JP2019119914A - Resin zirconium alloy joined body and production method thereof - Google Patents

Resin zirconium alloy joined body and production method thereof Download PDF

Info

Publication number
JP2019119914A
JP2019119914A JP2018001217A JP2018001217A JP2019119914A JP 2019119914 A JP2019119914 A JP 2019119914A JP 2018001217 A JP2018001217 A JP 2018001217A JP 2018001217 A JP2018001217 A JP 2018001217A JP 2019119914 A JP2019119914 A JP 2019119914A
Authority
JP
Japan
Prior art keywords
zirconium
resin
joined body
zirconium alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018001217A
Other languages
Japanese (ja)
Inventor
孝 眞 金
Hyojin Kim
孝 眞 金
鉄也 藤村
Tetsuya Fujimura
鉄也 藤村
修平 三浦
Shuhei Miura
修平 三浦
星 衡 李
Sunghyung Lee
星 衡 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geo Nation Co Ltd
TOA DENKA KK
Original Assignee
Geo Nation Co Ltd
TOA DENKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geo Nation Co Ltd, TOA DENKA KK filed Critical Geo Nation Co Ltd
Priority to JP2018001217A priority Critical patent/JP2019119914A/en
Publication of JP2019119914A publication Critical patent/JP2019119914A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a resin zirconium alloy joined body with a bonding strength, and a production method thereof.SOLUTION: A production method of a resin zirconium alloy joined body of the present invention comprises: a degreasing process for cleaning a zirconium member with an alkaline solution; an acid treatment process for cleaning the zirconium member with an acidic solution; an activation treatment process in which the zirconium member is immersed in the alkaline solution and a constant voltage is applied to an electrode; a process in which an anodic oxide film is formed on the zirconium member with a film thickness of 50-3000 nm while a prescribed current density is applied in a solution including an alkaline triazinethiol derivative using the zirconium member as an anode; a washing process in which the zirconium member on which the anodic oxide film is formed is washed with water; and a process in which a thermoplastic resin is inserted to mold into the zirconium member on which the anodic oxide film is formed.SELECTED DRAWING: Figure 1

Description

本発明は、樹脂ジルコニウム合金接合体及びその製造方法に係り、より詳しくは、樹脂部材とジルコニウム部材を強力に接合できる樹脂ジルコニウム合金接合体及びその製造法に関する。   The present invention relates to a resin-zirconium alloy bonded body and a method of manufacturing the same, and more particularly, to a resin-zirconium alloy bonded body capable of strongly bonding a resin member and a zirconium member and a method of manufacturing the same.

部品の軽量化は、例として、金属部材を、金属部材と樹脂部材の接合体とすることで行なうことができる。特許文献1には、樹脂部材と金属部材を接合する技術として、トリアジンチオール(硫黄有機化合物)を含む被膜を金属部材表面上に形成する電気・化学的な表面処理法が開示されている。金属としては、銅、ニッケル、アルミニウム、鉄、コバルト、錫、ステンレスがあげられている。金属表面に被膜を形成しておくことで、樹脂部材との接合強度を向上させることができる。   Weight reduction of components can be performed by making a metal member into the joined body of a metal member and a resin member as an example. Patent Document 1 discloses, as a technique for bonding a resin member and a metal member, an electro-chemical surface treatment method of forming a film containing triazine thiol (sulfur organic compound) on the surface of the metal member. Examples of metals include copper, nickel, aluminum, iron, cobalt, tin and stainless steel. By forming the coating on the metal surface, the bonding strength with the resin member can be improved.

しかしながら、ジルコニウム合金からなる部材にトリアジンチオールの被膜を形成し、これに樹脂部材を接合して、樹脂金属接合体を形成し、十分な接合強度を得ることについては具体的な開示がない。   However, there is no specific disclosure on forming a film of triazine thiol on a member made of zirconium alloy and bonding a resin member thereon to form a resin-metal bonded body to obtain a sufficient bonding strength.

特公平5−51671号公報Tokuhei 5-51671

本発明の目的は、樹脂部材とジルコニウム部材の接合強度が向上できる樹脂ジルコニウム合金接合体を提供すること、及び接合強度が良好な樹脂ジルコニウム合金接合体の製造方法を提供することにある。   An object of the present invention is to provide a resin-zirconium alloy bonded body capable of improving the bonding strength between a resin member and a zirconium member, and to provide a method for producing a resin-zirconium alloy bonded body having good bonding strength.

本発明による樹脂ジルコニウム合金接合体は、ジルコニウム合金からなるジルコニウム部材と、熱可塑性の樹脂部材とを接合してなる樹脂ジルコニウム合金接合体であって、前記ジルコニウム部材と前記樹脂部材とが、膜厚が50〜3000nmの陽極酸化被膜により接合されていることを特徴とする。   The resin zirconium alloy joined body according to the present invention is a resin zirconium alloy joined body formed by joining a zirconium member made of zirconium alloy and a thermoplastic resin member, wherein the zirconium member and the resin member have a film thickness Are bonded by an anodized film of 50 to 3000 nm.

本発明による他の樹脂ジルコニウム合金接合体は、ジルコニウム部材と熱可塑性樹脂部材とを接合してなる樹脂ジルコニウム合金接合体であって、前記ジルコニウム合金部材と前記樹脂部材とが、膜厚が50〜3000nmのトリアジンチオールを内部及び外部に存在させた陽極酸化被膜により接合されていることを特徴とする。   Another resin zirconium alloy joined body according to the present invention is a resin zirconium alloy joined body formed by joining a zirconium member and a thermoplastic resin member, wherein the zirconium alloy member and the resin member have a thickness of 50 to 50 nm. It is characterized in that it is bonded by an anodic oxidation film in which triazine thiol of 3000 nm is present internally and externally.

前記陽極酸化被膜は、重量%で、酸素(O)が1〜60%、ジルコニウム(Zr)が1〜90%、アルミニウム(Al)が10%以下、ニッケル(Ni)が20%以下、銅(Cu)が20%以下、ケイ素(Si)が1%以下、イットリウム(Y)が1%以下、ニオブ(Nb)が1%以下、フッ素(F)が1%以下の成分構成を有することを特徴とする。   The anodic oxide film is, by weight, 1 to 60% of oxygen (O), 1 to 90% of zirconium (Zr), 10% or less of aluminum (Al), 20% or less of nickel (Ni), copper 20% or less of Cu), 1% or less of silicon (Si), 1% or less of yttrium (Y), 1% or less of niobium (Nb), and 1% or less of fluorine (F) I assume.

