JP6546313B1 - Resin carbon steel joined body and method for producing the same - Google Patents

Resin carbon steel joined body and method for producing the same Download PDF

Info

Publication number
JP6546313B1
JP6546313B1 JP2018071559A JP2018071559A JP6546313B1 JP 6546313 B1 JP6546313 B1 JP 6546313B1 JP 2018071559 A JP2018071559 A JP 2018071559A JP 2018071559 A JP2018071559 A JP 2018071559A JP 6546313 B1 JP6546313 B1 JP 6546313B1
Authority
JP
Japan
Prior art keywords
carbon steel
resin
steel member
carbon
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018071559A
Other languages
Japanese (ja)
Other versions
JP2019183194A (en
Inventor
孝 眞 金
孝 眞 金
修平 三浦
修平 三浦
鉄也 藤村
鉄也 藤村
星 衡 李
星 衡 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO NATION CO., LTD
Toadenka Corp
Original Assignee
GEO NATION CO., LTD
Toadenka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO NATION CO., LTD, Toadenka Corp filed Critical GEO NATION CO., LTD
Priority to JP2018071559A priority Critical patent/JP6546313B1/en
Priority to PCT/JP2019/014893 priority patent/WO2019194259A1/en
Application granted granted Critical
Publication of JP6546313B1 publication Critical patent/JP6546313B1/en
Publication of JP2019183194A publication Critical patent/JP2019183194A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32

Abstract

【課題】接合強度を有する樹脂炭素鋼接合体と、その製造法を提供する。【解決手段】本発明の樹脂炭素鋼接合体の製造法は、炭素鋼部材をアルカリ性の溶液で洗浄する脱脂工程と、炭素鋼部材を酸性の溶液で洗浄する酸処理工程と、炭素鋼部材をアルカリ性の溶液に浸漬し電極に定電圧又は定電流を印加する活性化処理工程と、炭素鋼部材を陽極とし、トリアジンチオール誘導体を含むアルカリ性の溶液中で、所定の電流密度を印加して、炭素鋼部材上に膜厚が30〜2000nmの陽極酸化被膜を形成する工程と、陽極酸化被膜が形成された炭素鋼部材を水で洗浄する水洗い工程と、陽極酸化被膜が形成された炭素鋼部材に、熱可塑性又は熱硬化性の樹脂をインサート成形する工程と、を備える。【選択図】図1A resin carbon steel joined body having joining strength and a method for producing the joined body are provided. A method for producing a resin-carbon steel joined body according to the present invention includes a degreasing step of cleaning a carbon steel member with an alkaline solution, an acid treatment step of cleaning the carbon steel member with an acidic solution, and a carbon steel member. An activation treatment step in which a constant voltage or constant current is applied to the electrode by immersion in an alkaline solution, and a carbon steel member is used as an anode, and a predetermined current density is applied in an alkaline solution containing a triazine thiol derivative, and carbon A step of forming an anodized film having a thickness of 30 to 2000 nm on a steel member, a washing step of washing the carbon steel member having the anodized film formed with water, and a carbon steel member having the anodized film formed thereon; And insert-molding a thermoplastic or thermosetting resin. [Selected figure] Figure 1

Description

本発明は、樹脂炭素鋼接合体及びその製造法に係り、より詳しくは、樹脂部材と炭素鋼部材を強力に接合できる樹脂炭素鋼接合体及びその製造法に関する。   The present invention relates to a resin-carbon-steel joined body and a method for producing the same, and more particularly to a resin-carbon-steel joined body capable of strongly joining a resin member and a carbon steel member and a method for producing the same.

部品の軽量化は、例として金属部材を金属部材と樹脂部材の接合体とすることで行なうことができる。特許文献1には、樹脂部材と金属部材を接合する技術として、トリアジンチオール(硫黄有機化合物)を含む被膜を金属部材表面上に形成する電気・化学的な表面処理法が開示されている。金属としては、銅、ニッケル、アルミニウム、鉄、コバルト、錫、ステンレスをあげている。金属表面に被膜を形成しておくことで、樹脂部材との接合強度を向上させることができる。   Weight reduction of parts can be performed by using a metal member as a joined body of a metal member and a resin member as an example. Patent Document 1 discloses, as a technique for bonding a resin member and a metal member, an electro-chemical surface treatment method of forming a film containing triazine thiol (sulfur organic compound) on the surface of the metal member. Examples of metals include copper, nickel, aluminum, iron, cobalt, tin and stainless steel. By forming the coating on the metal surface, the bonding strength with the resin member can be improved.

しかしながら、具体的にはSM45C、SS400やHT590の炭素鋼部材の表面にトリアジンチオールの被膜を形成し、樹脂部材を接合して、樹脂金属接合体を形成し、十分な接合強度を得ることについては開示がない。   However, specifically, a coating of triazinethiol is formed on the surface of a SM45C, SS400, or HT590 carbon steel member, and a resin member is bonded to form a resin-metal joint to obtain sufficient bonding strength. There is no disclosure.

特公平5−51671号公報Tokuhei 5-51671

本発明の目的は、樹脂部材と炭素鋼部材の接合強度が向上できる樹脂炭素鋼接合体を提供すること、及び接合強度が良好な樹脂炭素鋼接合体の製造法を提供することにある。   An object of the present invention is to provide a resin-carbon-steel joined body capable of improving the bonding strength between a resin member and a carbon steel member, and to provide a method for producing a resin-carbon-steel joined body having good joint strength.

本発明による樹脂炭素鋼接合体は、炭素鋼部材と、熱可塑性又は熱硬化性の樹脂部材とを接合してなる樹脂炭素鋼接合体であって、前記炭素鋼部材と前記樹脂部材とが、膜厚が30〜2000nmの陽極酸化被膜により接合されていることを特徴とする。   The resin carbon steel joined body according to the present invention is a resin carbon steel joined body formed by joining a carbon steel member and a thermoplastic or thermosetting resin member, wherein the carbon steel member and the resin member are It is characterized in that it is joined by an anodized film having a thickness of 30 to 2,000 nm.

