JP3067544B2 - Positive electrode for lithium secondary battery and method for producing the same - Google Patents

Positive electrode for lithium secondary battery and method for producing the same

Info

Publication number
JP3067544B2
JP3067544B2 JP6241236A JP24123694A JP3067544B2 JP 3067544 B2 JP3067544 B2 JP 3067544B2 JP 6241236 A JP6241236 A JP 6241236A JP 24123694 A JP24123694 A JP 24123694A JP 3067544 B2 JP3067544 B2 JP 3067544B2
Authority
JP
Japan
Prior art keywords
positive electrode
binder
active material
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6241236A
Other languages
Japanese (ja)
Other versions
JPH08106897A (en
Inventor
純一 山浦
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6241236A priority Critical patent/JP3067544B2/en
Publication of JPH08106897A publication Critical patent/JPH08106897A/en
Application granted granted Critical
Publication of JP3067544B2 publication Critical patent/JP3067544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池の、と
くにその正極の特性改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement in the characteristics of its positive electrode.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a drive power source for these devices. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】特に最近、LiCoO2、LiNiO2など
のリチウム複合酸化物を正極活物質とし、負極活物質に
炭素材を用いた電池系が、高エネルギー密度のリチウム
二次電池として注目を集めている。この電池系の特徴
は、電池電圧が高いことと、正負極ともにインターカレ
ーション反応を利用しているところにあり、負極に金属
Liを用いていないのでデンドライト状Liの析出によ
る短絡等もなく安全性と急速充電が期待できるものであ
る。すでに、LiCoO2を正極に、炭素材料を負極に
用いた電池が商品化されている。このようなリチウム二
次電池の場合、充放電反応を均一に行うことが重要な要
素であるため、多くの場合正極も負極も金属箔の集電体
に活物質を含む合剤層を塗着したシート状の極板を用い
ている。また、集電体の素材は、電池に使われる場合の
各々の作動電位で電気化学的に安定であるという理由
で、正極の集電用金属箔にはアルミニウム(Al)、負
極の金属箔には銅(Cu)などが使われる。このような
金属箔上に塗着によって合剤層を作成する極板の場合、
活物質と導電剤と結着剤を含む合剤を塗着に適したペー
ストにする必要があり、これまで、いくつかの塗着に適
したペースト化技術が報告されている。例えば有機溶剤
を用いたペーストでは、活物質に導電剤の炭素粉体を混
合した後、この混合物をNMPなどの有機溶剤に結着剤
のPVDFを予め溶解した液体で混練してペーストを作
成する方法などがある。一方、水溶液系のペーストで
は、活物質に導電剤の炭素粉体を混合した後、この混合
物を予め増粘剤のカルボキシメチルセルロース(CM
C)などを溶解した水溶液で混練し、次いでPTFEの
水性ディスパージョンを加えて混練してペースト化を行
う方法などがある。LiCoO2を活物質とした場合、
有機溶剤系のペーストで塗着しても水溶液系のペースト
で塗着しても比較的良好な極板ができ、いずれの場合も
商品化された電池で採用されている。ところが、LiN
iO2を活物質とした場合には水溶液系のペーストを作
製した場合、水分によって活物質が劣化するという難点
があった。このようにLiNiO2を用いた場合、水溶
液系のペーストを用いると電池特性が著しく損なわれる
ため、有機溶剤系のペーストを用いる必要がある。さら
に、LiNiO2のNiの一部をCoやMnなどの元素
で置換したLiNixCo1-x2などの複合酸化物も有
望な活物質として提案されているが、この場合もLiN
iO2と同様に水分で劣化するため、有機溶剤系のペー
ストを用いる必要がある。
In particular, a battery system using a lithium composite oxide such as LiCoO 2 or LiNiO 2 as a positive electrode active material and a carbon material as a negative electrode active material has recently attracted attention as a high energy density lithium secondary battery. . The features of this battery system are that the battery voltage is high and that the positive and negative electrodes use an intercalation reaction. Since no metallic Li is used for the negative electrode, there is no short circuit due to the precipitation of dendritic Li and it is safe. And quick charging. A battery using LiCoO 2 as a positive electrode and a carbon material as a negative electrode has already been commercialized. In the case of such a lithium secondary battery, it is an important element to perform a uniform charge / discharge reaction.In many cases, both the positive electrode and the negative electrode are coated with a mixture layer containing an active material on a metal foil current collector. A sheet-shaped electrode plate is used. In addition, the material of the current collector is electrochemically stable at each operating potential when used in a battery, so aluminum (Al) is used for the current collector metal foil for the positive electrode and metal foil for the negative electrode is used for the current collector. Is made of copper (Cu) or the like. In the case of an electrode plate that creates a mixture layer by coating on such a metal foil,
It is necessary to make a mixture containing an active material, a conductive agent and a binder into a paste suitable for coating, and some pasting techniques suitable for coating have been reported. For example, in a paste using an organic solvent, a carbon powder of a conductive agent is mixed with an active material, and then the mixture is kneaded with a liquid in which PVDF as a binder is previously dissolved in an organic solvent such as NMP to form a paste. There are methods. On the other hand, in the aqueous paste, after mixing carbon powder of a conductive agent with an active material, this mixture is previously mixed with carboxymethyl cellulose (CM) as a thickener.
There is a method of kneading with an aqueous solution in which C) or the like is dissolved, and then adding an aqueous dispersion of PTFE and kneading to form a paste. When LiCoO 2 is used as an active material,
A relatively good electrode plate can be formed by applying an organic solvent-based paste or an aqueous solution-based paste, and in any case, it is used in a commercialized battery. However, LiN
When iO 2 was used as an active material, when an aqueous paste was prepared, the active material was deteriorated by moisture. In the case of using LiNiO 2 as described above, the use of an aqueous solution-based paste significantly deteriorates battery characteristics. Therefore, it is necessary to use an organic solvent-based paste. Further, a composite oxide such as LiNi x Co 1-x O 2 in which a part of Ni of LiNiO 2 is replaced by an element such as Co or Mn has been proposed as a promising active material.
Since it is deteriorated by moisture similarly to iO 2, it is necessary to use an organic solvent-based paste.