本発明による樹脂ジルコニウム合金接合体の製造法は、樹脂ジルコニウム合金接合体を製造する製造法であって、ジルコニウム合金からなるジルコニウム部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、ジルコニウム部材を酸性の溶液で洗浄する酸処理工程と、前記酸処理工程後、ジルコニウム部材をアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、前記ジルコニウム部材を陽極とし、20〜90℃のアルカリ性の溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記ジルコニウム部材上に膜厚が50〜3000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成されたジルコニウム部材を5℃以上、60℃未満の水で洗浄する水洗い工程と、前記水洗い工程後の前記陽極酸化被膜が形成されたジルコニウム部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、前記ジルコニウム部材と、熱可塑性樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする。   The method for producing a resin-zirconium alloy joined body according to the present invention is a method for producing a resin-zirconium alloy joined body, comprising: a degreasing step of cleaning a zirconium member made of a zirconium alloy with an alkaline solution; The acid treatment step of washing the member with an acidic solution, the activation treatment step of applying a constant voltage to the electrode by immersing the zirconium member in an alkaline solution after the acid treatment step, and using the zirconium member as an anode Forming an anodic oxide film having a thickness of 50 to 3000 nm on the zirconium member by applying a current density of 0.5 A / dm 2 or more and less than 5 A / dm 2 in an alkaline solution at 90 ° C .; A water-washing step of washing the zirconium member having the oxide film formed thereon with water at 5 ° C. or more and less than 60 ° C., and after the water-washing step A step of insert molding a thermoplastic resin on the zirconium member having the anodized film formed thereon, and the zirconium member and a resin member molded of a thermoplastic resin are joined by the anodized film It is characterized by

本発明による他の樹脂ジルコニウム合金接合体の製造法は、樹脂ジルコニウム合金接合体を製造する製造法であって、ジルコニウム合金からなるジルコニウム部材をアルカリ性の溶液で洗浄する脱脂工程と、前記脱脂工程後、ジルコニウム部材を酸性の溶液で洗浄する酸処理工程と、前記酸処理工程後、ジルコニウム部材をアルカリ性の溶液に浸漬し電極に定電圧をかける活性化処理工程と、前記ジルコニウム部材を陽極とし、20〜90℃のアルカリ性のトリアジンチオール誘導体を含む溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記ジルコニウム部材上に膜厚が50〜3000nmの陽極酸化被膜を形成する工程と、前記陽極酸化被膜が形成されたジルコニウム部材を5℃以上、60℃未満の水で洗浄する水洗い工程と、前記水洗い工程後の前記陽極酸化被膜が形成されたジルコニウム部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、前記ジルコニウム部材と、熱可塑性樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする。   Another method for producing a resin-zirconium alloy joined body according to the present invention is a method for producing a resin-zirconium alloy joined body, comprising: a degreasing step of cleaning a zirconium member made of a zirconium alloy with an alkaline solution; An acid treatment step of washing the zirconium member with an acidic solution, an activation treatment step of applying a constant voltage to the electrode by immersing the zirconium member in an alkaline solution after the acid treatment step, and using the zirconium member as an anode, A current density of 0.5 A / dm 2 or more and 5 A / dm 2 or less is applied in a solution containing an alkaline triazine thiol derivative at 90 ° C. to form an anodized film having a thickness of 50 to 3000 nm on the zirconium member And washing the zirconium member having the anodized film formed thereon with water at 5 ° C. or more and less than 60 ° C. A step of washing with water, and a step of insert molding a thermoplastic resin on the zirconium member on which the anodic oxidation film has been formed after the step of water washing, and the zirconium member, and a resin member molded of a thermoplastic resin Are bonded by the anodized film.

本発明による樹脂ジルコニウム合金接合体は、あらかじめジルコニウム部材の表面に、膜厚が50〜3000nmの陽極酸化被膜を形成したので、樹脂部材とジルコニウム部材が良好に接合でき、接合強度を30MPa以上にできる。また樹脂部材とジルコニウム部材の間の気密性は、ヘリウムリークを使用したリークテストで、10−9Pa・m/s以下にできる。また、防水性も確保できる。 In the resin-zirconium alloy joined body according to the present invention, since the anodic oxide film having a thickness of 50 to 3000 nm is formed on the surface of the zirconium member in advance, the resin member and the zirconium member can be joined well and the bonding strength can be 30 MPa or more . The airtightness between the resin member and the zirconium member can be 10 -9 Pa · m 3 / s or less in a leak test using a helium leak. In addition, waterproofness can be secured.

本発明による他の樹脂ジルコニウム合金接合体は、あらかじめジルコニウム部材の表面に、膜厚が50〜3000nmのトリアジンチオールを内部及び外部に存在させた陽極酸化被膜を形成したので、樹脂部材とジルコニウム部材が良好に接合できる。その接合強度は30MPa以上にできる。また樹脂部材とジルコニウム部材の間の気密性は、ヘリウムリークを使用したリークテストで、10−9Pa・m/s以下にできる。 Another resin-zirconium alloy joined body according to the present invention has an anodized film in which triazine thiol having a thickness of 50 to 3000 nm is present inside and outside on the surface of the zirconium member in advance. It can be joined well. The bonding strength can be 30 MPa or more. The airtightness between the resin member and the zirconium member can be 10 -9 Pa · m 3 / s or less in a leak test using a helium leak.

前記陽極酸化被膜は、重量%で、酸素(O)が1〜60%、ジルコニウム(Zr)が1〜90%、アルミニウム(Al)が10%以下、ニッケル(Ni)が20%以下、銅(Cu)が20%以下、ケイ素(Si)が1%以下、イットリウム(Y)が1%以下、ニオブ(Nb)が1%以下、フッ素(F)が1%以下の成分構成を有するので、樹脂部材とジルコニウム部材を良好に接合できる。   The anodic oxide film is, by weight, 1 to 60% of oxygen (O), 1 to 90% of zirconium (Zr), 10% or less of aluminum (Al), 20% or less of nickel (Ni), copper 20% or less of Cu), 1% or less of silicon (Si), 1% or less of yttrium (Y), 1% or less of niobium (Nb), 1% or less of fluorine (F) The member and the zirconium member can be joined well.

本発明による樹脂ジルコニウム合金接合体の製造法によれば、(a)浸漬してジルコニウム合金部材表面の脂分を除く脱脂工程と、(b)酸処理工程と、(c)アルカリ性の溶液に浸漬して定電圧をかける活性化工程と、(d)ジルコニウム部材を陽極とし、アルカリ性の溶液中で、陽極酸化被膜を形成する酸化被膜形成工程と、(e)陽極酸化被膜形成後、ジルコニウム部材を水で洗う水洗浄工程と、(f)熱可塑性樹脂をインサート成形して、ジルコニウム部材に接合するインサート工程と、を設けたので、樹脂部材とジルコニウム部材を良好に接合でき、接合強度が30MPa以上にでき、気密性はヘリウムリークを使用したリークテストで10−9Pam/s以下にできる。 According to the method for producing a resin-zirconium alloy joined body according to the present invention, (a) immersion, degreasing step for removing fats from the surface of the zirconium alloy member, (b) acid treatment step, and (c) immersion in an alkaline solution And (d) forming an anodic oxide film in an alkaline solution using the zirconium member as an anode, and (e) forming the zirconium member after forming the anodic oxide film. Since the water washing step of washing with water and the insert step of (f) insert molding the thermoplastic resin and bonding to the zirconium member are provided, the resin member and the zirconium member can be favorably bonded, and the bonding strength is 30 MPa or more The air tightness can be less than 10 -9 Pam 3 / s in a leak test using a helium leak.