本発明による他の樹脂炭素鋼接合体は、炭素鋼部材と、熱可塑性又は熱硬化性の樹脂部材とを接合してなる樹脂炭素鋼接合体であって、前記炭素鋼部材と前記樹脂部材とが、膜厚が30〜2000nmのトリアジンチオール誘導体を内部及び外部に存在させた陽極酸化被膜により接合されていることを特徴とする。   Another resin carbon steel bonded body according to the present invention is a resin carbon steel bonded body formed by bonding a carbon steel member and a thermoplastic or thermosetting resin member, and the carbon steel member and the resin member It is characterized in that it is joined by an anodic oxide film in which a triazine thiol derivative having a film thickness of 30 to 2000 nm is present inside and outside.

前記陽極酸化被膜は、重量%で、酸素(O)が1〜60%、鉄(Fe)が30〜90%、ケイ素(Si)が5%以下、アルミニウム(Al)が1%以下、リン(P)が3%以下、亜鉛(Zn)が3%以下、マンガン(Mn)が3%以下、ニッケル(Ni)が3%以下、硫黄(S)が3%以下、炭素(C)が10%以下、の成分構成を有することを特徴とする。   The anodic oxide film is, by weight, 1 to 60% of oxygen (O), 30 to 90% of iron (Fe), 5% or less of silicon (Si), 1% or less of aluminum (Al), phosphorus ( P) 3% or less, zinc (Zn) 3% or less, manganese (Mn) 3% or less, nickel (Ni) 3% or less, sulfur (S) 3% or less, carbon (C) 10% It is characterized by having the following component composition.

本発明による樹脂炭素鋼合金接合体の製造法は、樹脂炭素鋼接合体を製造する製造法であって、炭素鋼部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、炭素鋼部材を酸性の溶液で洗浄する酸処理工程と、前記酸処理工程後、炭素鋼部材をアルカリ性の溶液に浸漬して電極に定電圧又は定電流を印加する活性化処理工程と、前記炭素鋼部材を陽極とし、20〜80℃のアルカリ性の溶液中で、1A/dm2以上20A/dm2未満の電流密度を1〜40分印加して、前記炭素鋼部材上に膜厚が30〜2000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成された炭素鋼部材を水で洗浄する水洗い工程と、前記水洗い工程後の前記陽極酸化被膜が形成された炭素鋼部材に、熱可塑性又は熱硬化性の樹脂をインサート成形する工程と、を備え、前記炭素鋼部材と、前記樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする。   The method for producing a resin-carbon-steel alloy joined body according to the present invention is a method for producing a resin-carbon-steel joined body, comprising: a degreasing step of washing a carbon steel member with an alkaline solution; and a carbon steel member after the degreasing step. Acid treatment step of washing with an acidic solution, an activation treatment step of immersing the carbon steel member in an alkaline solution to apply a constant voltage or constant current to the electrode after the acid treatment step, and the carbon steel member Anodized film with a thickness of 30 to 2000 nm on the carbon steel member by applying an electric current density of 1 A / dm 2 or more and less than 20 A / dm 2 for 1 to 40 minutes in an alkaline solution at 20 to 80 ° C. as an anode. A step of forming a carbon steel member on which the anodized film is formed, and a step of washing the carbon steel member on which the anodized film is formed with water, and a carbon steel member on which the anodic oxide film is formed after the water washing step. Resin for Comprising a step of shot molding, a said carbon steel member, and a resin member molded by the resin, characterized in that it is joined by the anodic oxide coating.

本発明の他の樹脂炭素鋼接合体の製造法は、樹脂炭素鋼接合体を製造する製造法であって、炭素鋼部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、炭素鋼部材を酸性の溶液で洗浄する酸処理工程と、前記酸処理工程後、炭素鋼部材をアルカリ性の溶液に浸漬し電極に定電圧又は定電流を印加する活性化処理工程と、前記炭素鋼部材を陽極とし、20〜80℃のトリアジンチオール誘導体を含むアルカリ性の溶液中で、1A/dm2以上20A/dm2未満の電流密度を1〜40分印加して、前記炭素鋼部材上に膜厚が30〜2000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成された炭素鋼部材を水で洗浄する水洗い工程と、前記水洗い工程後の前記陽極酸化被膜が形成された炭素鋼部材に、熱可塑性又は熱硬化性の樹脂をインサート成形する工程と、を備え、前記炭素鋼部材と、前記樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする。   Another method for producing a resin-carbon-steel joined body according to the present invention is a method for producing a resin-carbon-steel joined body, comprising: a degreasing step of washing a carbon steel member with an alkaline solution; An acid treatment step of washing the member with an acidic solution, an activation treatment step of immersing the carbon steel member in an alkaline solution after the acid treatment step and applying a constant voltage or constant current to an electrode, the carbon steel member A current density of 1 A / dm 2 or more and 20 A / dm 2 or less is applied for 1 to 40 minutes in an alkaline solution containing a triazine thiol derivative at 20 to 80 ° C. as an anode, and the film thickness is 30 to 30 nm on the carbon steel member. A process of forming an anodic oxide film of 2000 nm, a water washing process of washing the carbon steel member having the anodic oxide film formed thereon with water, and a thermal treatment of the carbon steel member having the anodic oxide film formed after the water washing process; Plasticity or Comprising a step of insert molding a thermosetting resin, and a the carbon steel member, and a resin member molded by the resin, characterized in that it is joined by the anodic oxide coating.