【0004】LiNiO2と導電剤を有機溶剤に混ぜて
混練した合剤ペーストを金属箔に塗着するためには、従
来、結着剤としてPVDF樹脂を添加していた。このP
VDF樹脂は図1(A)に示すように活物質や導電剤の
粒子1間にPVDF樹脂の塊状粒子2が介在する形で結
着性を発揮しているが、電解液を吸収すると膨潤する度
合が大きいため活物質,導電剤の各粒子間の距離を拡げ
てしまい、その結果活物質および導電剤と集電体との密
着性を低下させて集電効率が低下していた。
In order to apply a mixture paste obtained by mixing LiNiO 2 and a conductive agent in an organic solvent and kneading the mixture, a PVDF resin has conventionally been added as a binder. This P
As shown in FIG. 1 (A), the VDF resin exhibits a binding property in the form of a mass of PVDF resin particles 2 interposed between particles 1 of an active material or a conductive agent, but swells when absorbing an electrolytic solution. Since the degree is large, the distance between the particles of the active material and the conductive agent is increased, and as a result, the adhesion between the active material and the conductive agent and the current collector is reduced, and the current collection efficiency is reduced.

【0005】一方、PTFE樹脂は水に不溶性である
が、CMC溶液を用いて水中に分散させ、このPTFE
の水性ディスパージョンを活物質と導電剤に加えて混練
してペーストを作製していた。
[0005] On the other hand, PTFE resin is insoluble in water, but is dispersed in water using a CMC solution.
Was added to the active material and the conductive agent and kneaded to prepare a paste.

【0006】このPTFE樹脂は図1(B)に示すよう
に活物質や導電剤の粒子1にPTFE樹脂の繊維状粒子
3が網目状に絡み合う形で結着性を発揮している。ま
た、PTFE樹脂は電解液を吸収しても膨潤しないた
め、活物質や導電剤の各粒子間を拡げることはなく、活
物質および導電剤と集電体との密着性を良好に保つこと
ができる。
As shown in FIG. 1 (B), the PTFE resin exhibits binding properties in a form in which fibrous particles 3 of the PTFE resin are intertwined with particles 1 of an active material or a conductive agent in a network. In addition, since the PTFE resin does not swell even when absorbing the electrolytic solution, it does not spread between the particles of the active material and the conductive agent, and can maintain good adhesion between the active material and the conductive agent and the current collector. it can.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、LiN
iO2を活物質として用いる場合には溶剤として水では
なく有機溶剤を用いなければならなく有機溶剤にPTF
Eを分散させることは今のところ実現できていない。
However, LiN
When iO 2 is used as an active material, an organic solvent must be used instead of water as a solvent.
Dispersing E has not been realized so far.

【0008】したがって、LiNiO2および導電剤を
混合した有機溶剤では、電解液によって膨潤することの
ないPTFE樹脂の性質を生かし、集電性と結着性に優
れたペーストを得ることができなかった。
Therefore, with an organic solvent in which LiNiO 2 and a conductive agent are mixed, a paste having excellent current collecting properties and binding properties cannot be obtained by making use of the properties of a PTFE resin which does not swell with an electrolytic solution. .

【0009】本発明は、このような課題を解決するもの
であり、正極活物質としてLiNiO2を用い、LiN
iO2と導電剤を有機溶剤に混ぜ、さらに結着剤を添加
して混練し正極合剤のペーストを得た後、このペースト
を金属箔に塗着する場合に、集電性と結着性に優れたペ
ーストを提供することを目的とするものである。
The present invention solves such a problem, and uses LiNiO 2 as a positive electrode active material,
After mixing iO 2 and a conductive agent in an organic solvent, further adding a binder and kneading to obtain a paste of a positive electrode mixture, when applying this paste to a metal foil, the current collecting property and the binding property It is an object of the present invention to provide an excellent paste.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は正極活物質粉体と導電剤と樹脂の結着剤
からなる正極合剤層を集電芯材の金属箔上に塗着で形成
する正極に関し、前記結着剤は第一の結着剤としてポリ
四フッ化エチレン(PTFE)樹脂、第二の結着剤とし
てポリフッ化ビニリデン(PVDF)樹脂、ポリ塩化ビ
ニリデン(PVDC)からなる群から選ばれた少なくと
も一種類の樹脂を含むものである。そして、好ましく
は、第一の結着剤の含有量が活物質重量に対して2重量
%以上、8重量%以下であり、第二の結着剤の含有量が
活物質重量に対して2重量%以上、6重量%以下であ
り、第一および第二の結着剤の含有量の和が活物質重量
に対して10重量%以下とするものである。
In order to solve the above-mentioned problems, the present invention provides a positive electrode mixture layer comprising a positive electrode active material powder, a conductive agent and a resin binder on a metal foil of a current collector core material. For the positive electrode formed by coating, the binder is a polytetrafluoroethylene (PTFE) resin as a first binder, a polyvinylidene fluoride (PVDF) resin, a polyvinylidene chloride (PVD) resin as a second binder. PVDC) containing at least one resin selected from the group consisting of: Preferably, the content of the first binder is 2% by weight or more and 8% by weight or less based on the weight of the active material, and the content of the second binder is 2% by weight or less based on the weight of the active material. % By weight and 6% by weight or less, and the sum of the contents of the first and second binders is 10% by weight or less based on the weight of the active material.

【0011】[0011]

【作用】本発明はPTFE樹脂を有機溶剤中に分散させ
るために、PVDF樹脂か、またはPVDFのフッ素を
塩素に置換したPVDC樹脂を有機溶剤に添加するもの
である。
According to the present invention, in order to disperse a PTFE resin in an organic solvent, a PVDF resin or a PVDC resin obtained by replacing fluorine of PVDF with chlorine is added to the organic solvent.

【0012】これによってPTFE樹脂が正極合剤中に
均一に分布し、適当な粘性および流動性を有する合剤ペ
ーストを得ることができる。また、PVDF樹脂または
PVDC樹脂は金属箔とペーストとの結着性を向上させ
るという効果がある。
As a result, the PTFE resin is uniformly distributed in the positive electrode mixture, and a mixture paste having appropriate viscosity and fluidity can be obtained. Further, the PVDF resin or the PVDC resin has an effect of improving the binding property between the metal foil and the paste.

【0013】このため、PTFE樹脂に対してPVDF
樹脂またはPVDC樹脂の量が少な過ぎると金属箔から
合剤層が剥離しやすくなる。
For this reason, PVDF is used for PTFE resin.
If the amount of the resin or PVDC resin is too small, the mixture layer tends to peel off from the metal foil.

【0014】一方、PTFE樹脂に対してPVDF樹脂
またはPVDC樹脂の量が多くなり過ぎるとPVDF樹
脂またはPVDC樹脂の塊状粒子が活物質と導電剤の粒
子の間に介在するために前記塊状粒子が抵抗成分として
作用し、極板の分極特性が低下する。
On the other hand, if the amount of the PVDF resin or the PVDC resin is too large relative to the PTFE resin, the aggregated particles of the PVDF resin or the PVDC resin are interposed between the active material and the conductive agent particles, so that the aggregated particles become resistant. Acting as a component, the polarization characteristics of the electrode plate are reduced.