本発明による他の樹脂ジルコニウム合金接合体の製造法によれば、(a)浸漬してジルコニウム合金部材表面の脂分を除く脱脂工程と、(b)酸処理工程と、(c)アルカリ性の溶液に浸漬して定電圧をかける活性化工程と、(d)ジルコニウム部材を陽極とし、トリアジンチオール誘導体を含むアルカリ性の溶液中で、陽極酸化被膜を形成する酸化被膜形成工程(TRI電解工程と称す)と、(e)陽極酸化被膜形成後、ジルコニウム部材を水で洗う水洗浄工程と、(f)熱可塑性樹脂をインサート成形して、ジルコニウム部材に接合するインサート工程と、を設けたので、樹脂部材とジルコニウム部材の接合強度を30MPa以上にでき、気密性は、ヘリウムリークを使用したリークテストで10−9Pam/s以下にできる。 According to the manufacturing method of another resin-zirconium alloy joined body according to the present invention, (a) a degreasing step for removing fats from the surface of the zirconium alloy member by immersion, (b) an acid treatment step, (c) an alkaline solution Step of activation in which constant voltage is applied and (d) a zirconium member is used as an anode, and an oxide film forming step (referred to as TRI electrolytic step) of forming an anodic oxide film in an alkaline solution containing triazine thiol derivative And (e) a water washing step of washing the zirconium member with water after forming the anodized film, and (f) an insert step of insert molding the thermoplastic resin and bonding it to the zirconium member, the resin member And the bonding strength of the zirconium member can be 30 MPa or more, and the airtightness can be 10 -9 Pam 3 / s or less in a leak test using a helium leak.

本発明による樹脂ジルコニウム合金接合体の製造法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the resin zirconium alloy joined body by this invention. ジルコニウム部材の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。It is a figure which shows the shape of a zirconium member. (A) is a front view, (B) is a right side view, and (C) is a perspective view. ジルコニウム合金の種類と成分を示す表である。It is a table | surface which shows the kind and component of a zirconium alloy. ジルコニウム部材の吊下げ冶具の写真である。It is a photograph of the suspension jig of a zirconium member. 吊下げ冶具が脱脂槽に吊り降ろされた写真である。It is the photograph by which the hanging jig was hung down to the degreasing tank. 吊下げ冶具が活性化処理槽に吊り降ろされた写真である。It is the photograph by which the hanging jig was hung down to the activation process tank. TRI電解処理槽の写真である。It is a photograph of a TRI electrolytic processing tank. 陽極酸化被膜の断面を示す写真である。It is a photograph which shows the cross section of an anodic oxidation film. 陽極酸化被膜の断面を示す写真である。It is a photograph which shows the cross section of an anodic oxidation film. ジルコニウム部材の写真(左側)と、図1に示す製造法で製作した引張試験用の試験体の写真(右側)である。They are a photograph (left side) of a zirconium member and a photograph (right side) of the test body for a tension test manufactured by the manufacturing method shown in FIG. 樹脂ジルコニウム合金接合体の引張強度を示す表である。It is a table showing the tensile strength of the resin zirconium alloy joined body. 信頼度試験後の引張強度を示す表である。It is a table | surface which shows the tensile strength after a reliability test. 信頼度試験後の引張強度を示す表である。It is a table | surface which shows the tensile strength after a reliability test. 気密試験用の試験体の外観(写真)である。It is an external appearance (photograph) of the test body for an airtight test. 気密試験の結果を示す表である。It is a table | surface which shows the result of an airtight test. ジルコニウム部材(ジルコニウム合金はタイプ1を使用)のTRI電解処理後の表面写真及び成分分析表である。It is the surface photograph and component analysis table after TRI electrolytic treatment of a zirconium member (a zirconium alloy uses type 1). ジルコニウム部材(ジルコニウム合金はタイプ2を使用)のTRI電解処理後の表面写真及び成分分析表である。It is the surface photograph and component analysis table after TRI electrolytic treatment of a zirconium member (zirconium alloy uses type 2). ジルコニウム部材(ジルコニウム合金はタイプ3を使用)TRI電解処理後の表面写真及び成分分析表である。It is the surface photograph and component-analysis table after a zirconium member (a zirconium alloy uses type 3) TRI electrolytic processing. トリアジンチオールを添加した場合と、添加しない場合での樹脂ジルコニウム合金接合体の接合強度を示す表である。It is a table | surface which shows the joint strength of the resin zirconium alloy joined body in the case where triazine thiol is added, and the case where it is not added.

以下、図面を参照して、本発明による樹脂ジルコニウム合金接合体及びその製造法を詳しく説明する。   Hereinafter, a resin-zirconium alloy joined body according to the present invention and a method for producing the same will be described in detail with reference to the drawings.

図1は、本発明による樹脂ジルコニウム合金接合体の製造法を示すフローチャートである。樹脂ジルコニウム合金接合体は、ジルコニウム部材と樹脂部材を接合させ一体に成形したものである。樹脂ジルコニウム合金接合体の成形は、次のs1〜s6の6つの工程で行なう。脱脂工程(s1)は、アルカリ系列のNAOH、KOH、又はNACOにの水溶液に陽イオン界面活性剤を加え、ジルコニウム部材1を1〜10分間浸漬する。水溶液の温度は、常温〜80℃の範囲とする。これにより、ジルコニウム部材1の表面の脂分を除去する。なお、ジルコニウム部材1は板状の部材で、ジルコニウム合金からなる。 FIG. 1 is a flow chart showing a method of producing a resin-zirconium alloy joined body according to the present invention. The resin-zirconium alloy joined body is formed by joining a zirconium member and a resin member and integrally forming them. The formation of the resin-zirconium alloy joined body is performed in the following six steps s1 to s6. In the degreasing step (s1), a cationic surfactant is added to an aqueous solution of alkaline series of NAOH, KOH or NA 2 CO 3 , and the zirconium member 1 is immersed for 1 to 10 minutes. The temperature of the aqueous solution is in the range of normal temperature to 80 ° C. Thus, the oil on the surface of the zirconium member 1 is removed. The zirconium member 1 is a plate-like member and made of a zirconium alloy.

次に酸処理工程(s2)は、重量%で、リン酸5〜50%、硫酸又はリン酸1〜20%、エチレングリコール1〜5%、グリセリン1〜5%、EDTA(エチレンジアミン四酢酸)微量、ノンベノールエトキシレート微量の水溶液に、ジルコニウム部材1を1〜10分間浸漬する。水溶液の温度は、常温〜50℃の範囲とする。これによりジルコニウム部材1の表面を洗浄し、酸化膜等を除去する。   Next, in the acid treatment step (s2), 5 to 50% phosphoric acid, 1 to 20% sulfuric acid or phosphoric acid, 1 to 5% ethylene glycol, 1 to 5% glycerin, trace amount of EDTA (ethylenediaminetetraacetic acid) by weight Immerse the zirconium member 1 in an aqueous solution of a slight amount of non-benol ethoxylate for 1 to 10 minutes. The temperature of the aqueous solution is in the range of normal temperature to 50 ° C. Thus, the surface of the zirconium member 1 is cleaned to remove the oxide film and the like.