本発明による樹脂炭素鋼接合体は、あらかじめ炭素鋼部材の表面に、膜厚が30〜2000nmの陽極酸化被膜を形成したので、樹脂部材と炭素鋼部材が良好に接合でき、接合強度を30MPa以上にすることができる。また樹脂部材と炭素鋼部材の間の気密性は、ヘリウムを使用したリークテストで、ヘリウムリーク量を10−9Pa・m/s以下にできる。また、防水性が確保できる。 In the resin-carbon steel joined body according to the present invention, an anodic oxide film having a thickness of 30 to 2000 nm is formed in advance on the surface of the carbon steel member, so that the resin member and the carbon steel member can be joined well. Can be Further, the airtightness between the resin member and the carbon steel member can be reduced to a helium leak amount of 10 −9 Pa · m 3 / s or less in a leak test using helium. In addition, waterproofness can be secured.

本発明による他の樹脂炭素鋼接合体は、あらかじめ炭素鋼部材の表面に、膜厚が30〜2000nmのトリアジンチオール誘導体を内部及び外部に存在させた陽極酸化被膜を形成したので、樹脂部材と炭素鋼部材が良好に接合できる。その接合強度は30MPa以上にできる。また、樹脂部材と炭素鋼部材の間の気密性は、ヘリウムを使用したリークテストで、ヘリウムリーク量を10−9Pa・m/s以下にできる。 Another resin carbon steel joined body according to the present invention has anodized film in which a triazinethiol derivative having a film thickness of 30 to 2000 nm is present inside and outside on the surface of a carbon steel member in advance. Steel members can be joined well. The bonding strength can be 30 MPa or more. Further, the airtightness between the resin member and the carbon steel member can be reduced to a helium leak amount of 10 −9 Pa · m 3 / s or less in a leak test using helium.

陽極酸化被膜は、多孔質な膜なので、樹脂部材と炭素鋼部材を良好に接合できる。   Since the anodized film is a porous film, the resin member and the carbon steel member can be joined well.

本発明による樹脂炭素鋼接合体の製造法によれば、(a)浸漬して炭素鋼部材表面の脂分を除く脱脂工程と、(b)酸処理工程と、(c)アルカリ性の溶液に浸漬して定電圧又は定電流を印加する活性化工程と、(d)炭素鋼部材を陽極とし、アルカリ性の溶液中で、陽極酸化被膜を形成する酸化被膜形成工程と、(e)陽極酸化被膜形成後、炭素鋼部材を水で洗う水洗浄工程と、(f)熱可塑性又は熱硬化性の樹脂をインサート成形して、炭素鋼部材に接合するインサート工程と、を設けたので、インサート成形で成形した樹脂部材と炭素鋼部材を良好に接合でき、接合強度が30MPa以上にでき、気密性はヘリウムを使用したリークテストでヘリウムリーク量を10−9Pam/s以下にできる。 According to the method for producing a resin-carbon-steel joined body according to the present invention, (a) immersion, degreasing step for removing fats on the surface of carbon steel member, (b) acid treatment step, and (c) immersion in alkaline solution (D) forming an anodized film in an alkaline solution using (d) a carbon steel member as an anode, and (e) forming an anodized film. After that, a carbon steel member was washed with water, and (f) an insert step of insert molding a thermoplastic or thermosetting resin and joining it to the carbon steel member was performed, so molding by insert molding The resin member and the carbon steel member can be joined well, the joint strength can be 30 MPa or more, and the airtightness can make the helium leak amount be 10 −9 Pam 3 / s or less in the leak test using helium.

本発明による他の樹脂炭素鋼接合体の製造法によれば、(a)浸漬して炭素鋼部材表面の脂分を除く脱脂工程と、(b)酸処理工程と、(c)アルカリ性の溶液に浸漬して定電圧又は定電流を印加する活性化工程と、(d)炭素鋼部材を陽極とし、トリアジンチオール誘導体を含むアルカリ性の溶液中で、陽極酸化被膜を形成する酸化被膜形成工程(TRI電解工程と称す)と、(e)陽極酸化被膜形成後、炭素鋼部材を水で洗う水洗浄工程と、(f)熱可塑性又は熱硬化性の樹脂をインサート成形して、炭素鋼部材に接合するインサート工程と、を設けたので、インサート成形で成形した樹脂部材と炭素鋼部材の接合強度を30MPa以上にでき、気密性は、ヘリウムを使用したリークテストでヘリウムリーク量を10−9Pam/s以下にできる。 According to another method of producing a resin-carbon steel joined body according to the present invention, (a) a degreasing step for removing fats from the surface of a carbon steel member by immersion, (b) an acid treatment step, and (c) an alkaline solution (D) carbon steel member as an anode and forming an anodic oxide film in an alkaline solution containing a triazine thiol derivative (TRI) And (e) water-washing the carbon steel member with water after forming the anodized film, and (f) insert molding the thermoplastic or thermosetting resin and joining it to the carbon steel member The joint strength of the resin member and the carbon steel member formed by insert molding can be made to be 30 MPa or more, and the airtightness is 10 -9 Pam 3 of helium leak amount in the leak test using helium. / S It can be done below.

