JPWO2003080897A1 - Magnesium or magnesium alloy product having conductive anodic oxide film on its surface and method for producing the same - Google Patents

Magnesium or magnesium alloy product having conductive anodic oxide film on its surface and method for producing the same Download PDF

Info

Publication number
JPWO2003080897A1
JPWO2003080897A1 JP2003578618A JP2003578618A JPWO2003080897A1 JP WO2003080897 A1 JPWO2003080897 A1 JP WO2003080897A1 JP 2003578618 A JP2003578618 A JP 2003578618A JP 2003578618 A JP2003578618 A JP 2003578618A JP WO2003080897 A1 JPWO2003080897 A1 JP WO2003080897A1
Authority
JP
Japan
Prior art keywords
magnesium
film
magnesium alloy
anodized film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003578618A
Other languages
Japanese (ja)
Other versions
JP4367838B2 (en
Inventor
保廣 奥田
保廣 奥田
宏司 酒井
宏司 酒井
実 日野
実 日野
実 平松
実 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HORI METAL FINISHING IND., LTD.
Okayama Prefectural Government
Original Assignee
HORI METAL FINISHING IND., LTD.
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HORI METAL FINISHING IND., LTD., Okayama Prefectural Government filed Critical HORI METAL FINISHING IND., LTD.
Publication of JPWO2003080897A1 publication Critical patent/JPWO2003080897A1/en
Application granted granted Critical
Publication of JP4367838B2 publication Critical patent/JP4367838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

相互に10mm離れた2つの端子間で測定した皮膜表面の抵抗値が100Ω以下である導電性陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品である。当該製品はリン酸根を0.1〜1mol/L、アンモニア又はアンモニウムイオンを0.2〜5mol/L含有し、pHが8〜14である電解液にマグネシウム又はマグネシウム合金を浸漬し、その表面を陽極酸化処理して製造することができる。これにより、電気伝導性と優れた耐食性とを兼ね備えた陽極酸化皮膜をその表面に有するマグネシウム又はマグネシウム合金からなる製品が提供される。This is a product made of magnesium or a magnesium alloy having a conductive anodized film whose surface has a resistance value of 100Ω or less measured between two terminals 10 mm apart from each other. The product contains 0.1 to 1 mol / L of phosphate radicals, 0.2 to 5 mol / L of ammonia or ammonium ions, and magnesium or a magnesium alloy is immersed in an electrolyte solution having a pH of 8 to 14, It can be manufactured by anodizing. As a result, a product made of magnesium or a magnesium alloy having an anodized film having both electrical conductivity and excellent corrosion resistance on its surface is provided.

