sample B is analyzed by pyrolysis gas chromatography having a high frequency induction heating type pyrolyzer.
  • the polymer content per unit volume (Ma) contained in the measurement sample A and the measurement sample B are The content (Mb) of the polymer per unit volume contained was determined, and the ratio (Ma / Mb) was calculated.
  • the polymer distribution coefficient is out of the range of 1.1 to 3. Therefore, for the reasons described above, the binding property and powder-off property of the electricity storage device electrode, lithium ion The charge / discharge rate characteristics of the battery could not be made compatible.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Abstract

This electrode for an electrical storage device is provided with a current collector, and an active material layer formed on the surface of the current corrector. The electrode is characterized in that the active material layer includes at least a polymer and an active material, and that polymer distribution coefficient of the active material layer is 1.1-3.

Description

蓄電デバイス用電極、および蓄電デバイスElectrode for power storage device and power storage device
 本発明は、蓄電デバイス用電極、および該電極を備えた蓄電デバイスに関する。 The present invention relates to an electrode for an electricity storage device and an electricity storage device including the electrode.
 近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。特にリチウムイオン電池やリチウムイオンキャパシタは、高電圧、高エネルギー密度を有する蓄電デバイスとして期待されている。 In recent years, a power storage device having a high voltage and a high energy density has been required as a power source for driving electronic equipment. In particular, lithium ion batteries and lithium ion capacitors are expected as power storage devices having high voltage and high energy density.
 このような蓄電デバイスに使用される蓄電デバイス用電極は、重合体粒子と活物質粒子の混合物を集電体表面へ塗布・乾燥することで作製される。かかる重合体粒子に要求される特性としては、活物質粒子同士の結合および活物質粒子と集電体との接着能力(以下、単に「結着性」ともいう)や、電極を巻き取る工程での耐擦性、その後の裁断等で塗布された電極用組成物層(以下、単に「活物質層」ともいう)から活物質の微粉等が発生しない粉落ち耐性(以下、単に「粉落ち性」ともいう)等がある。これらの要求特性を電極が満足することで、電極の折り畳み方法や捲回半径等の設計が容易となり、蓄電デバイスの小型化を達成することができる。 An electrode for an electricity storage device used for such an electricity storage device is produced by applying and drying a mixture of polymer particles and active material particles on the surface of a current collector. Properties required for such polymer particles include bonding between the active material particles and adhesion between the active material particles and the current collector (hereinafter also simply referred to as “binding property”), and a step of winding the electrode. Scratch resistance of the active material (hereinafter also simply referred to as “active material layer”) applied by the subsequent cutting, etc. And so on). When the electrodes satisfy these required characteristics, the electrode folding method, the winding radius, and the like can be easily designed, and the power storage device can be reduced in size.
 一般的に、活物質層を作製するために使用される重合体粒子は、非導電性であるために電子の移動を妨げる傾向がある。このため、重合体粒子の使用量を低減することは蓄電デバイスの電気的特性の向上の点では有効である。しかしながら、重合体粒子の使用量を少なくすると前述の結着性や粉落ち性が劣化して加工性が大幅に劣化して実用的ではない。このため、重合体粒子の使用量の低減には自ずと限界があり、電気的特性の向上とトレードオフの関係があった。 Generally, polymer particles used for producing an active material layer are non-conductive and therefore tend to hinder the movement of electrons. For this reason, reducing the amount of polymer particles used is effective in improving the electrical characteristics of the electricity storage device. However, if the amount of the polymer particles used is reduced, the above-described binding property and powder falling property are deteriorated, and the workability is greatly deteriorated, which is not practical. For this reason, there is a limit in reducing the amount of polymer particles used, and there is a trade-off relationship between improvement in electrical characteristics.
 また、重合体成分は、活物質層の厚み方向に沿って偏在することが知られている。たとえば、集電体と活物質層との界面において、活物質層中の重合体成分が相対的に少なくなるような場合には、集電体と活物質層との密着性が著しく低下することが知られている。このような重合体成分の偏在を制御するために、たとえば特開平10-270013号公報には、集電体上に活物質層を多層塗工することによって、活物質層の集電体近傍における重合体成分の濃度を高くする技術が開示されている。 It is also known that the polymer component is unevenly distributed along the thickness direction of the active material layer. For example, when the polymer component in the active material layer is relatively reduced at the interface between the current collector and the active material layer, the adhesion between the current collector and the active material layer is significantly reduced. It has been known. In order to control the uneven distribution of such polymer components, for example, Japanese Patent Application Laid-Open No. 10-270013 discloses that an active material layer is coated on a current collector in the vicinity of the current collector. A technique for increasing the concentration of the polymer component is disclosed.
 しかしながら、上述した技術は、活物質層中における重合体成分の偏在を制御することにより結着性や粉落ち性を向上させることはできても、蓄電デバイスの電気的特性を十分に発揮させることはできなかった。 However, even though the above-described technology can improve the binding property and powder-off property by controlling the uneven distribution of the polymer component in the active material layer, it can sufficiently exhibit the electrical characteristics of the electricity storage device. I couldn't.
 そこで、本発明に係る幾つかの態様は、前記課題を解決することで、結着性および粉落ち性に優れると共に、電気的特性に優れる蓄電デバイス用電極を提供するものである。 Therefore, some embodiments according to the present invention provide an electrode for an electricity storage device that is excellent in binding properties and powder-off properties and has excellent electrical characteristics by solving the above-described problems.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
 [適用例1]
 本発明に係る蓄電デバイス用電極の一態様は、
 集電体と、前記集電体の表面に形成された活物質層と、を備えた蓄電デバイス用電極であって、
 前記活物質層は、重合体および活物質を少なくとも含み、
 前記活物質層の重合体分布係数が1.1~3であることを特徴とする。
[Application Example 1]
One aspect of the electrode for an electricity storage device according to the present invention is:
An electrode for an electricity storage device comprising a current collector and an active material layer formed on a surface of the current collector,
The active material layer includes at least a polymer and an active material,
The active material layer has a polymer distribution coefficient of 1.1 to 3.
 [適用例2]
 適用例1の蓄電デバイス用電極において、
 前記活物質層の厚みをTとした場合、前記集電体と接する面から厚み方向T/2までの活物質層中に含まれる単位体積当たりの重合体の含有量をMa(g/cm)、前記厚み方向T/2からTまでの活物質層中に含まれる単位体積当たりの重合体の含有量をMb(g/cm)とすると、比(Ma/Mb)が3~6の範囲にあることができる。
[Application Example 2]
In the electricity storage device electrode of Application Example 1,
When the thickness of the active material layer is T, the content of the polymer per unit volume contained in the active material layer from the surface in contact with the current collector to the thickness direction T / 2 is expressed as Ma (g / cm 3 ), When the polymer content per unit volume contained in the active material layer from the thickness direction T / 2 to T is Mb (g / cm 3 ), the ratio (Ma / Mb) is 3-6. Can be in range.
 [適用例3]
 適用例1または適用例2の蓄電デバイス用電極において、
 前記活物質が、シリコン活物質を含有することができる。
[Application Example 3]
In the electricity storage device electrode of Application Example 1 or Application Example 2,
The active material may contain a silicon active material.
 [適用例4]
 適用例1ないし適用例3のいずれか一例の蓄電デバイス用電極において、
 前記活物質層は、前記集電体の表面に(A)重合体粒子、(B)活物質粒子および(C)水を少なくとも含有する電極用スラリーを塗布した後、さらに乾燥させて形成された第1層と、前記第1層の表面に前記電極用スラリーを塗布した後、さらに乾燥させて形成された第2層と、を含むことができる。
[Application Example 4]
In the electrode for an electricity storage device of any one of Application Examples 1 to 3,
The active material layer was formed by applying a slurry for an electrode containing at least (A) polymer particles, (B) active material particles, and (C) water on the surface of the current collector, and then drying the electrode slurry. It may include a first layer and a second layer formed by applying the electrode slurry to the surface of the first layer and further drying.
 [適用例5]
 適用例4の蓄電デバイス用電極において、
 前記第1層の厚みは、前記第2層の厚みよりも薄いことができる。
[Application Example 5]
In the electrode for the electricity storage device of Application Example 4,
The thickness of the first layer can be smaller than the thickness of the second layer.
 [適用例6]
 適用例4または適用例5の蓄電デバイス用電極において、
 前記第2層の上方に、前記電極用スラリーを塗布した後、さらに乾燥させて形成された、1以上の層を有することができる。
[Application Example 6]
In the electricity storage device electrode of Application Example 4 or Application Example 5,
One or more layers may be formed on the second layer by applying the electrode slurry and further drying the slurry.
 [適用例7]
 適用例4ないし適用例6のいずれか一例の蓄電デバイス用電極において、
 前記電極用スラリーは、前記(A)重合体粒子の平均粒子径(Da)と前記(B)活物質粒子の平均粒子径(Db)との比(Db/Da)が20~100の範囲にあることができる。
[Application Example 7]
In the electrode for an electricity storage device according to any one of Application Example 4 to Application Example 6,
In the electrode slurry, the ratio (Db / Da) of the average particle diameter (Da) of the (A) polymer particles to the average particle diameter (Db) of the (B) active material particles is in the range of 20-100. Can be.
 [適用例8]
 適用例4ないし適用例7のいずれか一例の蓄電デバイス用電極において、
 前記(A)重合体粒子は、0.01μm以上0.25μm未満の粒径区間に2~60容積%および、0.25μm以上0.5μm以下の粒径区間に40~98容積%存在する分布を有することができる。
[Application Example 8]
In the electrode for the electricity storage device of any one of Application Examples 4 to 7,
The distribution of the polymer particles (A) is 2 to 60% by volume in a particle diameter section of 0.01 μm or more and less than 0.25 μm, and 40 to 98% by volume in a particle diameter section of 0.25 μm or more and 0.5 μm or less. Can have.
 [適用例9]
 適用例4ないし適用例8のいずれか一例の蓄電デバイス用電極において、
 前記(B)活物質粒子の平均粒子径(Db)は、1~200μmであることができる。
[Application Example 9]
In the electrode for the electricity storage device of any one of Application Example 4 to Application Example 8,
The average particle diameter (Db) of the (B) active material particles may be 1 to 200 μm.
 [適用例10]
 本発明に係る蓄電デバイスの一態様は、
 適用例1ないし適用例9のいずれか一例の蓄電デバイス用電極を備えたことを特徴とする。
[Application Example 10]
One aspect of the electricity storage device according to the present invention is:
The power storage device electrode according to any one of Application Examples 1 to 9 is provided.
 本発明に係る蓄電デバイス用電極によれば、集電体および活物質層間の結着性が良好であり、粉落ち性に優れ、かつ電気的特性にも優れる。また、かかる蓄電デバイス用電極を備えた蓄電デバイスによれば、電気的特性の一つである充放電レート特性が良好となる。 According to the electrode for an electricity storage device according to the present invention, the binding property between the current collector and the active material layer is good, the powdering property is excellent, and the electrical characteristics are also excellent. Moreover, according to the electricity storage device provided with such an electrode for electricity storage devices, the charge / discharge rate characteristic which is one of the electrical characteristics is improved.
図1は、本実施の形態に係る蓄電デバイス用電極を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an electricity storage device electrode according to the present embodiment.
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含む。 Hereinafter, preferred embodiments according to the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, Various modifications implemented in the range which does not change the summary of this invention are also included.
 1.蓄電デバイス用電極
 1.1.構成および特徴
 図1は、本実施の形態に係る蓄電デバイス用電極を模式的に示す断面図である。図1に示すように、蓄電デバイス用電極100は、集電体10と、集電体10の表面に形成された活物質層20とを含む。
1. Electrode for electricity storage device 1.1. Configuration and Features FIG. 1 is a cross-sectional view schematically showing an electricity storage device electrode according to the present embodiment. As shown in FIG. 1, the electrode 100 for an electricity storage device includes a current collector 10 and an active material layer 20 formed on the surface of the current collector 10.
 集電体10の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状のものが使用される。集電体10は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池の場合、鉄、銅、アルミニウム、ニッケル、ステンレス等の金属箔が挙げられるが、正極にはアルミニウムを、負極には銅を用いることが好ましい。ニッケル水素二次電池の場合、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板等が挙げられる。 The shape of the current collector 10 is not particularly limited, but usually a sheet-like one having a thickness of about 0.001 to 0.5 mm is used. The current collector 10 is not particularly limited as long as it is made of a conductive material. In the case of a lithium ion secondary battery, metal foils such as iron, copper, aluminum, nickel, and stainless steel can be used, and it is preferable to use aluminum for the positive electrode and copper for the negative electrode. In the case of a nickel metal hydride secondary battery, a punching metal, an expanded metal, a wire mesh, a foam metal, a mesh metal fiber sintered body, a metal plated resin plate, and the like can be given.
 活物質層20は、集電体10の表面に後述する電極用スラリーを塗布して、さらに乾燥させて形成された層である。当該電極用スラリーは、(A)重合体粒子および(B)活物質粒子を含有するため、活物質層20には少なくとも重合体および活物質が含まれている。活物質層20の厚さは特に制限されないが、通常0.005~5mm、好ましくは0.01~2mmである。 The active material layer 20 is a layer formed by applying an electrode slurry, which will be described later, to the surface of the current collector 10 and further drying it. Since the slurry for electrodes contains (A) polymer particles and (B) active material particles, the active material layer 20 includes at least a polymer and an active material. The thickness of the active material layer 20 is not particularly limited, but is usually 0.005 to 5 mm, preferably 0.01 to 2 mm.
 集電体10の表面に電極用スラリーを塗布する方法についても特に制限されない。たとえばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、刷毛塗り法等の方法が挙げられる。塗布する電極用スラリーの量は、前述した活物質層の厚さとなるように適宜調整すればよい。 The method for applying the electrode slurry to the surface of the current collector 10 is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, an immersion method, and a brush coating method. What is necessary is just to adjust suitably the quantity of the slurry for electrodes to apply | coat so that it may become the thickness of the active material layer mentioned above.
 塗布した電極用スラリーの乾燥方法についても特に制限されない。たとえば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線等の照射による乾燥法が挙げられる。乾燥速度は、通常は応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ速く液状媒体が除去できるように調整する。 The method for drying the applied electrode slurry is not particularly limited. For example, drying by warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with (far) infrared rays, electron beams or the like can be mentioned. The drying speed is usually adjusted so that the liquid medium can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not peel from the current collector.
 さらに、乾燥後の集電体をプレスすることにより、蓄電デバイス用電極の密度を高めてもよい。プレス方法は、金型プレスやロールプレス等の方法が挙げられる。 Furthermore, the density of the electrode for the electricity storage device may be increased by pressing the dried current collector. Examples of the pressing method include a mold press and a roll press.
 本実施の形態に係る蓄電デバイス用電極100においては、活物質層20の重合体分布係数が1.1~3の範囲にあることを特徴としており、それが1.2~2.5の範囲にあることが好ましく、1.4~2の範囲にあることがより好ましい。 The electrode 100 for an electricity storage device according to the present embodiment is characterized in that the polymer distribution coefficient of the active material layer 20 is in the range of 1.1 to 3, which is in the range of 1.2 to 2.5. Preferably, it is in the range of 1.4 to 2.