本発明による樹脂炭素鋼接合体の製造法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the resin carbon steel joined body by this invention. 炭素鋼部材の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。It is a figure which shows the shape of a carbon steel member. (A) is a front view, (B) is a right side view, and (C) is a perspective view. 代表的な炭素鋼部材の成分表である。It is a component table of a typical carbon steel member. 炭素鋼部材の吊下げ冶具の写真である。It is a photograph of the hanging jig of a carbon steel member. 脱脂槽の写真である。It is a photograph of a degreasing tank. 酸処理槽と活性化槽の写真である。It is a photograph of an acid treatment tank and an activation tank. TRI電解処理槽の写真である。It is a photograph of a TRI electrolytic processing tank. 陽極酸化被膜の断面を示す写真である。It is a photograph which shows the cross section of an anodic oxidation film. 炭素鋼部材と引張試験用の試験体の写真である。It is a photograph of the carbon steel member and the test body for a tension test. 樹脂炭素鋼接合体の引張強度を示す表である。It is a table showing the tensile strength of a resin carbon steel joined object. 熱衝撃試験後の引張強度を示す表である。It is a table showing the tensile strength after a thermal shock test. 高温高湿試験後の引張強度を示す表である。It is a table showing tensile strength after a high temperature and high humidity test. 気密試験用の試験体の写真である。It is a photograph of the test body for the airtight test. 気密試験の結果を示す表である。It is a table | surface which shows the result of an airtight test. 炭素鋼部材の表面顕微鏡写真である。It is a surface microscope picture of a carbon steel member. 酸処理工程後の表面顕微鏡写真である。It is a surface microscope picture after an acid treatment process. TRI電解処理後の表面写真である。It is the surface photograph after TRI electrolytic processing. TRI電解処理後の表面酸化被膜の成分分析表である。It is a component analysis table of the surface oxide film after TRI electrolytic processing. トリアジンチオール誘導体を添加した場合と、添加しない場合での樹脂炭素鋼接合体の接合強度を示す表である。It is a table | surface which shows the joint strength of the resin carbon steel joined body in the case where triazine thiol derivative is added, and the case where it is not added.

以下、図面を参照して、本発明による樹脂炭素鋼接合体及びその製造法を詳しく説明する。   Hereinafter, a resin-carbon-steel joined body according to the present invention and a method for producing the same will be described in detail with reference to the drawings.

図1は、本発明による樹脂炭素鋼接合体の製造法を示すフローチャートである。樹脂炭素鋼接合体は、炭素鋼部材と樹脂部材を接合させ一体に成形したものである。樹脂炭素鋼接合体の成形は、次のs1〜s6の6つの工程で行なう。脱脂工程(s1)は、アルカリ系列のNAOH、KOH、又はNACOにの水溶液に陽イオン界面活性剤を加え、炭素鋼部材1を1〜10分間浸漬する。水溶液の温度は常温〜70℃の範囲とする。これにより、炭素鋼部材1の表面の脂分を除去できる。なお、炭素鋼部材1は板状の部材である。 FIG. 1 is a flow chart showing a method of producing a resin-carbon steel joint according to the present invention. A resin carbon steel joined body joins a carbon steel member and a resin member, and is shape | molded integrally. The formation of the resin-carbon-steel joint is performed in the following six steps s1 to s6. In the degreasing step (s1), a cationic surfactant is added to an aqueous solution of alkaline series of NAOH, KOH, or NA 2 CO 3 , and the carbon steel member 1 is immersed for 1 to 10 minutes. The temperature of the aqueous solution is in the range of normal temperature to 70 ° C. Thereby, the oil on the surface of the carbon steel member 1 can be removed. The carbon steel member 1 is a plate-like member.

次に酸処理工程(s2)は、重量%で、塩酸5〜50%、硫酸又は塩酸1〜20%、シュウ酸1〜5%、フッ化物1〜5%の水溶液に、炭素鋼部材1を1〜10分間浸漬する。水溶液の温度は常温〜50℃の範囲とする。これにより炭素鋼部材1の表面を洗浄し、酸化膜等を除去する。   Next, in the acid treatment step (s2), the carbon steel member 1 in an aqueous solution of 5 to 50% hydrochloric acid, 1 to 5% sulfuric acid or 1 to 2% sulfuric acid or 1 to 5% oxalic acid, 1 to 5% fluoride by weight% Soak for 1 to 10 minutes. The temperature of the aqueous solution is in the range of normal temperature to 50 ° C. Thus, the surface of the carbon steel member 1 is cleaned to remove the oxide film and the like.

活性化工程(s3)は、重量%で、苛性ソーダ又は水酸化カリウム1〜30、炭酸ナントリウム1〜20%の水溶液に、陽イオン界面活性剤を微量加え、該溶液中に炭素鋼部材1を1〜10分浸漬し、陽極または陰極には、0.2〜5Vの定電圧を加える。水溶液の温度は常温〜50℃とする。電極には、パルス又は直流電圧が加えられる。同時に1〜10分間、50Hzで100〜2000ワットの超音波処理も行なう。   In the activation step (s3), a small amount of cationic surfactant is added to an aqueous solution of caustic soda or potassium hydroxide 1 to 30, and sodium hydroxide 1 to 20% by weight, and carbon steel member 1 is added to the solution. Soak for 10 minutes and apply a constant voltage of 0.2-5 V to the anode or cathode. The temperature of the aqueous solution is normal temperature to 50 ° C. Pulsed or DC voltage is applied to the electrodes. Sonicate also for 100 to 2000 watts at 50 Hz for 1 to 10 minutes simultaneously.