【0015】さらに、ペースト作製の際に用いる有機溶
剤は、PVDF樹脂またはPVDC樹脂が溶解して適当
な粘度になること、沸点が適当な温度であること等を考
慮すると、N−メチル−2−ピロリドン(NMP)が最
も良い。
Further, considering that the organic solvent used for preparing the paste is such that the PVDF resin or the PVDC resin is dissolved to have an appropriate viscosity and that the boiling point is at an appropriate temperature, N-methyl-2- Pyrrolidone (NMP) is best.

【0016】[0016]

【実施例】以下、図面とともに本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)正極活物質としてLiCoO
2を用い、これに導電剤のアセチレンブラック(AB)
を活物質重量に対して5重量%混合した合剤を作成し、
これを用いてペースト化の検討を行った。まず、PVD
F樹脂のみを結着剤として極板作作製を試みた。NMP
にPVDFを15重量%溶解した溶液を用いて、活物質
重量に対して結着剤含有量が所定の値となるように上記
合剤を混練してペーストを作製した。なお、ペーストの
粘度調整にはNMPを希釈液として用いた。次いで、ド
クターブレード法を用いてAl箔の片面にペーストを塗
着し、80℃の熱風で乾燥した後、ローラープレスで圧
延した。種々のPVDF含有量の極板試作を試みた結
果、PVDFが活物質に対して2重量%未満の場合、乾
燥後の合剤層は剥離しやすく、これを無理に圧延すると
Al箔から合剤層が脱落してしまった。PVDFのみを
用いた場合、少なくともPVDF含有量は活物質に対し
て3重量%以上であることが望ましい。この結果、PV
DF含有量が活物質に対して3、4、5、6、7、8、
9、10重量%となる極板を試作した。
(Example 1) LiCoO as a positive electrode active material
2 , using acetylene black (AB) as a conductive agent
5% by weight based on the weight of the active material to prepare a mixture,
This was used to study the formation of a paste. First, PVD
Production of an electrode plate was attempted using only the F resin as a binder. NMP
The mixture was kneaded using a solution prepared by dissolving PVDF in an amount of 15% by weight with respect to the weight of the active material so that the binder had a predetermined value to prepare a paste. Note that NMP was used as a diluent for adjusting the viscosity of the paste. Next, a paste was applied to one side of the Al foil using a doctor blade method, dried with hot air at 80 ° C., and then rolled with a roller press. As a result of trial production of electrode plates having various PVDF contents, when the PVDF content was less than 2% by weight with respect to the active material, the mixture layer after drying was easily peeled off. The layer has fallen off. When only PVDF is used, at least the PVDF content is desirably 3% by weight or more based on the active material. As a result, PV
The DF content is 3, 4, 5, 6, 7, 8,
Prototypes of 9, 10% by weight of electrode plates were produced.

【0018】次に、水性PTFEディスパージョンを用
いPTFE樹脂のみを結着剤として極板を作製した。上
記と同様の合剤を予め1重量%濃度のCMC水溶液と混
練してペーストを作製し、これにPTFEディスパージ
ョンを加えてさらに混練して塗着用のペーストとした。
この場合、先にPTFEディスパージョンを加えて混練
すると、PTFEの繊維が絡んでしまうので、後でCM
C水溶液で混練しても流動性のあるペーストは二度と得
られない。このため、必ず先にCMC水溶液で混練した
ものを用いることが重要である。この場合も同様にドク
ターブレード法を用いてAl箔の片面にペーストを塗着
し、80℃の熱風で乾燥した後、ローラープレスで圧延
した。この結果、PTFE含有量が活物質に対して2%
未満の場合は合剤層がAl箔から脱落したので、PTF
Eの含有量は活物質に対して3重量%以上であることが
望ましく、PTFEの含有量が活物質に対して3、4、
5、6、7、8、9、10重量%となる極板を試作し
た。
Next, an electrode plate was prepared using an aqueous PTFE dispersion and using only the PTFE resin as a binder. The same mixture as described above was previously kneaded with a 1% by weight CMC aqueous solution to prepare a paste, to which a PTFE dispersion was added and further kneaded to obtain a paste for coating.
In this case, if the PTFE dispersion is added first and kneaded, the PTFE fibers become entangled.
Even if the mixture is kneaded with the C aqueous solution, a fluid paste cannot be obtained again. For this reason, it is important to use a mixture kneaded with an aqueous CMC solution. In this case, similarly, a paste was applied to one surface of the Al foil using the doctor blade method, dried with hot air at 80 ° C., and then rolled with a roller press. As a result, the PTFE content was 2% based on the active material.
If the value is less than 10%, the mixture layer has fallen off the Al foil,
The content of E is desirably 3% by weight or more with respect to the active material, and the content of PTFE is 3, 4,
5, 6, 7, 8, 9, and 10% by weight of electrode plates were prototyped.

【0019】図2は実施例に用いたコイン形電池の縦断
面である。図2において、正極1はAl箔の片面に塗着
で形成した極板を乾燥して圧延した上述の極板を円板状
に打ち抜いたもので、正極ケース2の内側に設置したも
のである。また、対極3は金属リチウムを封口板4の内
側にスポット溶接で固定したステンレスネット5上に圧
着したものである。そして、これらをポリプロピレン製
のセパレータ6、及び電解液7と共にポリプロピレン製
のガスケット8を介して密封し、直径20ミリ、高さ
1.6ミリの完成電池とした。なお、電解液には1モル
の六フッ化リン酸リチウム(LiPF6)を炭酸エチレ
ン(EC)と炭酸ジエチル(DEC)の混合溶媒中に溶
かしたものを用いた。
FIG. 2 is a longitudinal section of a coin-type battery used in the embodiment. In FIG. 2, a positive electrode 1 is obtained by punching out the above-mentioned electrode plate obtained by drying and rolling an electrode plate formed by coating one side of an Al foil on a disk, and is provided inside a positive electrode case 2. . The counter electrode 3 is formed by pressing metallic lithium on a stainless steel net 5 fixed to the inside of the sealing plate 4 by spot welding. These were sealed together with a polypropylene separator 6 and an electrolytic solution 7 via a polypropylene gasket 8 to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm. The electrolyte used was one in which 1 mol of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC).