Description

技術分野
本発明は、電気伝導性に優れた陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品に関する。また、そのような製品の製造方法に関する。
背景技術
マグネシウム及びマグネシウム合金は実用金属中で最も軽いために比強度が高く、放熱性も良好で、樹脂に比べてリサイクル性にも優れることから、近年、電気機器や自動車部品用途に広く用いられるようになってきている。中でも、小型軽量化の要求性能が高く、意匠性、リサイクル性の要求も高い電気機器の筐体として好適に使用されている。しかしながら、マグネシウム及びマグネシウム合金は腐食しやすいことから、耐食性を有する表面処理又は塗装が必要である。
マグネシウム又はマグネシウム合金に陽極酸化処理を施すことで優れた耐食性を付与することができる。代表的にはDow17法やHAE法と呼ばれる処方での陽極酸化処理が一般的に行われており、これによって実用上十分な耐食性を有する陽極酸化皮膜を形成することができる。また、特表平11−502567号公報(WO96/28591)には、アンモニアとリン酸塩化合物を含有する電解液に浸漬してマグネシウム又はマグネシウム合金を陽極酸化処理する方法が記載されている。
また、マグネシウム又はマグネシウム合金を化成処理することによってもある程度の耐食性を付与することができ、導電性を有する皮膜を形成できることが下記の公報に記載されている。特開2000−96255公報には、一定量のカルシウム、マンガン及びリンを含有し、電気抵抗率が0.1Ω・cm以下である化成処理皮膜が記載されている。また、特開2000−328261公報には、pH1〜5の酸性水溶液でマグネシウム合金の表面をエッチングしてから、有機リン化合物を含有するpH7〜14のアルカリ性水溶液に接触させ、引き続き化成処理液に接触させるマグネシウム合金の表面処理方法が記載されており、表面抵抗値の小さい製品が得られる旨が記載されている。
プラズマディスプレイ等の各種ディスプレイや携帯電話などにおいては、それから発生する電磁波を効率的に遮蔽できることが好ましい。マグネシウム及びマグネシウム合金は良好な電気伝導性を有することから、それを用いた電気機器の筐体は良好な電磁波シールド性を有することができる。また、多くの電気機器、特にデジタル電子機器においては、誤作動を防止するために、接地(アース)して電磁ノイズを除去することが重要であるが、このとき、筐体がマグネシウム又はマグネシウム合金であれば、そこに接地することも可能である。
ところが、前述のようにマグネシウム及びマグネシウム合金には、耐食性を有する表面処理又は塗装が必要である。マグネシウム又はマグネシウム合金に耐食性を付与するための陽極酸化処理を施したのでは、マグネシウム又はマグネシウム合金を絶縁性の酸化皮膜が覆ってしまい電磁波シールド性が失われてしまうとともに、接地することも不可能になる。そのため、例えば接地のための部分はマスキングしてから陽極酸化処理を行ったり、全面を陽極酸化処理してから一部の陽極酸化膜を削って除去したりする手法などが採用されていた。しかしながら、このような方法は操作が煩雑で生産コストを押し上げるものであった。
一方、化成処理によって形成される皮膜には、例えば特開2000−96255公報や特開2000−328261公報に記載された皮膜のように、電気伝導性を有するものが最近報告されている。しかしながら、マグネシウム又はマグネシウム合金に通電することで強固な酸化皮膜を形成する陽極酸化処理に比べると、単に処理液に浸漬するだけの化成処理で形成される皮膜は、その耐食性が十分ではない。近年のモバイル機器の筐体などでは、多様な環境下での耐食性が必要になることから、特にこの問題は重要である。そのため、化成処理で皮膜を形成した場合には、その上に更に複数層の塗装を施して何とか耐食性を確保しているのが現状である。しかしながら、形状の複雑な電気機器の筐体に均一な塗装を施すのは必ずしも容易ではなく、複数回の塗装工程を行ったのではコスト上昇が大きい。
一方、現在陽極酸化処理として広く行われているDow17法では、得られる陽極酸化皮膜がクロムを含有するし、HAE法ではマンガンを含有する。また、化成処理して得られる製品の多くもその皮膜が重金属元素を含有する。このように重金属元素を含有したのでは、リサイクル使用する際にマグネシウム又はマグネシウム合金中に重金属元素が混入することになり好ましくない。特に、マグネシウム及びマグネシウム合金は、プラスチックに比べてリサイクル性が優れていることが特徴であることから、リサイクル回数が重なることで蓄積されていく重金属元素の量は無視できないものである。また処理液が重金属元素を含有していたのでは、その廃液処理や周辺環境の保全の観点からも好ましくない。
本発明は、上記課題を解決するためになされたものであり、電気伝導性と優れた耐食性とを兼ね備えた陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品を提供することを目的とするものである。また、そのようなマグネシウム又はマグネシウム合金からなる製品を製造する方法を提供することを目的とするものである。本発明で得られる陽極酸化皮膜は、重金属元素を含有しなくても上記課題を解決することができるので、リサイクル性や環境保全の観点からも優れたものである。また、使用される電解液が重金属元素を含有しなくても、上記陽極酸化皮膜を形成することができるので、工場周辺の環境保全に寄与できるとともに、廃液処理コストも軽減できるものである。
発明の開示
上記課題は、相互に10mm離れた2つの端子間で測定した皮膜表面の抵抗値が100Ω以下である導電性陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品を提供することによって達成される。
従来、マグネシウム又はマグネシウム合金を陽極酸化処理して得られる皮膜は、酸化物を主成分とする皮膜であって、絶縁体であった。むしろ絶縁体であるからこそ、マグネシウム又はマグネシウム合金本体に腐食電流が流れることがなく、本体の酸化劣化を防止することができていると考えられていた。ところが、本発明者が鋭意検討した結果、陽極酸化皮膜でありながら十分な電気伝導性を有する皮膜が見出された。しかも従来から陽極酸化皮膜が有していた、優れた耐食性はそのまま保持していることも明らかになったものである。これにより、優れた耐食性を有しながら良好な電気伝導性を有するマグネシウム又はマグネシウム合金からなる製品を提供できることとなった。特に、電磁波シールド性、接地特性などに優れた電気機器の筐体を提供することができるものである。このとき、前記陽極酸化皮膜の膜厚が0.01〜10μmであることが、耐食性と電気伝導性のバランスの点から好ましい。
本発明において、前記陽極酸化皮膜が、マグネシウム元素を35〜65重量%、酸素元素を25〜45重量%含有することが好適である。酸化されたマグネシウムを主成分として含有することで、マグネシウム又はマグネシウム合金の表面の陽極酸化皮膜が本来有するべき耐食性を有しているものと推測することもできるが、このような耐食性を有する理由は必ずしも定かではない。また、前記陽極酸化皮膜が、リン元素を4〜15重量%含有することが好適であり、アルミニウム元素を5〜20重量%含有することも好適である。マグネシウム、酸素以外の元素を適当量含有することで、耐食性を損なうことなく、良好な電気伝導性を有するようになるものと推測することもできるが、このような電気伝導性を有する理由もまた定かではない。また、本発明の陽極酸化皮膜は従来の陽極酸化皮膜が含有するような重金属元素を含有しなくても、優れた性能を発揮するものである。
本発明の好適な実施態様は、マグネシウム又はマグネシウム合金の表面の全部が陽極酸化皮膜で覆われ、かつ該陽極酸化皮膜の表面の一部にのみ樹脂塗装が施されて残余の部分の陽極酸化皮膜が露出しているマグネシウム又はマグネシウム合金からなる製品である。このように一部に陽極酸化皮膜の露出部分を設けることで、電磁波シールド性や接地特性を確保しながら、樹脂塗装によって外観の美麗な、耐摩擦性に優れた製品を提供することができるものである。具体的には、筐体内面には樹脂塗装が施されず、筐体外面には樹脂塗装が施された電気機器の筐体が、特に好適な実施態様である。
また、本発明の目的は、リン酸根を0.1〜1mol/L含有し、pHが8〜14である電解液にマグネシウム又はマグネシウム合金を浸漬し、その表面を陽極酸化処理することを特徴とする、前記マグネシウム又はマグネシウム合金からなる製品の製造方法を提供することによっても達成される。このとき、前記電解液がアンモニア又はアンモニウムイオンを0.2〜5mol/L含有することが好適である。
前述のように、これまでの陽極酸化処理においては、処理液が重金属イオンを含有することがほとんどであり、廃液処理を困難にするフッ素イオンを含有する場合もあった。これに対し、本発明のマグネシウム又はマグネシウム合金からなる製品の製造方法では、そのような成分を含有しなくとも性能の優れた陽極酸化皮膜を得ることができる。近年、重金属元素含有廃液の排出規制は厳しくなる一方であるから、本発明の製造方法が環境保全の観点からも優れたものであることは重要である。
本発明の製造方法においては、陽極酸化処理に際してマグネシウム又はマグネシウム合金を予め酸性水溶液に浸漬してから、電解液に浸漬して陽極酸化処理することが好適である。適切に前処理してから陽極酸化処理に供することで、本発明の効果を奏する製品が得られやすくなるものである。
また、本発明の製造方法において、陽極酸化処理した後で、陽極酸化皮膜の表面に樹脂塗膜を1回だけ塗装し、40〜120℃の温度で加熱して塗膜を乾燥させることが好適である。耐食性に優れた陽極酸化皮膜を得ることができるので、簡単な塗装工程のみで十分であり、結果として製造コストを削減することが可能となる。
以下、本発明を詳細に説明する。
本発明は、相互に10mm離れた2つの端子間で測定した皮膜表面の抵抗値が100Ω以下である導電性陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品である。
原料とするマグネシウム又はマグネシウム合金は、マグネシウムを主成分とするものであればよく、マグネシウム単体からなる金属であっても良いし、合金であっても良い。通常は、成形性、機械的強度、延性などを付与するためにマグネシウム合金が好適に使用される。マグネシウム合金としては、Mg−Al系合金、Mg−Al−Zn系合金、Mg−Al−Mn系合金、Mg−Zn−Zr系合金、Mg−希土類元素系合金、Mg−Zn−希土類元素系合金などが挙げられる。本発明の実施例ではMg−Al−Zn系合金を使用しており、得られた陽極酸化皮膜中にはアルミニウム元素が含まれていた。したがって、原料のマグネシウム合金としては上記各種の合金のうち、アルミニウムを含有するものであることが好ましいと推測される。
陽極酸化処理に供されるマグネシウム又はマグネシウム合金の形態は特に限定されない。ダイカスト法、チクソモールド法、プレス成形法、鍛造法などによって成形された成形品を用いることができる。成形時には、成形品の表面付近に形成される皺や中空部の内部に離型剤が残留する場合がある。陽極酸化処理する場合には、化成処理する場合に比べて、残留する離型剤を少なくすることが容易である。製品に残留する離型剤は、加熱された時に揮発して、樹脂塗膜にフクレを生じさせることがある。ここで、成形時に使用される離型剤としては、シリコーン化合物からなる離型剤が代表的である。
マグネシウム又はマグネシウム合金からなる成形品は、成形時に付着した離型剤などの有機物に由来する汚れを表面に有していることがあるので、脱脂処理を施すことが好ましい。脱脂のための液としては界面活性剤やキレート剤を含有する水溶液が好適に使用される。
必要に応じて脱脂処理した後で、酸性水溶液に浸漬してから、電解液に浸漬して陽極酸化処理することが好ましい。酸性の水溶液に浸漬することによってマグネシウム又はマグネシウム合金の表面を適度にエッチングして、既に形成されている不十分な酸化皮膜や残存する有機物の汚れを除去することができる。酸性の水溶液としては特に限定されないが、リン酸水溶液が適度な酸性度を有しており好適である。リン酸水溶液を用いた場合には、エッチングと同時にリン酸マグネシウムが表面に形成されることもある。また、酸性水溶液に界面活性剤やキレート剤を配合して、脱脂処理を同時に行うこともできる。
また、こうして酸性の水溶液で処理した後で、さらにアルカリ性水溶液で洗浄してから陽極酸化処理に供することも好ましい。酸性水溶液中では不溶である成分(スマット)がマグネシウム又はマグネシウム合金の表面に付着していることがあることから、これを除去することが可能である。アルカリ性水溶液としては水酸化ナトリウム水溶液や水酸化カリウム水溶液が好適に使用される。
前記脱脂処理、酸性水溶液処理、アルカリ性水溶液処理のような各処理工程の後に、必要に応じて水洗や乾燥を施しても良い。こうして、必要に応じて前処理が施されたマグネシウム又はマグネシウム合金が電解液中に浸漬される。
本発明の電解液は、リン酸根を含有するアルカリ性の水溶液であることが好ましく、より具体的にはリン酸根を0.1〜1mol/L含有し、pHが8〜14である水溶液が好適である。適当な量のリン酸根を含有することで、適当な量のリン元素が陽極酸化膜に含まれることになる。また、アルカリ性にすることでマグネシウム又はマグネシウム合金の不必要な溶出を防止することができる。
ここでいうリン酸根は、遊離のリン酸、リン酸塩、リン酸水素塩、リン酸二水素塩として電解液中に含まれるものである。また、リン酸が縮合して得られるポリリン酸やその塩の場合には、それらが加水分解して得られるリン酸根の数だけリン酸根を含有しているとする。塩の場合には、金属塩であってもよいし、アンモニウム塩のような非金属の塩であっても良い。リン酸根の含有量は0.1〜1mol/Lであることが好適である。より好適には0.15mol/L以上であり、さらに好適には0.2mol/L以上である。また、より好適には0.7mol/L以下であり、さらに好適には0.5mol/L以下である。
電解液のpHは8〜14であることが好適である。より好適にはpHは9以上であり、さらに好適には10以上である。また、より好適にはpHは13以下であり、さらに好適には12以下である。
また、電解液がアンモニア又はアンモニウムイオンを、それらの合計量として0.2〜5mol/L含有することが好ましい。これによって電解液のpHが適当なアルカリ性に保たれる。アンモニア又はアンモニウムイオンの含有量はより好適には0.5mol/L以上であり、さらに好適には1mol/L以上である。また、より好適には3mol/L以下であり、さらに好適には2mol/L以下である。
本発明の電解液は、本発明の効果を阻害しない範囲内で他の成分を含有してもよいが、重金属元素を実質的に含有しないことが好ましい。ここで重金属元素とは、単体としての比重が4を超える金属元素のことをいい、従来の陽極酸化処理における代表的な電解液に含有されているものとして、クロム、マンガンなどが例示される。特に排出規制が厳しく有害なクロムを含有しないことが好ましい。なお、マグネシウム合金に含まれる重金属、例えば亜鉛が微量溶け出して電解液中に含まれることは通常あまり問題とはならない。また、本発明の電解液がフッ素元素を含有しないことも好ましい。フッ素元素を含有する水溶液は廃水処理が困難になることが多いからである。
前記電解液の中に、必要に応じて前処理したマグネシウム又はマグネシウム合金を浸漬し、これを陽極として通電することで陽極酸化処理が行われる。使用する電源は特に限定されるものではなく、直流電源でも交流電源でも使用可能であるが、直流電源を使用することが好ましい。また、直流電源を使用する際には、定電流電源と定電圧電源のいずれを使用しても良いが、定電流電源を使用することが好ましい。陰極材料は特に限定されず、例えばステンレス材などを好適に使用することができる。陰極の表面積は陽極酸化処理されるマグネシウム又はマグネシウム合金の表面積よりも大きいことが好ましく、2倍以上であることがより好ましく、通常は10倍以下である。
電源として定電流電源を用いるときの陽極表面の電流密度は通常0.1〜10A/dmである。好適には0.2A/dm以上であり、より好適には0.5A/dm以上である。また、好適には5A/dm以下であり、より好適には2A/dm以下である。通電時間は通常10〜1000秒である。好適には20秒以上であり、より好適には50秒以上である。また、好適には500秒以下であり、より好適には200秒以下である。定電流電源で通電する際には、通電開始時の印加電圧は低いものの、時間の経過とともに印加電圧は上昇する。通電を終了する際の印加電圧は通常50〜400ボルトである。好適には100ボルト以上であり、より好適には150ボルト以上である。また、好適には300ボルト以下であり、より好適には250ボルト以下である。従来の陽極酸化処理方法であるDow17法やHAE法においては、印加電圧を100ボルト未満に設定することが多いのに対して、本発明の陽極酸化処理では、比較的高い電圧に設定するのが好ましい。これによって、シリコーン離型剤などの不純物を含有する部分でも酸化反応が進行しやすくなり、マグネシウム又はマグネシウム合金の表面全体に導電性の良好な皮膜を形成しやすくなる。また、酸化反応に伴ってマグネシウム又はマグネシウム合金の表面から酸素ガスが盛んに発生するので、陽極酸化処理中に上記不純物が除去されやすくなる。通電中の電解液の温度は、通常5〜70℃である。好適には10℃以上である。また、好適には50℃以下であり、より好適には30℃以下である。
通電終了後、洗浄することにより、陽極酸化皮膜の表面に付着した電解液を除去する。洗浄に際しては、水のみではなく、酸性水溶液を用いて洗浄することが好ましい。電解液がアルカリ性であることから、酸性水溶液で洗浄することによって、樹脂塗装を行った場合に塗膜の密着性が改善される。酸性水溶液としては硝酸水溶液、塩酸水溶液、硫酸水溶液などを使用することができる。洗浄後、乾燥して、陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品が得られる。
本発明のマグネシウム又はマグネシウム合金からなる製品は、相互に10mm離れた2つの端子間で測定した皮膜表面の抵抗値が100Ω以下である導電性陽極酸化皮膜を表面に有するものである。当該抵抗値は、陽極酸化皮膜の表面の相互に10mm離れた任意の2点に端子を押し付けて測定される抵抗値(Ω)であって、本発明の製品はその表面の少なくとも一箇所において上記値以下の抵抗値を有すればよい。マグネシウム又はマグネシウム合金本体の抵抗値は小さいことから、実質的には、測定用の端子と、マグネシウム又はマグネシウム合金本体との間に存在する陽極酸化皮膜の厚み方向の電気抵抗に相関する値が測定されるものである。したがって、当該抵抗値は電磁波シールド性や接地特性の面から製品に要求される性能に対応する数値である。好適には10Ω以下であり、より好適には1Ω以下であり、最適には0.5Ω以下である。なお、表面処理していないマグネシウム又はマグネシウム合金からなる成形品の表面の抵抗値は、AZ91Dの場合で、通常0.02〜0.1Ω程度の値である。
本発明で得られる陽極酸化皮膜は、図1にも示すように、表面に通電中のスパークに由来すると思われる多数の孔が存在する場合が多い。この点で化成処理皮膜とは相違する。陽極酸化皮膜の膜厚は、0.01〜10μmであることが好適である。より好適には0.1μm以上であり、さらに好適には0.5μm以上である。また、より好適には5μm以下であり、さらに好適には3μm以下である。膜厚が薄すぎると耐食性が悪化する虞があり、厚すぎる場合には電気伝導率が低下して、電磁波シールド性や接地特性が低下する虞がある。
本発明で得られる陽極酸化皮膜の化学組成は特に限定されるものではないが、マグネシウム元素を35〜65重量%、酸素元素を25〜45重量%含有するものが好適である。すなわち、マグネシウム又はマグネシウム合金が陽極酸化された結果の生成物である、酸化されたマグネシウムを主成分として含有するものであることが好適である。マグネシウム元素の含有量はより好適には40重量%以上であり、さらに好適には45重量%以上である。また、より好適には60重量%以下であり、さらに好適には55重量%以下である。酸素元素の含有量はより好適には30重量%以上である。また、より好適には40重量%以下である。
前記陽極酸化皮膜が、リン元素を4〜15重量%含有することが好適である。リン元素の含有量はより好適には5重量%以上であり、さらに好適には6重量%以上である。また、より好適には12重量%以下であり、さらに好適には10重量%以下である。また、アルミニウム元素を5〜20重量%含有することも好適である。アルミニウム元素の含有量はより好適には7重量%以上であり、さらに好適には9重量%以上である。また、より好適には17重量%以下であり、さらに好適には15重量%以下である。マグネシウム、酸素以外の上記元素を適当量含有することで、耐食性を損なうことなく、良好な電気伝導性を有するようになるものと推測することができる。本発明の陽極酸化皮膜は本発明の効果を阻害しない範囲内で上記以外の元素を含んでいても構わない。しかしながら、原料のマグネシウム合金が元々含有していたものを除き、重金属、特にクロム元素を実質的に含有しないことが好ましい。また、フッ素元素も実質的に含有しないことが好ましい。
陽極酸化皮膜を表面に有する本発明のマグネシウム又はマグネシウム合金からなる製品の用途は特に限定されず、各種の電気機器や自動車用部品などに使用することができる。使用に際しては、必要に応じて陽極酸化皮膜の表面に上塗りの塗装を施しても良いが、電気伝導性の良好な本発明の陽極酸化皮膜の特徴を活かすためには、製品の全体を絶縁膜からなる塗装で覆ってはならない。
用いられる塗料は特に限定されず、金属表面の塗装に使用される各種の塗料を使用することができる。溶剤型塗料、水性塗料、粉体塗料などを使用して樹脂塗膜を形成することができる。塗布後に高温焼付けを要する熱硬化型の塗料であっても、比較的低温で溶剤や水を揮発させるだけでよい塗料であっても良いが、操作の容易な後者を使用することが好ましい。また、外観を美麗にするためには透明樹脂塗料を用いることが好ましく、適宜着色されたものを用いても良い。塗装方法も特に限定されず、スプレー塗装、浸漬塗装、電着塗装、粉体塗装などの公知の方法を採用することができる。一部に塗膜を有しない部分を有することが好ましい本発明のマグネシウム又はマグネシウム合金からなる製品においては、スプレー塗装や溶射法による粉体塗装が好適に採用される。
陽極酸化処理した後で、陽極酸化皮膜の表面に樹脂塗膜を1回だけ塗装して塗膜を形成することが好ましい。電気機器の筐体などでは、複雑な形状を有することも多く、均質な塗膜を形成することは必ずしも容易ではない。複数回の塗装を施すことで耐食性が一段と向上することが多いが、塗装の回数が多いとコストの上昇も大きくなる。この点、耐食性の良好な本発明のマグネシウム又はマグネシウム合金からなる製品においては、1回の塗装だけでも十分に良好な耐食性が得られる場合が多い。
溶剤型塗料、あるいは水性塗料を使用した場合には、40〜120℃の温度で加熱して塗膜を乾燥させることが好適である。より好適には50℃以上であり、100℃以下である。耐食性の良好な本発明のマグネシウム又はマグネシウム合金からなる製品においては、比較的低温の加熱工程で乾燥硬化させられる樹脂塗装のみで十分であることが多く、結果として製造コストを削減することが可能となる。加熱乾燥方法は特に限定されず、汎用のオーブンなどを使用することができる。
本発明の好適な実施態様は、マグネシウム又はマグネシウム合金の表面の全部が陽極酸化皮膜で覆われ、かつ該陽極酸化皮膜の表面の一部にのみ樹脂塗装が施されて残余の部分の陽極酸化皮膜が露出しているマグネシウム又はマグネシウム合金からなる製品である。このようにマグネシウム又はマグネシウム合金の表面の全部が陽極酸化皮膜で覆われることで、製品全体の耐食性が確保できる。ただし、ここでいう全部とは、実質的に全部ということであり、陽極酸化処理時に電源と導通させた接点部分など、陽極酸化皮膜が形成されていない部分が僅かにあっても構わない。また、陽極酸化皮膜の表面の一部にのみ樹脂塗装が施されて残余の部分の陽極酸化皮膜が露出していることで、電磁波シールド性や接地特性を確保しながら、樹脂塗装によって外観の美麗な、耐摩擦性に優れた製品を提供することができるものである。
特に好適な実施態様は、筐体内面には樹脂塗装が施されず、筐体外面には樹脂塗装が施された電気機器の筐体である。筐体外面に樹脂塗装が施されることで、外観を美麗にできるのみならず、使用時の損傷を防止することができる。一方、筐体の内面では導電性を有する陽極酸化皮膜が露出しているので、電気配線からの接地が容易に確保できるし、筐体内部の電子回路からの電磁波を効果的にシールドすることもできる。
こうして得られた本発明のマグネシウム又はマグネシウム合金からなる製品は、各種の用途に使用することができる。携帯電話、パソコン、ビデオカメラ、スチルカメラ、光ディスクプレーヤー、ディスプレイ(CRT、プラズマ、液晶)、プロジェクターなどの電気機器の筐体や、自動車用部品などに使用することができる。
発明を実施するための最良の形態
以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。本実施例中での試験方法は以下の方法に従って行った。
(1)陽極酸化皮膜の膜厚測定
試験片を5mm×10mmの寸法に切断し、エポキシ樹脂に包埋してから、切断面を研磨して鏡面を得た。試料の断面方向から、日本電子株式会社製X線マイクロアナライザー「JXA−8900」を用いて電子顕微鏡写真を撮影し、膜厚を測定した。
(2)陽極酸化皮膜の化学組成分析
日本電子株式会社製X線マイクロアナライザー「JXA−8900」を用いて、皮膜の表面及び断面の2方向から膜組成の分析を行った。各方向につき3ヶ所ずつ測定を行い、これらの平均値から化学組成を求めた。測定は、加速電圧15kV、試料照射電流2×10−8Aの条件で行った。データ解析は、ZAH補正によって行った。
(3)陽極酸化皮膜表面の抵抗値測定
三菱化学株式会社製低抵抗率計「ロレスターAP MCP−T400」を用い、二探針式プローブ「MCP−TP01」を使用して測定した。試験片の中央部分で皮膜の表面に測定端子を押し付けるようにして抵抗値(Ω)を測定した。前記プローブは10mmの間隔で測定端子が配置されたものであり、端子はベリリウム合金に金メッキしたもので、その先端形状は直径2mmの円柱状であり、端子を皮膜の表面に押し付ける荷重は端子1個あたり240gである。
(4)温水浸漬試験
試験片を、70℃に保った温水の中に24時間浸漬した。24時間経過後、試験片を取り出して、水分をふき取ってから、樹脂塗膜と陽極酸化皮膜とを貫通するように約1mmの間隔で碁盤目状の切込みを入れて、JIS K5400に準拠してテープ剥離試験を行い、塗膜の剥離状況や、その他欠陥の発生の有無を肉眼で観察した。
(5)塩水噴霧試験
試験片の表面に、樹脂塗膜と陽極酸化皮膜とを貫通するように十文字状の切込み(クロスカット)を入れてから、JIS Z−2371に準拠して5%塩水噴霧試験を120時間行った。120時間経過後、試験片を取り出して、クロスカット部分からのフクレの発生状況や、その他欠陥の発生の有無を肉眼で観察した。
実施例1