 本発明において「重合体分布係数」とは、以下の測定方法から定義される係数である。 In the present invention, the “polymer distribution coefficient” is a coefficient defined by the following measurement method.
 すなわち、
(1)上述した方法により、集電体10の一方の面に活物質層20を形成させる。これを二つに分割して、同じ活物質層20を有する蓄電デバイス用電極100を二つ作製する。
(2)あらかじめ準備しておいたアルミ板上に両面テープ(ニチバン株式会社製、品番「NW-25」)を貼り付け、さらに同両面テープの上にカプトンテープ(株式会社テラオカ製、品番「650S」)を粘着面が上になるようにして貼り付ける。
(3)(2)で用意したもののカプトンテープの粘着面上に、(1)で作製した電極の一つの活物質層側と貼り合わせ、ローラーで圧着させる。
(4)集電体10を上に向けて(3)で作製されたアルミ板を水平面に固定した後、集電体10を上方向にアルミ板との角度が90度となるように一定速度で引き上げ、集電体10と活物質層20との接着面から集電体10を剥離する。
(5)剥離した界面の両側、すなわち集電体10に残存した活物質層の表面から深さ1.5μm(1.5μm以下の厚さしか残存しなかった場合はその残存した全て)までの活物質層20および、粘着テープ側に残存した活物質層表面から深さ1.5μmまでの活物質層20を掻き取り、それを「測定試料A」とする。
(6)(1)で作製したもう一方の蓄電デバイス用電極100から活物質層20を全て掻き取り、それを「測定試料B」とする。
(7)測定試料Aおよび測定試料Bのそれぞれについて、高周波誘導加熱方式パイロライザーを有する熱分解ガスクロマトグラフィを用いて分析し、各試料の単位重量当たりの重合体成分の含有量(質量%)を算出する。得られた値を下記式(1)に代入することにより、重合体分布係数を算出する。
 重合体分布係数=(測定試料Aの重合体含有量:質量%)/(測定試料Bの重合体含有量:質量%) ・・・・・(1)
That is,
(1) The active material layer 20 is formed on one surface of the current collector 10 by the method described above. This is divided into two to produce two electrodes 100 for an electricity storage device having the same active material layer 20.
(2) A double-sided tape (product number “NW-25” manufactured by Nichiban Co., Ltd.) is pasted on an aluminum plate prepared in advance, and a Kapton tape (product number “650S” manufactured by Terraoka Co., Ltd.) is further applied on the double-sided tape. )) With the adhesive side facing up.
(3) On the adhesive surface of the Kapton tape prepared in (2), it is bonded to one active material layer side of the electrode prepared in (1) and is pressure-bonded with a roller.
(4) The current collector 10 is faced up and the aluminum plate produced in (3) is fixed on a horizontal plane, and then the current collector 10 is directed upward so that the angle with the aluminum plate is 90 degrees. The current collector 10 is peeled off from the adhesive surface between the current collector 10 and the active material layer 20.
(5) From both sides of the peeled interface, that is, from the surface of the active material layer remaining on the current collector 10 to a depth of 1.5 μm (all remaining if only a thickness of 1.5 μm or less remains) The active material layer 20 and the active material layer 20 having a depth of 1.5 μm from the surface of the active material layer remaining on the adhesive tape side are scraped off, and this is designated as “measurement sample A”.
(6) The entire active material layer 20 is scraped off from the other electrode for electricity storage device 100 produced in (1), and this is designated as “measurement sample B”.
(7) About each of the measurement sample A and the measurement sample B, it analyzes using the pyrolysis gas chromatography which has a high frequency induction heating system pyrolyzer, and content (mass%) of the polymer component per unit weight of each sample is calculated | required. calculate. A polymer distribution coefficient is calculated by substituting the obtained value into the following formula (1).
Polymer distribution coefficient = (polymer content of measurement sample A: mass%) / (polymer content of measurement sample B: mass%) (1)
 なお、上記式(1)によれば、重合体分布係数が1であれば、活物質層20中の重合体成分が均一に分布していることを表す。また、重合体分布係数が1を超える値であれば、集電体10と活物質層20との剥離界面近傍に重合体成分が偏在しており、1未満の値であれば、集電体10と活物質層20との剥離界面近傍の重合体成分が疎になっていると解釈できる。 In addition, according to the said Formula (1), if a polymer distribution coefficient is 1, it will represent that the polymer component in the active material layer 20 is distributed uniformly. Further, if the polymer distribution coefficient is a value exceeding 1, the polymer component is unevenly distributed in the vicinity of the peeling interface between the current collector 10 and the active material layer 20, and if the polymer distribution coefficient is less than 1, the current collector is present. It can be interpreted that the polymer component in the vicinity of the peeling interface between 10 and the active material layer 20 is sparse.
 一般に活物質は、リチウムイオンの吸蔵や放出に伴って、体積の膨張及び収縮を繰り返している。特に炭素質材料やシリコン材料等の活物質は、リチウムイオンの吸蔵や放出に伴う体積変化が大きいことが知られている。蓄電デバイス用電極がこのような活物質を含む活物質層を有する場合、蓄電デバイスの充放電に伴って活物質層が体積の膨張及び収縮を繰り返すので、活物質層が何ら体積変化をしない集電体から剥離してしまい、充放電特性が急速に劣化するという問題があった。 Generally, an active material repeatedly expands and contracts in volume as lithium ions are stored and released. In particular, it is known that an active material such as a carbonaceous material or a silicon material undergoes a large volume change due to insertion and extraction of lithium ions. When the electrode for an electricity storage device has an active material layer containing such an active material, the active material layer repeatedly expands and contracts as the electricity storage device is charged and discharged, and therefore the active material layer does not change in volume at all. There was a problem that the charge and discharge characteristics deteriorated rapidly due to peeling from the electric body.
 しかしながら、本実施の形態に係る蓄電デバイス用電極のように活物質層の重合体分布係数が1.1~3であると、重合体成分が集電体と活物質層との界面近傍に十分に存在するため、たとえ活物質層が大幅な体積膨張と体積収縮を繰り返したとしても、集電体と活物質層間の結着性を十分に維持することができ、粉落ち性に優れ、かつ電気的特性にも優れた蓄電デバイス用電極を得ることができる。特に負極活物質として体積の膨張収縮率が大きいシリコン(Si)を含有する活物質を使用する場合に、本実施の形態に係る蓄電デバイス用電極は結着性に優れ、良好な充放電特性を示す。 However, when the polymer distribution coefficient of the active material layer is 1.1 to 3 as in the electrode for the electricity storage device according to the present embodiment, the polymer component is sufficiently near the interface between the current collector and the active material layer. Therefore, even if the active material layer repeats a large volume expansion and contraction, the binding property between the current collector and the active material layer can be sufficiently maintained, and the powder falling property is excellent. An electrode for an electricity storage device that is also excellent in electrical characteristics can be obtained. In particular, when an active material containing silicon (Si) having a large volume expansion / contraction rate is used as the negative electrode active material, the electrode for an electricity storage device according to the present embodiment has excellent binding properties and good charge / discharge characteristics. Show.
 本実施の形態に係る蓄電デバイス用電極100においては、活物質層20の密度が1.2~1.8g/cmであることが好ましく、1.3~1.7g/cmであることがより好ましく、1.4~1.6g/cmであることが特に好ましい。活物質層の密度が前記範囲、とりわけ前記下限値以上であると、活物質層中において重合体成分が十分にバインダーとして機能するため、活物質層が凝集剥離するなどして粉落ち性が低下することを防止できる。また、活物質層の密度が前記上限値以下であれば、集電体の柔軟性に活物質層が十分に追随できるため、集電体と活物質層との界面剥離を防止できる。 In the power storage device electrode 100 according to the present embodiment, the density of the active material layer 20 is preferably 1.2 to 1.8 g / cm 3 , and preferably 1.3 to 1.7 g / cm 3. Is more preferably 1.4 to 1.6 g / cm 3 . If the density of the active material layer is in the above range, particularly the lower limit value or more, the polymer component sufficiently functions as a binder in the active material layer, so that the active material layer is agglomerated and peeled off, resulting in a decrease in powder fallability. Can be prevented. In addition, when the density of the active material layer is equal to or less than the upper limit value, the active material layer can sufficiently follow the flexibility of the current collector, and therefore, interface peeling between the current collector and the active material layer can be prevented.
 本発明において「活物質層の密度」とは、以下の測定方法から測定される値である。すなわち、上述した方法により、集電体の一方の面に、面積C(cm)で厚さD(μm)の活物質層を形成させて蓄電デバイス用電極を作製する。集電体の質量がA(g)、作製された蓄電デバイス用電極の質量がB(g)である場合、活物質層の密度は下記式(2)により算出される。
 活物質層の密度(g/cm
=(B(g)-A(g))/(C(cm)×D(μm)×10-4) ・・・・・(2)
In the present invention, the “density of the active material layer” is a value measured by the following measuring method. That is, by the method described above, an active material layer having an area C (cm 2 ) and a thickness D (μm) is formed on one surface of the current collector to produce an electrode for an electricity storage device. When the mass of the current collector is A (g) and the mass of the produced electricity storage device electrode is B (g), the density of the active material layer is calculated by the following formula (2).
Active material layer density (g / cm 3 )
= (B (g) -A ( g)) / (C (cm 2) × D (μm) × 10 -4) ····· (2)
 本実施の形態に係る蓄電デバイス用電極100においては、活物質層20の厚みをTとした場合、集電体10と接する面から厚み方向T/2までの活物質層20中に含まれる単位体積当たりの重合体の含有量をMa(g/cm)、前記厚み方向T/2からTまでの活物質層20中に含まれる単位体積当たりの重合体の含有量をMb(g/cm)とすると、比(Ma/Mb)が3~6の範囲にあることが好ましく、3.5~5の範囲にあることがより好ましい。 In the electricity storage device electrode 100 according to the present embodiment, when the thickness of the active material layer 20 is T, the unit included in the active material layer 20 from the surface in contact with the current collector 10 to the thickness direction T / 2. The polymer content per volume is Ma (g / cm 3 ), and the polymer content per unit volume contained in the active material layer 20 from the thickness direction T / 2 to T is Mb (g / cm 3). 3 ), the ratio (Ma / Mb) is preferably in the range of 3 to 6, and more preferably in the range of 3.5 to 5.
 比(Ma/Mb)が前記範囲にあると、集電体と活物質層との結着性が良好となり、粉落ち性に優れ、かつ電気特性にも優れた蓄電デバイス用電極が得られる。比(Ma/Mb)が前記範囲未満であると、集電体と活物質層の界面にバインダーとして機能する重合体成分が相対的に少なくなるため、集電体と活物質層との密着性が低下する傾向がある。比(Ma/Mb)が前記範囲を超えると、集電体と活物質層の界面に絶縁体であるバインダー成分が局在化することにより、電極の内部抵抗が上昇して電気的特性が損なわれる傾向がある。 When the ratio (Ma / Mb) is in the above range, the binding property between the current collector and the active material layer is good, and an electrode for an electricity storage device that is excellent in powder fall-off property and excellent in electrical characteristics can be obtained. When the ratio (Ma / Mb) is less than the above range, the polymer component that functions as a binder is relatively less at the interface between the current collector and the active material layer, and thus the adhesion between the current collector and the active material layer. Tends to decrease. When the ratio (Ma / Mb) exceeds the above range, the binder component as an insulator is localized at the interface between the current collector and the active material layer, thereby increasing the internal resistance of the electrode and impairing the electrical characteristics. There is a tendency to be.
 かかる比(Ma/Mb)は、以下の測定方法から算出される。 The ratio (Ma / Mb) is calculated from the following measurement method.
 すなわち、
(1)まず、集電体10の一方の面に活物質層20を形成させた蓄電デバイス用電極100を用意する。
(2)活物質層20の厚みをTとした場合、集電体10と接する面から厚み方向T/2となる面で活物質層20を切断する。切断できない場合は、厚み方向T/2からTまでの上層部を掻き取ればよい。このようにして切断または掻き取られた活物質層20を「測定試料B」とする。一方、集電体10に残存した活物質層20を全て掻き取り、それを「測定試料A」とする。
(3)測定試料Aおよび測定試料Bのそれぞれについて、高周波誘導加熱方式パイロライザーを有する熱分解ガスクロマトグラフィを用いて分析し、測定試料Aの単位体積当たりの重合体の含有量Ma(g/cm)および測定試料Bの単位体積当たりの重合体の含有量Mb(g/cm)を求め、比(Ma/Mb)を算出する。
That is,
(1) First, an electricity storage device electrode 100 in which the active material layer 20 is formed on one surface of the current collector 10 is prepared.
(2) When the thickness of the active material layer 20 is T, the active material layer 20 is cut from the surface in contact with the current collector 10 in the thickness direction T / 2. If it cannot be cut, the upper layer portion from the thickness direction T / 2 to T may be scraped off. The active material layer 20 cut or scraped in this way is referred to as “measurement sample B”. On the other hand, all the active material layer 20 remaining on the current collector 10 is scraped off, and this is referred to as “measurement sample A”.
(3) About each of the measurement sample A and the measurement sample B, it analyzes using the pyrolysis gas chromatography which has a high frequency induction heating system pyrolyzer, Polymer content Ma per unit volume of the measurement sample A Ma (g / cm 3 ) and the polymer content Mb (g / cm 3 ) per unit volume of the measurement sample B are determined, and the ratio (Ma / Mb) is calculated.
 なお、本実施の形態に係る蓄電デバイス用電極100は、後述する電極用スラリーを多層塗工して活物質層20を形成する方法により作製することが好ましい。以下、かかる方法について具体的に説明する。 The electricity storage device electrode 100 according to the present embodiment is preferably produced by a method in which an active material layer 20 is formed by multilayer coating of electrode slurry described later. Hereinafter, this method will be specifically described.
 まず、集電体10の表面に後述する電極用スラリーを塗布した後、好ましくは100℃以上の温度で乾燥させて、活物質層20の下層となる第1層を形成する。次いで、前記第1層の表面に後述する電極用スラリーを塗布した後、好ましくは100℃以上の温度で乾燥させて、活物質層の上層となる第2層を形成する。すなわち、後述する電極用スラリーを集電体10の表面に多層塗工することにより活物質層20を形成する。なお、100℃以上の温度で乾燥させることが好ましい理由は、電極用スラリー中に含まれる水を蒸発させる必要があるからである。 First, an electrode slurry described later is applied to the surface of the current collector 10, and is preferably dried at a temperature of 100 ° C. or higher to form a first layer that is a lower layer of the active material layer 20. Next, after applying an electrode slurry, which will be described later, to the surface of the first layer, it is preferably dried at a temperature of 100 ° C. or higher to form a second layer that is an upper layer of the active material layer. That is, the active material layer 20 is formed by applying a slurry for electrodes described later on the surface of the current collector 10 in a multilayer manner. In addition, it is preferable to dry at the temperature of 100 degreeC or more because it is necessary to evaporate the water contained in the slurry for electrodes.