【0020】この試験用電池の通常の充放電は室温(2
0℃)で正極に対して0.5mA/cm2の定電流で充
電終止電圧を4.3V、放電終止電圧を3.0Vとして
行うものである。また、この通常の充放電の途中の5サ
イクル目の放電のみは高率放電特性を確認するために
2.5mA/cm2の電流で行った。
The normal charge / discharge of this test battery is performed at room temperature (2
(0 ° C.) at a constant current of 0.5 mA / cm 2 with respect to the positive electrode, at a charge termination voltage of 4.3 V and a discharge termination voltage of 3.0 V. In addition, only the discharge in the fifth cycle during the normal charge / discharge was performed at a current of 2.5 mA / cm 2 in order to confirm high-rate discharge characteristics.

【0021】さらに、高温環境下における保存特性の評
価は、上記充放電の10サイクル目の充電終了後、電池
を取り出し、60℃の環境下に20日間保存した後、再
び室温での充放電を行うというもので、保存前後の充放
電特性を比較するものである。
Further, the evaluation of the storage characteristics in a high-temperature environment was carried out in such a manner that after the completion of the 10th charge / discharge cycle, the battery was taken out, stored in a 60 ° C. environment for 20 days, and then charged and discharged at room temperature again. This is to compare the charge and discharge characteristics before and after storage.

【0022】まず高率放電性能であるが、上記種々の含
有量のPVDF、またはPTFEを用いた極板で試作し
た試験用電池を上記条件で充放電し、4サイクル目の放
電容量(0.5mA/cm2放電)に対する5サイクル
目の放電容量(2.5mA/cm2放電)の比率
(%)、すなわち高率放電の利用率を比較した。その結
果は(表1)に示す。
First, a high-rate discharge performance is obtained. A test battery experimentally manufactured using an electrode plate using PVDF or PTFE having various contents described above is charged and discharged under the above conditions, and the discharge capacity at the fourth cycle (0. ratio of 5 mA / cm 2 discharge) for the 5th cycle discharge capacity (2.5 mA / cm 2 discharge) (%), i.e. were compared utilization rate discharge. The results are shown in (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】通常の放電(0.5mA/cm2放電)で
は結着剤含有量に関わらずその容量は活物質重量当た
り、いずれも約140mAh/gであった。
In the ordinary discharge (0.5 mA / cm 2 discharge), the capacity was about 140 mAh / g per weight of the active material regardless of the binder content.

【0025】(表1)からも明らかなように、結着剤含
有量が増えると高率放電利用率は低下する傾向である
が、PVDFの場合はその含有量が7%以上で利用率低
下が著しくなる。一方、PTFEの場合はPVDFに比
べ含有量に対する利用率低下は小さく、その含有量が1
0%でも比較的良好であった。したがって、PTFE、
PVDFを単独で使用した結着剤を用いて上記のような
極板を作製するなら、PVDFの場合はその含有量が6
%以下であることが望ましく、PTFEの場合は含有量
増加が極板中の活物質の充填量を減らす結果になるので
極板強度さえ許せば少ないほうがよい。
As is clear from Table 1, when the binder content increases, the high-rate discharge utilization rate tends to decrease. In the case of PVDF, the utilization rate decreases when the content is 7% or more. Becomes significant. On the other hand, in the case of PTFE, the decrease in the utilization rate relative to the content is smaller than that of PVDF, and the content is 1%.
It was relatively good even at 0%. Therefore, PTFE,
If an electrode plate as described above is produced using a binder using PVDF alone, the content of PVDF is 6%.
% Or less, and in the case of PTFE, an increase in the content results in a reduction in the amount of the active material filled in the electrode plate.

【0026】次いで、高温保存特性の結果について示
す。図3はPVDFの場合のサイクルに伴う放電容量変
化を示すもので、9サイクル目までが保存前の特性で、
10サイクル目以降は保存後の特性である。なお、5サ
イクル目の容量が低くなっているが、これは先の高率放
電試験の結果である。PVDFの場合、結着剤含有量に
関わらず、保存後のサイクルに伴う容量低下はきわめて
大きかった。
Next, the results of the high-temperature storage characteristics will be described. FIG. 3 shows the change in the discharge capacity with the cycle in the case of PVDF.
The characteristics after the 10th cycle are those after storage. The capacity at the fifth cycle is low, which is the result of the high-rate discharge test described above. In the case of PVDF, the capacity decrease accompanying the cycle after storage was extremely large, regardless of the binder content.

【0027】同様に図4はPTFEの場合の結果である
が、結着剤含有量に関わらず、保存後のサイクルに伴う
容量低下はほとんどない。以上の結果より保存特性に関
してはPTFEは有効な結着剤である。
Similarly, FIG. 4 shows the result in the case of PTFE, but there is almost no decrease in capacity with the cycle after storage regardless of the binder content. From the above results, PTFE is an effective binder in terms of storage characteristics.

【0028】(実施例2)次に、活物質にLiNiO2
を用いた場合の検討を行った。上述と同様にPVDF、
ならびにPTFEを用いて極板試作を行った。
(Example 2) Next, LiNiO 2 was used as an active material.
A study was conducted when using the. PVDF as above,
In addition, an electrode plate was prototyped using PTFE.

【0029】LiNiO2の場合、結着剤としてPVD
Fを加えたNMPのペーストを塗着した結果、LiCo
2の場合とほぼ同様の極板が得られ、結着剤含有量が
3%重量以上であればその強度は十分なものであった。
一方、PTFEを用いた水性のペーストの場合、Al箔
上に塗着した後にペーストが発泡した。分析の結果、泡
は水素であり、原因はペーストのpHが高い(アルカリ
性)ために芯材のアルミ箔が腐食したためであった。ま
た、発泡のために、乾燥後の極板の強度はかなり低下し
ていたが、圧延を行い、上述の試験用電池に組み込み充
放電を行ってみた。しかし、容量が著しく小さい(活物
質重量当たり30mAh/g以下)結果となった。ま
た、一度水洗したLiNiO2を乾燥させた後、PVD
Fを用いた有機溶剤系のペーストで塗着しても、容量が
著しく小さい結果となる(同様の処理をLiCoO2
行っても容量低下はない)ことから、LiNiO2その
ものが水との接触で劣化したものと推測される。以上の
ように、LiNiO2の場合は、塗着式の極板を製造す
る限り、少なくとも有機溶剤系のペーストを用いなけれ
ばならないことになる。
In the case of LiNiO 2 , PVD is used as a binder.
As a result of applying NMP paste to which F
Almost the same electrode plate as in the case of O 2 was obtained, and the strength was sufficient when the binder content was 3% by weight or more.
On the other hand, in the case of the aqueous paste using PTFE, the paste foamed after being applied on the Al foil. As a result of the analysis, the foam was hydrogen, and the cause was that the pH of the paste was high (alkaline) and the aluminum foil of the core material was corroded. Although the strength of the electrode plate after drying was considerably reduced due to foaming, rolling was performed, and the battery was charged and discharged in the above-described test battery. However, the result was a remarkably small capacity (30 mAh / g or less per active material weight). After drying LiNiO 2 once washed with water, PVD
Even when applied with an organic solvent-based paste using F, the capacity is extremely small (the capacity is not reduced even if the same treatment is performed with LiCoO 2 ), so that LiNiO 2 itself comes into contact with water. It is presumed to have deteriorated. As described above, in the case of LiNiO 2 , at least an organic solvent-based paste must be used as long as a coated electrode plate is manufactured.