活性化工程(s3)は、重量%で、リン酸又は硫酸1〜5%の水溶液に、EDTA(エチレンジアミン四酢酸)を微量加え、該溶液中にジルコニウム部材1を1〜10分浸漬し、陽極または陰極には、0.2〜5Vの定電圧を加える。水溶液の温度は常温〜50℃とする。電極には、パルス又は直流電圧が加えられる。同時に1〜10分間、50Hzで、100〜2000ワットの超音波処理も行なう。   In the activation step (s3), a small amount of EDTA (ethylenediaminetetraacetic acid) is added to an aqueous solution of phosphoric acid or sulfuric acid 1 to 5% by weight, and the zirconium member 1 is immersed in the solution for 1 to 10 minutes. Alternatively, a constant voltage of 0.2 to 5 V is applied to the cathode. The temperature of the aqueous solution is normal temperature to 50 ° C. Pulsed or DC voltage is applied to the electrodes. Sonicate also for 100 to 2000 watts at 50 Hz for 1 to 10 minutes simultaneously.

酸化被膜形成工程(s4)は、TRI電解工程と称する。ジルコニウム部材1を陽極として接続する。重量%で、リン酸又は硫酸3〜20%、硫酸アルミニウム1〜5%、EDTA(エチレンジアミン四酢酸)微量添加、シュウ酸又はクエン酸1〜3%、トリアジンチオール微量添加の水溶液に、ジルコニウム部材1を浸漬し、陽極と陰極間に1〜20A/dmの定電流電流密度を印加することで行なう。溶液の温度は常温〜80℃とする。陽極と陰極間に電圧1〜20Vを印加する。1〜40分間の電気分解により、ジルコニウム部材の表面に、膜厚50〜3000nmのトリアジンチオールを含む陽極酸化被膜4が形成される。多孔質の被膜が形成できる。なお、トリアジンチオールを添加しない水溶液で、酸化被膜形成工程(s4)を行なうこともできる。 The oxide film forming step (s4) is referred to as a TRI electrolytic step. The zirconium member 1 is connected as an anode. 1% by weight phosphoric acid or sulfuric acid, 1 to 5% aluminum sulfate, trace addition of EDTA (ethylenediaminetetraacetic acid), 1 to 3% oxalic acid or citric acid, trace addition of triazine thiol, zirconium member 1 And apply a constant current density of 1 to 20 A / dm 2 between the anode and the cathode. The temperature of the solution is normal temperature to 80 ° C. A voltage of 1 to 20 V is applied between the anode and the cathode. By the electrolysis for 1 to 40 minutes, the anodized film 4 containing triazine thiol and having a film thickness of 50 to 3000 nm is formed on the surface of the zirconium member. A porous film can be formed. In addition, an oxide film formation process (s4) can also be performed with the aqueous solution which does not add triazine thiol.

水洗い工程(s5)は、表面に陽極酸化被膜が形成されたジルコニウム部材1を、水温が5℃〜60℃の水で洗浄する工程である。なお、水洗い後は、乾燥させておく。インサート成形工程(s6)は、陽極酸化被膜が形成されたジルコニウム部材1を金型に装填し、樹脂部材2となる熱可塑性樹脂を注入し、樹脂部材2とジルコニウム部材1を接合して樹脂ジルコニウム合金接合体3を形成する。   The water washing step (s5) is a step of washing the zirconium member 1 having the anodized film formed on the surface, with water having a water temperature of 5 ° C to 60 ° C. In addition, let it dry after washing with water. In the insert molding step (s6), the zirconium member 1 on which the anodized film is formed is loaded into a mold, a thermoplastic resin to be the resin member 2 is injected, and the resin member 2 and the zirconium member 1 are joined to form resin zirconium An alloy joined body 3 is formed.

図2は、ジルコニウム部材1の形状を示す図である。(A)は正面図、(B)は右側面図、(C)は斜視図である。aは、直径4mmの引っ張り試験用の孔である。fは板厚で3mmである。縦×横は40mm×12mmの板であり、bが12mm、eが40mmとなる。cは6mm、dは5mmである。   FIG. 2 is a view showing the shape of the zirconium member 1. (A) is a front view, (B) is a right side view, and (C) is a perspective view. a is a hole for tensile test with a diameter of 4 mm. f is 3 mm in thickness. Vertical x horizontal is a plate of 40 mm x 12 mm, b is 12 mm and e is 40 mm. c is 6 mm and d is 5 mm.

図3は、ジルコニウム合金の種類と成分を示す表である。タイプ1は、銅(Cu)の含有量を多して耐蝕性を持たせ、またイットリウム(Y)を添加して強度を向上させている。タイプ2、3は、銅(Cu)の含有量を少なくして、ニオブ(Nb)で耐蝕性、耐熱性を向上させている。本実施例では、ジルコニウム部材1としてタイプ1のジルコニウム合金を使用したが、これに限るものではなく、タイプ2、タイプ3を使用してもよい。   FIG. 3 is a table showing the types and components of the zirconium alloy. Type 1 has high copper (Cu) content to provide corrosion resistance, and yttrium (Y) is added to improve strength. In types 2 and 3, the content of copper (Cu) is reduced, and niobium (Nb) improves corrosion resistance and heat resistance. Although the zirconium alloy of type 1 is used as the zirconium member 1 in the present embodiment, the present invention is not limited to this, and types 2 and 3 may be used.

図4は、ジルコニウム部材1が取り付けできる吊下げ冶具7の写真である。吊下げ冶具7は、5×2列のフックが並んでおり、ジルコニウム部材1を10個装着できる。図5は、吊下げ冶具7が脱脂槽に吊り降ろされた写真である。脱脂槽は、NAOH、KOH、又はNACOに陽イオン界面活性剤を加えた水溶液が満たされる。図6は、吊下げ冶具7が活性化処理槽に吊り降ろされた写真である。図7は、TRI電解処理槽の写真である。槽内には複数の電極が用意される。 FIG. 4 is a photograph of the hanging jig 7 to which the zirconium member 1 can be attached. The hanging jig 7 has 5 × 2 rows of hooks lined up, and ten zirconium members 1 can be mounted thereon. FIG. 5: is the photograph by which the hanging jig 7 was hung down to the degreasing tank. The degreasing tank is filled with an aqueous solution prepared by adding a cationic surfactant to NAOH, KOH, or NA 2 CO 3 . FIG. 6 is a photograph in which the hanging jig 7 is hung in the activation treatment tank. FIG. 7 is a photograph of a TRI electrolytic treatment tank. Several electrodes are prepared in a tank.