酸化被膜形成工程(s4)は、TRI電解工程と称する。炭素鋼部材1を陽極として接続する。重量%で、苛性ソーダ3〜20%又は水酸化カリウム3〜20%、3リン酸ナトリウム又はリン酸アンモニウム1〜5%、炭酸ナトリウム1〜3%、クエン酸ナトリウム1〜3%の水溶液にトリアジンチオール誘導体を微量添加し、該水溶液に炭素鋼部材1を浸漬し、陽極と陰極間に1〜20A/dmの電流密度を印加することで行なう。溶液の温度は、常温〜80℃とする。陽極と陰極間に電圧5〜40Vを印加する。1〜40分間の電気分解で、炭素鋼部材の表面に膜厚30〜2000nmのトリアジンチオール誘導体を含む陽極酸化被膜4が形成される。多孔質の被膜が形成できる。なお、トリアジンチオール誘導体を添加しない水溶液で、酸化被膜形成工程(s4)を行なうこともできる。 The oxide film forming step (s4) is referred to as a TRI electrolytic step. Carbon steel member 1 is connected as an anode. Triazine thiol in an aqueous solution of 3-20% caustic soda or 3-20% potassium hydroxide, 1-5% sodium triphosphate or ammonium phosphate, 1-3% sodium carbonate, 1-3% sodium citrate in weight percent A small amount of derivative is added, the carbon steel member 1 is immersed in the aqueous solution, and a current density of 1 to 20 A / dm 2 is applied between the anode and the cathode. The temperature of the solution is normal temperature to 80 ° C. A voltage of 5 to 40 V is applied between the anode and the cathode. The anodic oxidation film 4 containing a triazine thiol derivative with a film thickness of 30 to 2000 nm is formed on the surface of the carbon steel member by electrolysis for 1 to 40 minutes. A porous film can be formed. In addition, an oxide film formation process (s4) can also be performed with the aqueous solution which does not add a triazine thiol derivative.

陽極酸化被膜4は、重量%で、酸素(O)が1〜60%、鉄(Fe)が30〜90%、ケイ素(Si)が5%以下、アルミニウム(Al)が1%以下、リン(P)が3%以下、亜鉛(Zn)が3%以下、マンガン(Mn)が3%以下、ニッケル(Ni)が3%以下、硫黄(S)が3%以下、炭素(C)が10%以下、の成分構成を有する。   The anodic oxide film 4 is 1% to 60% of oxygen (O), 30 to 90% of iron (Fe), 5% or less of silicon (Si), 1% or less of aluminum (Al), phosphorus by weight% P) 3% or less, zinc (Zn) 3% or less, manganese (Mn) 3% or less, nickel (Ni) 3% or less, sulfur (S) 3% or less, carbon (C) 10% It has the following component composition.

水洗い工程(s5)は、表面に陽極酸化被膜が形成された炭素鋼部材1を、水で洗浄する工程である。なお、水洗い後は乾燥させておく。   The water washing step (s5) is a step of washing the carbon steel member 1 having the anodized film formed on the surface with water. In addition, let it dry after washing with water.

インサート成形工程(s6)は、陽極酸化被膜が形成された炭素鋼部材1を金型に装填し、樹脂部材2となる熱可塑性又は熱硬化性の樹脂を注入し、樹脂部材2と炭素鋼部材1を接合し樹脂炭素鋼接合体3を形成する。   In the insert molding step (s6), the carbon steel member 1 on which the anodized film is formed is loaded into a mold, and a thermoplastic or thermosetting resin to be the resin member 2 is injected, and the resin member 2 and the carbon steel member 1 is joined to form a resin-carbon-steel joined body 3.

図2は、炭素鋼部材1の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。aは、直径4mmの引張試験用の孔である。fは板厚で3mmである。縦(e)×横(b)は40mm×12mmの板であり、eが40mm、bが12mm、cが6mm、dが5mmである。   FIG. 2 is a view showing the shape of the carbon steel member 1. (A) is a front view, (B) is a right side view, and (C) is a perspective view. a is a hole for a tensile test having a diameter of 4 mm. f is 3 mm in thickness. Longitudinal (e) × lateral (b) is a plate of 40 mm × 12 mm, e is 40 mm, b is 12 mm, c is 6 mm, and d is 5 mm.

図3は、炭素鋼の種類と成分を示す表である。本実施例の炭素鋼は、SM45Cと、SS400と、HT590とする。SM45Cは、機械構造用炭素鋼と呼ばれ、表に示すように炭素(C)を0.42〜0.48%含有する。SM45Cの数字45は、炭素(C)含有量の中間値が、0.45%であることを示す。SS400は、一般構造用圧延鋼材と呼ばれ、流通量が多い鉄鋼材である。SS400の数字400は、引張強度の下限が400MPaであることを示す。成分は他の鋼材より緩く、リン(P)と硫黄(S)のみが規定される。SS400の炭素(C)は、一般に0.25%以下である。HT590は、高張力鋼と呼ばれ、一般構造用圧延鋼材よりも強く、引張強度は約490MPa程度である。   FIG. 3 is a table showing types and components of carbon steel. The carbon steels of this embodiment are SM45C, SS400 and HT590. SM45C is called carbon steel for machine structural use, and contains 0.42 to 0.48% of carbon (C) as shown in the table. The number 45 of SM45C indicates that the median value of carbon (C) content is 0.45%. SS400 is a steel material which is called a general structural rolled steel and has a large amount of circulation. The numeral 400 of SS 400 indicates that the lower limit of the tensile strength is 400 MPa. The components are more loose than other steels, and only phosphorus (P) and sulfur (S) are specified. The carbon (C) of SS400 is generally 0.25% or less. HT 590 is called high-tensile steel and is stronger than general structural rolled steel and has a tensile strength of about 490 MPa.

図4は、炭素鋼部材1の吊下げ冶具7の写真である。吊下げ冶具7は、複数のフックがあり、炭素鋼部材1を10個装着できる。図5は、脱脂槽の写真である。脱脂槽は、NAOH、KOH、又はNACOに陽イオン界面活性剤を加えた水溶液で満たされる。図6は、酸処理槽と活性化槽の写真である。図7は、TRI電解処理槽の写真である。槽内には複数の電極が用意される。 FIG. 4 is a photograph of the hanging jig 7 of the carbon steel member 1. The hanging jig 7 has a plurality of hooks, and ten carbon steel members 1 can be attached. FIG. 5 is a photograph of the degreasing tank. The degreasing tank is filled with an aqueous solution of NAOH, KOH, or NA 2 CO 3 plus a cationic surfactant. FIG. 6 is a photograph of an acid treatment tank and an activation tank. FIG. 7 is a photograph of a TRI electrolytic treatment tank. Several electrodes are prepared in a tank.