マグネシウム90重量%、アルミニウム9重量%及び亜鉛1重量%からなるASTM No.AZ91Dのマグネシウム合金を原料とし、ホットチャンバー法にて鋳造された170mm×50mm×2mmの寸法の合金板を試験片として使用した。上記試験片を2.2重量%のリン酸と微量の界面活性剤を含有する酸性水溶液に浸漬してから、イオン交換水で洗浄した。続いて、18重量%の水酸化ナトリウムを含有するアルカリ性水溶液に浸漬してからイオン交換水で洗浄し、試験片表面を前処理した。
リン酸水溶液とアンモニア水とを混合して、リン酸根を0.25mol/L、アンモニア又はアンモニウムイオンをその合計量で1.5mol/L含有する電解液を調製し、20℃に保った。この電解液のpHは11であった。この中に前記前処理を施したマグネシウム合金試験片を陽極として浸漬して、陽極酸化処理を行った。このときの陰極としては、前記陽極の4倍の表面積を有するSUS316Lの板を使用した。定電流電源を使用し陽極表面の電流密度が1A/dmとなるようにして120秒間通電した。通電開始時には低い印加電圧であったのが、通電終了時には約200ボルトまで上昇した。通電終了後、イオン交換水、硝酸水溶液、イオン交換水の順番で洗浄してから乾燥した。
得られた陽極酸化皮膜の表面を走査型電子顕微鏡で観察した写真を図1に示す。陽極酸化皮膜の表面に通電中のスパークに由来すると思われる多数の孔の存在が認められた。この陽極酸化皮膜の膜厚は約1.5μmであった。ここでいう膜厚とは、多数の孔を有するために局所的な膜厚ムラのある皮膜において、厚い部分の表面から基材のマグネシウム合金面までの平均的な距離のことである。得られた陽極酸化皮膜は、マグネシウム元素を48.0重量%、酸素元素を33.5重量%、リン元素を7.0重量%及びアルミニウム元素を11.2重量%含有していた。陽極酸化皮膜の表面の抵抗値は、0.25Ωであった。
得られた陽極酸化皮膜の表面に、カシュー株式会社製アクリルシリコーン系塗料「アスコート300J」を、エアスプレー塗装した。このとき、塗装に際してはプライマー塗装することなく、陽極酸化皮膜の表面に当該アクリルシリコーン系塗料を1回だけ塗布した。塗布後、60℃で20分間加熱して、溶剤を揮発除去して塗膜を硬化させた。これにより、陽極酸化皮膜の表面に約20μmの膜厚の塗膜が形成された。
得られた試験片を温水浸漬試験及び塩水噴霧試験に供したところ、いずれの場合にも、表面に外観上の変化は観察されなかった。温水浸漬試験に供した後の試験片表面の写真を図2に、塩水噴霧試験に供した後の試験片表面の写真を図3にそれぞれ示す。
比較例1
リン酸水溶液とアンモニア水とを混合して、リン酸根を0.08mol/L、アンモニア又はアンモニウムイオンをその合計量で0.8mol/L含有する電解液を調製し、20℃に保った。この電解液のpHは11であった。この中に実施例1と同じ前処理を施したマグネシウム合金試験片を陽極として浸漬して、陽極酸化処理を行った。このときの陰極としては、実施例1と同じものを使用した。定電流電源を使用し陽極表面の電流密度が1A/dmとなるようにして120秒間通電した。通電開始時には低い印加電圧であったのが、通電終了時には約200ボルトまで上昇した。通電終了後、イオン交換水、硝酸水溶液、イオン交換水の順番で洗浄してから乾燥した。
得られた陽極酸化皮膜の膜厚は約1.5μmであり、マグネシウム元素を54.8重量%、酸素元素を37.7重量%、リン元素を3.2重量%及びアルミニウム元素を4.3重量%含有していた。陽極酸化皮膜の表面の抵抗値は、測定に使用した抵抗率測定器の測定限界の10Ωを超えた。
得られた陽極酸化皮膜の表面に、実施例1と同様にして樹脂塗膜を形成した。得られた試験片を温水浸漬試験及び塩水噴霧試験に供したところ、いずれの場合にも、表面に外観上の変化は観察されなかった。
比較例2
Dow17法と呼ばれる公知の陽極酸化皮膜形成方法を試験した例である。酸性フッ化アンモニウム300g/L、重クロム酸ナトリウム100g/L及びリン酸90g/Lを含有する電解液を調製し、75℃に保った。この中に実施例1と同じ前処理を施したマグネシウム合金試験片を陽極として浸漬して、陽極酸化処理を行った。このときの陰極としては、実施例1と同じものを使用した。定電流電源を使用し陽極表面の電流密度が4A/dmとなるようにして300秒間通電した。通電終了時には約70ボルトまで上昇した。通電終了後、イオン交換水で洗浄してから乾燥した。
得られた陽極酸化皮膜の膜厚は約1.5μmであり、マグネシウム元素を26.0重量%、酸素元素を25.7重量%、リン元素を11.2重量%、アルミニウム元素を1.0重量%、フッ素元素を23.4重量%、クロム元素を9.2重量%及びナトリウム元素を3.6重量%含有していた。陽極酸化皮膜の表面の抵抗値は、測定に使用した抵抗率測定器の測定限界の10Ωを超えた。
比較例3
陽極酸化処理する代わりに、市販の化成処理液を用いて化成処理を行った例である。ミリオン化学株式会社製化成処理液「MC−1000」を75g/Lの割合で含有するようにイオン交換水で希釈して処理液を調製し、40℃に保った。当該化成処理液の化学組成の詳細は不明であるが、リン酸イオン、マンガン(あるいはマンガン酸化物)イオン及びカルシウムイオンを含有する化成処理液であると推定されている。この処理液中に、実施例1と同じ前処理を施したマグネシウム合金試験片を30秒間浸漬した。浸漬終了後、イオン交換水で洗浄してから乾燥した。
得られた化成処理皮膜の膜厚は0.1μmかそれ以下であり、定量的に測定することが困難な薄い膜厚であった。この化成皮膜は、単位面積当たりの含有量として、カルシウム元素を85mg/m、マンガン元素を95mg/m、リン元素を220mg/m含有するものであった。また、この化成処理皮膜の表面の抵抗値は0.5Ωであった。
得られた化成皮膜の表面に、実施例1と同様にして樹脂塗膜を形成した。得られた試験片を温水浸漬試験に供した後の外観を図4に、塩水噴霧試験に供した後の外観を図5にそれぞれ示す。いずれの場合にも、皮膜に入れた切込みの周囲で樹脂塗膜の剥離が顕著に認められた。
比較例4
陽極酸化処理する代わりに、比較例3と異なる市販の化成処理液を用いて化成処理を行った例である。日本パーカライジング株式会社製化成処理液「MB−C10M」を75g/Lの割合で含有するようにイオン交換水で希釈して処理液を調製し、50℃に保った。当該化成処理液の化学組成の詳細は不明であるが、無水クロム酸14重量%及びフッ化水素0.7重量%を主成分として含有する化成処理液であると推定されている。この処理液中に、実施例1と同じ前処理を施したマグネシウム合金試験片を60秒間浸漬した。浸漬終了後、イオン交換水で洗浄してから乾燥した。
得られた化成処理皮膜の膜厚は0.1μmかそれ以下であり、定量的に測定することが困難な薄い膜厚であった。この化成皮膜は、単位面積当たりの含有量として、クロム元素を190mg/m含有するものであった。また、この化成処理皮膜の表面の抵抗値は0.75Ωであった。
得られた化成皮膜の表面に、実施例1と同様にして樹脂皮膜を形成した。得られた試験片を温水浸漬試験及び塩水噴霧試験に供したところ、いずれの場合にも、皮膜に入れた切込みの周囲での樹脂塗膜の剥離やフクレは認められなかった。しかしながら、温水浸漬試験の後、試験片のエッジに近い部分で塗膜にドット状に膨れた点(ブリスター)が複数発生していることが観察された。
以上説明したように、実施例1で陽極酸化処理して得られた本発明のマグネシウム合金からなる製品は、電気伝導性と優れた耐食性とを兼ね備えたものであった。これに対し、比較例1や2に示されるような従来の陽極酸化処理で得られたマグネシウム合金からなる製品は、耐食性には優れるものの、電気伝導性は認められなかった。一方、比較例3に示されるような化成処理で得られたマグネシウム合金からなる製品は、電気伝導性は認められたものの、耐食性が十分でなかった。
産業上の利用可能性
本発明のマグネシウム又はマグネシウム合金からなる製品は、電気伝導性と優れた耐食性とを兼ね備えた陽極酸化皮膜をその表面に有するものである。従って、電磁波シールド性や接地特性に優れたマグネシウム又はマグネシウム合金からなる製品として使用され、電気機器の筐体として特に有用である。しかも、当該製品は重金属を含有せず、リサイクルにも適している。さらに、重金属イオンやフッ素イオンを使用しない電解液で陽極酸化処理することができるから、環境保全の観点からも優れた製造方法を提供することができるものである。
【図面の簡単な説明】
第1図は、実施例1で得られた陽極酸化皮膜の表面を走査型電子顕微鏡で観察した写真である。第2図は、温水浸漬試験に供した後の実施例1の試験片表面の写真である。第3図は、塩水噴霧試験に供した後の実施例1の試験片表面の写真である。第4図は、温水浸漬試験に供した後の比較例3の試験片表面の写真である。第5図は、塩水噴霧試験に供した後の比較例3の試験片表面の写真である。
Technical field
The present invention relates to a product made of magnesium or a magnesium alloy having an anodized film excellent in electrical conductivity on the surface. It also relates to a method for manufacturing such a product.
Background art
Magnesium and magnesium alloys are lightest in practical metals, so they have high specific strength, good heat dissipation, and excellent recyclability compared to resins, so that they are widely used in recent years for electrical equipment and automotive parts. It has become to. Among them, it is suitably used as a casing for electrical equipment that has high performance requirements for reduction in size and weight, and has high requirements for design and recyclability. However, since magnesium and magnesium alloys are easily corroded, surface treatment or coating having corrosion resistance is required.
Excellent corrosion resistance can be imparted by anodizing magnesium or a magnesium alloy. Typically, anodizing treatment with a prescription called Dow17 method or HAE method is generally performed, whereby an anodized film having practically sufficient corrosion resistance can be formed. Also, Japanese Patent Publication No. 11-502567 (WO96 / 28591) describes a method of anodic oxidation of magnesium or a magnesium alloy by immersing in an electrolytic solution containing ammonia and a phosphate compound.
In addition, it is described in the following publication that a certain degree of corrosion resistance can be imparted by chemical conversion treatment of magnesium or a magnesium alloy, and a conductive film can be formed. Japanese Patent Application Laid-Open No. 2000-96255 describes a chemical conversion film containing a certain amount of calcium, manganese and phosphorus and having an electrical resistivity of 0.1 Ω · cm or less. Japanese Patent Laid-Open No. 2000-328261 discloses that after etching the surface of a magnesium alloy with an acidic aqueous solution having a pH of 1 to 5, the surface is contacted with an alkaline aqueous solution having an organic phosphorus compound and having a pH of 7 to 14, followed by contact with the chemical conversion treatment solution. Describes a surface treatment method of a magnesium alloy to be obtained, and describes that a product having a small surface resistance value is obtained.
In various displays such as plasma displays and mobile phones, it is preferable that electromagnetic waves generated therefrom can be efficiently shielded. Since magnesium and a magnesium alloy have good electrical conductivity, the casing of an electric device using the same can have good electromagnetic shielding properties. Also, in many electrical devices, especially digital electronic devices, it is important to remove electromagnetic noise by grounding to prevent malfunctions. At this time, the casing is made of magnesium or magnesium alloy. If so, it is also possible to ground there.
However, as described above, surface treatment or coating having corrosion resistance is required for magnesium and magnesium alloys. If magnesium or magnesium alloy is anodized to give corrosion resistance, the insulating film is covered with magnesium or magnesium alloy, and electromagnetic shielding properties are lost, and grounding is impossible. become. For this reason, for example, a method of masking the portion for grounding and then performing anodizing treatment, or anodizing the entire surface and then removing and removing a part of the anodized film has been adopted. However, such a method is complicated in operation and increases the production cost.
On the other hand, as a film formed by chemical conversion treatment, a film having electrical conductivity has recently been reported, such as a film described in JP-A-2000-96255 and JP-A-2000-328261. However, compared with an anodizing treatment in which a strong oxide film is formed by energizing magnesium or a magnesium alloy, a film formed by a chemical conversion treatment simply immersed in a treatment solution has insufficient corrosion resistance. This problem is particularly important in the case of mobile device casings and the like in recent years because corrosion resistance in various environments is required. For this reason, when a film is formed by chemical conversion treatment, the present situation is that a plurality of layers are further coated thereon to ensure corrosion resistance. However, it is not always easy to apply a uniform coating to a casing of an electric device having a complicated shape, and a cost increase is great if a plurality of coating steps are performed.
On the other hand, in the Dow 17 method, which is widely used as an anodizing treatment, the obtained anodized film contains chromium, and in the HAE method, manganese is contained. In many products obtained by chemical conversion treatment, the coating contains a heavy metal element. When the heavy metal element is contained in this manner, the heavy metal element is mixed into the magnesium or the magnesium alloy at the time of recycling, which is not preferable. In particular, since magnesium and magnesium alloys are characterized by excellent recyclability compared to plastics, the amount of heavy metal elements accumulated by the repeated number of recycling cannot be ignored. In addition, if the treatment liquid contains a heavy metal element, it is not preferable from the viewpoint of waste liquid treatment and preservation of the surrounding environment.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a product made of magnesium or a magnesium alloy having an anodized film on the surface that has both electrical conductivity and excellent corrosion resistance. Is. Moreover, it aims at providing the method of manufacturing the product which consists of such magnesium or a magnesium alloy. The anodic oxide film obtained by the present invention can solve the above problems even if it does not contain a heavy metal element, and is therefore excellent from the viewpoints of recyclability and environmental conservation. Moreover, since the anodic oxide film can be formed even if the electrolytic solution used does not contain a heavy metal element, it is possible to contribute to environmental conservation around the factory and to reduce waste liquid treatment costs.
Disclosure of the invention
The above object is achieved by providing a product made of magnesium or a magnesium alloy having a conductive anodic oxide film on the surface whose resistance value of the film surface measured between two terminals 10 mm apart from each other is 100Ω or less. .
Conventionally, a film obtained by anodizing magnesium or a magnesium alloy is a film mainly composed of an oxide and is an insulator. Rather, because it is an insulator, it has been considered that no corrosion current flows through the magnesium or magnesium alloy main body and that the main body can be prevented from oxidative deterioration. However, as a result of intensive studies by the present inventor, a film having sufficient electrical conductivity while being an anodized film was found. In addition, it has also been clarified that the excellent corrosion resistance that the anodized film has conventionally had is maintained as it is. As a result, a product made of magnesium or a magnesium alloy having excellent electrical conductivity while having excellent corrosion resistance can be provided. In particular, it is possible to provide a casing of an electric device that is excellent in electromagnetic shielding properties, grounding characteristics, and the like. At this time, the film thickness of the anodized film is preferably 0.01 to 10 μm from the viewpoint of the balance between corrosion resistance and electrical conductivity.