図8は、陽極酸化被膜の断面を示す写真である。陽極酸化被膜4の表面には、(A)では、厚さ96nmの陽極酸化被膜4が形成されている。(B)では、厚さ171nmの陽極酸化被膜4が形成されている。
図9は、陽極酸化被膜の断面を示す写真である。陽極酸化被膜4の厚さは、800nm、556nm、758nm、950nmが読み取れる。陽極酸化被膜4は、厚さが50nm〜3000nm(=3.0μm)にできる。
FIG. 8 is a photograph showing a cross section of the anodized film. On the surface of the anodized film 4, in (A), the anodized film 4 with a thickness of 96 nm is formed. In (B), the anodic oxide film 4 with a thickness of 171 nm is formed.
FIG. 9 is a photograph showing a cross section of the anodized film. The thickness of the anodized film 4 can be read at 800 nm, 556 nm, 758 nm, and 950 nm. The anodized film 4 can have a thickness of 50 nm to 3000 nm (= 3.0 μm).

図10は、ジルコニウム部材の写真(左側)と、図1に示す製造法で製作した引張試験用の試験体の写真(右側)である。図10に示すように、ジルコニウム部材1と樹脂部材2は12mm×3mm(=36mm)の端面が接合される。試験体は、符号3(3a)で示す。すなわち引張試験用の試験体3aである。樹脂ジルコニウム合金接合体3は、ジルコニウム部材1に樹脂部材2がインサート成形により一体化成形されたものである。インサート成形は、金型(図示せず)にジルコニウム部材1を装填しておき、熱可塑性樹脂を圧入することで、ジルコニウム部材1と樹脂部材2を一体化成形する。熱可塑性樹脂としては、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)を使用できる。 FIG. 10 is a photograph of the zirconium member (left side) and a photograph of the test sample for tensile test manufactured by the manufacturing method shown in FIG. 1 (right side). As shown in FIG. 10, the end faces of 12 mm × 3 mm (= 36 mm 2 ) of the zirconium member 1 and the resin member 2 are joined. The test body is indicated by symbol 3 (3a). That is, it is a test body 3a for a tensile test. The resin-zirconium alloy bonded body 3 is obtained by integrally molding the resin member 2 on the zirconium member 1 by insert molding. In the insert molding, the zirconium member 1 is loaded in a mold (not shown), and the zirconium member 1 and the resin member 2 are integrally molded by press-fitting a thermoplastic resin. As the thermoplastic resin, polybutylene terephthalate (PBT) and polyphenylene sulfide (PPS) can be used.

図11は、樹脂ジルコニウム合金接合体3(3a)の引張強度を示す表である。表右側のPPS欄に示すように、5つの試験体の引張強度は、上段から下段に向かって33.9MPa〜47.2MPaであった。この値は、接合面積が36mm(=12mm×3mm)での値である。表右側のPBT欄に示すように、5つの試験体の引張強度は、上段から下段に向かって38.1MPa〜31.9MPaであった。これによれば、36mmの接合面積で、約30MPaの強度が確保できる。表の左側は、参考までに、ジルコニウム部材1の厚みを測定したもので、5つのサンプルは、それぞれ3〜5μm、厚みが減少していることがわかる。 FIG. 11 is a table showing the tensile strength of the resin-zirconium alloy joined body 3 (3a). As shown in the PPS column on the right side of the table, the tensile strengths of the five test specimens were 33.9 MPa to 47.2 MPa from the top to the bottom. This value is a value when the bonding area is 36 mm 2 (= 12 mm × 3 mm). As shown in the PBT column on the right side of the table, the tensile strengths of the five test specimens were 38.1 MPa to 31.9 MPa from the top to the bottom. According to this, with a bonding area of 36 mm 2 , a strength of about 30 MPa can be secured. The left side of the table shows the thickness of the zirconium member 1 measured for reference, and it can be seen that the thickness of each of the five samples decreases by 3 to 5 μm.

図12は、信頼度試験後の引張強度を示す表である。樹脂ジルコニウム合金接合体3(3a)の樹脂部材2がポリフェニレンサルファイド(PPS)の場合を示す。(1)高温高湿テスト1は、温度が80℃、湿度95%で、テスト時間は72時間とし、テスト後に測定した。(2)高温高湿テスト2は、温度が80℃、湿度95%で、テスト時間は200時間とし、テスト後に測定した。(3)塩水スプレーテストは、塩水スプレー後72時間経過後に測定した。(4)熱衝撃テストは、温度をマイナス40℃〜80℃間で30分毎に変化させ、150サイクルを繰り返した後に測定した。表の左端は、信頼度試験前の樹脂ジルコニウム合金接合体3(3a)の引張強度で、10個の試験体の傾向をつかむことができ、31.2MPa〜45.2MPaの値を示している。同様に製作した試験体10個×4組で、高温高湿テスト(72h後)と、高温高湿テスト(200h後)と、塩水スプレーテストと、熱衝撃テストと、をそれぞれ実施し、引張強度を測定した。測定値は、図12に示すとおりである。   FIG. 12 is a table showing the tensile strength after the reliability test. The case where the resin member 2 of the resin zirconium alloy joined body 3 (3a) is polyphenylene sulfide (PPS) is shown. (1) High-Temperature High-Humidity Test 1 was conducted after the test at a temperature of 80 ° C. and a humidity of 95% for a test time of 72 hours. (2) High-Temperature High-Humidity Test 2 was conducted after the test at a temperature of 80 ° C. and a humidity of 95% with a test time of 200 hours. (3) The salt spray test was measured 72 hours after salt spray. (4) The thermal shock test was performed after changing the temperature between minus 40 ° C. and 80 ° C. every 30 minutes and repeating 150 cycles. The left end of the table shows the tensile strength of the resin-zirconium alloy joined body 3 (3a) before the reliability test, which can grasp the tendency of 10 test pieces and shows a value of 31.2 MPa to 45.2 MPa . With 10 pieces × 4 sets of similarly manufactured specimens, the high temperature and high humidity test (after 72 h), the high temperature and high humidity test (after 200 h), the salt spray test and the thermal shock test were carried out, respectively, and tensile strength Was measured. The measured values are as shown in FIG.