【0030】図5にPVDFを添加したNMPでペース
ト化して塗着した場合のLiNiO 2正極の上記と同様
の高率放電、および保存を含む充放電サイクル試験の結
果を示す。なお、図5には上記と同様にPVDF含有量
3〜10%の場合の特性を記している。通常の放電
(0.5mA/cm2放電)では結着剤含有量に関わら
ずその容量は活物質重量当たり、いずれも約180mA
h/gであった。しかし、この場合もLiCoO2と同
様に保存後のサイクル劣化が著しいという結果となっ
た。
FIG. 5 shows the pace with NMP to which PVDF was added.
LiNiO when coated and coated TwoSame as above for positive electrode
Results of charge / discharge cycle tests including high-rate discharge and storage
The result is shown. FIG. 5 shows the PVDF content in the same manner as above.
The characteristics in the case of 3 to 10% are described. Normal discharge
(0.5mA / cmTwoDischarge) regardless of the binder content
The capacity is about 180 mA per active material weight.
h / g. However, also in this case, LiCoOTwoSame as
Results in significant cycle deterioration after storage
Was.

【0031】また、PVDFの代わりにPVDCを用い
た同様の検討を行った結果、高率放電性能はPVDFの
場合とほとんど同様の結果であったが、保存特性はPV
DFよりさらに性能が低かった。
Similar investigations using PVDC instead of PVDF showed that the high-rate discharge performance was almost the same as that of PVDF, but the storage characteristics were PVD.
Performance was lower than DF.

【0032】PTFEが保存特性のすぐれた結着剤に成
り得るのは、PTFE特有の耐溶剤性と繊維化するとい
う形態によるものである。
[0032] The fact that PTFE can be a binder having excellent storage characteristics is due to the solvent resistance and morphology of PTFE that are unique to PTFE.

【0033】そこで、PTFEを結着剤とする有機溶剤
系のペーストの作成を試みた。有機溶剤としては、メチ
ルエチルケトン(MEK)、トルエン(TR)、NMP
など工業的に使用頻度の高い溶剤を検討したが、コス
ト、人体への影響、臭い、沸点などの観点からNMPが
我々の知る限り最も使いやすい溶剤であったので採用し
た。
Therefore, an attempt was made to prepare an organic solvent-based paste using PTFE as a binder. Organic solvents include methyl ethyl ketone (MEK), toluene (TR), NMP
For example, NMP was used because it was the easiest solvent to use as far as we know from the viewpoints of cost, effects on the human body, odor and boiling point.

【0034】PTFEは水性ディスパージョンの原材料
でもある固形材料を用いたが、凝集状態であり(繊維が
既に大きな塊となって絡みあった状態の顆粒)、NMP
中に投入し攪拌したが、均一に分散することは不可能で
あった。そこで、いくつかの非イオン系界面活性剤を同
時に投入して有機溶剤系のディスパージョンを作成しよ
うとしたが、一度繊維が絡みあったものを再生すること
はできなかった。
The PTFE used was a solid material which was also a raw material of the aqueous dispersion, but was in an agglomerated state (granules in which fibers were already entangled in large lumps), and NMP was used.
It was put into the container and stirred, but it was impossible to disperse it uniformly. Thus, several nonionic surfactants were simultaneously added to prepare an organic solvent-based dispersion, but it was not possible to regenerate the fiber once entangled.

【0035】そこで、PTFE繊維の絡みが比較的小さ
く、微粉末の状態のPTFEを入手し、同様にNMP中
に投入して攪拌したが、攪拌とともに凝集が起こり、さ
らに攪拌を止めるとPTFEが沈殿してしまうため、デ
ィスパージョンを得ることはできなかった。この場合も
いくつかの界面活性剤を試してみたが特に効果の得られ
るものはなかった。そこで、ディスパージョンを経由せ
ずに、NMPに下記の樹脂を加えた粘性溶液にPTFE
微粉末を直接分散させる手法を試みた。
Then, PTFE fibers having a relatively small entanglement were obtained, and PTFE in the form of a fine powder was obtained. Similarly, the PTFE was charged into NMP and stirred. However, coagulation occurred together with the stirring. So that no dispersion could be obtained. Also in this case, some surfactants were tried, but none of them was particularly effective. Therefore, PTFE is added to a viscous solution obtained by adding the following resin to NMP without going through dispersion.
An attempt was made to disperse the fine powder directly.

【0036】NMPに溶解して粘性を高める樹脂として
ポリアミド(PA)、ポリイミド(PI)、ポリ塩化ビ
ニリデン(PVDC)、ポリフッ化ビニリデン(PVD
F)などが有望であることがわかった。
Polyamide (PA), polyimide (PI), polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVD)
F) proved promising.

【0037】これらをNMPに溶解した粘性溶液にPT
FE微粉末を投入し攪拌した結果、いずれの場合も均一
な分散状態が得られた。
These were added to a viscous solution prepared by dissolving them in NMP.
As a result of charging and stirring the FE fine powder, a uniform dispersion state was obtained in each case.

【0038】次いで、NMPに前記各樹脂を溶解した粘
性溶液にPTFEを分散した後、LiNiO2活物質と
導電剤のABを予め混合した合剤を投入し攪拌した。そ
の結果、いずれも流動性のある塗着に適したペーストが
得られた。これらのペーストを用いてアルミ箔に塗着
し、乾燥後圧延した極板を作成した。
Next, PTFE was dispersed in a viscous solution in which each of the above resins was dissolved in NMP, and a mixture in which a LiNiO 2 active material and AB as a conductive agent were previously mixed was charged and stirred. As a result, pastes suitable for coating with fluidity were obtained. These pastes were applied to an aluminum foil, dried, and rolled to form an electrode plate.