In the present invention, it is preferable that the anodized film contains 35 to 65% by weight of magnesium element and 25 to 45% by weight of oxygen element. By containing oxidized magnesium as a main component, it can be presumed that the anodized film on the surface of magnesium or magnesium alloy has the corrosion resistance that should be inherent, but the reason for having such corrosion resistance is Not necessarily certain. Further, the anodic oxide film preferably contains 4 to 15% by weight of phosphorus element, and preferably contains 5 to 20% by weight of aluminum element. It can be presumed that by containing an appropriate amount of elements other than magnesium and oxygen, it will have good electrical conductivity without impairing corrosion resistance, but the reason for having such electrical conductivity is also Not sure. Further, the anodized film of the present invention exhibits excellent performance even if it does not contain a heavy metal element as contained in a conventional anodized film.
According to a preferred embodiment of the present invention, the entire surface of magnesium or a magnesium alloy is covered with an anodized film, and only a part of the surface of the anodized film is coated with a resin so that the remaining part of the anodized film is formed. Is a product made of magnesium or a magnesium alloy exposed. By providing an exposed portion of the anodized film in part in this way, it is possible to provide a product with a beautiful appearance and excellent friction resistance by resin coating while ensuring electromagnetic shielding and grounding characteristics It is. Specifically, a housing of an electrical device in which resin coating is not applied to the inner surface of the housing and resin coating is applied to the outer surface of the housing is a particularly preferable embodiment.
Another object of the present invention is to immerse magnesium or a magnesium alloy in an electrolytic solution containing 0.1 to 1 mol / L of a phosphate group and have a pH of 8 to 14, and anodize the surface. It is also achieved by providing a method for producing a product made of magnesium or a magnesium alloy. At this time, it is preferable that the electrolyte contains 0.2 to 5 mol / L of ammonia or ammonium ions.
As described above, in the conventional anodic oxidation treatment, the treatment liquid mostly contains heavy metal ions, and sometimes contains fluorine ions that make waste liquid treatment difficult. On the other hand, in the method for producing a product made of magnesium or magnesium alloy of the present invention, an anodized film having excellent performance can be obtained without containing such components. In recent years, since the regulation of discharge of heavy metal element-containing waste liquid is becoming stricter, it is important that the production method of the present invention is excellent from the viewpoint of environmental conservation.
In the production method of the present invention, it is preferable to immerse magnesium or a magnesium alloy in an acidic aqueous solution before anodic oxidation, and then anodic oxidation by immersing in an electrolytic solution. A product exhibiting the effects of the present invention can be easily obtained by subjecting it to an anodic oxidation treatment after appropriate pretreatment.
In the production method of the present invention, it is preferable that after the anodizing treatment, the resin coating film is applied only once on the surface of the anodized film and heated at a temperature of 40 to 120 ° C. to dry the coating film. It is. Since an anodic oxide film having excellent corrosion resistance can be obtained, only a simple coating process is sufficient, and as a result, the manufacturing cost can be reduced.
Hereinafter, the present invention will be described in detail.
The present invention is a product made of magnesium or a magnesium alloy having a conductive anodized film whose surface has a resistance value of 100Ω or less measured between two terminals 10 mm apart from each other.
Magnesium or a magnesium alloy used as a raw material may be one containing magnesium as a main component, and may be a metal made of magnesium alone or an alloy. Usually, a magnesium alloy is preferably used to impart formability, mechanical strength, ductility, and the like. Examples of magnesium alloys include Mg-Al alloys, Mg-Al-Zn alloys, Mg-Al-Mn alloys, Mg-Zn-Zr alloys, Mg-rare earth elements alloys, Mg-Zn-rare earth elements alloys. Etc. In the examples of the present invention, an Mg—Al—Zn alloy was used, and the obtained anodic oxide film contained an aluminum element. Therefore, it is presumed that the magnesium alloy as the raw material is preferably one containing aluminum among the above-mentioned various alloys.
The form of magnesium or magnesium alloy used for the anodizing treatment is not particularly limited. A molded product formed by a die casting method, a thixo mold method, a press molding method, a forging method, or the like can be used. At the time of molding, the mold release agent may remain inside the ridges or hollow portions formed near the surface of the molded product. In the case of anodizing, it is easy to reduce the remaining release agent compared to the case of chemical conversion. The release agent remaining in the product volatilizes when heated, and may cause swelling in the resin coating. Here, as a mold release agent used at the time of shaping | molding, the mold release agent which consists of a silicone compound is typical.
Since a molded product made of magnesium or a magnesium alloy may have dirt on its surface due to organic substances such as a release agent attached during molding, it is preferable to perform a degreasing treatment. As the liquid for degreasing, an aqueous solution containing a surfactant or a chelating agent is preferably used.
After degreasing as necessary, it is preferable to immerse in an acidic aqueous solution and then immerse in an electrolytic solution to perform anodization. By dipping in an acidic aqueous solution, the surface of magnesium or a magnesium alloy can be appropriately etched to remove an already formed insufficient oxide film and remaining organic contaminants. Although it does not specifically limit as acidic aqueous solution, Phosphoric acid aqueous solution has moderate acidity, and is suitable. When a phosphoric acid aqueous solution is used, magnesium phosphate may be formed on the surface simultaneously with etching. In addition, a degreasing treatment can be performed simultaneously by mixing a surfactant or a chelating agent with an acidic aqueous solution.
It is also preferable that after the treatment with the acidic aqueous solution, the anodic oxidation treatment is performed after washing with an alkaline aqueous solution. Since a component (smut) that is insoluble in an acidic aqueous solution may adhere to the surface of magnesium or a magnesium alloy, it can be removed. As the alkaline aqueous solution, an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution is preferably used.
After each treatment step such as the degreasing treatment, the acidic aqueous solution treatment, and the alkaline aqueous solution treatment, washing and drying may be performed as necessary. In this way, magnesium or a magnesium alloy that has been pretreated as necessary is immersed in the electrolytic solution.
The electrolytic solution of the present invention is preferably an alkaline aqueous solution containing phosphate groups, and more specifically, an aqueous solution containing 0.1 to 1 mol / L of phosphate groups and having a pH of 8 to 14 is preferable. is there. By containing an appropriate amount of phosphate group, an appropriate amount of phosphorus element is included in the anodic oxide film. Moreover, unnecessary elution of magnesium or a magnesium alloy can be prevented by making it alkaline.
The phosphate group here is one included in the electrolyte as free phosphoric acid, phosphate, hydrogen phosphate, or dihydrogen phosphate. In addition, in the case of polyphosphoric acid obtained by condensation of phosphoric acid or a salt thereof, it is assumed that the phosphoric acid radicals are contained by the number of phosphate radicals obtained by hydrolysis thereof. In the case of a salt, it may be a metal salt or a non-metallic salt such as an ammonium salt. The phosphate group content is preferably 0.1 to 1 mol / L. More preferably, it is 0.15 mol / L or more, and further preferably 0.2 mol / L or more. Further, it is more preferably 0.7 mol / L or less, and further preferably 0.5 mol / L or less.
The pH of the electrolytic solution is preferably 8-14. More preferably, the pH is 9 or more, and even more preferably 10 or more. Further, the pH is more preferably 13 or less, and even more preferably 12 or less.
Moreover, it is preferable that electrolyte solution contains 0.2-5 mol / L of ammonia or ammonium ion as those total amounts. As a result, the pH of the electrolytic solution is maintained at an appropriate alkalinity. The content of ammonia or ammonium ions is more preferably 0.5 mol / L or more, and even more preferably 1 mol / L or more. Further, it is more preferably 3 mol / L or less, and further preferably 2 mol / L or less.
The electrolytic solution of the present invention may contain other components as long as the effects of the present invention are not impaired, but preferably does not substantially contain heavy metal elements. Here, the heavy metal element means a metal element having a specific gravity of more than 4 as a simple substance, and chromium, manganese and the like are exemplified as those contained in a typical electrolyte solution in a conventional anodizing treatment. In particular, it is preferable not to contain harmful chromium which has strict emission regulations. It is not usually a problem that a heavy metal contained in the magnesium alloy, for example, zinc, is dissolved in a trace amount and contained in the electrolytic solution. It is also preferable that the electrolytic solution of the present invention does not contain a fluorine element. This is because an aqueous solution containing elemental fluorine often becomes difficult to treat wastewater.
Anodizing treatment is performed by immersing pretreated magnesium or a magnesium alloy in the electrolytic solution as necessary, and energizing it as an anode. The power source to be used is not particularly limited, and either a DC power source or an AC power source can be used, but it is preferable to use a DC power source. Further, when using a DC power supply, either a constant current power supply or a constant voltage power supply may be used, but it is preferable to use a constant current power supply. A cathode material is not specifically limited, For example, a stainless steel material etc. can be used conveniently. The surface area of the cathode is preferably larger than the surface area of magnesium or magnesium alloy to be anodized, more preferably 2 times or more, and usually 10 times or less.
The current density on the anode surface when a constant current power source is used as the power source is usually 0.1 to 10 A / dm. 2 It is. Preferably 0.2 A / dm 2 More preferably, 0.5 A / dm 2 That's it. Also preferably 5 A / dm 2 Or less, more preferably 2 A / dm 2 It is as follows. The energization time is usually 10 to 1000 seconds. Preferably it is 20 seconds or more, more preferably 50 seconds or more. Further, it is preferably 500 seconds or shorter, and more preferably 200 seconds or shorter. When energizing with a constant current power supply, although the applied voltage at the start of energization is low, the applied voltage increases with time. The applied voltage at the end of energization is usually 50 to 400 volts. Preferably it is 100 volts or more, more preferably 150 volts or more. Moreover, it is preferably 300 volts or less, and more preferably 250 volts or less. In the conventional anodic oxidation method Dow17 method and HAE method, the applied voltage is often set to less than 100 volts, whereas in the anodic oxidation treatment of the present invention, a relatively high voltage is set. preferable. As a result, the oxidation reaction easily proceeds even in a portion containing impurities such as a silicone release agent, and a film having good conductivity is easily formed on the entire surface of the magnesium or magnesium alloy. Moreover, since oxygen gas is actively generated from the surface of magnesium or a magnesium alloy with the oxidation reaction, the impurities are easily removed during the anodic oxidation treatment. The temperature of the electrolytic solution during energization is usually 5 to 70 ° C. It is preferably 10 ° C or higher. Moreover, it is 50 degrees C or less suitably, More preferably, it is 30 degrees C or less.