 活物質層20の第1層は、多孔質構造を有していると考えられる。そうすると、第1層の表面に電極用スラリーを塗布することで、当該電極用スラリーが第1層中に染み込んでいくと考えられる。これにより、集電体10と接する第1層中の重合体成分の含有量が高まる。したがって、かかる方法によれば、集電体と活物質層との結着性が良好となる蓄電デバイス用電極を容易に作製することが可能となる。 The first layer of the active material layer 20 is considered to have a porous structure. Then, it is considered that the electrode slurry is infiltrated into the first layer by applying the electrode slurry to the surface of the first layer. Thereby, the content of the polymer component in the first layer in contact with the current collector 10 is increased. Therefore, according to this method, it is possible to easily produce an electrode for an electricity storage device in which the binding property between the current collector and the active material layer is good.
 上記方法によれば、第1層を形成する際に使用する電極用スラリーおよび第2層を形成する際に使用する電極用スラリーについては、それぞれ重合体含有量を変える必要はなく、同一の電極用スラリーを用いればよい。これにより、上記方法において塗布工程を簡便化することができる。 According to the above method, it is not necessary to change the polymer content for each of the electrode slurry used when forming the first layer and the electrode slurry used when forming the second layer. A slurry for use may be used. Thereby, a coating process can be simplified in the said method.
 上記方法により作製された活物質層20において、第1層の厚みは、第2層の厚みよりも薄くすることが好ましい。後述する電極用スラリーには多量の水が含まれているため、第1層の表面に当該電極用スラリーを塗布すると、第1層中に水が染み込んでいくと考えられる。この状態で乾燥させて形成された第2層は、表面がざらついた状態となりやすい。しかしながら、第1層の厚みを第2層の厚みよりも薄くすることで、水の染み込み量が適度となり、第2層の表面のざらつきが低減された良好な表面状態を形成することができる。 In the active material layer 20 manufactured by the above method, the thickness of the first layer is preferably thinner than the thickness of the second layer. Since a large amount of water is contained in the electrode slurry described later, it is considered that when the electrode slurry is applied to the surface of the first layer, water penetrates into the first layer. The second layer formed by drying in this state tends to have a rough surface. However, by making the thickness of the first layer thinner than the thickness of the second layer, the amount of water soaked becomes appropriate, and a good surface state in which the surface roughness of the second layer is reduced can be formed.
 また、上記方法において、第2層の上方には、後述する電極用スラリーを塗布した後、好ましくは100℃以上の温度で乾燥することにより、活物質層20の上層となる1以上の層をさらに形成してもよい。 In the above method, one or more layers serving as the upper layer of the active material layer 20 are formed on the second layer by applying an electrode slurry described later, and preferably drying at a temperature of 100 ° C. or higher. Further, it may be formed.
 1.2.電極用スラリー
 上述したように、活物質層20は、集電体10の表面に、(A)重合体粒子、(B)活物質粒子および(C)水を含有する電極用スラリーを、集電体10の表面に塗布し、さらに乾燥させて形成される。以下、本実施の形態に係る蓄電デバイス用電極の作製に使用可能な電極用スラリーについて詳細に説明する。
1.2. As described above, the active material layer 20 is formed by collecting, on the surface of the current collector 10, an electrode slurry containing (A) polymer particles, (B) active material particles, and (C) water. It is formed by applying to the surface of the body 10 and further drying. Hereinafter, a slurry for an electrode that can be used for producing an electrode for an electricity storage device according to the present embodiment will be described in detail.
 本実施の形態で使用される電極用スラリーは、集電体の表面に塗布・乾燥させて活物質層を形成するための分散液であり、(A)重合体粒子(以下、「(A)成分」ともいう)と、(B)活物質粒子(以下、「(B)成分」ともいう)と、(C)水(以下、「(C)成分」ともいう)と、を含有する。 The electrode slurry used in the present embodiment is a dispersion for forming an active material layer by coating and drying on the surface of a current collector. (A) Polymer particles (hereinafter referred to as “(A) Component)), (B) active material particles (hereinafter also referred to as “component (B)”), and (C) water (hereinafter also referred to as “component (C)”).
 本実施の形態で使用される電極用スラリーは、前記(A)重合体粒子の平均粒子径(Da)と前記(B)活物質粒子の平均粒子径(Db)との比(Db/Da)が20~100の範囲にあることが好ましく、25~95の範囲にあることがより好ましく、30~90の範囲にあることが特に好ましい。 The electrode slurry used in the present embodiment is a ratio (Db / Da) between the average particle diameter (Da) of the polymer particles (A) and the average particle diameter (Db) of the active material particles (B). Is preferably in the range of 20 to 100, more preferably in the range of 25 to 95, and particularly preferably in the range of 30 to 90.
 電極用スラリー中に分散媒体として水が含まれている場合、集電体の表面に当該電極用スラリーを塗布して乾燥させる工程において、(A)成分および/または(B)成分が表面張力の作用を受けることにより塗膜の厚み方向に沿って移動すること(以下、「マイグレーション」ともいう)が確認されている。具体的には、(A)成分および/または(B)成分が、塗膜の集電体と接する面とは反対側、すなわち水が蒸発する気固界面側へと移動する傾向がある。 When water is contained as a dispersion medium in the electrode slurry, in the step of applying and drying the electrode slurry on the surface of the current collector, the component (A) and / or the component (B) has surface tension. It has been confirmed that the film moves along the thickness direction of the coating film (hereinafter, also referred to as “migration”). Specifically, the component (A) and / or the component (B) tend to move to the side opposite to the surface in contact with the current collector of the coating film, that is, the gas-solid interface side where water evaporates.
 その結果、(A)成分と(B)成分の分布が塗膜の厚み方向で不均一となるため、電極特性が劣化したり、集電体と活物質層との密着性が損なわれるなどの問題が発生する。たとえば、バインダーとして作用する(A)成分が活物質層の気固界面側へとブリード(移行)して、集電体と活物質層との界面における(A)成分の量が相対的に少なくなる場合には、活物質層への電解液の浸透が阻害されることにより電気的特性が劣化すると共に、集電体と活物質層との結着性が低下して剥離が発生する傾向がある。さらに、このように(A)成分がブリードすることにより、活物質層表面の平滑性が損なわれる傾向がある。 As a result, since the distribution of the component (A) and the component (B) is not uniform in the thickness direction of the coating film, the electrode characteristics are deteriorated or the adhesion between the current collector and the active material layer is impaired. A problem occurs. For example, the component (A) acting as a binder bleeds (transfers) to the gas-solid interface side of the active material layer, and the amount of the component (A) at the interface between the current collector and the active material layer is relatively small. In such a case, the electrical characteristics deteriorate due to the inhibition of the penetration of the electrolytic solution into the active material layer, and the binding between the current collector and the active material layer tends to decrease and peeling tends to occur. is there. Furthermore, the smoothness of the surface of the active material layer tends to be impaired by bleeding of the component (A).
 しかしながら、比(Db/Da)が前記範囲にあると、前述したような問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた電極の作製が可能となる。 However, when the ratio (Db / Da) is within the above range, the occurrence of the above-described problems can be suppressed, and an electrode having both good electrical characteristics and adhesion can be produced.
 また、本実施の形態で使用される電極用スラリーは、曳糸性が30~80%であることが好ましく、33~79%であることがより好ましく、35~78%であることが特に好ましい。曳糸性が前記範囲未満であると、電極用スラリーを集電体上へ塗工する際、レベリング性が不足するため、電極厚みの均一性が得られにくい。このような厚みが不均一な電極を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困難となる。一方、曳糸性が前記範囲を超えると、電極用スラリーを集電体上に塗工する際、液ダレが起き易くなり、安定した品質の電極が得られにくい。曳糸性が前記範囲にあれば、これらの問題の発生を抑制することができ、良好な電気的特性と結着性とを両立させた電極の作製が可能となる。 Further, the electrode slurry used in the present embodiment preferably has a spinnability of 30 to 80%, more preferably 33 to 79%, and particularly preferably 35 to 78%. . When the spinnability is less than the above range, the leveling property is insufficient when the electrode slurry is applied onto the current collector, so that it is difficult to obtain the uniformity of the electrode thickness. If such an electrode having a non-uniform thickness is used, an in-plane distribution of charge / discharge reaction occurs, making it difficult to achieve stable battery performance. On the other hand, if the spinnability exceeds the above range, dripping easily occurs when the electrode slurry is applied onto the current collector, and it is difficult to obtain an electrode with stable quality. If the spinnability is within the above range, the occurrence of these problems can be suppressed, and an electrode having both good electrical characteristics and binding properties can be produced.
 なお、本願発明における「曳糸性」は、以下のようにして測定することができる。 It should be noted that the “threadability” in the present invention can be measured as follows.
 まず、直径5.2mmの開口部を底部に有するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備する。このザーンカップの開口部を閉じた状態で、ザーンカップに電極用スラリーを40g流し込む。その後、開口部を開放すると、開口部から電極用スラリーが流れ出す。ここで、開口部を開放した時をT、電極用スラリーの曳糸が終了した時をT、電極用スラリーの流出が終了した時をTとした場合に、本願発明における「曳糸性」は下記式(3)から求めることができる。
 曳糸性(%)=((T-T)/(T-T))×100 ・・・・・(3)
First, a Zaan cup (made by Dazai Equipment Co., Ltd., Zaan Biscocity Cup No. 5) having an opening with a diameter of 5.2 mm at the bottom is prepared. With the opening of the Zahn cup closed, 40 g of electrode slurry is poured into the Zahn cup. Thereafter, when the opening is opened, the electrode slurry flows out from the opening. Here, when T 0 when opening the opening, the T A when the thread of the electrode slurry is completed, when the outflow of the electrode slurry is completed the T B, "spinnability in the present invention The “characteristic” can be obtained from the following formula (3).
Spinnability (%) = ((T A −T 0 ) / (T B −T 0 )) × 100 (3)
 次いで、本実施の形態で使用される電極用スラリーに含まれる各成分について、それぞれ詳細に説明する。 Next, each component contained in the electrode slurry used in the present embodiment will be described in detail.
 1.2.1.(A)重合体粒子
 本実施の形態で使用される電極用スラリーに含まれる(A)重合体粒子は、(B)活物質粒子を集電体に結着させるためのバインダーとして機能する成分である。
1.2.1. (A) Polymer particles (A) The polymer particles contained in the electrode slurry used in the present embodiment are components that function as a binder for binding the active material particles to the current collector (B). is there.
 (A)重合体粒子の平均粒子径(Da)は、0.05~0.4μmの範囲にあることが好ましく、0.06~0.39μmの範囲にあることがより好ましく、0.07~0.38μmの範囲にあることが特に好ましい。(A)重合体粒子の平均粒子径(Da)が前記範囲にあると、(A)重合体粒子の(B)活物質粒子表面への吸着量のバランスが良好となり、マイグレーションの発生を抑制することができる。 (A) The average particle diameter (Da) of the polymer particles is preferably in the range of 0.05 to 0.4 μm, more preferably in the range of 0.06 to 0.39 μm, and 0.07 to A range of 0.38 μm is particularly preferable. (A) When the average particle diameter (Da) of the polymer particles is in the above range, the balance of the adsorption amount of the (A) polymer particles to the (B) active material particle surface becomes good, and the occurrence of migration is suppressed. be able to.
 また、(A)重合体粒子は、下記の[1]および[2]の要件を満たしていることが好ましい。
[1]0.01μm以上0.25μm未満の粒径区間に重合体粒子が2~60容積%、好ましくは3~55容積%、より好ましくは4~50容積%存在すること。
[2]0.25μm以上0.5μm以下の粒径区間に重合体粒子が40~98容積%、好ましくは45~97容積%、より好ましくは50~96容積%存在すること。
Further, (A) the polymer particles preferably satisfy the following requirements [1] and [2].
[1] 2 to 60% by volume, preferably 3 to 55% by volume, more preferably 4 to 50% by volume of polymer particles are present in a particle diameter section of 0.01 μm or more and less than 0.25 μm.
[2] Polymer particles should be present in a particle size interval of 0.25 μm to 0.5 μm in an amount of 40 to 98% by volume, preferably 45 to 97% by volume, more preferably 50 to 96% by volume.
 上記[1]および[2]の要件における重合体粒子の存在割合が前記範囲にあると、得られる活物質層と空気との界面に重合体粒子が偏在することを効果的に抑制することができるため、電解液の活物質層への浸透を促進させることができる。これにより、充放電特性等の電気的特性が良好になると共に、集電体と活物質層との結着性を向上させて剥離等を抑制できるため好ましい。さらに、上記[1]および[2]の要件における重合体粒子の存在割合が前記範囲にあると、粉落ち性を向上できる傾向がある。 When the ratio of the polymer particles in the above requirements [1] and [2] is in the above range, it is possible to effectively suppress the uneven distribution of the polymer particles at the interface between the obtained active material layer and air. Therefore, the penetration of the electrolytic solution into the active material layer can be promoted. This is preferable because electrical characteristics such as charge / discharge characteristics are improved and the binding between the current collector and the active material layer can be improved to prevent peeling and the like. Furthermore, when the abundance ratio of the polymer particles in the above requirements [1] and [2] is in the above range, there is a tendency that the powder falling property can be improved.
 (A)重合体粒子の平均粒子径(Da)および粒度分布測定は、光散乱法を測定原理とする粒度分布測定装置を用いることにより行われる。このような粒度分布測定装置としては、たとえば、コールターLS230、LS100、LS13 320(以上、コールター社製)や、FPAR-1000(大塚電子株式会社製)等が挙げられる。この粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。したがって、この粒度分布測定装置によって得られた粒度分布は、電極用スラリー中に含まれる(A)重合体粒子の分散状態の指標とすることができる。 (A) The average particle diameter (Da) and particle size distribution of the polymer particles are measured by using a particle size distribution measuring apparatus based on the light scattering method. Examples of such a particle size distribution measuring apparatus include Coulter LS230, LS100, LS13 320 (manufactured by Coulter, Inc.) and FPAR-1000 (manufactured by Otsuka Electronics Co., Ltd.). This particle size distribution measuring apparatus is not intended to evaluate only primary particles of polymer particles, but also evaluates secondary particles formed by aggregation of primary particles. Therefore, the particle size distribution obtained by this particle size distribution measuring apparatus can be used as an index of the dispersion state of the (A) polymer particles contained in the electrode slurry.
 なお、(A)重合体粒子の平均粒子径(Da)および粒度分布は、電極用スラリーを遠心分離して(B)活物質粒子を沈降させた後、その上澄み液を上記の方法で測定することにより得られる。 In addition, (A) The average particle diameter (Da) and particle size distribution of the polymer particles are measured by centrifuging the electrode slurry and (B) precipitating the active material particles, and then measuring the supernatant liquid by the above method. Can be obtained.