図13は、信頼度試験後の引張強度を示す表である。樹脂ジルコニウム合金接合体3(3a)の樹脂部材2がポリブチレンテレフタレート(PBT)の場合を示す。(1)高温高湿テスト1は、温度が80℃、湿度95%で、テスト時間は72時間とし、テスト後に測定した。(2)高温高湿テスト2は、温度が80℃、湿度95%で、テスト時間は200時間とし、テスト後に測定した。(3)塩水スプレーテストは、塩水スプレー後72時間経過後に測定した。(4)熱衝撃テストは、温度をマイナス40℃〜80℃間で30分毎に変化させ、150サイクルを繰り返した後に測定した。試験体10個×4組で、高温高湿テスト(72h後)と、高温高湿テスト(200h後)と、塩水スプレーテストと、熱衝撃テストと、をそれぞれ実施し、引張強度を測定した。測定値は図13に示すとおりである。   FIG. 13 is a table showing tensile strengths after the reliability test. The case where the resin member 2 of the resin zirconium alloy joined body 3 (3a) is polybutylene terephthalate (PBT) is shown. (1) High-Temperature High-Humidity Test 1 was conducted after the test at a temperature of 80 ° C. and a humidity of 95% for a test time of 72 hours. (2) High-Temperature High-Humidity Test 2 was conducted after the test at a temperature of 80 ° C. and a humidity of 95% with a test time of 200 hours. (3) The salt spray test was measured 72 hours after salt spray. (4) The thermal shock test was performed after changing the temperature between minus 40 ° C. and 80 ° C. every 30 minutes and repeating 150 cycles. The tensile strength was measured by performing a high temperature and high humidity test (after 72 h), a high temperature and high humidity test (after 200 h), a salt spray test, and a thermal shock test on 10 pieces of the test body × 4 groups. The measured values are as shown in FIG.

図14は、気密試験用の試験体の外観(写真)である。試験体は、樹脂ジルコニウム合金接合体3(3b)で示す。気密試験用の試験体3bは、ジルコニウム部材1が、円板状の樹脂部材2を貫通して一体に接合されている。筒状の容器に気密試験用の試験体3bを装填し、ジルコニウム部材1が突出した一方の側にヘリウムガスを吹き付け、ジルコニウム部材1が突出した他方の側を真空にして、ヘリウムガスが漏れないか調べる。   FIG. 14 is an appearance (photograph) of a test body for air tightness test. The test body is shown by resin zirconium alloy joined body 3 (3b). In the test body 3b for the air tightness test, the zirconium member 1 penetrates the disc-shaped resin member 2 and is integrally joined. A cylindrical container is loaded with the test body 3b for air tightness test, helium gas is blown to one side from which the zirconium member 1 protrudes, the other side from which the zirconium member 1 protrudes is evacuated, and helium gas does not leak Find out

図15は、気密試験の結果を示す表である。真空排気の量を増減させれば、漏れ出るヘリウム(He)の量も増減するが、この条件ではサンプル1、2のいずれも漏れ量を1×10−9Pam/s以下にできる。 FIG. 15 is a table showing the results of the airtightness test. If the amount of vacuum evacuation is increased or decreased, the amount of leaked helium (He) is also increased or decreased, but under this condition, the amount of leakage can be made 1 × 10 −9 Pam 3 / s or less in both of the samples 1 and 2.

図16は、ジルコニウム部材(ジルコニウム合金はタイプ1を使用)のTRI電解処理後の表面写真及び成分分析表である。タイプ1のジルコニウム合金は図3に示す。表面は多孔質で、凸凹形状をしている。陽極酸化被膜の成分表によれば、重量%で、Zrが62.34%、Oが21.33%であり、酸化ジルコニウム(ZrO)が形成されている。   FIG. 16 is a surface photograph and a component analysis table of a zirconium member (a zirconium alloy uses type 1) after TRI electrolytic treatment. Type 1 zirconium alloys are shown in FIG. The surface is porous and uneven. According to the composition table of the anodized film, by weight%, Zr is 62.34%, O is 21.33%, and zirconium oxide (ZrO) is formed.

図17は、ジルコニウム部材(ジルコニウム合金はタイプ2を使用)のTRI電解処理後の表面写真及び成分分析表である。タイプ2のジルコニウム合金は図3に示す。表面はは多孔質で凹凸はタイプ1より少ない。陽極酸化被膜の成分表によれば、重量%でZrが62.05%、Oが12.53%であり、酸化ジルコニウム(ZrO)が形成されている。   FIG. 17 is a surface photograph and a component analysis table of a zirconium member (a zirconium alloy uses type 2) after TRI electrolytic treatment. Type 2 zirconium alloys are shown in FIG. The surface is porous and has less irregularities than Type 1. According to the composition table of the anodized film, it is 62.05% of Zr and 12.53% of O by weight, and zirconium oxide (ZrO) is formed.

図18は、ジルコニウム部材(ジルコニウム合金はタイプ3を使用)のTRI電解処理後の表面写真及び成分分析表である。タイプ3のジルコニウム合金は図3に示す。表面は多孔質で凹凸はタイプ2より少ない。陽極酸化被膜の成分表によれば、重量%でZrが63.77%、Oが12.38%であり、酸化ジルコニウム(ZrO)が形成されている。   FIG. 18 is a surface photograph and a component analysis table of a zirconium member (a zirconium alloy uses type 3) after TRI electrolytic treatment. Type 3 zirconium alloys are shown in FIG. The surface is porous and has less irregularities than Type 2. According to the composition table of the anodized film, Zr is 63.77% and O is 12.38% by weight, and zirconium oxide (ZrO) is formed.

図19は、トリアジンチオールを添加した場合と、添加しない場合での樹脂ジルコニウム合金接合体の接合強度を示す表である。図1のTRI電解工程で、水溶液にトリアジンチオールを添加せず、陽極酸化被膜を形成し、樹脂ジルコニウム合金接合体3(3a)を製作した。一方、図1のTRI電解工程で、水溶液にトリアジンチオールを添加し、陽極酸化被膜を形成し、樹脂ジルコニウム合金接合体3(3a)を製作した。製作した各5つの樹脂ジルコニウム合金接合体の接合強度を比較した。数値は、トリアジンチオールを添加した方が、若干、値がよい。ただし、トリアジンチオールを添加しないでも十分に使用に耐えるといえる。   FIG. 19 is a table showing the bonding strength of a resin-zirconium alloy joined body with and without triazine thiol. In the TRI electrolytic process of FIG. 1, an anodic oxide film was formed without adding triazine thiol to the aqueous solution, and a resin zirconium alloy joined body 3 (3a) was manufactured. On the other hand, triazine thiol was added to the aqueous solution in the TRI electrolysis step of FIG. 1 to form an anodic oxide film, and a resin zirconium alloy joined body 3 (3a) was manufactured. The bonding strengths of each of the five produced resin-zirconium alloy bonded bodies were compared. The numerical values are slightly better when triazinethiol is added. However, even if it does not add triazine thiol, it can be said that it can fully use it.

本発明の樹脂ジルコニウム合金接合体及びその製造法は、ジルコニウム合金からなる部材と樹脂部材の一体化して接合するもので、接合強度もあって、部品の軽量化に好適である。   The resin-zirconium alloy joined body of the present invention and the method for producing the same are such that a member made of a zirconium alloy and a resin member are integrally joined and joined, and there is a joint strength, which is suitable for weight reduction of parts.