図8は、陽極酸化被膜の断面を示す写真である。(A)では、厚さ84.88〜165.2nmの陽極酸化被膜4が形成されている。(B)では、厚さ483.7〜177.6nmの陽極酸化被膜4が形成されている。(C)では、厚さ73.73〜112nmの陽極酸化被膜4が形成されている。   FIG. 8 is a photograph showing a cross section of the anodized film. In (A), the anodized film 4 having a thickness of 84.88 to 165.2 nm is formed. In (B), the anodic oxide film 4 with a thickness of 483.7 to 177.6 nm is formed. In (C), the anodic oxide film 4 with a thickness of 73.73 to 112 nm is formed.

図9は、炭素鋼部材1の写真と引張試験用の試験体の写真である。試験体3(3a)は、図1に示す製造法で製作し、引張試験に使用する。図9に示すように、炭素鋼部材1と樹脂部材2は12mm×3mm(=36mm)の端面が接合される。試験体3(3a)は、炭素鋼部材1に樹脂部材2をインサート成形で一体成形されたものである。インサート成形は、金型(図示せず)に炭素鋼部材1を装填し、熱可塑性又は熱硬化性の樹脂を圧入することで、炭素鋼部材1と樹脂部材2を一体成形する。熱可塑性樹脂としては、ポリブチレンテレフタレート(PBT)又はポリフェニレンサルファイド(PPS)を使用できる。熱硬化性樹脂としては、ウレタン樹脂又はエポキシ樹脂を使用できる。 FIG. 9 shows a photograph of the carbon steel member 1 and a photograph of a test body for a tensile test. Test body 3 (3a) is manufactured by the manufacturing method shown in FIG. 1 and used for a tensile test. As shown in FIG. 9, the end face of 12 mm × 3 mm (= 36 mm 2 ) of the carbon steel member 1 and the resin member 2 are joined. The test body 3 (3a) is obtained by integrally molding the resin member 2 on the carbon steel member 1 by insert molding. In the insert molding, the carbon steel member 1 is loaded in a mold (not shown), and a thermoplastic or thermosetting resin is pressed into, thereby integrally molding the carbon steel member 1 and the resin member 2. As the thermoplastic resin, polybutylene terephthalate (PBT) or polyphenylene sulfide (PPS) can be used. A urethane resin or an epoxy resin can be used as the thermosetting resin.

図10は、樹脂炭素鋼接合体3(3a)の引張強度を示す表である。本実施例では4つがPPSで、4つがPBTである。8つの試験体の引張強度は、表に示すとおりであり、接合面積が36mm(=12mm×3mm)での値である。これによれば、引張強度は、36mmの接合面積で、約30MPaが確保できる。 FIG. 10 is a table showing the tensile strength of the resin-carbon-steel joined body 3 (3a). In the present embodiment, four are PPS and four are PBT. The tensile strengths of the eight test bodies are as shown in the table, and are the values when the bonding area is 36 mm 2 (= 12 mm × 3 mm). According to this, a tensile strength of approximately 30 MPa can be secured with a bonding area of 36 mm 2 .

図11は、熱衝撃試験後の引張強度を示す表である。樹脂炭素鋼接合体3(3a)の樹脂部材2は、4つがPPSで、4つがPBTである。熱衝撃テストは、温度をマイナス40℃〜80℃間で30分毎に変化させ、150サイクルを繰り返す。試験の前後で引張強度を測定した。図11の表によれば、引張強度が、熱衝撃試験後は平均30.38MPaなので、熱衝撃試験前の平均37MPより低下することがわかる。   FIG. 11 is a table showing tensile strengths after a thermal shock test. In the resin member 2 of the resin-carbon-steel joined body 3 (3a), four are PPS and four are PBT. The thermal shock test is repeated for 150 cycles, with the temperature varied between -40C and 80C every 30 minutes. The tensile strength was measured before and after the test. According to the table of FIG. 11, it can be seen that the tensile strength is lower than the average of 37 MP before the thermal shock test, because the average after the thermal shock test is 30.38 MPa.

図12は、高温高湿試験後の引張強度を示す表である。樹脂炭素鋼接合体3(3a)の樹脂部材2は、4つがPPSで、4つがPBTである。高温高湿試験は、温度が80℃、湿度95%で、時間は200時間とし、試験後に測定した。表の左側は高温高湿試験前の樹脂炭素鋼接合体3(3a)の引張強度で、右側が高温高湿試験後の樹脂炭素鋼接合体3(3a)の引張強度である。図12によれば引張強度は、高温高湿試験後は平均31.63MPaで、高温高湿試験前の平均40.88MPより低下することがわかる。   FIG. 12 is a table showing the tensile strength after the high temperature and high humidity test. In the resin member 2 of the resin-carbon-steel joined body 3 (3a), four are PPS and four are PBT. The high temperature and high humidity test was performed after the test at a temperature of 80 ° C., a humidity of 95%, and a time of 200 hours. The left side of the table is the tensile strength of the resin carbon steel joined body 3 (3a) before the high temperature high humidity test, and the right side is the tensile strength of the resin carbon steel joined body 3 (3a) after the high temperature high humidity test. According to FIG. 12, it can be seen that the tensile strength is an average of 31.63 MPa after the high temperature and high humidity test and lower than the average of 40.88 MP before the high temperature and high humidity test.