 (A)重合体粒子を構成する重合体としては、(B)活物質粒子を集電体に結着させるためのバインダーとして機能すれば特に限定されるものではないが、たとえば(メタ)アクリル酸エステル(共)重合体、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン等の公知の材料が挙げられる。 (A) The polymer constituting the polymer particles is not particularly limited as long as it functions as a binder for binding the active material particles to the current collector (B). For example, (meth) acrylic acid Known materials such as ester (co) polymers, styrene- (meth) acrylic acid ester copolymers, styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, and polybutadiene can be used.
 なお、前記重合体は、好ましくは-80~+50℃、より好ましくは-75~+30℃、特に好ましくは-70~+10℃のガラス転移温度(以下、「Tg」という)を有するゴム質重合体であることが好ましい。Tgが低すぎる重合体を用いると、電池容量の低下を招くことがあり、Tgが高すぎる重合体を用いると結着力が小さくなったり、電池特性の温度による変化が大きくなったりする可能性がある。 The polymer is preferably a rubbery polymer having a glass transition temperature (hereinafter referred to as “Tg”) of −80 to + 50 ° C., more preferably −75 to + 30 ° C., particularly preferably −70 to + 10 ° C. It is preferable that If a polymer with a Tg too low is used, the battery capacity may be reduced. If a polymer with a Tg too high is used, the binding force may be reduced, or the battery characteristics may vary greatly with temperature. is there.
 (A)重合体粒子の製造方法は、特に限定されず、たとえば乳化重合、播種乳化重合、懸濁重合、播種懸濁重合、溶液析出重合等が挙げられる。重合体粒子を溶剤に溶解ないし膨潤させ、該溶媒と相溶しない媒体中で攪拌混合した後、脱溶剤する溶解分散法も可能である。また、これらにより得られた重合体粒子に対して化学修飾や電子線照射等の物理的変性を行ってもよい。 (A) The method for producing the polymer particles is not particularly limited, and examples thereof include emulsion polymerization, seeding emulsion polymerization, suspension polymerization, seeding suspension polymerization, and solution precipitation polymerization. A solution-dispersion method is also possible in which polymer particles are dissolved or swollen in a solvent, stirred and mixed in a medium incompatible with the solvent, and then desolvated. Moreover, you may perform physical modification | denaturation, such as chemical modification and electron beam irradiation, with respect to the polymer particle obtained by these.
 (A)重合体粒子は、前記重合法のうち乳化重合や懸濁重合等を用いて、反応中に分散安定剤を重合系に別添加することにより1段階で合成することができる。上記[1]および[2]の要件を満たすような、0.01μm以上0.25μm未満の粒径区間に2~60容積%および、0.25μm以上0.5μm以下の粒径区間に40~98容積%存在する分布を有する重合体粒子が液状媒体中に分散された液状媒体分散液を1段階で合成する方法は、生産性向上の観点から好ましい。このような分散液は、上述した公知の合成方法により重合体粒子の粒度分布をコントロールすることにより作製することができる。 (A) The polymer particles can be synthesized in one stage by separately adding a dispersion stabilizer to the polymerization system during the reaction using emulsion polymerization or suspension polymerization among the above polymerization methods. 2 to 60% by volume in a particle size interval of 0.01 μm or more and less than 0.25 μm and 40 to 40 μm in a particle size interval of 0.25 μm or more and 0.5 μm or less so as to satisfy the above requirements [1] and [2]. A method of synthesizing a liquid medium dispersion in which polymer particles having a distribution of 98% by volume are dispersed in a liquid medium in one step is preferable from the viewpoint of improving productivity. Such a dispersion can be prepared by controlling the particle size distribution of the polymer particles by the known synthesis method described above.
 また(A)重合体粒子は、上述のように1段階で合成された重合体粒子を含有する液状媒体分散液を使用するだけでなく、小粒径重合体粒子成分と大粒径重合体粒子成分とを前記重合法により別々に得て、それらを混合することにより2段階で得ることもできる。 In addition, the (A) polymer particles not only use a liquid medium dispersion containing the polymer particles synthesized in one stage as described above, but also include small particle size polymer particle components and large particle size polymer particles. It is also possible to obtain the components in two stages by separately obtaining the components by the polymerization method and mixing them.
 上記[1]および[2]の要件を満たすような(A)重合体粒子を得るための具体的方法としては、最頻粒径が0.01μm以上0.25μm未満である重合体粒子の液状媒体分散液(I)を重合体粒子換算で2~60質量部と、最頻粒径が0.25μm以上0.5μm以下である重合体粒子の液状媒体分散液(II)を重合体粒子換算で40~98質量部と、を混合する方法が挙げられる。但し、液状媒体分散液(I)と液状媒体分散液(II)とを混合した後の重合体粒子は、合計で100質量部である。ここで、「最頻粒径」とは、液状媒体分散液について光散乱法を測定原理とする粒度分布測定装置を用いて測定した粒度分布から求めた最も頻度の大きい区間の中央値のことをいう。 As a specific method for obtaining the polymer particles (A) satisfying the requirements of the above [1] and [2], the liquid particles of the polymer particles having a mode diameter of 0.01 μm or more and less than 0.25 μm are used. 2 to 60 parts by mass of the medium dispersion liquid (I) in terms of polymer particles and the liquid medium dispersion liquid (II) of polymer particles having a mode particle diameter of 0.25 μm to 0.5 μm in terms of polymer particles And a method of mixing 40 to 98 parts by mass. However, the polymer particles after mixing the liquid medium dispersion (I) and the liquid medium dispersion (II) are 100 parts by mass in total. Here, the "moderate particle size" is the median value of the most frequent interval obtained from the particle size distribution measured using a particle size distribution measuring apparatus based on the light scattering method for the liquid medium dispersion. Say.
 前述の具体的方法において、最頻粒径が0.01μm以上0.25μm未満である重合体粒子の液状媒体分散液(I)が重合体粒子基準で60質量部より多くなると(最頻粒径が0.25μm以上0.5μm以下である重合体粒子の液状媒体分散液が重合体粒子基準で40質量部よりも少なくなることと同じ)と、電極用スラリーを集電体に塗布して乾燥させる際に、液状媒体の蒸発に伴いその表面張力の影響を受けて、相対的に小さな重合体粒子が空気界面方向へと移動(マイグレーション)する。その結果、重合体粒子が電極表面に偏在することになるため、電解液との電子の授受が阻害される傾向がある。一方、活物質層と集電体との界面では、重合体粒子の量が相対的に少なくなるため、活物質層と集電体との接着力が低下して結着性が損なわれる傾向がある。以上のように、電極用スラリーに含まれる重合体粒子のバランスが崩れると、電気的特性や、活物質層と集電体との結着性が損なわれる傾向が見られる。 In the specific method described above, when the liquid medium dispersion (I) of polymer particles having a mode particle size of 0.01 μm or more and less than 0.25 μm is more than 60 parts by mass based on the polymer particles (mode particle size) The liquid medium dispersion of polymer particles having a particle size of 0.25 μm to 0.5 μm is less than 40 parts by mass with respect to the polymer particles), and the electrode slurry is applied to the current collector and dried. When the liquid medium is evaporated, relatively small polymer particles move (migrate) toward the air interface due to the influence of the surface tension accompanying the evaporation of the liquid medium. As a result, since the polymer particles are unevenly distributed on the electrode surface, there is a tendency that transfer of electrons with the electrolytic solution is hindered. On the other hand, at the interface between the active material layer and the current collector, the amount of polymer particles is relatively small, so that the adhesive force between the active material layer and the current collector tends to decrease and the binding property tends to be impaired. is there. As described above, when the balance of the polymer particles contained in the electrode slurry is lost, the electrical characteristics and the binding property between the active material layer and the current collector tend to be impaired.
 (A)重合体粒子を得るための重合性不飽和単量体としては、たとえばアクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸エトキシエチル、メタクリル酸メチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-デシル、メタクリル酸2-ヒドロキシエチル、クロトン酸イソアミル、クロトン酸n-ヘキシル、メタクリル酸ジメチルアミノエチル、マレイン酸モノメチル等のエチレン性不飽和カルボン酸エステル;1,3-ブタジエン、1,3-ペンタジエン、2,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の共役ジエン化合物;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、無水マレイン酸等のエチレン性不飽和カルボン酸;スチレン、α-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、ビニルナフタレン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のシアノ基含有ビニル化合物;酢酸ビニル、プロピオン酸ビニル等のビニルエステル化合物;エチルビニルエーテル、セチルビニルエーテル、ヒドロキシブチルビニルエーテル等のビニルエーテル化合物等が挙げられる。これらは、単独もしくは二種以上混合して使用することができる。 Examples of the polymerizable unsaturated monomer (A) for obtaining polymer particles include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, ethoxyethyl acrylate, and methyl methacrylate. Ethylenically unsaturated carboxylic acid esters such as 2-ethylhexyl methacrylate, n-decyl methacrylate, 2-hydroxyethyl methacrylate, isoamyl crotonic acid, n-hexyl crotonic acid, dimethylaminoethyl methacrylate, monomethyl maleate; , 3-butadiene, 1,3-pentadiene, 2,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3 -Conjugated diene compounds such as heptadiene; acrylic acid, meta Ethylenically unsaturated carboxylic acids such as lauric acid, crotonic acid, itaconic acid, maleic acid, maleic anhydride; aromatic vinyl compounds such as styrene, α-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, vinylnaphthalene; Examples include cyano group-containing vinyl compounds such as acrylonitrile and methacrylonitrile; vinyl ester compounds such as vinyl acetate and vinyl propionate; vinyl ether compounds such as ethyl vinyl ether, cetyl vinyl ether, and hydroxybutyl vinyl ether. These can be used alone or in admixture of two or more.
 また、上記単量体を主とし、これに少量の架橋性単量体を加えて重合することにより、重合体粒子に架橋構造を付与することは、重合体粒子が分散溶媒や電解液に溶解しにくくなる点で好ましい。かかる架橋性単量体としては、ジビニルベンゼン等のジビニル化合物;ジメタクリル酸ジエチレングリコール、ジメタクリル酸エチレングリコール等の多官能ジメタクリル酸エステル;トリメタクリル酸トリメチロールプロパン等の多官能トリメタクリル酸エステル;ジアクリル酸ポリエチレングリコール、ジアクリル酸1,3-ブチレングリコール等の多官能ジアクリル酸エステル;トリアクリル酸トリメチロールプロパン等の多官能トリアクリル酸エステル等が挙げられる。架橋性単量体は、重合性単量体全体に対して、通常0.1~20質量%、好ましくは0.5~15質量%の割合で使用される。 In addition, by adding a small amount of a crosslinkable monomer to the above monomer and polymerizing the monomer, the polymer particles are given a crosslinked structure by dissolving the polymer particles in a dispersion solvent or an electrolytic solution. This is preferable in that it is difficult to perform. Examples of such crosslinkable monomers include divinyl compounds such as divinylbenzene; polyfunctional dimethacrylates such as diethylene glycol dimethacrylate and ethylene glycol dimethacrylate; polyfunctional trimethacrylates such as trimethylolpropane trimethacrylate; Examples thereof include polyfunctional diacrylates such as polyethylene glycol diacrylate and 1,3-butylene glycol diacrylate; polyfunctional triacrylates such as trimethylolpropane triacrylate. The crosslinkable monomer is usually used in a proportion of 0.1 to 20% by mass, preferably 0.5 to 15% by mass, based on the entire polymerizable monomer.
 さらに上述した乳化重合や懸濁重合等によって得られる重合体粒子の液状媒体分散液には、アンモニア、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム等)水酸化物、無機アンモニウム化合物(塩化アンモニウム等)、有機アミン化合物(エタノールアミン、ジエチルアミン等)等の水溶液を加えてpH調整することができる。なかでも、アンモニアまたはアルカリ金属水酸化物を用いて、pHを5~13、好ましくは6~12の範囲になるように調整すると、集電体と活物質層との結着性を向上できる点で好ましい。 Furthermore, liquid medium dispersions of polymer particles obtained by emulsion polymerization or suspension polymerization described above include ammonia, alkali metal (lithium, sodium, potassium, rubidium, cesium, etc.) hydroxide, inorganic ammonium compounds (ammonium chloride). Etc.), an aqueous solution of an organic amine compound (ethanolamine, diethylamine, etc.) can be added to adjust the pH. In particular, the binding between the current collector and the active material layer can be improved by adjusting the pH to be in the range of 5 to 13, preferably 6 to 12, using ammonia or alkali metal hydroxide. Is preferable.
 以上のように、電極用スラリーに使用する(A)重合体粒子は、乳化重合や懸濁重合等によって得られた重合体粒子の液状媒体分散液をそのまま重合体粒子として用いることができるが、これに限定されない。たとえば重合の際に使用する分散媒体が非水系液状媒体である場合、非水系液状媒体を水に分散媒置換して、水に重合体粒子を分散させて使用することもできる。重合体粒子が粉末粒子の場合には、これを分散媒に分散させて本実施の形態に係る電極用スラリーを調製してもよい。 As described above, the polymer particles (A) used in the electrode slurry can be used as polymer particles as they are, as a liquid medium dispersion of polymer particles obtained by emulsion polymerization or suspension polymerization. It is not limited to this. For example, when the dispersion medium used in the polymerization is a non-aqueous liquid medium, the non-aqueous liquid medium may be replaced with water to disperse the polymer particles in water. When the polymer particles are powder particles, they may be dispersed in a dispersion medium to prepare the electrode slurry according to the present embodiment.
 本実施の形態で使用される電極用スラリーにおける(A)重合体粒子の含有量は、(B)活物質粒子100質量部に対して、正極では、通常0.3~10質量部であり、0.5~5質量部であることが好ましい。一方、負極では、通常0.2~5質量部であり、0.5~2.5質量部であることが好ましい。本実施の形態で使用される電極用スラリーによれば、重合体粒子の含有量を従来の半分~1/10程度の少ない量とした場合でも十分な結着力を得ることができるため、本発明に係る電極を用いた蓄電デバイスは高い容量と充電速度が得られる。 The content of (A) polymer particles in the electrode slurry used in the present embodiment is usually 0.3 to 10 parts by mass in the positive electrode with respect to 100 parts by mass of (B) active material particles, The amount is preferably 0.5 to 5 parts by mass. On the other hand, the negative electrode is usually 0.2 to 5 parts by mass, preferably 0.5 to 2.5 parts by mass. According to the slurry for electrodes used in the present embodiment, a sufficient binding force can be obtained even when the content of the polymer particles is set to a small amount of about half to 1/10 of the conventional amount. An electric storage device using the electrode according to the above can obtain a high capacity and a charging speed.
 1.2.2.(B)活物質粒子
 本実施の形態で使用される電極用スラリーに含まれる(B)活物質粒子を構成する材料は特に限定はなく、目的とする蓄電デバイスの種類により適宜最適な材料を選択することができる。たとえばリチウムイオン二次電池の場合、負極活物質および正極活物質のいずれも、通常のリチウムイオン二次電池の電極の製造に使用されるものを用いることができる。
1.2.2. (B) Active material particles The material constituting the active material particles (B) contained in the electrode slurry used in the present embodiment is not particularly limited, and an optimal material is appropriately selected according to the type of the target power storage device. can do. For example, in the case of a lithium ion secondary battery, both of the negative electrode active material and the positive electrode active material can be those used for manufacturing an electrode of a normal lithium ion secondary battery.