【0039】そこで、上記実施例と同様に試験用電池に
組み込んで、高率放電、保存特性の評価を行った。その
結果、いずれの場合も初期容量は良好であった。しか
し、PA、PIの場合、高率放電特性が著しく悪かっ
た。原因を調べたところ、PA、PI樹脂は形態が被膜
形成タイプで、活物質や導電剤粒子表面に被膜を形成す
るため、充放電反応を阻害することがわかった。従来の
PVDF、PVDCのみを結着剤にした場合に比べる
と、電池の保存特性ははるかに良好であった。
Therefore, the battery was assembled in a test battery in the same manner as in the above-described example, and high-rate discharge and storage characteristics were evaluated. As a result, the initial capacity was good in each case. However, in the case of PA and PI, the high-rate discharge characteristics were extremely poor. Examination of the cause revealed that PA and PI resins were film-forming types and formed a film on the surface of the active material and conductive agent particles, and thus inhibited the charge / discharge reaction. The storage characteristics of the battery were much better as compared to the case where only the conventional PVDF and PVDC were used as the binder.

【0040】以上のように、PTFEにPVDF、また
はPVDCを添加することによって、LiNiO2を活
物質とし有機溶剤を用いた場合でもPTFEを使用して
集電性、結着性に優れる極板を得ることができた。
As described above, by adding PVDF or PVDC to PTFE, even when LiNiO 2 is used as an active material and an organic solvent is used, an electrode plate having excellent current collecting properties and binding properties can be obtained using PTFE. I got it.

【0041】(実施例3)第一の結着剤としてPTFE
を用い、第二の結着剤としてPVDFを用いた場合の結
着剤含有量に関するさらに詳しい検討結果を述べる。
Example 3 PTFE as the first binder
And the results of a more detailed study on the binder content when PVDF is used as the second binder will be described.

【0042】ペーストの製造法は上記(実施例2)に準
じ、PVDFを予めNMPに溶解した溶液中にPTFE
微粉末を分散させ、これに上記と同様のLiNiO2
物質を含む合剤を加えて混練するもので、それぞれの結
着剤含有量はPVDFおよびPTFEの量を調整して変
えた。
The method for producing the paste was the same as in the above (Example 2), and PTFE was added to a solution in which PVDF was previously dissolved in NMP.
The fine powder is dispersed, and a mixture containing the same LiNiO 2 active material as described above is added and kneaded. The content of each binder is changed by adjusting the amounts of PVDF and PTFE.

【0043】第一の結着剤であるPTFEの含有量は活
物質に対して1〜10重量%の範囲で、同時に各PTF
E含有量において第二の結着剤のPVDF量を1〜10
重量%の範囲で変えた種々のペーストを作製し塗着を行
い、乾燥、圧延の一連の工程を経て極板を試作した。そ
の結果、PVDFを少なくとも2重量%以上含まなけれ
ば、十分なAl芯材に対する付着強度が得られず、圧延
工程で合剤層が粉々に脱落することがわかった。またP
VDF含有量に比べてPTFE含有量の比率が高くなる
と、アルミ箔から合剤層がフィルム状に剥離する現象が
起こった。例えば、PVDF含有量が2重量%の場合
は、PTFE含有量が8重量%を越えると剥離現象が生
じた。なお、PVDFが3重量%以上であれば、PTF
Eが10重量%以下の範囲では特に剥離現象は見られな
かった。したがって、(表2)に示すように(表2中の
○は極板作成可能な領域、×は極板作成不可能な領
域)、PVDFが2重量%においてはPTFEは8重量
%以下である範囲、およびPVDFが3重量%以上の範
囲ではPTFEが10重量%以下の範囲で極板作製が可
能であった。
The content of PTFE as the first binder is in the range of 1 to 10% by weight with respect to the active material.
In the E content, the PVDF amount of the second binder is 1 to 10
Various pastes having different weight percentages were prepared, coated, dried, and rolled to produce a prototype of the electrode plate. As a result, it was found that if the PVDF was not contained at least at 2% by weight or more, sufficient adhesive strength to the Al core material was not obtained, and the mixture layer fell off in the rolling step. Also P
When the ratio of the PTFE content was higher than the VDF content, a phenomenon occurred in which the mixture layer was peeled from the aluminum foil into a film. For example, when the PVDF content was 2% by weight, the peeling phenomenon occurred when the PTFE content exceeded 8% by weight. If PVDF is 3% by weight or more, PTF
When E was 10% by weight or less, no peeling phenomenon was observed. Therefore, as shown in (Table 2) (in Table 2, ○ indicates a region where electrode plates can be formed, and x indicates a region where electrode plates cannot be formed), when PVDF is 2% by weight, PTFE is 8% by weight or less. In the range and the range where PVDF is 3% by weight or more, the electrode plate can be manufactured in the range where PTFE is 10% by weight or less.

【0044】[0044]

【表2】 [Table 2]

【0045】次いで、各極板を用いて上記と同様の試験
用電池を作成し、上記と同様の高率放電、および保存を
含む充放電サイクル試験を行った。通常の放電では結着
剤の含有量に関わらず、その容量はいずれの場合も活物
質重量当たり約180mAh/gであった。
Next, a test battery similar to the above was prepared using each electrode plate, and a charge / discharge cycle test including the same high-rate discharge and storage as described above was performed. In ordinary discharge, the capacity was about 180 mAh / g per active material weight in any case regardless of the content of the binder.

【0046】まず、高率放電特性はPVDF含有量が7
重量%以上では著しく低下した。また、PVDF含有量
が6%以下でも高率放電特性の低下が大きくなった。
First, the high-rate discharge characteristic is that the PVDF content is 7%.
When the content was more than the weight%, the content was significantly reduced. In addition, even when the PVDF content was 6% or less, the high-rate discharge characteristics were greatly reduced.

【0047】(表3)に各種結着剤含有率における高率
放電利用率の結果を示す。
Table 3 shows the results of the high-rate discharge utilization rate at various binder contents.

【0048】[0048]

【表3】 [Table 3]

【0049】なお、(表3)の利用率の値と共に示した
○,×,△表示、および−表示は○が利用率90%以上
のもの、△が利用率90%未満、80%以上のもの、×
が80%未満のもの、−が極板作成不可のものである。
(表3)から明らかなように、PTFE含有量は多くと
も8重量%以下であり、かつPVDF含有量は多くとも
6重量%以下であることが好ましい。さらに、この範囲
でもPTFE含有量とPVDF含有量の和が多くとも1
0重量%以下であることが好ましい。この範囲を越える
と利用率が著しく低下することがわかる。
In Tables 3 and 4, the ○, ×, △, and-indications together with the values of the utilization rates indicate that ○ indicates that the utilization rate is 90% or more, Δ indicates that the utilization rate is less than 90%, and 80% or more. Things, ×
Means less than 80%, and-means that no electrode can be prepared.
As is evident from Table 3, the PTFE content is preferably at most 8% by weight and the PVDF content is at most 6% by weight. Furthermore, even in this range, the sum of the PTFE content and the PVDF content is at most 1
It is preferably 0% by weight or less. It can be seen that when the ratio exceeds this range, the utilization rate decreases significantly.