1 ジルコニウム部材
2 樹脂部材
3 樹脂ジルコニウム合金接合体
3a 引張試験用の試験体
3b 気密試験用の試験体
4 陽極酸化被膜
7 吊下げ冶具
s1〜s6 製造法の各工程
DESCRIPTION OF SYMBOLS 1 zirconium member 2 resin member 3 resin zirconium alloy joined body 3 a test body for tensile test 3 b test body for air tightness test 4 anodized film 7 hanging jig s1 to s6 each process of manufacturing method

Claims (5)

ジルコニウム合金からなるジルコニウム部材と、熱可塑性の樹脂部材とを接合してなる樹脂ジルコニウム合金接合体であって、
前記ジルコニウム部材と前記樹脂部材とが、膜厚が50〜3000nmの陽極酸化被膜により接合されていることを特徴とする樹脂ジルコニウム合金接合体。
A resin-zirconium alloy joined body obtained by joining a zirconium member made of a zirconium alloy and a thermoplastic resin member,
A resin-zirconium alloy joined body, wherein the zirconium member and the resin member are joined by an anodized film having a thickness of 50 to 3000 nm.
ジルコニウム合金からなるジルコニウム部材と、熱可塑性の樹脂部材とを接合してなる樹脂ジルコニウム合金接合体であって、
前記ジルコニウム部材と前記樹脂部材とが、膜厚が50〜3000nmのトリアジンチオールを内部及び外部に存在させた陽極酸化被膜により接合されていることを特徴とする樹脂ジルコニウム合金接合体。
A resin-zirconium alloy joined body obtained by joining a zirconium member made of a zirconium alloy and a thermoplastic resin member,
A resin-zirconium alloy joined body, wherein the zirconium member and the resin member are joined by an anodic oxide film in which triazine thiol having a thickness of 50 to 3000 nm is present inside and outside.
前記陽極酸化被膜は、重量%で、酸素(O)が1〜60%、ジルコニウム(Zr)が1〜90%、アルミニウム(Al)が10%以下、ニッケル(Ni)が20%以下、銅(Cu)が20%以下、ケイ素(Si)が1%以下、イットリウム(Y)が1%以下、ニオブ(Nb)が1%以下、フッ素(F)が1%以下の成分構成を有することを特徴とする請求項1又は2に記載の樹脂ジルコニウム合金接合体。   The anodic oxide film is, by weight, 1 to 60% of oxygen (O), 1 to 90% of zirconium (Zr), 10% or less of aluminum (Al), 20% or less of nickel (Ni), copper 20% or less of Cu), 1% or less of silicon (Si), 1% or less of yttrium (Y), 1% or less of niobium (Nb), and 1% or less of fluorine (F) The resin zirconium alloy joined body according to claim 1 or 2. 樹脂ジルコニウム合金接合体を製造する製造法であって、
ジルコニウム合金からなるジルコニウム部材をアルカリ性の溶液で洗浄する脱脂工程と、
前記酸処理工程後、ジルコニウム部材をアルカリ性の溶液に浸漬して電極に定電圧をかける活性化処理工程と、
前記脱脂工程後、ジルコニウム部材を酸性の溶液で洗浄する酸処理工程と、
前記ジルコニウム部材を陽極とし、20〜90℃のアルカリ性の溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記ジルコニウム部材上に膜厚が50〜3000nmの陽極酸化被膜を形成する工程と、
前記陽極酸化被膜が形成されたジルコニウム部材を5℃以上、60℃未満の水で洗浄する水洗い工程と、
前記水洗い工程後の前記陽極酸化被膜が形成されたジルコニウム部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、
前記ジルコニウム部材と、熱可塑性樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする樹脂ジルコニウム合金接合体の製造法。
A manufacturing method of producing a resin-zirconium alloy joined body,
A degreasing step of cleaning a zirconium member made of a zirconium alloy with an alkaline solution;
After the acid treatment step, the zirconium member is immersed in an alkaline solution to apply a constant voltage to the electrode, and an activation treatment step;
An acid treatment step of washing the zirconium member with an acidic solution after the degreasing step;
The zirconium member is used as an anode, and a current density of 0.5 A / dm 2 or more and 5 A / dm 2 or less is applied in an alkaline solution at 20 to 90 ° C. Forming a film;
A water washing step of washing the zirconium member having the anodized film formed thereon with water at 5 ° C. or more and less than 60 ° C .;
Insert molding a thermoplastic resin on the zirconium member on which the anodized film has been formed after the water washing step;
A method for producing a resin-zirconium alloy joined body, characterized in that the zirconium member and a resin member formed of a thermoplastic resin are joined by the anodized film.
樹脂ジルコニウム合金接合体を製造する製造法であって、
ジルコニウム合金からなるジルコニウム部材をアルカリ性の溶液で洗浄する脱脂工程と、
前記脱脂工程後、ジルコニウム部材を酸性の溶液で洗浄する酸処理工程と、
前記酸処理工程後、ジルコニウム部材をアルカリ性の溶液に浸漬し電極に定電圧をかける活性化処理工程と、
前記ジルコニウム部材を陽極とし、20〜90℃のアルカリ性のトリアジンチオール誘導体を含む溶液中で、0.5A/dm2以上5A/dm2未満の電流密度を印加して、前記ジルコニウム部材上に膜厚が50〜3000nmの陽極酸化被膜を形成する工程と、
前記陽極酸化被膜が形成されたジルコニウム部材を5℃以上、60℃未満の水で洗浄する水洗い工程と、
前記水洗い工程後の前記陽極酸化被膜が形成されたジルコニウム部材に、熱可塑性樹脂をインサート成形する工程と、が備えられ、
前記ジルコニウム部材と、熱可塑性樹脂で成形された樹脂部材とが、前記陽極酸化被膜により接合されることを特徴とする樹脂ジルコニウム合金接合体の製造法。
A manufacturing method of producing a resin-zirconium alloy joined body,
A degreasing step of cleaning a zirconium member made of a zirconium alloy with an alkaline solution;
An acid treatment step of washing the zirconium member with an acidic solution after the degreasing step;
After the acid treatment step, the zirconium member is immersed in an alkaline solution to apply a constant voltage to the electrode, and an activation treatment step;
The zirconium member is used as an anode, and a current density of 0.5 A / dm 2 or more and 5 A / dm 2 or less is applied in a solution containing an alkaline triazine thiol derivative at 20 to 90 ° C. Forming an anodic oxide film of ̃3000 nm,
A water washing step of washing the zirconium member having the anodized film formed thereon with water at 5 ° C. or more and less than 60 ° C .;
Insert molding a thermoplastic resin on the zirconium member on which the anodized film has been formed after the water washing step;
A method for producing a resin-zirconium alloy joined body, characterized in that the zirconium member and a resin member formed of a thermoplastic resin are joined by the anodized film.
JP2018001217A 2018-01-09 2018-01-09 Resin zirconium alloy joined body and production method thereof Pending JP2019119914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018001217A JP2019119914A (en) 2018-01-09 2018-01-09 Resin zirconium alloy joined body and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018001217A JP2019119914A (en) 2018-01-09 2018-01-09 Resin zirconium alloy joined body and production method thereof