 すなわち、負極活物質としては、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子;A(但し、Aはアルカリ金属または遷移金属、Bはコバルト、ニッケル、アルミニウム、スズ、マンガン等の遷移金属から選択される少なくとも1種、Oは酸素原子を表し、X、YおよびZはそれぞれ1.10>X>0.05、4.00>Y>0.85、5.00>Z>1.5の範囲の数である。)で表される複合金属酸化物や、Siを含有する合金、Siを含有する複合化化合物、その他の金属酸化物等が例示される。 That is, as the negative electrode active material, carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers; conductive polymers such as polyacene; A X B Y O Z (however, , A is an alkali metal or transition metal, B is at least one selected from transition metals such as cobalt, nickel, aluminum, tin and manganese, O represents an oxygen atom, and X, Y and Z are each 1.10>X> 0.05, 4.00>Y> 0.85, 5.00>Z> 1.5)), a Si-containing alloy, Si Examples include compounded compounds containing other metal oxides and the like.
 特に、負極活物質としてシリコン(Si)を活物質として使用する場合、シリコンは5原子あたり最大22個のリチウムを吸蔵することができる(5Si+22Li→Li22Si)。この結果、シリコン理論容量は4200mAh/gにも達する。 In particular, when using silicon (Si) as an active material as an anode active material, silicon can occlude up to 22 pieces of lithium per 5 atoms (5Si + 22Li → Li 22 Si 5). As a result, the theoretical silicon capacity reaches 4200 mAh / g.
 しかしながら、シリコンはリチウムを吸蔵する際に大きな体積変化を生じる。具体的には、黒鉛系負極活物質はリチウムを吸蔵することにより最大1.2倍程度に体積膨張するのに対して、シリコン系活物質はリチウムを吸蔵することにより最大4.4倍程度に体積膨張する。このためシリコン系活物質は膨張と収縮の繰り返しによって微粉化、集電体からの剥離や、活物質同士の乖離を引き起こし、活物質層内部の導電ネットワークが寸断される。従って短時間でサイクル特性が極端に劣化してしまう。 However, silicon undergoes a large volume change when it occludes lithium. Specifically, the graphite-based negative electrode active material expands in volume up to about 1.2 times by occlusion of lithium, whereas the silicon-based active material increases in volume up to about 4.4 times by occlusion of lithium. Volume expansion. For this reason, the silicon-based active material is pulverized, repeatedly peeled off from the current collector, and separated from the active material by repeated expansion and contraction, and the conductive network inside the active material layer is severed. Therefore, the cycle characteristics are extremely deteriorated in a short time.
 しかしながら、本実施の形態で使用される電極用スラリーに含まれる(B)活物質粒子としてシリコン系活物質を使用すると、上述の問題が発生することなく、良好な電気特性を示す蓄電デバイス用電極を作製することができる。これは、(A)重合体粒子がシリコン系活物質を強固に結着させることができると同時に、リチウムを吸蔵することによりシリコン系活物質が体積膨張しても(A)重合体粒子が伸び縮みしてシリコン系活物質を強固に結着させた状態を維持することができるためであると考えられる。さらに、水分散体において(A)重合体粒子がシリコン系活物質の周囲に凝集してシリコン系活物質の加水分解を抑制することで、活物質層を作製する際のシリコン系活物質の劣化を抑制することができると考えられる。なお、本発明において、シリコン系活物質とは、シリコン(Si)を主成分とする活物質のことをいい、より詳しくはシリコンの含有割合が90質量%以上の活物質のことをいう。 However, when a silicon-based active material is used as the active material particles (B) contained in the electrode slurry used in the present embodiment, the above-mentioned problem does not occur, and the electrode for an electricity storage device that exhibits good electrical characteristics Can be produced. This is because (A) the polymer particles can firmly bind the silicon-based active material, and at the same time, even if the silicon-based active material expands by occluding lithium, the (A) polymer particles expand. This is considered to be because the silicon-based active material can be kept in a state of being shrunk and firmly bound. Further, in the aqueous dispersion, (A) polymer particles aggregate around the silicon-based active material to suppress hydrolysis of the silicon-based active material, thereby deteriorating the silicon-based active material when forming the active material layer. It is thought that it can be suppressed. In the present invention, the silicon-based active material refers to an active material mainly composed of silicon (Si), and more specifically refers to an active material having a silicon content of 90% by mass or more.
 (B)活物質粒子として炭素系活物質とシリコン系活物質とを併用する場合、シリコン系活物質の使用量は、十分な結着性を維持する観点から、(B)活物質粒子の全質量を100質量部としたときに4~40質量部であること好ましく、5~35質量部であることがより好ましく、5~30質量部であることが特に好ましい。活物質粒子の全質量に対するシリコン系活物質の使用量が前記範囲であると、充放電に伴うシリコン系活物質の体積膨張に対して炭素系活物質の体積膨張が小さいため、このような活物質を含有する活物質層の充放電に伴う膨張と収縮を抑制することができ、活物質層と集電体の密着性をより向上させることができる。 (B) When a carbon-based active material and a silicon-based active material are used in combination as active material particles, the amount of silicon-based active material used is that from the viewpoint of maintaining sufficient binding properties, When the mass is 100 parts by mass, it is preferably 4 to 40 parts by mass, more preferably 5 to 35 parts by mass, and particularly preferably 5 to 30 parts by mass. If the amount of the silicon-based active material used relative to the total mass of the active material particles is within the above range, the volume expansion of the carbon-based active material is smaller than the volume expansion of the silicon-based active material due to charge / discharge. Expansion and contraction accompanying charging / discharging of the active material layer containing the substance can be suppressed, and adhesion between the active material layer and the current collector can be further improved.
 シリコン系活物質としては、特開2004-185810号公報に記載されているシリコン材料の他、下記式のようなシリコン一酸化物の不均化反応によって作られる、SiO(X=0~2)で表記されるSi酸化物複合体(例えば特開2004-47404号公報、特開2005-259697号公報に記載されている材料など)を使用することができる。シリコン系活物質と併用する炭素系活物質としては、上述の炭素質材料を好ましく用いることができるが、それらの中でもグラファイトがより好ましい。 As the silicon-based active material, in addition to the silicon material described in JP-A-2004-185810, SiO x (X = 0 to 2) produced by a disproportionation reaction of silicon monoxide represented by the following formula: ) (For example, materials described in JP-A-2004-47404 and JP-A-2005-259697) can be used. As the carbon-based active material used in combination with the silicon-based active material, the above-described carbonaceous materials can be preferably used, and among them, graphite is more preferable.
 正極活物質としては、リチウムイオンを吸蔵・放出できる材料であれば、特に限定されることなく使用することができる。例えば、TiS、TiS、MoS、LiFeS等の硫化物、Cu、VO-P、MoO、V、V13、LiCoO、LiNiO、LiMnO、LiMn、LiNi0.4Mn1.6、LiCo0.3Ni0.7、V、MnO等の遷移金属酸化物、LiCoPO、LiFePO、LiCoPOF、LiFePOF等のオリピン系酸化物、LiTi12、LiFe0.5Ti12、LiZn0.5Ti12等のスピネル構造を有するリチウムチタン酸化物、およびこれらの混合物等から作製されたものが例示される。さらに、ポリアセチレン、ポリp-フェニレン等の導電性高分子等の有機化合物を用いることもできる。 As the positive electrode active material, any material that can occlude / release lithium ions can be used without particular limitation. For example, sulfides such as TiS 2 , TiS 3 , MoS 3 , LiFeS 2 , Cu 2 V 2 O 3 , V 2 O—P 2 O 5 , MoO 2 , V 2 O 5 , V 6 O 13 , LiCoO 2 , Transition metal oxides such as LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 0.4 Mn 1.6 O 4 , LiCo 0.3 Ni 0.7 O 2 , V 2 O 5 , MnO 2 , LiCoPO 4 , Spinel structures such as olipine-based oxides such as LiFePO 4 , LiCoPO 4 F and LiFePO 4 F, Li 4 Ti 5 O 12 , Li 4 Fe 0.5 Ti 5 O 12 and Li 4 Zn 0.5 Ti 5 O 12 Examples thereof include lithium titanium oxides and mixtures thereof. Furthermore, organic compounds such as conductive polymers such as polyacetylene and poly-p-phenylene can also be used.
 また、ニッケル水素二次電池の場合においても、通常のニッケル水素二次電池で使用される活物質であればいずれも用いることができる。負極活物質としては、水素吸蔵合金を用いることができる。また、正極活物質としては、オキシ水酸化ニッケル、水酸化ニッケル等を用いることができる。 Also, in the case of a nickel metal hydride secondary battery, any active material used in a normal nickel metal hydride secondary battery can be used. A hydrogen storage alloy can be used as the negative electrode active material. As the positive electrode active material, nickel oxyhydroxide, nickel hydroxide, or the like can be used.
 (B)活物質粒子の平均粒子径(Db)は、前述した比(Db/Da)の値を満足するように選択されるが、通常1~200μmの範囲であり、10~100μmの範囲であることが好ましく、20~50μmの範囲であることがより好ましい。 (B) The average particle diameter (Db) of the active material particles is selected so as to satisfy the ratio (Db / Da) described above, but is usually in the range of 1 to 200 μm, and in the range of 10 to 100 μm. Preferably, it is in the range of 20 to 50 μm.
 ここで、(B)活物質粒子の平均粒子径(Db)とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、累積度数が体積百分率で50%となる粒子径(D50)の値である。なお、このようなレーザー回折式粒度分布測定装置としては、たとえば、HORIBA LA-300シリーズ、HORIBA LA-920シリーズ(以上、株式会社堀場製作所製)等が挙げられる。この粒度分布測定装置は、活物質粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。したがって、この粒度分布測定装置によって得られた平均粒子径(Db)は、電極用スラリー中に含まれる(B)活物質粒子の分散状態の指標とすることができる。 Here, (B) the average particle diameter (Db) of the active material particles means that the particle size distribution is measured using a particle size distribution measuring apparatus based on a laser diffraction method, and the cumulative frequency is 50% in volume percentage. It is a value of a particle diameter (D50). Examples of such a laser diffraction particle size distribution measuring apparatus include HORIBA LA-300 series, HORIBA LA-920 series (above, manufactured by Horiba, Ltd.), and the like. This particle size distribution measuring apparatus does not only evaluate the primary particles of the active material particles, but also evaluates secondary particles formed by aggregation of the primary particles. Therefore, the average particle diameter (Db) obtained by this particle size distribution measuring apparatus can be used as an index of the dispersion state of (B) active material particles contained in the electrode slurry.
 なお、(B)活物質粒子の平均粒子径(Db)は、電極用スラリーを遠心分離して(B)活物質粒子を沈降させた後、その上澄み液を除去し、沈降した(B)活物質粒子を上記の方法により測定することにより得られる。 The average particle diameter (Db) of the active material particles (B) is determined by centrifuging the slurry for the electrode to precipitate the active material particles (B), and then removing the supernatant liquid to settle the active material particles (B) It is obtained by measuring the substance particles by the above method.
 1.2.3.(C)水
 本実施の形態で使用される電極用スラリーは、(C)水を含有する。(C)水を含有することにより電極用スラリーの安定性が良好となり、再現性良く電極を作製することが可能となる。また、電極用スラリーで一般的に使用されている高沸点溶剤(たとえば、N-メチルピロリドン等)と比較して乾燥速度が速く、乾燥時間の短縮によって生産性の向上やマイグレーション抑制が期待できる。
1.2.3. (C) Water The electrode slurry used in the present embodiment contains (C) water. (C) By containing water, the stability of the electrode slurry is improved, and the electrode can be produced with good reproducibility. Further, the drying rate is faster than that of a high boiling point solvent (for example, N-methylpyrrolidone, etc.) generally used in electrode slurries, and improvement in productivity and migration suppression can be expected by shortening the drying time.
 1.2.4.その他の添加剤
 本実施の形態で使用される電極用スラリーには、前述した(A)ないし(C)成分以外にも、必要に応じて導電付与剤、非水系媒体、増粘剤等を添加してもよい。
1.2.4. Other additives In addition to the components (A) to (C) described above, a conductivity-imparting agent, a non-aqueous medium, a thickener, etc. are added to the electrode slurry used in the present embodiment as necessary. May be.
 導電付与剤の具体例としては、リチウムイオン二次電池では、グラファイト、活性炭等のカーボンが用いられる。また、ニッケル水素二次電池では、正極では酸化コバルト、負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボン等が用いられる。上記両電池において、カーボンとしては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン類等が挙げられる。これらの中でも、ケッチェンブラック、アセチレンブラック、ファーネスブラックが好ましい。導電付与剤の使用量は、通常、(B)活物質粒子100質量部に対して1~20質量部、好ましくは2~10質量部である。 As a specific example of the conductivity-imparting agent, carbon such as graphite and activated carbon is used in the lithium ion secondary battery. In the nickel metal hydride secondary battery, cobalt oxide is used for the positive electrode, and nickel powder, cobalt oxide, titanium oxide, carbon, or the like is used for the negative electrode. In both the batteries, examples of carbon include ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerenes. Among these, ketjen black, acetylene black, and furnace black are preferable. The amount of the conductivity-imparting agent used is usually 1 to 20 parts by mass, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the active material particles (B).
 本実施の形態で使用される電極用スラリーには、その塗布性を改善する観点から、80~350℃の標準沸点を有する非水系媒体を添加してもよい。非水系媒体の具体例としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;トルエン、キシレン、n-ドデカン、テトラリン等の炭化水素類;2-エチル-1-ヘキサノール、1-ノナノール、ラウリルアルコール等のアルコール類;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロン等のケトン類;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル類;o-トルイジン、m-トルイジン、p-トルイジン等のアミン類; N,N-ジメチルアセトアミド、ジメチルホルムアミド等のアミド類;γ-ブチロラクトン、δ-ブチロラクトン等のラクトン類;ジメチルスルホキシド、スルホラン等のスルホキシド・スルホン類等が挙げられる。これらは単独もしくは二種以上の混合溶媒として使用することができる。これらの中でも、重合体粒子の安定性や、塗布する際の作業性の点で、N-メチルピロリドンが好ましい。 In the electrode slurry used in the present embodiment, a non-aqueous medium having a normal boiling point of 80 to 350 ° C. may be added from the viewpoint of improving the coating property. Specific examples of the non-aqueous medium include amides such as N-methylpyrrolidone, dimethylformamide and dimethylacetamide; hydrocarbons such as toluene, xylene, n-dodecane and tetralin; 2-ethyl-1-hexanol, 1-nonanol Alcohols such as lauryl alcohol; ketones such as methyl ethyl ketone, cyclohexanone, phorone, acetophenone and isophorone; esters such as benzyl acetate, isopentyl butyrate, methyl lactate, ethyl lactate and butyl lactate; o-toluidine, m-toluidine, p Amines such as toluidine; amides such as N, N-dimethylacetamide and dimethylformamide; lactones such as γ-butyrolactone and δ-butyrolactone; sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane . These can be used alone or as a mixed solvent of two or more. Among these, N-methylpyrrolidone is preferable from the viewpoint of the stability of the polymer particles and the workability during coating.