【0050】次いで、高温保存特性であるが、図6にP
VDF含有量が3重量%の場合のPTFE含有量の異な
る極板の高温保存前後のサイクル特性の結果を示す。図
6に示すようにPTFEの含有量が1重量%のものが保
存後に著しいサイクル劣化を示しているが、他のPVD
F含有量の異なる場合の試験においても、PTFEの含
有量が1重量%のものはPVDFの含有量に関わらず、
いずれの場合も図6に見られるような著しいサイクル劣
化を示した。これは、PTFE1重量%では保存中の極
板の膨潤を抑える効果が足りないことを示している。と
ころが、PTFEの含有量が2重量%以上になると、P
VDFの含有量に関わらず、いずれの場合も図6に示す
ようにサイクル劣化が良好になった。
Next, regarding the high-temperature storage characteristics, FIG.
The results of the cycle characteristics before and after high-temperature storage of electrode plates having different PTFE contents when the VDF content is 3% by weight are shown. As shown in FIG. 6, the case where the content of PTFE is 1% by weight shows remarkable cycle deterioration after storage.
Even in the test in which the F content is different, those having a PTFE content of 1% by weight are not affected by the PVDF content.
In each case, remarkable cycle deterioration as shown in FIG. 6 was exhibited. This indicates that 1% by weight of PTFE is not enough to suppress the swelling of the electrode plate during storage. However, when the PTFE content is 2% by weight or more, P
Regardless of the VDF content, the cycle deterioration was good in any case as shown in FIG.

【0051】以上の結果より、高温保存におけるサイク
ル劣化抑制のためには、PTFE含有量は少なくとも2
重量%以上であることが好ましい。なお、PVDFの代
わりにPVDCを用いた場合も検討したが、高温保存特
性において結着剤含有量に関する傾向はほぼ同様の結果
が得られている。
From the above results, in order to suppress cycle deterioration during high-temperature storage, the PTFE content should be at least 2%.
It is preferred that the content be at least 10% by weight. In addition, although the case where PVDC was used instead of PVDF was examined, the tendency regarding the binder content in the high-temperature storage characteristics was almost the same.

【0052】[0052]

【発明の効果】以上のように、本発明のLiNiO2
活物質として用いた正極は、正極合剤層中に第一の結着
剤としてポリ四フッ化エチレン(PTFE)樹脂を含
み、第二の結着剤としてポリフッ化ビニリデン(PVD
F)樹脂、ポリ塩化ビニリデン(PVDC)の群から選
ばれた少なくとも一種類の結着剤を含むことを特徴と
し、さらに好ましくは、合剤中の第一の結着剤の含有量
が活物質重量に対して2重量%以上、8重量%以下であ
り、第二の結着剤の含有量が活物質重量に対して2重量
%以上、6重量%以下であり、第一および第二の結着剤
の含有量の和を多くとも活物質重量に対して10重量%
以下とするものである。そして、これにより集電性、結
着性に優れた合剤ペーストを得ることができ、電池の高
率放電特性、保存特性を向上させることができる。
As described above, the positive electrode of the present invention using LiNiO 2 as an active material contains polytetrafluoroethylene (PTFE) resin as the first binder in the positive electrode mixture layer, As the second binder, polyvinylidene fluoride (PVD)
F) Resin, characterized by containing at least one kind of binder selected from the group of polyvinylidene chloride (PVDC), more preferably the content of the first binder in the mixture is an active material 2% by weight or more and 8% by weight or less based on the weight, and the content of the second binder is 2% by weight or more and 6% by weight or less based on the weight of the active material; The total of the binder content is at most 10% by weight based on the weight of the active material.
The following is assumed. As a result, a mixture paste having excellent current collecting properties and binding properties can be obtained, and high-rate discharge characteristics and storage characteristics of the battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A) PVDF樹脂粒子の合剤中での様子を
示す図 (B) PTFE樹脂粒子の合剤中での様子を示す図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a diagram showing a state of PVDF resin particles in a mixture. FIG. 1B is a diagram showing a state of PTFE resin particles in a mixture.

【図2】コイン形電池の断面図FIG. 2 is a sectional view of a coin-type battery.

【図3】LiCoO2に結着剤としてPVDF樹脂を加
えた場合のサイクルにともなう容量変化を示す図
FIG. 3 is a diagram showing a change in capacity with a cycle when a PVDF resin is added as a binder to LiCoO 2 .

【図4】LiCoO2に結着剤としてPTFE樹脂を加
えた場合のサイクルにともなう容量変化を示す図
FIG. 4 is a diagram showing a change in capacity with a cycle when PTFE resin is added as a binder to LiCoO 2 .

【図5】LiNiO2に結着剤としてPVDF樹脂を加
えた場合のサイクルにともなう容量変化を示す図
FIG. 5 is a diagram showing a change in capacity with a cycle when a PVDF resin is added as a binder to LiNiO 2 .

【図6】LiNiO2に結着剤としてPTFE樹脂とP
VDF樹脂を加えた場合のサイクルにともなう容量変化
を示す図
FIG. 6 shows PTFE resin and P as a binder in LiNiO 2 .
The figure which shows the capacity change with the cycle when adding VDF resin

【符号の説明】[Explanation of symbols]