Publications (1)

Publication Number Publication Date
JP2019119914A true JP2019119914A (en) 2019-07-22

Family

ID=67307722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018001217A Pending JP2019119914A (en) 2018-01-09 2018-01-09 Resin zirconium alloy joined body and production method thereof

Country Status (1)

Country Link
JP (1) JP2019119914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717560A (en) * 2022-03-22 2022-07-08 深圳市纳明特科技发展有限公司 Zirconium alloy nano-treatment method
CN115096675A (en) * 2022-06-07 2022-09-23 佛山科学技术学院 Zirconium tube calibration sample for underwater eddy current detection and preparation method thereof
KR20220139975A (en) 2020-03-25 2022-10-17 쇼와 덴코 가부시키가이샤 Electrode body, electrode body manufacturing method, and electrochemical device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878416A (en) * 1981-11-05 1983-05-12 セイコーエプソン株式会社 Trimmer condenser
JP2001509549A (en) * 1997-07-11 2001-07-24 マグネシウム テクノロジー リミティド Method for sealing metal and / or anodized metal substrate
WO2003080897A1 (en) * 2002-03-25 2003-10-02 Hori Metal Finishing Ind. Ltd. Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
JP2005072641A (en) * 2003-08-22 2005-03-17 Pioneer Electronic Corp Magnesium diaphragm, manufacturing method thereof, and speaker device
JP2005288993A (en) * 2004-04-05 2005-10-20 Arrk Okayama Co Ltd Manufacturing method for product composed of magnesium or magnesium alloy
JP2009144198A (en) * 2007-12-14 2009-07-02 Denso Corp Aluminum member for joining to resin and method of manufacturing the same
JP2012153135A (en) * 2011-01-07 2012-08-16 Sumitomo Electric Ind Ltd Magnesium-based clad member and production process for magnesium-based clad member
JP2012251215A (en) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Mg ALLOY MEMBER, AND HOUSING OF ELECTRICAL INSTRUMENT
JP2016047601A (en) * 2014-08-27 2016-04-07 東レ・デュポン株式会社 Thermoplastic resin composite molded body and manufacturing method of thermoplastic resin composite molded body
JP2017094708A (en) * 2015-11-13 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Resin metal composite and method for producing the same
JP2017145331A (en) * 2016-02-18 2017-08-24 東ソー株式会社 Polyarylene sulfide resin composition and composite body formed of the same
JP2017202573A (en) * 2016-05-09 2017-11-16 ポリプラスチックス株式会社 Insert molded body, and electric connection connector for fuel pump

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878416A (en) * 1981-11-05 1983-05-12 セイコーエプソン株式会社 Trimmer condenser
JP2001509549A (en) * 1997-07-11 2001-07-24 マグネシウム テクノロジー リミティド Method for sealing metal and / or anodized metal substrate
WO2003080897A1 (en) * 2002-03-25 2003-10-02 Hori Metal Finishing Ind. Ltd. Magnesium or magnesium alloy article having electroconductive anodic oxidation coating on the surface thereof and method for production thereof
JP2005072641A (en) * 2003-08-22 2005-03-17 Pioneer Electronic Corp Magnesium diaphragm, manufacturing method thereof, and speaker device
JP2005288993A (en) * 2004-04-05 2005-10-20 Arrk Okayama Co Ltd Manufacturing method for product composed of magnesium or magnesium alloy
JP2009144198A (en) * 2007-12-14 2009-07-02 Denso Corp Aluminum member for joining to resin and method of manufacturing the same
JP2012153135A (en) * 2011-01-07 2012-08-16 Sumitomo Electric Ind Ltd Magnesium-based clad member and production process for magnesium-based clad member
JP2012251215A (en) * 2011-06-03 2012-12-20 Sumitomo Electric Ind Ltd Mg ALLOY MEMBER, AND HOUSING OF ELECTRICAL INSTRUMENT
JP2016047601A (en) * 2014-08-27 2016-04-07 東レ・デュポン株式会社 Thermoplastic resin composite molded body and manufacturing method of thermoplastic resin composite molded body
JP2017094708A (en) * 2015-11-13 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Resin metal composite and method for producing the same
JP2017145331A (en) * 2016-02-18 2017-08-24 東ソー株式会社 Polyarylene sulfide resin composition and composite body formed of the same
JP2017202573A (en) * 2016-05-09 2017-11-16 ポリプラスチックス株式会社 Insert molded body, and electric connection connector for fuel pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220139975A (en) 2020-03-25 2022-10-17 쇼와 덴코 가부시키가이샤 Electrode body, electrode body manufacturing method, and electrochemical device
CN114717560A (en) * 2022-03-22 2022-07-08 深圳市纳明特科技发展有限公司 Zirconium alloy nano-treatment method
CN115096675A (en) * 2022-06-07 2022-09-23 佛山科学技术学院 Zirconium tube calibration sample for underwater eddy current detection and preparation method thereof
CN115096675B (en) * 2022-06-07 2023-08-11 佛山科学技术学院 Zirconium tube calibration sample for underwater vortex detection and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6501841B2 (en) Resin titanium metal bonded body and method for producing the same
JP2019119914A (en) Resin zirconium alloy joined body and production method thereof
KR101235350B1 (en) Surface treatment method of mother metal
TWI445845B (en) Anodic oxidation method for colouring metallic workpiece
US20110297549A1 (en) Aluminum alloy-and-resin composite and method for making the same
JP2012193448A (en) Stainless steel-and-resin composite and method for making same
CN102229266A (en) Compound of aluminum or aluminum alloy and plastics and manufacturing method thereof
JPWO2009078377A1 (en) Resin metal bonded body and manufacturing method thereof
US20130164555A1 (en) Surface treatment method for alumninum or alumninum alloy and article manufactured by the same
US8394503B2 (en) Resin-metal bonded article and method for producing the same
JP4656405B2 (en) Surface treatment method of aluminum or its alloy
JP6525484B2 (en) Resin-metal bonded body and method for manufacturing the same
JP6655593B2 (en) Resin magnesium metal joined body and manufacturing method thereof
KR102618505B1 (en) Conjugate of resin and magnesium-based metal and method for producing the same
CN106544711B (en) Method for anodizing metallic workpieces incorporating dissimilar materials
CN110129855B (en) Surface treatment method for corrosion prevention of aluminum alloy
JP6546313B1 (en) Resin carbon steel joined body and method for producing the same
JP5540029B2 (en) Composite of aluminum or aluminum alloy and resin and method for producing the same
CN106894010A (en) Metal surface treating composition, metal-resin complex and preparation method thereof
KR20180087457A (en) Corrosion-resistant coatings for semiconductor process equipment
CN103911645B (en) Magnesium alloy anode oxidation method
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
KR101790975B1 (en) Surface treatment method of aluminium material
KR101923897B1 (en) Anodizing method of subject
KR102620567B1 (en) Anodizing method to improve withstand voltage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806