 本実施の形態で使用される電極用スラリーには、塗工性を改善する観点から、増粘剤を添加してもよい。増粘剤の具体例としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース類、およびこれらのアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸等のポリカルボン酸類、およびこれらのアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸等の不飽和カルボン酸とビニルエステルとの共重合体の鹸化物;等の水溶性ポリマーが挙げられる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩等である。 A thickener may be added to the electrode slurry used in the present embodiment from the viewpoint of improving the coatability. Specific examples of the thickener include celluloses such as carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof; polycarboxylic acids such as poly (meth) acrylic acid and modified poly (meth) acrylic acid Acids, and alkali metal salts thereof; polyvinyl alcohol (co) polymers such as polyvinyl alcohol, modified polyvinyl alcohol, and ethylene-vinyl alcohol copolymers; unsaturated carboxylic acids such as (meth) acrylic acid, maleic acid, and fumaric acid Water-soluble polymers such as a saponified product of a copolymer of an acid and a vinyl ester; Among these, particularly preferred thickeners are alkali metal salts of carboxymethyl cellulose, alkali metal salts of poly (meth) acrylic acid, and the like.
 本実施の形態で使用される電極用スラリーが増粘剤を含有する場合、増粘剤の使用割合は、全重合体粒子質量(全固形分量)に対して、通常5~200質量%、好ましくは10~150質量%、より好ましくは20~100質量%である。 When the electrode slurry used in the present embodiment contains a thickener, the use ratio of the thickener is usually 5 to 200% by mass, preferably based on the total polymer particle mass (total solid content). Is 10 to 150% by mass, more preferably 20 to 100% by mass.
 1.2.5.電極用スラリーの製造方法
 本実施の形態で使用される電極用スラリーは、(A)重合体粒子と、(B)活物質粒子と、(C)水と、必要に応じて用いられる添加剤とを混合することにより作製することができる。これらの混合には通常の手法を用いて混合攪拌することができ、たとえば、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザー等を利用することができる。また、電極用スラリーの調製は、減圧下で行うことが好ましい。これにより、得られる電極層内に気泡が生じることを防止することができる。
1.2.5. Method for Producing Slurry for Electrode The slurry for an electrode used in the present embodiment includes (A) polymer particles, (B) active material particles, (C) water, and additives used as necessary. Can be prepared by mixing. These can be mixed and stirred using a normal method, and for example, a stirrer, a defoaming machine, a bead mill, a high-pressure homogenizer, or the like can be used. The preparation of the electrode slurry is preferably performed under reduced pressure. Thereby, it can prevent that a bubble arises in the electrode layer obtained.
 本実施の形態で使用される電極用スラリーを調製するための混合撹拌には、スラリー中に活物質粒子の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物が無くなるように混合分散すべきである。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサー等が例示される。 The mixing and stirring for preparing the electrode slurry used in the present embodiment includes a mixer capable of stirring to such an extent that no agglomerates of active material particles remain in the slurry, and sufficient dispersion conditions as necessary. It is necessary to select. The degree of dispersion can be measured with a particle gauge, but should be mixed and dispersed so that there are no aggregates larger than at least 100 μm. Examples of the mixer include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a Hobart mixer.
 2.蓄電デバイス
 本実施の形態に係る蓄電デバイスは、前述した蓄電デバイス用電極を備えたものであり、さらに電解液を含み、セパレータ等の部品を用いて、常法に従って製造されるものである。具体的な製造方法としては、たとえば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
2. Power Storage Device The power storage device according to the present embodiment includes the above-described power storage device electrode, and further includes an electrolytic solution and is manufactured according to a conventional method using components such as a separator. As a specific manufacturing method, for example, a negative electrode and a positive electrode are overlapped via a separator, and this is wound into a battery container according to a battery shape, put into a battery container, an electrolyte is injected into the battery container, and sealing is performed. The method of doing is mentioned. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 電解液は、通常の蓄電デバイスに用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを選択すればよい。 The electrolytic solution may be liquid or gel as long as it is used for a normal power storage device, and may be selected from those exhibiting a function as a battery according to the type of the negative electrode active material and the positive electrode active material.
 電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。また、ニッケル水素二次電池では、たとえば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。 As the electrolyte, a lithium ion secondary battery, any conventionally known lithium salts can be used, LiClO 4, LiBF 4, LiPF 6, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, lower fatty acid carboxylate, etc. . Further, in a nickel metal hydride secondary battery, for example, a potassium hydroxide aqueous solution having a conventionally known concentration of 5 mol / liter or more can be used.
 この電解質を溶解させる溶媒は、特に制限されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート類;γ-ブチルラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類が挙げられ、これらは単独もしくは二種以上の混合溶媒として使用することができる。 The solvent for dissolving the electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; lactones such as γ-butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, Examples include ethers such as 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide, and these can be used alone or as a mixture of two or more.
 3.実施例
 以下、本発明を実施例に基いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
3. EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.
 3.1.重合体粒子分散液の合成および調製
 3.1.1.重合体粒子分散液Aの合成
 反応器に水100部と、ブタジエン42部、スチレン30部、アクリロニトリル8部、メタクリル酸メチル18部およびイタコン酸2部からなる単量体100部と、連鎖移動剤としてt-ドデシルメルカプタン1部と、界面活性剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム1.5部と、開始剤として過硫酸カリウム0.4部と、炭酸ナトリウム0.3部とを仕込み、攪拌しながら70℃で8時間重合し、重合転化率96%で反応を終了した。続いて、この反応器に水10部と、ブタジエン14部と、スチレン15部およびメタクリル酸メチル6部からなる単量体類と、界面活性剤としてアルキルジフェニルエーテルジスルホン酸ナトリウム0.1部と、開始剤として過硫酸カリウム0.2部と、炭酸ナトリウム0.1部とを添加して80℃にて8時間重合反応を継続した後、反応を終了させた。このときの重合転化率は98%であった。得られた重合体粒子分散液から未反応単量体を除去し、濃縮後10%水酸化ナトリウム水溶液および水を添加して、重合体粒子分散液の固形分濃度およびpHを調整し、固形分濃度41%、pH7.2の重合体粒子分散液Aを得た。
3.1. Synthesis and preparation of polymer particle dispersions 3.1.1. Synthesis of polymer particle dispersion A In a reactor, 100 parts of water, 42 parts of butadiene, 30 parts of styrene, 8 parts of acrylonitrile, 18 parts of methyl methacrylate and 2 parts of itaconic acid, and a chain transfer agent 1 part of t-dodecyl mercaptan as a surfactant, 1.5 parts of sodium alkyldiphenyl ether disulfonate as a surfactant, 0.4 part of potassium persulfate as an initiator, and 0.3 part of sodium carbonate were added with stirring. Polymerization was performed at 0 ° C. for 8 hours, and the reaction was terminated at a polymerization conversion of 96%. Subsequently, the reactor was started with 10 parts of water, 14 parts of butadiene, 15 parts of styrene and 6 parts of methyl methacrylate, 0.1 part of sodium alkyldiphenyl ether disulfonate as a surfactant, After adding 0.2 parts of potassium persulfate and 0.1 part of sodium carbonate as an agent and continuing the polymerization reaction at 80 ° C. for 8 hours, the reaction was terminated. The polymerization conversion rate at this time was 98%. Unreacted monomers are removed from the obtained polymer particle dispersion, and after concentration, a 10% aqueous sodium hydroxide solution and water are added to adjust the solid content concentration and pH of the polymer particle dispersion. A polymer particle dispersion A having a concentration of 41% and a pH of 7.2 was obtained.
 3.1.2.重合体粒子分散液B~Fの合成
 一般に乳化重合法では、界面活性剤の使用量を増大させると重合体粒子の粒子径を小さくすることができ、逆に界面活性剤の使用量を減少させると重合体粒子の粒子径を大きくすることができる。この性質を利用して、上記「3.1.1.重合体粒子分散液Aの合成」において、界面活性剤の使用量を適宜増減させることによって、重合体粒子分散液B~Fを調製した。
3.1.2. Synthesis of Polymer Particle Dispersions B to F In general, in the emulsion polymerization method, increasing the amount of the surfactant used can reduce the particle size of the polymer particles and conversely reduce the amount of the surfactant used. And the particle diameter of the polymer particles can be increased. Utilizing this property, polymer particle dispersions B to F were prepared by appropriately increasing or decreasing the amount of the surfactant used in “3.1.1. Synthesis of polymer particle dispersion A”. .
 3.1.3.重合体粒子分散液の最頻粒径の測定
 得られた重合体粒子分散液A~Fのそれぞれについて、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR-1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めた。なお、データは体積基準で計算した。その結果は、以下のようになった。ここで便宜上、最頻粒径が0.01μm以上0.25μm未満である重合体粒子分散液を「液状媒体分散液(I)」と、最頻粒径が0.25μm以上0.5μm以下である重合体粒子分散液を「液状媒体分散液(II)」と分類することにする(表1において同じ)。
<液状媒体分散液(I)>
・重合体粒子分散液A;最頻粒径0.15μm
・重合体粒子分散液E;最頻粒径0.20μm
・重合体粒子分散液F;最頻粒径0.08μm
<液状媒体分散液(II)>
・重合体粒子分散液B;最頻粒径0.37μm
・重合体粒子分散液C;最頻粒径0.40μm
・重合体粒子分散液D;最頻粒径0.26μm
3.1.3. Measurement of the mode particle size of the polymer particle dispersion liquid For each of the obtained polymer particle dispersions A to F, a particle size distribution measuring apparatus (made by Otsuka Electronics Co., Ltd., model “ FPAR-1000 ") was used to measure the particle size distribution, and the mode particle size was determined from the particle size distribution. The data was calculated on a volume basis. The result was as follows. Here, for convenience, a polymer particle dispersion having a mode particle size of 0.01 μm or more and less than 0.25 μm is referred to as “liquid medium dispersion (I)”, and a mode particle size of 0.25 μm or more and 0.5 μm or less. A polymer particle dispersion is classified as “liquid medium dispersion (II)” (same in Table 1).
<Liquid medium dispersion (I)>
Polymer particle dispersion A: mode diameter 0.15 μm
Polymer particle dispersion E: mode diameter 0.20 μm
・ Polymer particle dispersion F; mode diameter 0.08 μm
<Liquid medium dispersion (II)>
Polymer particle dispersion B: mode diameter 0.37 μm
Polymer particle dispersion C: mode diameter 0.40 μm
-Polymer particle dispersion D: mode diameter 0.26 μm
 3.1.4.重合体粒子分散液P1~P9の調製
 上記のようにして得られた重合体粒子分散液Aと重合体粒子分散液Bとを固形分質量比10:90の割合で混合して重合体粒子分散液P1を得た。得られた重合体粒子分散液P1について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR-1000」)を用いて粒度分布を測定したところ、重合体粒子分散液P1の平均粒子径(Da)は0.35μmであった。また、重合体粒子分散液P1は、粒径が0.01μm以上0.25μm未満の重合体粒子を11容積%含有し、粒径が0.25μm以上0.5μm以下の重合体粒子を89容積%含有することが確認された。なお、データは体積基準で計算した。
3.1.4. Preparation of Polymer Particle Dispersions P1 to P9 Polymer Particle Dispersion A and Polymer Particle Dispersion B obtained as described above are mixed at a solid content mass ratio of 10:90 to disperse polymer particles. A liquid P1 was obtained. The obtained polymer particle dispersion P1 was measured for particle size distribution using a particle size distribution measuring apparatus (manufactured by Otsuka Electronics Co., Ltd., model “FPAR-1000”) based on the dynamic light scattering method. The average particle diameter (Da) of the combined particle dispersion P1 was 0.35 μm. The polymer particle dispersion P1 contains 11% by volume of polymer particles having a particle size of 0.01 μm or more and less than 0.25 μm, and 89 volumes of polymer particles having a particle size of 0.25 μm or more and 0.5 μm or less. % Content was confirmed. The data was calculated on a volume basis.
 なお、表1に示す組成とした以外は、重合体粒子分散液P1と同様にして重合体粒子分散液P2~P9を作製し、それらの粒度分布を測定した。その測定結果を表1に併せて示す。 Except for the composition shown in Table 1, polymer particle dispersions P2 to P9 were prepared in the same manner as the polymer particle dispersion P1, and their particle size distribution was measured. The measurement results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 3.2.電極用スラリーの調製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1部(固形分換算)、負極活物質として平均粒子径22μmのグラファイト100部(固形分換算)、水68部を投入し、60rpmで1時間攪拌を行った。その後、前述した「3.1.4.重合体粒子分散液P1~P9の調製」の項にて調製された重合体粒子分散液P1を1部(固形分換算)加え、さらに1時間攪拌しペーストを得た。得られたペーストに水を投入し、固形分を50%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより電極用スラリーS1を調製した。
3.2. Preparation of electrode slurry 1 part of a thickener (trade name “CMC2200”, manufactured by Daicel Chemical Industries, Ltd.) in a biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Corporation) And 100 parts of graphite having an average particle diameter of 22 μm (in terms of solids) and 68 parts of water were added as the negative electrode active material, followed by stirring at 60 rpm for 1 hour. Thereafter, 1 part (in terms of solid content) of the polymer particle dispersion P1 prepared in the above-mentioned section “3.1.4. Preparation of polymer particle dispersions P1 to P9” was added, and the mixture was further stirred for 1 hour. A paste was obtained. Water was added to the obtained paste to adjust the solid content to 50%, and then the mixture was stirred at 200 rpm for 2 minutes at 1800 rpm at 200 rpm using a stirring defoamer (trade name “Netaro Awatori” manufactured by Shinky Co., Ltd.). The electrode slurry S1 was prepared by stirring and mixing for 5 minutes at 1800 rpm and 1800 rpm for 1.5 minutes under vacuum.
 なお、表2において(A)重合体粒子の平均粒子径(Da)は、得られた電極用スラリーの一部を遠心分離して、その上澄み液を動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR-1000」)を用いて粒度分布を測定することにより求めた値である。 In Table 2, (A) the average particle diameter (Da) of the polymer particles is determined by centrifuging a part of the obtained electrode slurry, and measuring the supernatant liquid using a dynamic light scattering method as a measurement principle. It is a value obtained by measuring the particle size distribution using a distribution measuring apparatus (manufactured by Otsuka Electronics Co., Ltd., type “FPAR-1000”).