図13は、気密試験用の試験体の写真である。気密試験用の試験体3(3b)は、炭素鋼部材1が、円板状の樹脂部材2を貫通して一体に接合されている。筒状の容器に気密試験用の試験体3(3b)を装填し、炭素鋼部材1が突出した一方の側にヘリウムガスを吹き付け、炭素鋼部材1が突出した他方の側を真空とし、ヘリウムガスが漏れないか調べる。   FIG. 13 is a photograph of a test body for an airtightness test. In the test body 3 (3b) for the airtightness test, the carbon steel member 1 penetrates the disc-shaped resin member 2 and is integrally joined. A test vessel 3 (3b) for air tightness test is loaded in a cylindrical container, helium gas is blown to one side from which the carbon steel member 1 protrudes, and the other side from which the carbon steel member 1 protrudes is evacuated, helium Inspect for leaks.

図14は、気密試験の結果を示す表である。真空排気の量を増減させれば、漏れ出るヘリウム(He)の量も増減するが、この条件ではサンプル1、2のいずれも漏れ量を1×10−9Pam/s以下にできる。 FIG. 14 is a table showing the results of the airtightness test. If the amount of vacuum evacuation is increased or decreased, the amount of leaked helium (He) is also increased or decreased, but under this condition, the amount of leakage can be made 1 × 10 −9 Pam 3 / s or less in both of the samples 1 and 2.

図15は、炭素鋼部材の表面顕微鏡写真である。   FIG. 15 is a surface micrograph of a carbon steel member.

図16は、酸処理工程後の表面顕微鏡写真である。   FIG. 16 is a surface micrograph after the acid treatment step.

図17は、TRI電解処理後の表面写真である。   FIG. 17 is a surface photograph after TRI electrolytic treatment.

図18は、TRI電解処理後の表面酸化被膜の成分分析表である。陽極酸化被膜の成分は、試料1を例にとると、重量%で、炭素(C)が4.7%、酸素(O)が6.46%、鉄(Fe)が88.84%である。   FIG. 18 is a component analysis table of the surface oxide film after TRI electrolytic treatment. Taking the sample 1 as an example, the components of the anodized film are, by weight, 4.7% of carbon (C), 6.46% of oxygen (O), and 88.84% of iron (Fe). .

図19は、トリアジンチオール誘導体を添加した場合と、添加しない場合での樹脂炭素鋼接合体の接合強度を示す表である。図1のs4工程で、水溶液にトリアジンチオール誘導体を添加せず、陽極酸化被膜を形成し、樹脂炭素鋼接合体3(3a)を製作した。一方、図1のs4工程で、水溶液にトリアジンチオール誘導体を添加し、陽極酸化被膜を形成し、樹脂炭素鋼接合体3(3a)を製作した。それぞれ5つの樹脂炭素鋼接合体の接合強度を比較した。数値は、トリアジンチオール誘導体を添加した方が若干値がよい。ただし、トリアジンチオール誘導体を添加しないでも十分に使用に耐える。   FIG. 19 is a table showing the bonding strength of the resin-carbon-steel joined body with and without the triazine thiol derivative. In step s4 of FIG. 1, an anodic oxide film was formed without adding the triazine thiol derivative to the aqueous solution, and a resin-carbon-steel joined body 3 (3a) was manufactured. On the other hand, at step s4 in FIG. 1, a triazine thiol derivative was added to the aqueous solution to form an anodic oxide film, and a resin-carbon-steel joined body 3 (3a) was manufactured. The bonding strengths of five resin-carbon steel joints were compared. The numerical values are slightly better when the triazine thiol derivative is added. However, even without the addition of the triazine thiol derivative, it sufficiently withstands use.

本発明の樹脂炭素鋼接合体及びその製造法は、炭素鋼部材と樹脂部材を一体化して接合するもので、部品の軽量化に好適である。   The resin-carbon-steel joined body and the method for producing the same according to the present invention integrally join a carbon steel member and a resin member, and are suitable for weight reduction of parts.

1 炭素鋼部材
2 樹脂部材
3 樹脂炭素鋼接合体
3a 引張試験用の試験体
3b 気密試験用の試験体
4 陽極酸化被膜
7 吊下げ冶具
s1〜s6 製造法の各工程
DESCRIPTION OF SYMBOLS 1 Carbon steel member 2 Resin member 3 Resin carbon steel joined body 3a Test body for tension test 3b Test body for airtightness test 4 Anodized film 7 Suspension jig s1 to s6 Each process of manufacturing method

Claims (2)

炭素鋼部材と、熱可塑性又は熱硬化性の樹脂部材とを接合してなる樹脂炭素鋼接合体であって、
前記炭素鋼部材と前記樹脂部材とが、膜厚が30〜2000nmの陽極酸化被膜により接合され
前記陽極酸化被膜はトリアジンチオール誘導体を含み、
前記炭素鋼部材は、SM45Cであることを特徴とする樹脂炭素鋼接合体。
A resin-carbon-steel joined body formed by joining a carbon steel member and a thermoplastic or thermosetting resin member,
The carbon steel member and the resin member are joined by an anodic oxide film having a thickness of 30 to 2000 nm ,
The anodized film comprises a triazine thiol derivative,
The said carbon steel member is SM45C, The resin carbon steel joined body characterized by the above-mentioned .
請求項1に記載の樹脂炭素鋼接合体を製造する製造法であって、
炭素鋼部材をアルカリ性の溶液で洗浄する脱脂工程と、
前記脱脂工程後、炭素鋼部材を酸性の溶液で洗浄する酸処理工程と、
前記酸処理工程後、炭素鋼部材をアルカリ性の溶液に浸漬して電極に定電圧又は定電流を印加する活性化処理工程と、
前記炭素鋼部材を陽極とし、トリアジンチオール誘導体を含む20〜80℃のアルカリ性の溶液中で、1A/dm以上20A/dm未満の電流密度を1〜40分印加して、前記炭素鋼部材上に膜厚が30〜2000nmの陽極酸化被膜を形成する工程と、
前記陽極酸化被膜が形成された炭素鋼部材を水で洗浄する水洗い工程と、
前記水洗い工程後の前記陽極酸化被膜が形成された炭素鋼部材に、熱可塑性又は熱硬化性の樹脂をインサート成形する工程と、が備えられ、
前記炭素鋼部材と、前記樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする樹脂炭素鋼合金接合体の製造法。