After the energization is finished, the electrolytic solution adhering to the surface of the anodized film is removed by washing. In the cleaning, it is preferable to use not only water but also an acidic aqueous solution. Since the electrolytic solution is alkaline, the adhesion of the coating film is improved when resin coating is performed by washing with an acidic aqueous solution. As the acidic aqueous solution, nitric acid aqueous solution, hydrochloric acid aqueous solution, sulfuric acid aqueous solution and the like can be used. After washing, drying is performed to obtain a product made of magnesium or a magnesium alloy having an anodized film on the surface.
The product made of magnesium or magnesium alloy of the present invention has a conductive anodic oxide film on the surface whose resistance value on the film surface measured between two terminals 10 mm apart from each other is 100Ω or less. The resistance value is a resistance value (Ω) measured by pressing a terminal against two arbitrary points 10 mm apart from each other on the surface of the anodized film, and the product of the present invention is the above-mentioned at least at one position on the surface. It suffices to have a resistance value less than or equal to the value. Since the resistance value of the magnesium or magnesium alloy body is small, a value that correlates with the electrical resistance in the thickness direction of the anodized film that exists between the measurement terminal and the magnesium or magnesium alloy body is actually measured. It is what is done. Therefore, the resistance value is a numerical value corresponding to the performance required for the product in terms of electromagnetic shielding properties and grounding characteristics. It is preferably 10Ω or less, more preferably 1Ω or less, and most preferably 0.5Ω or less. In addition, the resistance value of the surface of the molded article which consists of magnesium or magnesium alloy which is not surface-treated is a value of about 0.02-0.1 (ohm) normally in the case of AZ91D.
As shown in FIG. 1, the anodic oxide film obtained by the present invention often has a large number of pores that are thought to be derived from sparks during energization. This is different from the chemical conversion coating. The thickness of the anodized film is preferably 0.01 to 10 μm. More preferably, it is 0.1 μm or more, and further preferably 0.5 μm or more. Further, it is more preferably 5 μm or less, and further preferably 3 μm or less. If the film thickness is too thin, the corrosion resistance may be deteriorated. If the film thickness is too thick, the electric conductivity may be reduced, and the electromagnetic shielding properties and grounding characteristics may be deteriorated.
The chemical composition of the anodic oxide film obtained in the present invention is not particularly limited, but those containing 35 to 65% by weight of magnesium element and 25 to 45% by weight of oxygen element are suitable. That is, it is preferable to contain oxidized magnesium as a main component, which is a product resulting from anodization of magnesium or a magnesium alloy. The content of magnesium element is more preferably 40% by weight or more, and further preferably 45% by weight or more. Further, it is more preferably 60% by weight or less, and further preferably 55% by weight or less. The content of oxygen element is more preferably 30% by weight or more. Further, it is more preferably 40% by weight or less.
It is preferable that the anodized film contains 4 to 15% by weight of phosphorus element. The content of phosphorus element is more preferably 5% by weight or more, and further preferably 6% by weight or more. Moreover, it is 12 weight% or less more suitably, More preferably, it is 10 weight% or less. It is also preferable to contain 5 to 20% by weight of aluminum element. The aluminum element content is more preferably 7% by weight or more, and even more preferably 9% by weight or more. Further, it is more preferably 17% by weight or less, and further preferably 15% by weight or less. It can be presumed that by containing an appropriate amount of the above-mentioned elements other than magnesium and oxygen, it has good electrical conductivity without impairing corrosion resistance. The anodized film of the present invention may contain elements other than those described above as long as the effects of the present invention are not impaired. However, it is preferable that substantially no heavy metals, particularly chromium elements, are contained except for those originally contained in the raw material magnesium alloy. Moreover, it is preferable not to contain a fluorine element substantially.
The use of the product made of magnesium or a magnesium alloy of the present invention having an anodic oxide film on the surface is not particularly limited, and can be used for various electric devices and automotive parts. In use, the surface of the anodized film may be overcoated as necessary. However, in order to take advantage of the characteristics of the anodized film of the present invention having good electrical conductivity, the entire product is an insulating film. Do not cover with paint consisting of.
The paint used is not particularly limited, and various kinds of paint used for painting a metal surface can be used. A resin coating film can be formed using a solvent-type paint, a water-based paint, a powder paint, or the like. Although it may be a thermosetting paint that requires high-temperature baking after coating, it may be a paint that only needs to volatilize the solvent and water at a relatively low temperature, but the latter, which is easy to operate, is preferably used. In order to make the appearance beautiful, it is preferable to use a transparent resin paint, and an appropriately colored one may be used. The coating method is not particularly limited, and a known method such as spray coating, immersion coating, electrodeposition coating, powder coating, or the like can be employed. In a product made of magnesium or a magnesium alloy of the present invention that preferably has a part that does not have a coating film, powder coating by spray coating or thermal spraying is suitably employed.
After the anodizing treatment, it is preferable to form a coating film by coating the resin coating film only once on the surface of the anodized film. In many cases, a housing of an electric device has a complicated shape, and it is not always easy to form a uniform coating film. In many cases, the corrosion resistance is further improved by applying a plurality of times of coating. However, if the number of times of coating is large, the cost increases. In this respect, in products made of magnesium or a magnesium alloy of the present invention having good corrosion resistance, sufficiently good corrosion resistance is often obtained even by a single coating.
When a solvent-type paint or a water-based paint is used, it is preferable to dry the coating film by heating at a temperature of 40 to 120 ° C. More preferably, it is 50 ° C. or higher and 100 ° C. or lower. In products made of the magnesium or magnesium alloy of the present invention having good corrosion resistance, it is often sufficient to use only resin coating that is dried and cured in a relatively low-temperature heating step, and as a result, manufacturing costs can be reduced. Become. The heating and drying method is not particularly limited, and a general-purpose oven or the like can be used.
According to a preferred embodiment of the present invention, the entire surface of magnesium or a magnesium alloy is covered with an anodized film, and only a part of the surface of the anodized film is coated with a resin so that the remaining part of the anodized film is formed. Is a product made of magnesium or a magnesium alloy exposed. Thus, the corrosion resistance of the whole product can be ensured by covering the whole surface of magnesium or magnesium alloy with the anodized film. However, the term “all” here means substantially all, and there may be a small portion where the anodized film is not formed, such as a contact portion that is electrically connected to the power source during the anodizing process. In addition, the resin coating is applied to only a part of the surface of the anodized film, and the remaining part of the anodized film is exposed. In addition, it is possible to provide a product with excellent friction resistance.
A particularly preferred embodiment is a housing of an electric device in which resin coating is not applied to the inner surface of the housing and resin coating is applied to the outer surface of the housing. By applying resin coating to the outer surface of the housing, not only can the appearance be beautiful, but also damage during use can be prevented. On the other hand, since the conductive anodized film is exposed on the inner surface of the housing, it is easy to ensure grounding from the electrical wiring, and it is possible to effectively shield electromagnetic waves from the electronic circuit inside the housing. it can.
The product comprising the magnesium or magnesium alloy of the present invention thus obtained can be used for various applications. It can be used for casings of electric devices such as mobile phones, personal computers, video cameras, still cameras, optical disk players, displays (CRT, plasma, liquid crystal), projectors, automobile parts, and the like.
BEST MODE FOR CARRYING OUT THE INVENTION
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these. The test method in this example was performed according to the following method.
(1) Film thickness measurement of anodized film
The test piece was cut to a size of 5 mm × 10 mm, embedded in an epoxy resin, and then the cut surface was polished to obtain a mirror surface. From the cross-sectional direction of the sample, an electron micrograph was taken using an X-ray microanalyzer “JXA-8900” manufactured by JEOL Ltd., and the film thickness was measured.
(2) Chemical composition analysis of anodized film
Using an X-ray microanalyzer “JXA-8900” manufactured by JEOL Ltd., the film composition was analyzed from two directions of the surface and cross section of the film. Measurements were made at three locations in each direction, and the chemical composition was determined from the average value. Measurement is performed with an acceleration voltage of 15 kV and a sample irradiation current of 2 × 10 -8 It carried out on the conditions of A. Data analysis was performed with ZAH correction.
(3) Measurement of resistance value on the surface of anodized film
Using a low resistivity meter “Lorestar AP MCP-T400” manufactured by Mitsubishi Chemical Corporation, measurement was performed using a two-probe probe “MCP-TP01”. The resistance value (Ω) was measured by pressing the measuring terminal against the surface of the film at the center of the test piece. The probe has measuring terminals arranged at intervals of 10 mm, the terminal is gold-plated beryllium alloy, the tip shape is a cylindrical shape with a diameter of 2 mm, and the load for pressing the terminal against the surface of the film is the terminal 1 240g per piece.
(4) Hot water immersion test
The test piece was immersed in warm water maintained at 70 ° C. for 24 hours. After 24 hours, take out the test piece, wipe off the moisture, and make a grid-like cut at an interval of about 1 mm so as to penetrate the resin coating and the anodized coating, and in accordance with JIS K5400 A tape peeling test was performed, and the peeling state of the coating film and the presence or absence of other defects were observed with the naked eye.
(5) Salt spray test
A cross-cut was made on the surface of the test piece so as to penetrate the resin coating and the anodic oxide coating, and then a 5% salt spray test was conducted for 120 hours in accordance with JIS Z-2371. . After 120 hours, the test piece was taken out, and the occurrence of blisters from the crosscut portion and the presence or absence of other defects were observed with the naked eye.
Example 1
ASTM No. consisting of 90% magnesium, 9% aluminum and 1% zinc. An alloy plate having a size of 170 mm × 50 mm × 2 mm cast from a AZ91D magnesium alloy as a raw material by a hot chamber method was used as a test piece. The test piece was immersed in an acidic aqueous solution containing 2.2% by weight of phosphoric acid and a small amount of surfactant, and then washed with ion-exchanged water. Subsequently, the test piece surface was pretreated by immersing in an alkaline aqueous solution containing 18% by weight of sodium hydroxide and then washing with ion-exchanged water.
An aqueous solution of phosphoric acid and aqueous ammonia were mixed to prepare an electrolyte solution containing 0.25 mol / L of phosphate groups and 1.5 mol / L of ammonia or ammonium ions in the total amount, and kept at 20 ° C. The electrolyte had a pH of 11. The magnesium alloy test piece subjected to the pretreatment was immersed in this as an anode, and anodizing treatment was performed. As the cathode at this time, a SUS316L plate having a surface area four times that of the anode was used. Using a constant current power supply, the current density on the anode surface is 1 A / dm 2 Then, power was supplied for 120 seconds. Although the applied voltage was low at the start of energization, it increased to about 200 volts at the end of energization. After the energization, the ion-exchanged water, nitric acid aqueous solution, and ion-exchanged water were washed in this order and then dried.
The photograph which observed the surface of the obtained anodic oxide film with the scanning electron microscope is shown in FIG. The presence of a large number of holes thought to be derived from sparks during energization was observed on the surface of the anodized film. The thickness of this anodized film was about 1.5 μm. The film thickness referred to here is an average distance from the surface of the thick part to the magnesium alloy surface of the base material in the film having local film thickness unevenness due to a large number of holes. The obtained anodized film contained 48.0% by weight of magnesium element, 33.5% by weight of oxygen element, 7.0% by weight of phosphorus element, and 11.2% by weight of aluminum element. The resistance value of the surface of the anodized film was 0.25Ω.
The surface of the obtained anodic oxide film was air spray-coated with an acrylic silicone paint “ASCOAT 300J” manufactured by Cashew Co., Ltd. At this time, the acrylic silicone-based paint was applied only once on the surface of the anodized film without applying primer. After the application, the coating was heated by heating at 60 ° C. for 20 minutes to volatilize and remove the solvent. As a result, a coating film having a thickness of about 20 μm was formed on the surface of the anodized film.
When the obtained test piece was subjected to a hot water immersion test and a salt spray test, no change in appearance was observed on the surface in any case. A photograph of the surface of the test piece after being subjected to the hot water immersion test is shown in FIG. 2, and a photograph of the surface of the test piece after being subjected to the salt spray test is shown in FIG.
Comparative Example 1
An aqueous solution of phosphoric acid and aqueous ammonia were mixed to prepare an electrolytic solution containing 0.08 mol / L of phosphate groups and 0.8 mol / L of ammonia or ammonium ions in the total amount, and kept at 20 ° C. The electrolyte had a pH of 11. In this, the magnesium alloy test piece which performed the same pre-processing as Example 1 was immersed as an anode, and the anodic oxidation process was performed. As the cathode at this time, the same cathode as in Example 1 was used. Using a constant current power supply, the current density on the anode surface is 1 A / dm 2 Then, power was supplied for 120 seconds. Although the applied voltage was low at the start of energization, it increased to about 200 volts at the end of energization. After the energization, the ion-exchanged water, nitric acid aqueous solution, and ion-exchanged water were washed in this order and then dried.
The film thickness of the obtained anodized film was about 1.5 μm, 54.8% by weight of magnesium element, 37.7% by weight of oxygen element, 3.2% by weight of phosphorus element, and 4.3% of aluminum element. It contained by weight. The resistance value of the surface of the anodized film is 10 which is the measurement limit of the resistivity measuring instrument used for the measurement. 7 Ω exceeded.
A resin coating film was formed on the surface of the obtained anodized film in the same manner as in Example 1. When the obtained test piece was subjected to a hot water immersion test and a salt spray test, no change in appearance was observed on the surface in any case.
Comparative Example 2
This is an example of testing a known anodic oxide film forming method called Dow17 method. An electrolytic solution containing 300 g / L of acidic ammonium fluoride, 100 g / L of sodium dichromate and 90 g / L of phosphoric acid was prepared and kept at 75 ° C. In this, the magnesium alloy test piece which performed the same pre-processing as Example 1 was immersed as an anode, and the anodic oxidation process was performed. As the cathode at this time, the same cathode as in Example 1 was used. Using a constant current power supply, the current density on the anode surface is 4 A / dm 2 Then, power was supplied for 300 seconds. At the end of energization, the voltage rose to about 70 volts. After energization, it was washed with ion exchange water and then dried.
The film thickness of the obtained anodic oxide film is about 1.5 μm, 26.0% by weight of magnesium element, 25.7% by weight of oxygen element, 11.2% by weight of phosphorus element, and 1.0% of aluminum element. % By weight, 23.4% by weight of fluorine, 9.2% by weight of chromium, and 3.6% by weight of sodium. The resistance value of the surface of the anodized film is 10 which is the measurement limit of the resistivity measuring instrument used for the measurement. 7 Ω exceeded.
Comparative Example 3
In this example, a chemical conversion treatment is performed using a commercially available chemical conversion treatment solution instead of anodizing. A treatment solution was prepared by diluting with Mion Chemical Co., Ltd. chemical conversion treatment solution “MC-1000” at a rate of 75 g / L with ion-exchanged water, and kept at 40 ° C. Although the details of the chemical composition of the chemical conversion treatment liquid are unknown, it is presumed that the chemical conversion treatment liquid contains phosphate ions, manganese (or manganese oxide) ions, and calcium ions. In this treatment solution, a magnesium alloy test piece subjected to the same pretreatment as in Example 1 was immersed for 30 seconds. After the immersion, it was washed with ion exchange water and then dried.
The film thickness of the obtained chemical conversion film was 0.1 μm or less, and was a thin film that was difficult to measure quantitatively. This chemical conversion film contains 85 mg / m of calcium element as the content per unit area. 2 , 95mg / m of manganese element 2 , 220 mg / m of phosphorus element 2 Contained. Moreover, the resistance value of the surface of this chemical conversion treatment film was 0.5Ω.
A resin coating film was formed in the same manner as in Example 1 on the surface of the obtained chemical conversion film. The appearance after subjecting the obtained test piece to the hot water immersion test is shown in FIG. 4, and the appearance after subjecting it to the salt spray test is shown in FIG. In any case, peeling of the resin coating was remarkably observed around the cuts made in the coating.
Comparative Example 4
In this example, chemical conversion treatment was performed using a commercially available chemical conversion solution different from Comparative Example 3 instead of anodizing treatment. A treatment solution was prepared by diluting with Nihon Parkerizing Co., Ltd. chemical conversion treatment solution “MB-C10M” at a rate of 75 g / L with ion-exchanged water, and kept at 50 ° C. Although the details of the chemical composition of the chemical conversion treatment liquid are unknown, it is estimated that the chemical conversion treatment liquid contains 14% by weight of chromic anhydride and 0.7% by weight of hydrogen fluoride as main components. In this treatment solution, a magnesium alloy test piece subjected to the same pretreatment as in Example 1 was immersed for 60 seconds. After the immersion, the substrate was washed with ion exchange water and then dried.
The film thickness of the obtained chemical conversion film was 0.1 μm or less, and was a thin film that was difficult to measure quantitatively. This chemical conversion film contains 190 mg / m2 of chromium element as the content per unit area. 2 Contained. Moreover, the resistance value of the surface of this chemical conversion treatment film was 0.75Ω.
A resin film was formed on the surface of the obtained chemical film in the same manner as in Example 1. When the obtained test piece was subjected to a hot water immersion test and a salt spray test, in both cases, peeling or swelling of the resin coating around the cuts made in the coating was not observed. However, after the hot water immersion test, it was observed that a plurality of dots (blisters) swelled in the form of dots in the coating film near the edge of the test piece.
As described above, the product made of the magnesium alloy of the present invention obtained by anodizing in Example 1 has both electrical conductivity and excellent corrosion resistance. On the other hand, the products made of the magnesium alloy obtained by the conventional anodizing treatment as shown in Comparative Examples 1 and 2 were excellent in corrosion resistance, but no electrical conductivity was recognized. On the other hand, the product made of the magnesium alloy obtained by the chemical conversion treatment as shown in Comparative Example 3 was insufficient in corrosion resistance although electrical conductivity was observed.
Industrial applicability
The product made of magnesium or magnesium alloy according to the present invention has an anodic oxide film on its surface that has both electrical conductivity and excellent corrosion resistance. Therefore, it is used as a product made of magnesium or a magnesium alloy having excellent electromagnetic shielding properties and grounding properties, and is particularly useful as a casing for electrical equipment. Moreover, the product does not contain heavy metals and is suitable for recycling. Furthermore, since it can be anodized with an electrolytic solution that does not use heavy metal ions or fluorine ions, an excellent manufacturing method can be provided from the viewpoint of environmental conservation.
[Brief description of the drawings]
FIG. 1 is a photograph of the surface of the anodized film obtained in Example 1 observed with a scanning electron microscope. FIG. 2 is a photograph of the surface of the test piece of Example 1 after being subjected to a hot water immersion test. FIG. 3 is a photograph of the surface of the test piece of Example 1 after being subjected to a salt spray test. FIG. 4 is a photograph of the surface of the test piece of Comparative Example 3 after being subjected to the hot water immersion test. FIG. 5 is a photograph of the surface of the test piece of Comparative Example 3 after being subjected to a salt spray test.

Claims (11)

相互に10mm離れた2つの端子間で測定した皮膜表面の抵抗値が100Ω以下である導電性陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金からなる製品。A product made of magnesium or a magnesium alloy having a conductive anodized film having a resistance value of 100 Ω or less measured between two terminals 10 mm apart from each other on the surface. 前記陽極酸化皮膜が、マグネシウム元素を35〜65重量%、酸素元素を25〜45重量%含有する請求項1記載の製品。The product according to claim 1, wherein the anodized film contains 35 to 65% by weight of magnesium element and 25 to 45% by weight of oxygen element. 前記陽極酸化皮膜が、リン元素を4〜15重量%含有する請求項1又は2記載の製品。The product according to claim 1 or 2, wherein the anodized film contains 4 to 15% by weight of phosphorus element. 前記陽極酸化皮膜が、アルミニウム元素を5〜20重量%含有する請求項1〜3のいずれか記載の製品。The product according to any one of claims 1 to 3, wherein the anodized film contains 5 to 20% by weight of an aluminum element. 前記陽極酸化皮膜の膜厚が0.01〜10μmである請求項1〜4のいずれか記載の製品。The product according to any one of claims 1 to 4, wherein the anodized film has a thickness of 0.01 to 10 µm. マグネシウム又はマグネシウム合金の表面の全部が陽極酸化皮膜で覆われ、かつ該陽極酸化皮膜の表面の一部にのみ樹脂塗装が施されて残余の部分の陽極酸化皮膜が露出している請求項1〜5のいずれか記載の製品。The entire surface of magnesium or magnesium alloy is covered with an anodized film, and resin coating is applied to only a part of the surface of the anodized film, and the remaining part of the anodized film is exposed. 5. The product according to any one of 5. 筐体内面には樹脂塗装が施されず、筐体外面には樹脂塗装が施された電気機器の筐体である、請求項6記載の製品。The product according to claim 6, wherein the inner surface of the housing is a resin coating and the outer surface of the housing is a housing of an electric device. リン酸根を0.1〜1mol/L含有し、pHが8〜14である電解液にマグネシウム又はマグネシウム合金を浸漬し、その表面を陽極酸化処理することを特徴とする請求項1〜7のいずれか記載の製品の製造方法。8. The method according to claim 1, wherein the phosphoric acid radical is contained in an amount of 0.1 to 1 mol / L, and magnesium or a magnesium alloy is immersed in an electrolyte having a pH of 8 to 14, and the surface thereof is anodized. A method for manufacturing the product according to claim 1. 前記電解液がアンモニア又はアンモニウムイオンを0.2〜5mol/L含有する請求項8記載の製品の製造方法。The manufacturing method of the product of Claim 8 in which the said electrolyte solution contains 0.2-5 mol / L of ammonia or ammonium ion. マグネシウム又はマグネシウム合金を予め酸性水溶液に浸漬してから、電解液に浸漬して陽極酸化処理する請求項8又は9記載の製品の製造方法。The method for producing a product according to claim 8 or 9, wherein the magnesium or the magnesium alloy is immersed in an acidic aqueous solution in advance and then immersed in an electrolytic solution and anodized. 陽極酸化処理した後で、陽極酸化皮膜の表面に樹脂塗膜を1回だけ塗装し、40〜120℃の温度で加熱して塗膜を乾燥させる請求項8〜10のいずれか記載の製品の製造方法。The product according to any one of claims 8 to 10, wherein after the anodizing treatment, the resin coating film is applied only once on the surface of the anodized film, and the coating film is dried by heating at a temperature of 40 to 120 ° C. Production method.
JP2003578618A 2002-03-25 2003-03-13 Magnesium or magnesium alloy product having conductive anodic oxide film on its surface and method for producing the same Expired - Lifetime JP4367838B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002083247 2002-03-25
JP2002083247 2002-03-25
PCT/JP2003/002981 WO2003080897A1 (en) 2002-03-25 2003-03-13 Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2008137327A Division JP4686728B2 (en) 2002-03-25 2008-05-26 Method for producing magnesium or magnesium alloy product having an anodized film on the surface
JP2008137326A Division JP4686727B2 (en) 2002-03-25 2008-05-26 Magnesium or magnesium alloy products with conductive anodized film on the surface

Publications (2)

Publication Number Publication Date
JPWO2003080897A1 true JPWO2003080897A1 (en) 2005-07-28
JP4367838B2 JP4367838B2 (en) 2009-11-18

Family

ID=28449171

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2003578618A Expired - Lifetime JP4367838B2 (en) 2002-03-25 2003-03-13 Magnesium or magnesium alloy product having conductive anodic oxide film on its surface and method for producing the same
JP2008137326A Expired - Fee Related JP4686727B2 (en) 2002-03-25 2008-05-26 Magnesium or magnesium alloy products with conductive anodized film on the surface
JP2008137327A Expired - Fee Related JP4686728B2 (en) 2002-03-25 2008-05-26 Method for producing magnesium or magnesium alloy product having an anodized film on the surface

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008137326A Expired - Fee Related JP4686727B2 (en) 2002-03-25 2008-05-26 Magnesium or magnesium alloy products with conductive anodized film on the surface
JP2008137327A Expired - Fee Related JP4686728B2 (en) 2002-03-25 2008-05-26 Method for producing magnesium or magnesium alloy product having an anodized film on the surface

Country Status (6)

Country Link
JP (3) JP4367838B2 (en)
KR (1) KR100999313B1 (en)
CN (1) CN1653212B (en)
AU (1) AU2003213340A1 (en)
TW (1) TWI266814B (en)
WO (1) WO2003080897A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653212B (en) * 2002-03-25 2010-06-16 堀金属表面处理工业股份有限公司 Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
JP4808374B2 (en) * 2003-11-13 2011-11-02 富士通株式会社 Surface treatment method for metal molded products
JP4616573B2 (en) * 2004-04-05 2011-01-19 アーク岡山株式会社 Manufacturing method of product made of magnesium or magnesium alloy
JP4736084B2 (en) * 2005-02-23 2011-07-27 オーエム産業株式会社 Manufacturing method of product made of magnesium or magnesium alloy
JP4875853B2 (en) * 2005-04-15 2012-02-15 住友金属工業株式会社 Magnesium plate
JP4901296B2 (en) * 2006-05-09 2012-03-21 矢崎総業株式会社 Magnesium member surface treatment method
KR100980713B1 (en) * 2008-07-18 2010-09-07 현대자동차주식회사 Method for surface treatment of a magnesium alloy part
JP5517024B2 (en) 2009-02-02 2014-06-11 独立行政法人物質・材料研究機構 Mg-based structural member
JP5613917B2 (en) * 2009-05-26 2014-10-29 岡山県 Method for producing molded article made of magnesium or magnesium alloy
CN104011267B (en) * 2011-12-22 2017-03-01 岡山县地方政府 The manufacture method of magnesium alloy product
JP2015085098A (en) * 2013-11-01 2015-05-07 オリンパス株式会社 Implant for living body
CN103911645B (en) * 2014-04-15 2017-04-19 中国科学院嘉兴轻合金技术工程中心 Magnesium alloy anode oxidation method
JP6403199B2 (en) * 2014-11-28 2018-10-10 堀金属表面処理工業株式会社 Manufacturing method of product made of magnesium or magnesium alloy
JP6403198B2 (en) * 2014-11-28 2018-10-10 堀金属表面処理工業株式会社 Manufacturing method of product made of magnesium or magnesium alloy
DE112014007192T5 (en) * 2014-12-25 2017-08-24 Olympus Corporation Osteosynthetic implant and manufacturing method therefor
CN105506702B (en) * 2015-12-11 2017-08-25 哈尔滨飞机工业集团有限责任公司 One kind brushes anodization thicknesses of layers detection method
JP2019119914A (en) * 2018-01-09 2019-07-22 ジオネーション株式会社 Resin zirconium alloy joined body and production method thereof
JP6546313B1 (en) * 2018-04-03 2019-07-17 ジオネーション株式会社 Resin carbon steel joined body and method for producing the same
CN110923777A (en) * 2019-09-10 2020-03-27 西北稀有金属材料研究院宁夏有限公司 Method for conducting oxidation on surface of beryllium-aluminum alloy
EP4053309A1 (en) * 2021-03-01 2022-09-07 Canon Kabushiki Kaisha Alloy member, sliding member, apparatus, and method for manufacturing alloy member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502567A (en) * 1995-03-13 1999-03-02 マグネシウム テクノロジー リミティド Anodizing treatment of magnesium and magnesium alloy base
JP2000345370A (en) * 1999-06-07 2000-12-12 Ueda Alumite Kogyo Kk Surface treatment of magnesium or magnesium alloy
JP2001123294A (en) * 1999-10-28 2001-05-08 Mitsubishi Alum Co Ltd Method for surface treatment of magnesium or magnesium alloy
JP2001509549A (en) * 1997-07-11 2001-07-24 マグネシウム テクノロジー リミティド Method for sealing metal and / or anodized metal substrate
JP2001518983A (en) * 1997-03-24 2001-10-16 マグネシウム テクノロジー リミティド Coloring of magnesium or magnesium alloy articles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978576B1 (en) * 1998-02-23 2003-11-26 Mitsui Mining and Smelting Co., Ltd Corrosion-resistant, magnesium-based product exhibiting luster of base metal and method for producing the same
US6287673B1 (en) * 1998-03-03 2001-09-11 Acktar Ltd. Method for producing high surface area foil electrodes
CN1653212B (en) * 2002-03-25 2010-06-16 堀金属表面处理工业股份有限公司 Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502567A (en) * 1995-03-13 1999-03-02 マグネシウム テクノロジー リミティド Anodizing treatment of magnesium and magnesium alloy base
JP2001518983A (en) * 1997-03-24 2001-10-16 マグネシウム テクノロジー リミティド Coloring of magnesium or magnesium alloy articles
JP2001509549A (en) * 1997-07-11 2001-07-24 マグネシウム テクノロジー リミティド Method for sealing metal and / or anodized metal substrate
JP2000345370A (en) * 1999-06-07 2000-12-12 Ueda Alumite Kogyo Kk Surface treatment of magnesium or magnesium alloy
JP2001123294A (en) * 1999-10-28 2001-05-08 Mitsubishi Alum Co Ltd Method for surface treatment of magnesium or magnesium alloy

Also Published As

Publication number Publication date
TWI266814B (en) 2006-11-21
KR100999313B1 (en) 2010-12-09
JP2008231578A (en) 2008-10-02
CN1653212B (en) 2010-06-16
JP2008214761A (en) 2008-09-18
JP4686728B2 (en) 2011-05-25
CN1653212A (en) 2005-08-10
TW200413572A (en) 2004-08-01
KR20040099363A (en) 2004-11-26
WO2003080897A1 (en) 2003-10-02
JP4686727B2 (en) 2011-05-25
AU2003213340A1 (en) 2003-10-08
JP4367838B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4686727B2 (en) Magnesium or magnesium alloy products with conductive anodized film on the surface
JP4714945B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
US20050106403A1 (en) Shaped metal article and method of producing shaped metal article having oxide coating
CN107955961B (en) A kind of preparation method of Mg alloy surface conduction corrosion-inhibiting coating
JP6083020B2 (en) Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
JP4418985B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
JP4736084B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
JP2011058075A (en) Magnesium-lithium alloy and method for treating the surface
JP2002294466A (en) Conversion coating solution for magnesium alloy, surface treatment method, and magnesium-alloy base material
WO2014203919A1 (en) Method for manufacturing magnesium alloy product
JP5613917B2 (en) Method for producing molded article made of magnesium or magnesium alloy
KR100553233B1 (en) Coating process for light metal alloy surface
KR101313014B1 (en) Method for Treating the Surface of the Heat Sink for LED
JP2003073853A (en) Surface treated aluminum material superior in corrosion resistance, and manufacturing method therefor
US20110120877A1 (en) Conversion coating for magnesium, beryllium, and their alloys and articles thereof
KR100935632B1 (en) Method for Treating the Surface on the Mobile Phone Case
JP2000219975A (en) SURFACE TREATED Mg ALLOY AND SURFACE TREATING METHOD THEREFOR
KR101516382B1 (en) Surface treatment method for magnesium or magnesium alloy
JP4609779B2 (en) Magnesium alloy member and method for forming highly corrosion-resistant film thereof
JP6403199B2 (en) Manufacturing method of product made of magnesium or magnesium alloy
JP5246539B2 (en) Magnesium alloy member and method for forming highly corrosion-resistant film thereof
GB2460756A (en) Electrolytic metal treatment using zirconium
JP2000022293A (en) Aluminum printed circuit board and method for surface treating board therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

R150 Certificate of patent or registration of utility model

Ref document number: 4367838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term