 また、表2において(B)活物質粒子として使用したグラファイトは、市販品のグラファイト(日立化成工業株式会社製、製品名「MAGD」)を適時めのう乳鉢で磨り潰し、粉砕時間を変化させて微粒化を行うことにより、表2に記載の平均粒子径(Db)が異なるグラファイトをそれぞれ得た。なお、表2に記載の(B)活物質粒子として使用したグラファイトの平均粒子径(Db)は、得られた電極用スラリーを遠心分離してグラファイトを沈降させて上澄み液を除去し、その沈降物をレーザー回折式粒度分布測定装置(株式会社堀場製作所製、HORIBA LA-300シリーズ)で測定することにより求めた値である。 In Table 2, the graphite used as the active material particles (B) is a fine product by grinding commercially available graphite (manufactured by Hitachi Chemical Co., Ltd., product name “MAGD”) in an agate mortar and changing the grinding time. By performing the conversion, graphites having different average particle diameters (Db) described in Table 2 were obtained. In addition, the average particle diameter (Db) of the graphite used as (B) active material particles described in Table 2 is obtained by centrifuging the obtained electrode slurry, allowing the graphite to settle, and removing the supernatant liquid. It is a value obtained by measuring the product with a laser diffraction particle size distribution measuring device (HORIBA LA-300 series, manufactured by Horiba, Ltd.).
 表3において、(B)活物質粒子として使用したグラファイトとシリコン活物質との混合粒子は、特開2004-185810号公報に記載の方法に準じて作製した。 In Table 3, (B) mixed particles of graphite and silicon active material used as active material particles were prepared according to the method described in JP-A No. 2004-185810.
 すなわち、シリコンインゴットをめのう乳鉢で磨り潰し、粉砕処理して得られた平均粒径10ミクロンのシリコン粉末(99.6%)と、市販品のグラファイト(日立化成工業株式会社製、製品名「MAGD」)を表3に記載した質量比で混合し、媒体撹拌ミル装置にて窒素中3時間粉砕した。その後、室温まで冷却し、酸化防止被膜処理を行なわずに空気中に取り出し、グラファイトとシリコン活物質との混合粒子を得た。適時、粉砕時間を変化させて微粒化を行うことにより、表3に記載の平均粒子径(Db)が異なるグラファイトとシリコン活物質との混合粒子をそれぞれ得た。なお、表3に記載の(B)活物質粒子として使用したグラファイトとシリコン活物質との混合粒子の平均粒子径(Db)は、得られた電極用スラリーを遠心分離してグラファイトとシリコン活物質との混合粒子を沈降させて上澄み液を除去し、その沈降物をレーザー回折式粒度分布測定装置(株式会社堀場製作所製、HORIBA LA-300シリーズ)で測定することにより求めた値である。 That is, a silicon powder (99.6%) having an average particle diameter of 10 microns obtained by grinding and crushing a silicon ingot in an agate mortar and a commercially available graphite (product name “MAGD, manufactured by Hitachi Chemical Co., Ltd.) )) Was mixed at a mass ratio shown in Table 3, and pulverized in nitrogen for 3 hours in a medium stirring mill apparatus. Then, it cooled to room temperature and took out in the air, without performing an antioxidant coating process, and obtained the mixed particle of the graphite and the silicon active material. By appropriately changing the pulverization time and performing atomization, mixed particles of graphite and silicon active material having different average particle diameters (Db) shown in Table 3 were obtained. In addition, the average particle diameter (Db) of the mixed particles of graphite and silicon active material used as (B) active material particles shown in Table 3 is determined by centrifuging the obtained slurry for electrodes and graphite and silicon active material. And the supernatant liquid is removed, and the sediment is measured with a laser diffraction particle size distribution analyzer (HORIBA LA-300 series, manufactured by Horiba, Ltd.).
 表2及び表3に示す組成とした以外は、上記の電極用スラリーS1と同様にして電極用スラリーS2~S17を作製した。また、作製した電極用スラリーの特性を表2及び表3に併せて示す。 Electrode slurries S2 to S17 were prepared in the same manner as the electrode slurry S1 except that the compositions shown in Tables 2 and 3 were used. The characteristics of the prepared electrode slurry are also shown in Tables 2 and 3.
 3.3.蓄電デバイス用電極および電池の作製
 3.3.1.実施例
 銅箔よりなる集電体の表面に、上記「3.2.電極用スラリーの調製」の項にて調製した電極用スラリーS1を、乾燥後の膜厚が40μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。さらに同じ電極用スラリーS1を、乾燥後の合計膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。最後に、ロールプレス機(テスター産業株式会社製、ギャップ間調整式ロールプレス機「SA-601」)によりプレス加工することにより、実施例1の蓄電デバイス用電極を得た。
3.3. Production of electrode and battery for electricity storage device 3.3.1. Example Doctor blade S1 prepared on the surface of a current collector made of copper foil with the electrode slurry S1 prepared in the above section "3.2. Preparation of electrode slurry" was dried so that the film thickness after drying was 40 µm. The film was uniformly coated by the method and dried at 120 ° C. for 20 minutes. Furthermore, the same electrode slurry S1 was uniformly applied by a doctor blade method so that the total film thickness after drying was 80 μm, and dried at 120 ° C. for 20 minutes. Finally, an electrode for an electricity storage device of Example 1 was obtained by pressing with a roll press machine (manufactured by Tester Sangyo Co., Ltd., gap-adjustable roll press machine “SA-601”).
 また、表2及び表3に記載した電極用スラリーを用いて、表2及び表3に記載の活物質層の密度となるようにロールプレス機の圧縮条件を変更したこと以外は、上記実施例1の蓄電デバイス用電極と同様にして実施例2~12および比較例1~5の蓄電デバイス用電極を得た。得られた蓄電デバイス用電極における活物質層の重合体分布係数、活物質層中の比(Ma/Mb)および密度を表2及び表3に併せて示す。 In addition, the above examples except that the compression conditions of the roll press machine were changed so that the density of the active material layer described in Table 2 and Table 3 was obtained using the slurry for electrodes described in Table 2 and Table 3. Example 2 to 12 and Comparative Examples 1 to 5 were obtained in the same manner as for the electricity storage device electrode 1. The polymer distribution coefficient of the active material layer, the ratio (Ma / Mb) and the density in the active material layer in the obtained electrode for an electricity storage device are shown together in Tables 2 and 3.
 なお、得られた蓄電デバイス用電極における活物質層の重合体分布係数を以下のようにして算出した。まず、得られた蓄電デバイス用電極を二つに分割した。次いで、あらかじめ準備しておいた70mm×150mmのアルミ板に、両面テープ(株式会社ニチバン製、品番「NW-25」)を120mm、さらに同両面テープの上にカプトンテープ(株式会社テラオカ製、品番「650S」)を粘着面が上になるようにして貼り付けた固定用ステージを作製した。この固定用ステージの上に、得られた蓄電デバイス用電極を20mm×100mmの大きさに切り出した試験片の活物質層側を貼り付け、ローラーで圧着させた。この試験片が固定された固定ステージを水平面に載置し、試験片を上方向に固定用ステージとの角度が90度となるように一定速度で引き上げ、接着面から集電体を剥離させた。その後、集電体側に残存した活物質層の表面から深さ1.5μmおよび粘着テープ側に残存した活物質層表面から深さ1.5μmまでの活物質層を掻き取り、これを測定試料Aとした。一方、分割しておいたもう一つの電極から活物質層を全て掻き取り、これを測定試料Bとした。測定試料Aおよび測定試料Bのそれぞれについて、高周波誘導加熱方式パイロライザーを有する熱分解ガスクロマトグラフィにて分析し、各試料の単位重量当たりの重合体成分の含有量(質量%)を算出した。得られた値を下記式(1)に代入することにより、重合体分布係数を算出した。
 重合体分布係数=(測定試料Aの重合体含有量:質量%)/(測定試料Bの重合体含有量:質量%) ・・・・・(1)
In addition, the polymer distribution coefficient of the active material layer in the obtained electrode for an electricity storage device was calculated as follows. First, the obtained electrode for an electricity storage device was divided into two. Next, double-sided tape (product number “NW-25”, manufactured by Nichiban Co., Ltd.) is 120 mm on an aluminum plate of 70 mm × 150 mm prepared in advance, and Kapton tape (product number, manufactured by Terraoka Co., Ltd.) on the double-sided tape. A fixing stage was prepared by attaching “650S”) with the adhesive surface facing upward. On the fixing stage, the active material layer side of the test piece obtained by cutting the obtained electrode for an electricity storage device into a size of 20 mm × 100 mm was attached and pressure-bonded with a roller. The fixed stage to which the test piece was fixed was placed on a horizontal plane, and the test piece was pulled upward at a constant speed so that the angle with the fixing stage was 90 degrees, and the current collector was peeled off from the adhesive surface. . Thereafter, the active material layer having a depth of 1.5 μm from the surface of the active material layer remaining on the current collector side and a depth of 1.5 μm from the surface of the active material layer remaining on the adhesive tape side is scraped, and this is measured sample A It was. On the other hand, the entire active material layer was scraped off from the other divided electrode, and this was used as measurement sample B. About each of the measurement sample A and the measurement sample B, it analyzed by the pyrolysis gas chromatography which has a high frequency induction heating system pyrolyzer, and content (mass%) of the polymer component per unit weight of each sample was computed. The polymer distribution coefficient was calculated by substituting the obtained value into the following formula (1).
Polymer distribution coefficient = (polymer content of measurement sample A: mass%) / (polymer content of measurement sample B: mass%) (1)
 また、集電体の質量A(g)、作製された蓄電デバイス用電極の質量B(g)、集電体上の形成された活物質層の面積C(cm)、厚さD(μm)を測定し、下記式(2)により活物質層の密度(g/cm)を算出した。
 活物質層の密度(g/cm
=(B(g)-A(g))/(C(cm)×D(μm)×10-4) ・・・・・(2)
Further, the mass A (g) of the current collector, the mass B (g) of the produced power storage device electrode, the area C (cm 2 ) of the active material layer formed on the current collector, and the thickness D (μm) ) Was measured, and the density (g / cm 3 ) of the active material layer was calculated by the following formula (2).
Active material layer density (g / cm 3 )
= (B (g) -A ( g)) / (C (cm 2) × D (μm) × 10 -4) ····· (2)
 さらに、得られた蓄電デバイス用電極について、活物質層の上層(表面から40μmまで)を掻き取り、それを「測定試料B」とした。また、集電体上に残存した活物質層を掻き取り、それを「測定試料A」とした。測定試料Aおよび測定試料Bのそれぞれについて高周波誘導加熱方式パイロライザーを有する熱分解ガスクロマトグラフィにて分析し、測定試料Aに含まれる単位体積当たりの重合体の含有量(Ma)および測定試料Bに含まれる単位体積当たりの重合体の含有量(Mb)を求め、比(Ma/Mb)を算出した。 Furthermore, with respect to the obtained electrode for an electricity storage device, the upper layer (up to 40 μm from the surface) of the active material layer was scraped, and this was designated as “measurement sample B”. Further, the active material layer remaining on the current collector was scraped off and used as “measurement sample A”. Each of the measurement sample A and the measurement sample B is analyzed by pyrolysis gas chromatography having a high frequency induction heating type pyrolyzer. The polymer content per unit volume (Ma) contained in the measurement sample A and the measurement sample B are The content (Mb) of the polymer per unit volume contained was determined, and the ratio (Ma / Mb) was calculated.
 3.3.2.対電極の作製
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100部(固形分換算)、N-メチルピロリドン(NMP)36部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。アルミ箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、該膜の密度が3.0g/cmとなるようにロールプレス機(テスター産業株式会社製、ギャップ間調整式ロールプレス機「SA-601」)によりプレス加工することにより、上記「3.3.1.実施例」で得られた蓄電デバイス用電極の対電極を得た。
3.3.2. Production of counter electrode Biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Co., Ltd.) and electrode binder (product name “KF polymer # 1120” manufactured by Kureha Co., Ltd.) 4.0 parts (In terms of solid content), conductive assistant (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka Black 50% press product”) 3.0 parts, LiCoO 2 having a particle diameter of 5 μm as a positive electrode active material (manufactured by Hayashi Kasei Co., Ltd.) 100 parts (in terms of solid content) and 36 parts of N-methylpyrrolidone (NMP) were added, and the mixture was stirred at 60 rpm for 2 hours. After adding NMP to the obtained paste to adjust the solid content to 65%, using a stirring defoaming machine (trade name “Awatori Netaro”, manufactured by Shinky Co., Ltd.), 2 minutes at 200 rpm, 1800 rpm The mixture was stirred and mixed for 5 minutes at 1,800 rpm for 1.5 minutes under vacuum to prepare a slurry for electrodes. The prepared electrode slurry was uniformly applied to the surface of the current collector made of aluminum foil by a doctor blade method so that the film thickness after drying was 80 μm, and was dried at 120 ° C. for 20 minutes. Then, by pressing by a roll press as the membrane density is 3.0 g / cm 3 (Tester Sangyo Co., Ltd., the gap between the adjustable roll press "SA-601"), the "3 The counter electrode of the electrode for an electricity storage device obtained in “.3.1.
 3.3.3.リチウムイオン電池セルの組立て
 露点が-80℃以下となるようAr置換されたグローブボックス内で、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)に、前記「3.3.1.実施例」の項にて作製した電極を直径15.95mmに打ち抜き成型したものを載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した。その後、前記「3.3.2.対電極の作製」の項にて作製した対電極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することによりリチウムイオン電池セルを組み立てた。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFを1モル/リットルの濃度で溶解した溶液である。
3.3.3. Assembling of the lithium ion battery cell In the glove box substituted with Ar so that the dew point is −80 ° C. or lower, the bipolar battery cell (trade name “HS Flat Cell” manufactured by Hosen Co., Ltd.) is placed in the above-mentioned “3.3. The electrode produced in the section “1. Example” was punched into a diameter of 15.95 mm and placed. Next, a separator made of a polypropylene porous membrane punched to a diameter of 24 mm (trade name “Celguard # 2400” manufactured by Celgard Co., Ltd.) was placed, and 500 μL of electrolyte was injected so that air did not enter. Thereafter, the counter electrode produced in the section “3.3.2. Production of counter electrode”, which was punched and molded to a diameter of 16.16 mm, was placed, and the outer body of the bipolar coin cell was closed with a screw. The lithium ion battery cell was assembled by sealing. The electrolytic solution used was a solution in which LiPF 6 was dissolved at a concentration of 1 mol / liter in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1.
 3.4.評価方法
 (1)粉落ち性の評価
 前記「3.3.1.実施例」の項にて作製した電極より10cm×5cmのサンプルを5枚切り出し、それらを重ね合わせた。実験台の上に市販の上質紙を置き、その上に100メッシュのステンレスメッシュを置いた。そのメッシュ上で5枚重ねた電極試験片をハサミで長辺方向より1cm間隔で9回切断し、その際にステンレスメッシュを通過し上質紙上にこぼれ落ちた活物質粉末の状態を観察した。その観察結果によって以下のように評価した。評価基準は下記の通りであり、その結果を表2及び表3に併せて示す。
○:全く粉落ちがない、あるいはごくわずかに粉落ちが観察される。良好。
×:多量の粉落ちが観察される。不良。
3.4. Evaluation method (1) Evaluation of powder fall-off property Five 10 cm x 5 cm samples were cut out from the electrode produced in the above-mentioned "3.3.1. Example", and they were piled up. A commercially available high-quality paper was placed on the experimental table, and a 100 mesh stainless steel mesh was placed thereon. Five electrode test pieces stacked on the mesh were cut with scissors nine times at 1 cm intervals from the long side, and the state of the active material powder that passed through the stainless steel mesh and spilled on the fine paper was observed. The following evaluations were made based on the observation results. The evaluation criteria are as follows, and the results are also shown in Tables 2 and 3.
○: No powder fall off or very little powder fall off. Good.
X: A large amount of powder falling is observed. Bad.
 (2)結着力の評価
 前記「3.3.1.実施例」の項にて作製した電極より10cm四方のサンプル5枚を切り出し、120℃の熱プレスで5分間圧縮し成型した。その蓄電デバイス用電極表面にナイフを用いて、活物質層から集電体に達する深さまでの切り込みを2mm間隔で縦横それぞれ6本入れて碁盤目状に25マスの切り込みを入れた。この切り込みを入れた部分の表面に粘着テープを貼り付けて直ちに引き剥がし、活物質層が銅箔より剥離したマス目の数をカウントした。1サンプル(片面)について1回実施して、計5サンプルの合計125マスの内、剥離したマス目の個数をカウントし、この個数により次のように評価した。評価基準は下記の通りであり、その結果を表2及び表3に併せて示す。
○:脱落したマスが0個~20個で良好。
×:脱落したマスが21個以上で不良。
(2) Evaluation of binding force Five 10 cm square samples were cut out from the electrode produced in the above section "3.3.1. Example", and compressed and molded by 120 ° C hot pressing for 5 minutes. Using a knife on the surface of the electrode for the electricity storage device, 6 incisions from the active material layer to the depth reaching the current collector were made at 2 mm intervals in both vertical and horizontal directions, and 25 square incisions were made in a grid pattern. An adhesive tape was affixed to the surface of the cut-in portion and immediately peeled off, and the number of cells where the active material layer was peeled off from the copper foil was counted. This was carried out once for one sample (one side), and the number of squares peeled out of a total of 125 squares of a total of 5 samples was counted, and the following evaluation was made based on this number. The evaluation criteria are as follows, and the results are also shown in Tables 2 and 3.
◯: Good with 0 to 20 cells dropped.
X: Defects with 21 or more missing cells.
 (3)充放電レート特性の評価
 前記「3.3.3.リチウムイオン電池セルの組立」の項にて作製したセルを定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として0.2Cでの充電容量を測定した。その後、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。0.2Cでの放電容量に対する3Cでの放電容量の割合(%)を計算し、放電レート特性(%)を算出した。
(3) Evaluation of Charging / Discharging Rate Characteristics Charging of the cell produced in the section “3.3.3 Assembly of lithium ion battery cell” at a constant current (0.2 C) was started, and the voltage was 4. When the voltage reached 2 V, charging was continued at a constant voltage (4.2 V), and when the current value reached 0.01 C, charging was completed (cut off), and the charge capacity at 0.2 C was measured. Thereafter, discharge was started at a constant current (0.2 C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 0.2 C was measured. The ratio (%) of the discharge capacity at 3C to the discharge capacity at 0.2C was calculated, and the discharge rate characteristic (%) was calculated.
 次に、同じセルを定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。その後、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。0.2Cでの充電容量に対する3Cでの充電容量の割合(%)を計算し、充電レート特性(%)を算出した。評価基準は下記の通りであり、その結果を表2及び表3に併せて示す。
○:放電レート特性および充電レート特性が80%以上で良好。
×:放電レート特性または充電レート特性が80%未満で不良。
Next, charging of the same cell is started at a constant current (3C), and when the voltage reaches 4.2V, charging is continued at a constant voltage (4.2V). The charging capacity at 3C was measured with the point of time at which charging was completed (cut-off). Thereafter, discharge was started at a constant current (3C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 3C was measured. The ratio (%) of the charge capacity at 3C to the charge capacity at 0.2C was calculated, and the charge rate characteristic (%) was calculated. The evaluation criteria are as follows, and the results are also shown in Tables 2 and 3.
Good: Good discharge rate characteristics and charge rate characteristics of 80% or more.
X: The discharge rate characteristic or the charge rate characteristic is less than 80%, which is poor.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 3.5.評価結果
 表2及び表3に示すように、実施例1~12の蓄電デバイス用電極によれば、集電体および活物質層間の結着性が良好であり、粉落ち性に優れていた。また、実施例1~12の蓄電デバイス用電極を備えたリチウムイオン電池は、電気的特性の一つである充放電レート特性が良好であった。
3.5. Evaluation Results As shown in Tables 2 and 3, according to the electricity storage device electrodes of Examples 1 to 12, the binding property between the current collector and the active material layer was good, and the powder falling property was excellent. In addition, the lithium ion batteries provided with the electrodes for the electricity storage device of Examples 1 to 12 had good charge / discharge rate characteristics, which is one of the electrical characteristics.
 一方、比較例1~5の蓄電デバイス用電極では、重合体分布係数が1.1~3の範囲外であるため、前述した理由により蓄電デバイス用電極の結着性や粉落ち性、リチウムイオン電池の充放電レート特性を両立させることができなかった。 On the other hand, in the electricity storage device electrodes of Comparative Examples 1 to 5, the polymer distribution coefficient is out of the range of 1.1 to 3. Therefore, for the reasons described above, the binding property and powder-off property of the electricity storage device electrode, lithium ion The charge / discharge rate characteristics of the battery could not be made compatible.
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the present invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment. In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. In addition, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
10…集電体、20…活物質層、100…蓄電デバイス用電極 DESCRIPTION OF SYMBOLS 10 ... Current collector, 20 ... Active material layer, 100 ... Electrode for electrical storage device

Claims (10)

  1.  集電体と、前記集電体の表面に形成された活物質層と、を備えた蓄電デバイス用電極であって、
     前記活物質層は、重合体および活物質を少なくとも含み、
     前記活物質層の重合体分布係数が1.1~3である、蓄電デバイス用電極。
    An electrode for an electricity storage device comprising a current collector and an active material layer formed on a surface of the current collector,
    The active material layer includes at least a polymer and an active material,
    An electrode for an electricity storage device, wherein the active material layer has a polymer distribution coefficient of 1.1 to 3.
  2.  前記活物質層の厚みをTとした場合、前記集電体と接する面から厚み方向T/2までの活物質層中に含まれる単位体積当たりの重合体の含有量をMa(g/cm)、前記厚み方向T/2からTまでの活物質層中に含まれる単位体積当たりの重合体の含有量をMb(g/cm)とすると、比(Ma/Mb)が3~6の範囲にあることを特徴とする、請求項1に記載の蓄電デバイス用電極。 When the thickness of the active material layer is T, the content of the polymer per unit volume contained in the active material layer from the surface in contact with the current collector to the thickness direction T / 2 is expressed as Ma (g / cm 3 ), When the polymer content per unit volume contained in the active material layer from the thickness direction T / 2 to T is Mb (g / cm 3 ), the ratio (Ma / Mb) is 3-6. The electrode for an electricity storage device according to claim 1, wherein the electrode is in a range.
  3.  前記活物質が、シリコン活物質を含有する、請求項1または請求項2に記載の蓄電デバイス用電極。 The electrode for an electrical storage device according to claim 1 or 2, wherein the active material contains a silicon active material.
  4.  前記活物質層は、
     前記集電体の表面に(A)重合体粒子、(B)活物質粒子および(C)水を少なくとも含有する電極用スラリーを塗布した後、さらに乾燥させて形成された第1層と、
     前記第1層の表面に前記電極用スラリーを塗布した後、さらに乾燥させて形成された第2層と、
    を含む、請求項1ないし請求項3のいずれか一項に記載の蓄電デバイス用電極。
    The active material layer is
    A first layer formed by applying a slurry for an electrode containing at least (A) polymer particles, (B) active material particles, and (C) water to the surface of the current collector;
    A second layer formed by applying the electrode slurry on the surface of the first layer and then drying the slurry;
    The electrode for electrical storage devices as described in any one of Claims 1 thru | or 3 containing these.
  5.  前記第1層の厚みは、前記第2層の厚みよりも薄い、請求項4に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to claim 4, wherein the thickness of the first layer is thinner than the thickness of the second layer.
  6.  前記第2層の上方に、
     前記電極用スラリーを塗布した後、さらに乾燥させて形成された、1以上の層を有する、請求項4または請求項5に記載の蓄電デバイス用電極。
    Above the second layer,
    The electrode for an electrical storage device according to claim 4, which has one or more layers formed by applying the electrode slurry and further drying the slurry.
  7.  前記電極用スラリーは、前記(A)重合体粒子の平均粒子径(Da)と前記(B)活物質粒子の平均粒子径(Db)との比(Db/Da)が20~100の範囲にある、請求項4ないし請求項6のいずれか一項に記載の蓄電デバイス用電極。 In the electrode slurry, the ratio (Db / Da) of the average particle diameter (Da) of the (A) polymer particles to the average particle diameter (Db) of the (B) active material particles is in the range of 20-100. The electrode for electrical storage devices as described in any one of Claims 4 thru | or 6.
  8.  前記(A)重合体粒子は、0.01μm以上0.25μm未満の粒径区間に2~60容積%および、0.25μm以上0.5μm以下の粒径区間に40~98容積%存在する分布を有する、請求項4ないし請求項7のいずれか一項に記載の蓄電デバイス用電極。 The distribution of the polymer particles (A) is 2 to 60% by volume in a particle diameter section of 0.01 μm or more and less than 0.25 μm and 40 to 98% by volume in a particle diameter section of 0.25 μm or more and 0.5 μm or less The electrode for an electrical storage device according to any one of claims 4 to 7, comprising:
  9.  前記(B)活物質粒子の平均粒子径(Db)は、1~200μmである、請求項4ないし請求項8のいずれか一項に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to any one of claims 4 to 8, wherein an average particle diameter (Db) of the (B) active material particles is 1 to 200 µm.
  10.  請求項1ないし請求項9のいずれか一項に記載の蓄電デバイス用電極を備えた、蓄電デバイス。 An electricity storage device comprising the electrode for an electricity storage device according to any one of claims 1 to 9.
PCT/JP2012/060134 2011-04-21 2012-04-13 Electrode for electrical storage device, and electrical storage device WO2012144439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013510978A JPWO2012144439A1 (en) 2011-04-21 2012-04-13 Electrode for power storage device and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011094754 2011-04-21
JP2011-094754 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144439A1 true WO2012144439A1 (en) 2012-10-26

Family

ID=47041547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060134 WO2012144439A1 (en) 2011-04-21 2012-04-13 Electrode for electrical storage device, and electrical storage device

Country Status (2)

Country Link
JP (1) JPWO2012144439A1 (en)
WO (1) WO2012144439A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045522A1 (en) * 2013-09-27 2015-04-02 昭和電工株式会社 Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
WO2018016785A1 (en) 2016-07-18 2018-01-25 Lg Chem, Ltd. Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
JP2021022521A (en) * 2019-07-30 2021-02-18 株式会社大阪ソーダ Binder composition, binder, electrode material, electrode, and power storage device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147834A (en) * 1995-11-24 1997-06-06 Shin Kobe Electric Mach Co Ltd Battery
JPH09185960A (en) * 1995-12-28 1997-07-15 Dainippon Printing Co Ltd Electrode for nonaqueous electrolyte secondary battery and its manufacture
JP2003109598A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Battery electrode and manufacturing method of the same
JP2007109628A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery, and its manufacturing method
JP2008258055A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Secondary battery and vehicle
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
JP2010182626A (en) * 2009-02-09 2010-08-19 Sanyo Electric Co Ltd Negative electrode for nonaqueous secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147834A (en) * 1995-11-24 1997-06-06 Shin Kobe Electric Mach Co Ltd Battery
JPH09185960A (en) * 1995-12-28 1997-07-15 Dainippon Printing Co Ltd Electrode for nonaqueous electrolyte secondary battery and its manufacture
JP2003109598A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Battery electrode and manufacturing method of the same
JP2007109628A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery, and its manufacturing method
JP2008258055A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Secondary battery and vehicle
JP2009206079A (en) * 2008-01-30 2009-09-10 Panasonic Corp Nonaqueous secondary battery and method for producing the same
JP2010182626A (en) * 2009-02-09 2010-08-19 Sanyo Electric Co Ltd Negative electrode for nonaqueous secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045522A1 (en) * 2013-09-27 2015-04-02 昭和電工株式会社 Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
CN105580174A (en) * 2013-09-27 2016-05-11 昭和电工株式会社 Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
JPWO2015045522A1 (en) * 2013-09-27 2017-03-09 昭和電工株式会社 Non-aqueous battery electrode binder composition, non-aqueous battery electrode slurry, non-aqueous battery electrode, and non-aqueous battery
US9947929B2 (en) 2013-09-27 2018-04-17 Showa Denko K.K. Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
WO2018016785A1 (en) 2016-07-18 2018-01-25 Lg Chem, Ltd. Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
CN108140811A (en) * 2016-07-18 2018-06-08 株式会社Lg化学 The electrode of secondary lithium batteries for preparing the method for the electrode of secondary lithium batteries and thus preparing
EP3335260A4 (en) * 2016-07-18 2018-09-26 LG Chem, Ltd. Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
CN108140811B (en) * 2016-07-18 2021-11-16 株式会社Lg化学 Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
US11495780B2 (en) 2016-07-18 2022-11-08 Lg Energy Solution, Ltd. Method of preparing electrode for lithium secondary battery and electrode for lithium secondary battery prepared thereby
JP2021022521A (en) * 2019-07-30 2021-02-18 株式会社大阪ソーダ Binder composition, binder, electrode material, electrode, and power storage device
JP7325707B2 (en) 2019-07-30 2023-08-15 株式会社大阪ソーダ Binder composition, binder, electrode material, electrode and power storage device

Also Published As

Publication number Publication date
JPWO2012144439A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5158396B2 (en) Electrode binder composition
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
WO2017094252A1 (en) Composition for non-aqueous secondary cell adhesive layer, adhesive layer for non-aqueous secondary cell, laminate body, and non-aqueous secondary cell
WO2017056466A1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
EP3435456B1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP4273687B2 (en) Binder composition for secondary battery electrode and secondary battery
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6269914B2 (en) Electrode for power storage device, slurry for electrode, and power storage device
JP2022041230A (en) Conductive material dispersion for electrochemical element, slurry for electrochemical element electrode, electrode for electrochemical element, and electrochemical element
JP5707804B2 (en) Slurry composition for positive electrode of non-aqueous electrolyte secondary battery
WO2012144439A1 (en) Electrode for electrical storage device, and electrical storage device
JP2016021391A (en) Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
WO2016052048A1 (en) Slurry for positive electrode, electrical-storage-device positive electrode, and electrical storage device
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JP6870771B1 (en) Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
WO2024034574A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode
WO2023145655A1 (en) Composite particles for electrochemical element positive electrode, production method for same, positive electrode for electrochemical element, and electrochemical element
WO2023127300A1 (en) Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode
JP2012124181A (en) Electrode composition for nonaqueous electrolyte secondary battery, and electrode and battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773999

Country of ref document: EP

Kind code of ref document: A1