It is a manufacturing method which manufactures the resin carbon steel joined object according to claim 1 ,
A degreasing step of cleaning the carbon steel member with an alkaline solution;
An acid treatment step of washing the carbon steel member with an acidic solution after the degreasing step;
After the acid treatment step, the carbon steel member is immersed in an alkaline solution to apply a constant voltage or a constant current to the electrode;
The carbon steel member is used as an anode by applying a current density of 1 A / dm 2 or more and 20 A / dm 2 or less for 1 to 40 minutes in an alkaline solution containing triazine thiol derivative at 20 to 80 ° C. Forming an anodic oxide film having a thickness of 30 to 2000 nm on the film;
Rinsing the carbon steel member having the anodized film formed thereon with water;
Insert molding a thermoplastic or thermosetting resin on the carbon steel member on which the anodized film has been formed after the water-washing step;
A method of manufacturing a resin-carbon-steel alloy joined body, wherein the carbon steel member and a resin member formed of the resin are joined by the anodized film.

JP2018071559A 2018-04-03 2018-04-03 Resin carbon steel joined body and method for producing the same Active JP6546313B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018071559A JP6546313B1 (en) 2018-04-03 2018-04-03 Resin carbon steel joined body and method for producing the same
PCT/JP2019/014893 WO2019194259A1 (en) 2018-04-03 2019-04-03 Resin carbon steel joint body and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018071559A JP6546313B1 (en) 2018-04-03 2018-04-03 Resin carbon steel joined body and method for producing the same

Publications (2)

Publication Number Publication Date
JP6546313B1 true JP6546313B1 (en) 2019-07-17
JP2019183194A JP2019183194A (en) 2019-10-24

Family

ID=67297598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018071559A Active JP6546313B1 (en) 2018-04-03 2018-04-03 Resin carbon steel joined body and method for producing the same

Country Status (2)

Country Link
JP (1) JP6546313B1 (en)
WO (1) WO2019194259A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602695A (en) * 1983-06-17 1985-01-08 Hitachi Ltd Power plant
JP3376949B2 (en) * 1998-09-16 2003-02-17 住友金属工業株式会社 Solar heat reflective surface treated metal plate
JP4093675B2 (en) * 1999-03-31 2008-06-04 株式会社神戸製鋼所 Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance
WO2003080897A1 (en) * 2002-03-25 2003-10-02 Hori Metal Finishing Ind. Ltd. Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
WO2004048087A1 (en) * 2002-11-25 2004-06-10 Mitsubishi Chemical America, Inc. Anodization to enhance adhesion for metal composite
JP2009144198A (en) * 2007-12-14 2009-07-02 Denso Corp Aluminum member for joining to resin and method of manufacturing the same
JP2012045920A (en) * 2010-07-30 2012-03-08 Mitsubishi Plastics Inc Resin-metal composite laminate, resin-metal composite injection molding, and manufacturing method thereof
JP2012135884A (en) * 2010-12-24 2012-07-19 Toray Ind Inc Method of manufacturing composite molding
CN102672878A (en) * 2011-03-14 2012-09-19 鸿富锦精密工业(深圳)有限公司 Stainless steel and resin compound and manufacturing method thereof
US11633892B2 (en) * 2015-10-14 2023-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal-resin bonded member and method of manufacturing the same
JP6668174B2 (en) * 2015-11-13 2020-03-18 三菱エンジニアリングプラスチックス株式会社 Resin metal composite and method for producing the same
JP2017145331A (en) * 2016-02-18 2017-08-24 東ソー株式会社 Polyarylene sulfide resin composition and composite body formed of the same

Also Published As

Publication number Publication date
JP2019183194A (en) 2019-10-24
WO2019194259A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6501841B2 (en) Resin titanium metal bonded body and method for producing the same
JP5766135B2 (en) Method for producing a composite of stainless steel and resin
CN102268183A (en) Aluminum or aluminum alloy and plastic composite and manufacturing method thereof
JP2019119914A (en) Resin zirconium alloy joined body and production method thereof
JP4656405B2 (en) Surface treatment method of aluminum or its alloy
CN111279022B (en) Resin-metal bonded body and method for producing same
JP6655593B2 (en) Resin magnesium metal joined body and manufacturing method thereof
TWI554183B (en) Forming method for a metal housing
JP6546313B1 (en) Resin carbon steel joined body and method for producing the same
TWI575112B (en) Method of anodizing treatment for a metal workpiece combined with a different material
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
KR102618505B1 (en) Conjugate of resin and magnesium-based metal and method for producing the same
CN110129855B (en) Surface treatment method for corrosion prevention of aluminum alloy
JP5540029B2 (en) Composite of aluminum or aluminum alloy and resin and method for producing the same
CN106894010A (en) Metal surface treating composition, metal-resin complex and preparation method thereof
KR101790975B1 (en) Surface treatment method of aluminium material
KR102300842B1 (en) Method of Electrolytic Black Coloring for Stainless steels
CN112406006B (en) Resin-metal composite body and production method, and case
KR102620567B1 (en) Anodizing method to improve withstand voltage
JP2005036315A (en) Method of forming oxide film on aluminum or aluminum alloy
KR20190034910A (en) Surface treating method of magnesium metal
JP2021194778A (en) Integral structure of copper material and pps-based resin composition and method for manufacturing the same
JP7087975B2 (en) Separator manufacturing method
KR100453994B1 (en) Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
KR20190006623A (en) Anodizing Electrolyte for Titanium using Mechanism and Aircraft parts and, its Producing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190620

R150 Certificate of patent or registration of utility model

Ref document number: 6546313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250