1 活物質または導電剤の粒子 2 PVDF樹脂粒子 3 PTFE樹脂粒子 1 Active material or conductive agent particles 2 PVDF resin particles 3 PTFE resin particles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−153647(JP,A) 特開 平6−52860(JP,A) 特開 昭59−173974(JP,A) 特開 平4−112459(JP,A) 特開 平6−349482(JP,A) 特開 平6−325753(JP,A) 特開 平6−52889(JP,A) 特開 平7−130357(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/04 H01M 4/58 H01M 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-7-153647 (JP, A) JP-A-6-52860 (JP, A) JP-A-59-173974 (JP, A) JP-A-4- 112459 (JP, A) JP-A-6-349482 (JP, A) JP-A-6-325573 (JP, A) JP-A-6-52889 (JP, A) JP-A-7-130357 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/04 H01M 4/58 H01M 4/62 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極活物質粉体と導電剤と樹脂の結着剤
からなる正極合剤層を集電芯材の金属箔上に形成する正
極であり、前記結着剤は第一の結着剤としてポリ四フッ
化エチレン(PTFE)樹脂、第の結着剤としてポリ
フッ化ビニリデン(PVDF)樹脂、ポリ塩化ビニリデ
ン(PVDC)樹脂からなる群から選ばれた少なくとも
1種類の樹脂を含むリチウム二次電池用正極であって、 前記第一の結着剤の含有量が前記正極活物質の重量に対
して2重量%以上8重量%以下であり、 前記第二の結着剤の含有量が前記正極活物質の重量に対
して2重量%以上6重量%以下であり、 前記第一の結着剤と前記第二の結着剤の含有量の和が正
極活物質重量に対して10重量%以下であるリチウム二
次電池用正極。
1. A positive electrode in which a positive electrode mixture layer comprising a positive electrode active material powder, a conductive agent and a binder of a resin is formed on a metal foil of a current collector core, wherein the binder is a first binder. Lithium containing at least one resin selected from the group consisting of a polytetrafluoroethylene (PTFE) resin as a binder and a polyvinylidene fluoride (PVDF) resin and a polyvinylidene chloride (PVDC) resin as a second binder A positive electrode for a secondary battery , wherein the content of the first binder is based on the weight of the positive electrode active material.
From 2% by weight to 8% by weight, and the content of the second binder is relative to the weight of the positive electrode active material.
And the sum of the contents of the first binder and the second binder is positive.
Lithium di-oxide not more than 10% by weight based on the weight of the polar active material
Positive electrode for secondary battery.
【請求項2】 正極活物質がニッケル酸リチウム(Li
NiO2)、またはLiNiO2のNiの一部をコバルト
(Co)、マンガン(Mn)などの他の遷移金属で置換
した複合酸化物である請求項1記載のリチウム二次電池
用正極。
2. The method according to claim 1, wherein the positive electrode active material is lithium nickelate (Li).
2. The positive electrode for a lithium secondary battery according to claim 1, wherein the positive electrode is a composite oxide obtained by substituting a part of Ni of LiNiO 2 ) with another transition metal such as cobalt (Co) or manganese (Mn). 3.
【請求項3】 正極活物質粉体と導電剤と樹脂の結着剤
からなる正極合剤層を集電芯材の金属箔上に形成する正
極の製造法であり、 予め有機溶剤に第二の結着剤を溶解した溶液を作製し、
ついでこの溶液に正極活物質粉体と炭素粉体と第一の結
着剤であるPTFE粉体を加えてこれらを加えて混練し
てペーストを作製した後、このペーストを金属フィルム
上に塗着するリチウム二次電池用正極の製造法。
3. A method for producing a positive electrode, wherein a positive electrode mixture layer comprising a positive electrode active material powder, a conductive agent and a binder of a resin is formed on a metal foil of a current collector core material. To prepare a solution in which the binder is dissolved,
Then, a positive electrode active material powder, a carbon powder, and a PTFE powder as a first binder are added to the solution, and these are added and kneaded to prepare a paste. Then, the paste is applied to a metal film. Of producing a positive electrode for a lithium secondary battery.
【請求項4】 有機溶剤がN−メチル−2−ピロリドン
(NMP)である請求項記載のリチウム二次電池用正
極の製造法。
4. The method for producing a positive electrode for a lithium secondary battery according to claim 3 , wherein the organic solvent is N-methyl-2-pyrrolidone (NMP).
JP6241236A 1994-10-05 1994-10-05 Positive electrode for lithium secondary battery and method for producing the same Expired - Fee Related JP3067544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6241236A JP3067544B2 (en) 1994-10-05 1994-10-05 Positive electrode for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6241236A JP3067544B2 (en) 1994-10-05 1994-10-05 Positive electrode for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08106897A JPH08106897A (en) 1996-04-23
JP3067544B2 true JP3067544B2 (en) 2000-07-17

Family

ID=17071235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6241236A Expired - Fee Related JP3067544B2 (en) 1994-10-05 1994-10-05 Positive electrode for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3067544B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473967B2 (en) 1997-03-04 2010-06-02 日本ゼオン株式会社 Binder for battery, binder composition for battery, slurry for battery electrode, electrode for lithium secondary battery, and lithium secondary battery
JP4654501B2 (en) * 2000-10-04 2011-03-23 パナソニック株式会社 Non-aqueous secondary battery
US6709788B2 (en) 2001-05-11 2004-03-23 Denso Corporation Lithium secondary cell and method of producing lithium nickel metal oxide positive electrode therefor
JP5636681B2 (en) * 2010-01-22 2014-12-10 ダイキン工業株式会社 Binder composition for electrode of lithium secondary battery
KR101475429B1 (en) * 2012-05-15 2014-12-23 주식회사 엘지화학 Flow Controller of Drying Oven with Automatic Air Charge for Manufacturing Secondary Battery
KR102234295B1 (en) 2014-01-10 2021-03-31 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR102234294B1 (en) 2014-01-10 2021-03-31 삼성에스디아이 주식회사 Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR102342275B1 (en) 2014-04-18 2021-12-22 맥스웰 테크놀러지스 인코포레이티드 Dry energy storage device electrode and methods of making the same
WO2017029902A1 (en) * 2015-08-14 2017-02-23 旭化成株式会社 Electrode for electrochemical elements
KR102378118B1 (en) 2017-09-25 2022-03-25 주식회사 엘지에너지솔루션 Method for Preparing Electrode for Secondary Battery And Electrode Prepared by the Same
KR102261501B1 (en) 2017-09-29 2021-06-07 주식회사 엘지에너지솔루션 Method for Electrode Mixture and Electrode Mixture

Also Published As

Publication number Publication date
JPH08106897A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP3692965B2 (en) Lithium secondary battery and method for producing positive electrode thereof
US5609975A (en) Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
KR101460930B1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
JP5231166B2 (en) Method for producing positive plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2971451B1 (en) Lithium secondary battery
US6709788B2 (en) Lithium secondary cell and method of producing lithium nickel metal oxide positive electrode therefor
JP3067544B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP3157079B2 (en) Manufacturing method of lithium secondary battery
CN109461935A (en) Electrode slice and electrochemical energy storage device
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JP2004303572A (en) Manufacturing method of electrode plate, and nonaqueous electrolyte secondary battery equipped with electrode plate obtained by manufacturing method of the same
JP3364378B2 (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
KR101083129B1 (en) 2 method for preparing slurry composition for electrode of secondary cell
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP2006107959A (en) Electrode and its manufacturing method
JP2002075330A (en) Nonaqueous secondary battery and its manufacturing method
JP3512543B2 (en) Non-aqueous electrolyte secondary battery
JP3884550B2 (en) Method for producing electrode for non-aqueous electrolyte battery
JP3956672B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP7311059B2 (en) Negative electrode binder composition, negative electrode, and secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees