JPWO2003042103A1 - Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate - Google Patents

Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate Download PDF

Info

Publication number
JPWO2003042103A1
JPWO2003042103A1 JP2003543947A JP2003543947A JPWO2003042103A1 JP WO2003042103 A1 JPWO2003042103 A1 JP WO2003042103A1 JP 2003543947 A JP2003543947 A JP 2003543947A JP 2003543947 A JP2003543947 A JP 2003543947A JP WO2003042103 A1 JPWO2003042103 A1 JP WO2003042103A1
Authority
JP
Japan
Prior art keywords
calcium carbonate
resin
treated
dxp
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003543947A
Other languages
Japanese (ja)
Other versions
JP3650391B2 (en
Inventor
英充 笠原
英充 笠原
林 祐輔
林  祐輔
高橋 洋一
洋一 高橋
清也 清水
清也 清水
瀧山 成生
成生 瀧山
福本 勝憲
勝憲 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd filed Critical Maruo Calcium Co Ltd
Publication of JPWO2003042103A1 publication Critical patent/JPWO2003042103A1/en
Application granted granted Critical
Publication of JP3650391B2 publication Critical patent/JP3650391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/021Calcium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

有機系表面処理剤で表面処理された炭酸カルシウムからなり、特定のBET比表面積(Sw)、単位比表面積当たりの熱減量(As)、水銀圧入法による特定の細孔分布において水銀圧入増加量が最大となる平均細孔直径(Dxp)、平均細孔径量〔水銀圧入増加量の最大値(Dyp)/平均細孔直径(Dxp)〕を満足する。水酸化カルシウムスラリーに、錯体を形成する物質を添加し、炭酸ガスを吹き込んで炭酸カルシウムを合成し、炭酸カルシウム濃度を調整して熟成し、有機系表面処理剤で表面処理して製造する。特に樹脂用として有用で、樹脂に配合した場合に該樹脂組成物と被着体との接着力を向上させ、且つ強靱な塗膜を形成することが可能である。It consists of calcium carbonate surface-treated with an organic surface treatment agent. It has a specific BET specific surface area (Sw), a heat loss per unit specific surface area (As), and a specific pore distribution by the mercury intrusion method. The maximum average pore diameter (Dxp) and the average pore diameter [maximum value of mercury intrusion increase (Dyp) / average pore diameter (Dxp)] are satisfied. A substance that forms a complex is added to a calcium hydroxide slurry, carbon dioxide is blown to synthesize calcium carbonate, the calcium carbonate concentration is adjusted and aged, and the surface treatment is performed with an organic surface treatment agent. In particular, it is useful for resins, and when blended in a resin, it is possible to improve the adhesive force between the resin composition and the adherend and to form a tough coating film.

Description

技術分野
本発明は、有機系表面処理剤を表面処理してなる炭酸カルシウム、その製造方法及び該炭酸カルシウムを配合してなる樹脂組成物に関し、さらに詳しくは、例えば、シーラント、接着剤に代表される硬化型樹脂に使用した場合には、粘性・チキソ性付与効果とともに目地追従性に優れた樹脂組成物を与え、例えば、塗料、インキ、プラスチゾルに配合した場合には、高光沢及び高チキソ性、防タレ性を有するだけでなく高強度の塗膜を実現する樹脂組成物を与える、有機系表面処理剤を表面処理してなる炭酸カルシウム、その製造方法及びこれを配合してなることを特徴とする樹脂組成物に関するものである。
背景技術
炭酸カルシウムは、プラスチック、塗料、インキ、シーラント、接着剤、紙、ゴム等の填料あるいは顔料として広く使用されている。例えば、シーラントにおいては、建設、自動車、床材等の分野で防水、シール等の目的で広く使用されているが、垂直部分に施工することも多く、当然のこととして施工から硬化するまでの間垂れないことが必要であり、高粘性・高チキソ性を備える必要がある。
上記課題に対応すべく、本発明者らは、既に沈降製炭酸カルシウムの製造方法(特開平10−72215号)を提案済みであるが、近年、さらなる需要増の中で、要求物性が一段と高くなってきている。
例えば、個人住宅においてサイディングボードの需要が急増しているが、サイディングボードは乾湿くり返し及び部材のムーブメントを考慮し、低モジュラスのシーラントが使用されるが、サイディングボードは温度や湿度の影響で伸縮するため、シーラントは目地に対する追従性が必要となる。これらの特徴を付与するため従来よりコロイド炭酸カルシウムが使用され、硬化後のモジュラスを低くし、被着物への追従性をある程度高めたり微妙な粘性調整が可能とされているが、さらなる低モジュラス化や微量添加での粘性調整には、従来のコロイド炭酸カルシウムでは限界であり、さらに微細で高分散性のものが要望されている。
また、塗料、インクにおいては、古くからコロイド炭酸カルシウムが使用されている。塗料においては、近年、10年保証等の保証期間が設定されるようになり、より耐久性に優れた塗料が要望されている。インキにおいても、従来から炭酸カルシウムとインキビヒクルとの屈折率の相違からインキの透明性が低下する問題があるため、従来のコロイド炭酸カルシウムの配合量を減量し且つ、インキ特性を維持する要望がなされている。
さらに、プラスチックにおいては、射出成型機のウエルドラインの強度低下を防ぐために、ウォラストナイトや針状炭酸カルシウムが使用されているが、どちらも数十ミクロン〜200ミクロンと比較的粒子径が大きいため、衝撃強度の低下を招く問題がある。従来のコロイド炭酸カルシウムでは、ウエルドラインの強度低下や衝撃強度の低下を抑制することは困難であった。
さらにプラスチゾルにおいては、特に自動車車体用として塩化ビニル樹脂系のものが多用されているが、近年、環境面からアクリル樹脂系のものへの代替が検討されている。特にアクリル樹脂系においては、軽量化だけでなく塩化ビニル樹脂系との価格差から薄膜化の検討がなされており、少量添加で高粘性付与が可能な充填剤が求められているが、従来のコロイド炭酸カルシウムは、それらを満足するものではない。
本発明は、かかる実状に鑑み、例えばシーラント、接着剤に代表される硬化型樹脂に使用した場合には、粘性・チキソ性付与効果はもちろん、目地追従性を有し、例えば塗料、インキ、プラスチゾルに使用した場合においては高光沢及び、優れた防タレ性、高い塗膜強度を有し、例えばプラスチックに使用した場合においては、ウエルドライン面の強度低下を防止し、また、優れた衝撃強度を有した樹脂組成物を得ることができ、且つ樹脂への添加量を減量化することによる軽量化が可能な有機系表面処理剤を表面処理してなる炭酸カルシウム、その製造方法及びこれを配合してなる樹脂組成物を提供するものである。
本発明者らは上記課題を解決せんとして鋭意検討を重ねた結果、特定の物質を添加して炭酸化反応を行った後、特定の濃度で熟成を行ったものは、特定の微細性且つ分散性が良好な沈降製炭酸カルシウムであり、該炭酸カルシウムを特定量の有機系表面処理剤で表面処理することにより被着体との接着力を向上させ、また形成される塗膜自体の強度を向上させ、これらの問題点が解決できることを見いだし本発明を完成するに至った。
発明の開示
即ち、本発明の第1は、有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)、(b)、(c)及び(d)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(c) 0.003≦Dxp≦0.03(μm)
(d) 50≦Dyp/Dxp≦180
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
AS :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/log平均細孔直径)が最大値(Dys)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
本発明の第2は、有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)、(b)、(e)及び(f)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
AS :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
本発明の第3は、有機系表面処理剤で表面処理された炭酸カルシウムからなり、下記の式(a)〜(f)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(c) 0.003≦Dxp≦0.03(μm)
(d) 50≦Dyp/Dxp≦180
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
As :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/10g平均細孔直径)が最大値(Dys)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
本発明の第4は、水酸化カルシウムスラリーに、金属イオンに配位して錯体を形成する物質を0.5〜15重量%添加し、炭酸ガスを吹き込んで炭酸化反応により炭酸カルシウムを合成し、該炭酸カルシウム濃度を2.4〜13.0重量%に調整して熟成し、得られた炭酸カルシウムを有機系表面処理剤で表面処理することを特徴とする表面処理炭酸カルシウムの製造方法を内容とする。
本発明の第5は、上記表面処理炭酸カルシウムを樹脂に配合してなることを特徴とする樹脂組成物を内容とする。
発明を実施するための最良の形態
以下本発明の詳細を具体的に説明する。
(a)式は、本発明の表面処理炭酸カルシウムの窒素吸着法によるBET比表面積であり、20〜200m/gであることが必要である。該比表面積が20m/g未満の場合、本発明の目的である高粘性付与が困難である。一方、200m/gを越えると、一次粒子が微少であることは好ましいが、経時安定性が悪く分散性の面で問題が生じる。従って、好ましくは30〜150m/g、より好ましくは40〜120m/gである。
尚、BET比表面積を測定するための装置は、ユアサアイオニクス社製NOVA2000型を使用した。
(b)式は、本発明の表面処理炭酸カルシウムの単位比表面積当たりの有機系表面処理剤量で、単位比表面積当たりの有機系表面処理量Asは1.0〜7.5mg/mであることが必要である。従来の炭酸カルシウムの中には、(a)式を満足する1次粒子が細かいものはいくつか市販されているが、該炭酸カルシウムは、1次粒子が凝集形成した2次粒子同士がさらに凝集した3次粒子を形成しているため、炭酸カルシウムを覆う表面処理処理量は、1.0mg/m未満で十分な処理量であるが、本発明の炭酸カルシウムは従来のものより3次粒子形成体が少なく、2次粒子形成体の分散性が極めて高いため、表面を十分に覆うには困難である。従って、処理量不足のまま乾燥・粉末化をした場合、未処理面同士で3次凝集を形成するため、該表面処理炭酸カルシウムとしての効果が十分発揮できなくなる。一方、7.5mg/mを越えると、表面処理剤過多による表面処理剤の樹脂成分あるいは可塑成分への遊離がおこり、ブリード現象や表面肌荒れ現象の原因となる。従って、好ましくは、1.5〜5.0mg/m、より好ましくは2.0〜4.0mg/mである。
単位比表面積当りの熱減量は、リガク社製TG−8110型を用い、直径10mmの試料パン(白金製)に表面処理炭酸カルシウムを約100mg採取し、昇温速度15℃/分で200〜500℃までの熱減量を測定し、表面処理炭酸カルシウム1g当たりの熱減量率(mg/g)を求め、この値をBET比表面積値で除して求めた。
(c)式及び(d)式は、本発明の表面処理炭酸カルシウムの分散状態を知る指標になるものである。
(c)式は、水銀圧入法(ポロシメーター)にて測定した0.001〜0.1μmの範囲における細孔分布において、水銀圧入増加量が最大となる値(Dys)の平均細孔直径(Dxp)であり、表面処理炭酸カルシウム粒子間の隙間の細かさを意味するものである。従って、(a)式の(窒素)ガス吸着法で示される粒子の細かさではなく、1次粒子間の間隙の平均径を表わしており、0.003〜0.03μmであることが必要である。平均細孔径が0.003μm未満の場合、1次粒子もしくは2次粒子が細か過ぎるため経時安定性に問題が生じる。一方、0.03μmを越えると、1次粒子が大きすぎるか、もしくは1次粒子が強く凝集した2次粒子形成体が多く存在していることになり、本発明の目的である高粘性物性は得られない。従って、好ましくは0.005〜0.025μm、より好ましくは0.006〜0.020μmである。
尚、水銀圧入増加量とは細孔容積増加量のことを意味し、(積算細孔容積増加量/log平均細孔直径)の計算式で表される(単位はml/g)。当然のことながら細孔直径が小さい程、細孔容積は小さくなるため、最大水銀圧入増加量(Dys)は細孔直径に依存する。
(d)式は、(c)式の平均細孔直径の数を示しており、本発明の目的である高粘性を示す指標である。前記したように、細孔径が小さいほど細孔容積も小さくなるため、最大水銀圧入増加量(Dyp)と、(c)式の平均細孔直径(Dxp)を加味することにより、本発明で必要とする細孔径量(数)を導き出すことができ、Dyp/Dxpの数値が高い程高粘性である。従って、本発明の平均細孔径量(Dyp/Dxp)が、50〜180であることが必要である。Dyp/Dxpが50未満の場合、本発明の目的である高粘性を得ることができない。一方、180を越えると平均細孔径量が極端に小さ過ぎるため、1次粒子もしくは2次粒子の経時安定性に問題が生じる。従って、好ましくは60〜150、より好ましくは70〜130である。
本発明の表面処理炭酸カルシウムが(c)式、(d)式の範囲外の場合、例えば該炭酸カルシウムを配合した塗料組成物においては光沢が低く、シーラント組成物においては破断強度低下等が生じる。
尚、本発明において使用した水銀圧入装置(ポロシメータ)及び主な測定条件を、下記に示す。
<測定装置>
島津製作所社製9520型
<主な測定条件>
水銀純度=99.99(%)
水銀表面張力=480(dyns/cm)
水銀接触角=135℃
セル定数=10.79(μl/pF)
試料重量:各0.10g程度に秤量し測定
本発明の表面処理炭酸カルシウムは、下記の式(e)〜(f)を満足するものでもよく、更には、上記式(a)〜(d)とともに、下記の式(e)〜(f)を満足することが好ましい。
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
(e)式、(f)式は、例えば、樹脂組成物中における分散状態を知る指標になるものである。従って、上記式をファクターに加えることは好ましい態様である。
尚、粒度分布は、下記の配合材(I)と(II)を140mlマヨネーズ瓶に秤量し、ステンレススプーンにて目視分散するまで撹拌し、配合材(III)で希釈後、超音波分散機にて予備分散させたものを試料としてレーザー回折式粒度分布計(島津製作所社製:SALD−2000)により測定される。
(I)中性洗剤(水で5倍希釈したもの)2.0g
(II)炭酸カルシウム試料 0.4g
(III)水 40g
特に、前処理として前記した配合で調整後、予備分散として用いる超音波分散は、一定条件で行う方が好ましく、本発明の実施例で用いる超音波分散機は、US−300T(日本精機製作所社製)を用い100μA−60秒間の一定条件にて予備分散させた。また中性洗剤は、特に限定されるものでなく一般の市販品で問題なく、本発明ではママレモン(ライオン社製)を使用した。
前記した粒度分布測定方法において、本発明の平均粒子径(Dxs)が0.03μm未満の場合、一次もしくは2次粒子の経時安定性が低下する場合がある。一方、1μmを越えると、前記した如く3次粒子形成体が多くなりやすく、樹脂組成物中の分散性が悪化しやすい。従って、より好ましくは0.05〜0.8μm、更に好ましくは0.08〜0.5μmである。
また、3μmを越える平均粒子径の重量累計(Dys)が30重量%を越えると、樹脂組成物中の分散状態が十分とはいえず、所望の高粘度物性が得られにくい。従って、より好ましくは25重量%以下、最も好ましくは20重量%以下である。
本発明の表面処理炭酸カルシウムが上記(e)式と(f)式の範囲外の場合、例えば該炭酸カルシウムを配合した塗料組成物においては光沢性が低下し、シーラント組成物においては破断強度等に問題が生じやすい
本発明の表面処理炭酸カルシウムは、更に、下記の式(g)〜(j)を満足することが好ましい。これらは上記した式(c)、(d)、(e)、(f)のそれぞれ好ましい範囲を規定したものである。
(g) 0.005≦Dxp≦0.025(μm)
(h) 60≦Dyp/Dxp≦150
(i) 0.05≦Dxs≦0.8 (μm)
(j) Dys≦25 (重量%)
本発明の表面処理炭酸カルシウムは、更に下記の式(k)を満足することが好ましい。
(k) 0.1≦Sw・Dxp≦1.5
(k)式は、表面処理された炭酸カルシウムの1次粒子の細かさを示したBET比表面積値(Sw)と2次粒子の細かさを示した平均細孔径(Dxp)を掛けた値である。1次粒子と2次粒子は、既に式(a)〜(j)で個々に限定しているが、好ましくは個々でなく(k)式の如く両方を兼備している方が、所望の粘度物性が得られやすい。(k)式のSw・Dxpが0.1未満の場合、一次もしくは2次粒子の経時安定性が低下する場合がある。一方、1.5を越えると、前記した如く3次粒子形成体が多くなりやすい。従って、より好ましくは0.3〜1.2、更に好ましくは0.5〜1.0である。
本発明の表面処理炭酸カルシウムは、更に下記の式(l)を満足することが好ましい。
(l) 0.03≦Is≦3 (μmol/m
但し、
Is:次式により算出される単位比表面積当たりのアルカリ金属含有量{炭酸カルシウム1g当たりの金属含有量(μmol/g)}/Sw(m/g)
(l)式は、表面処理された炭酸カルシウム中のアルカリ金属含有量を表しており、通常0.03〜3μmol/mの範囲であるのが好ましい。アルカリ金属化合物の中でも特にナトリウム化合物は、発熱反応性が高く系外の湿気と反応しやすいため、炭酸カルシウム中に3μmol/mを越える量のナトリウム化合物が存在すると、特にシーリング材用途においては分散不良等の貯蔵安定性に問題を生じる場合がある。また、アルカリ金属含有量を0.03μmol/mのレベル又は0.03μmol/m未満にするには、1)表面処理量を極めて少なくするか、2)表面処理後に過度の水洗行うか、3)脂肪酸もしくは樹脂酸等の酸を表面処理剤として用いる必要がある。1)の場合は上記した物性不良が生じやすく、2)の場合は多量の水を必要とするためコスト高となる。また、3)の場合も融点以上の温度で表面処理するためコスト高になりやすいばかりか表面処理剤の選択性が限定されてしまうため、より好ましくは0.15〜2μmol/m、更に好ましくは0.3〜1.5μmol/mである。
さらに好ましい態様としては、表面処理を行う前の炭酸カルシウムスラリーにおいて、該スラリー挙動が下記の(m)式を満足することが好ましい。
(m) 0.03≦Dx≦0.40
但し、
Dx:遠心式粒度分布計(島津製作所社製:SA−CP4)により測定した粒度分布において、大きな粒子径側から起算した重量累計50%のときの粒子径(μm)
(m)式は、本発明の表面処理炭酸カルシウムの表面処理前の二次粒子の平均粒子径を示すものであり、数値的に明確である粒度分布の指標を取り入れたものである。(m)式を満足する本発明の表面処理炭酸カルシウムは、本発明の目的である高粘性付与を確実に発現することが可能である。従って、Dxが0.03未満の場合、炭酸カルシウム1次粒子の経時安定性や分散性に問題が生じやすい。一方、0.40μmを越えると、前記した如く3次粒子形成体の割合が多くなるため、表面処理した炭酸カルシウムにおいて、本発明の目的である高粘性付与が得られにくい。従って、より好ましくは0.07〜0.35μm、更に好ましくは0.10〜0.30μmである。
また、炭酸カルシウムの1次粒子形状においては、球状、紡錘状、針状、塊状、連鎖状(ネックレス状)など、特に限定されることなく用いることが可能であるが、中でも連鎖状は、高粘性付与だけでなく樹脂の強度付与に好適である。
本発明の表面処理炭酸カルシウムは、さらに好ましい態様としては、下記の式を満足することが好ましい。
(n)VIS2≧400(Pa・s)
(o)VIS20≧80(Pa・s)
(p)VIS2/VIS20≧5.0
但し、
VIS2 :ジイソノニルフタレート(DINP)と表面処理炭酸カルシウムの混合ペーストのBH型粘度計2rpmの粘度(Pa・s)
VIS20:上記ペーストの20rpm粘度(Pa・s)
(n)〜(p)は、本発明の表面処理炭酸カルシウムの樹脂成分中での粘性挙動を示すものである。DINPと該炭酸カルシウムの混合ペーストの作成方法としては、下記に示す通りである。
炭酸カルシウム試料 50重量部
DINP 30重量部
DINP 30重量部(追加)
DINP 30重量部(追加)
(1)1L紙カップにDINP30gとり、次いで炭酸カルシウムを50g秤り取る。紙カップを遊星式撹拌装置KK−502N(クラボウ社製)にセットし、自転765rpm、公転765rpmにて60秒混練した後、ステンレススプーンで手攪拌を行い、続けて180秒混練する。
(2)カップにDINPを30g追加し、自転765rpm、公転765rpmにて60秒混練した後、ステンレススプーンで手攪拌を行い、続けて180秒混練する。
(3)更に、カップにDINPを30g追加し、自転765rpm、公転765rpmにて60秒混練した後、ステンレススプーンで手攪拌を行い、続けて180秒混練し、ペーストを作成する。
上記の方法により作成したペーストを20℃にて12時間放冷後、BH型粘度計にて2rpmと20rpmの粘度を測定する。
上記の手法により作成されたペースト粘度が、式(n)〜(p)を満たすことが好ましい。
VIS2が400Pa・s未満の場合、防タレ性等が従来品と差が大きくない場合がある。VIS20が80Pa・s未満では、本発明の所望の粘性付与が得られにくい。また、VIS2/VIS20が5.0未満になると高チキソ性を付与することが困難となる。従って、より好ましくはVIS2≧500、VIS20≧90、VIS2/VIS20≧5.5、更に好ましくはVIS2≧800、VIS20≧130、VIS2/VIS20≧6である。
本発明の表面処理炭酸カルシウムの表面処理を行う前の炭酸カルシウムの製造方法は、特に限定されないが、例えば、従来法である特開平10−72215号公報に記載の如く、石灰乳にカルシウムとの錯体形成剤を添加して炭酸化反応を終了させた後、熟成を行う製造法とは、例えば熟成濃度や熟成時間等による分散方法の点で区別される。上記従来法では確かに、熟成後のBET比表面積を極力高めに保持することで分散した微粒子を得ているが、本発明の課題である高粘性付与や軽量化を達成するには、さらに分散した調製方法が必要である。
本発明に用いられる炭酸カルシウムの好ましい調製条件を以下に示す。

Figure 2003042103
本発明に用いられる炭酸カルシウムの好ましい製造方法を以下に具体的に説明する。
(反応条件)
▲1▼の石灰乳濃度は、3.5〜10.2重量%が好ましい。石灰乳濃度が3.5%未満の場合、生産性が低くコスト高になるばかりでなく、これ以上濃度を薄めても分散性の向上は期待しにくい。一方、10.2重量%を越えると、反応後の一次粒子径の凝集が起きやすく、熟成を行っても平均二次粒子径より大きめになり、所望の粘度物性が得られにくい。従って、より好ましくは5.0〜9.0重量%、更に好ましくは6.0〜8.0重量%である。
▲2▼の錯体形成物質の添加量は、0.5〜15重量%が好ましい。添加量が0.5重量%未満の場合、本発明の目的とする微粒子が得られにくく、一方、15重量%を越えると、反応後の1次粒子が細か過ぎるため、熟成後の二次粒子径が好ましい分散状態である(f)式の範囲を満たない場合があり、結果的に所望の高粘度付与が得られにくい。添加時期においては、炭酸化反応前、炭酸化反応途中のいずれでもよく、反応前と反応途中の両方で添加してもよい。
錯体形成物質としては、クエン酸、シュウ酸、リンゴ酸等のヒドロキシカルボン酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;グルコン酸、酒石酸等のポリヒドロキシカルボン酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;イミノジ酢酸、エチレンジアミン4酢酸、ニトリロトリ酢酸等のアミノポリカルボンとそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;ヘキサメタ燐酸、トリポリ燐酸等のポリ酢酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;アセチルアセトン、アセト酢酸メチル、アセト酢酸アリル等のケトン類;硫酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩等が挙げられ、単独であるいは2種類以上組み合わせて使用することも可能である。中でもヒドロキカルボン酸類は、カルシウムとの結合性が高く、特にクエン酸は好適に使用することができる。
▲3▼の炭酸ガス流量としては、水酸化カルシウム1Kg当たり、通常300〜3000L/hrである。300L/hr未満では、反応後の1次粒子が大きくなりやすく、3000L/hrを越えると工業的にコスト高になり好ましくない。
▲4▼のガス濃度に関しては、10〜50%が好ましい。ガス濃度が10%未満の場合、反応後の1次粒子が大きくなりやすく、50%を越えると工業的にコスト高になり好ましくない。
(熟成条件)
▲5▼の炭酸カルシウム濃度に関しては、2.4〜13.0重量%が好ましい。2.4重量%未満の場合、工業的に生産性が低く、一方、13.0重量%を越えると、熟成により分散性が向上し系の構造粘性が上昇した場合に、系を均一に撹拌することができにくくなり、平均2次粒子径が(f)式の範囲を満たない場合がある。結果的に、所望の高粘性付与が得られにくくなる。従って、より好ましくは4.0〜11.0重量%、更に好ましくは5.0〜9.0重量%である。
上記したように、熟成濃度は分散性を向上させるための重要な指標になりやすいため、微少な粒子ほど濃度を好ましい範囲に薄くした方がより効果的である。
▲6▼の熟成時間に関しては、分散性の指標として好ましい範囲である(f)式を満足するレベルまで熟成を行えば、本発明の目的である高粘性付与の発現が得られやすいので好ましい。従って、上記の製造条件により熟成時間が左右されるため、熟成時間は特に限定されるものでないが、通常24〜240時間が好適である。熟成時間が24時間未満の場合、所望の分散した粒子が得られにくく、240時間を越えると工業的にコスト高となる。従って、より好ましくは30〜200時間、更に好ましくは40〜180時間である。
上記以外の製造条件は、従来の常法通りに行えばよい。例えば、合成温度条件は通常5〜30℃の範囲であり、熟成温度条件は通常30〜70℃の範囲である。また、熟成時の撹拌条件も、液系全体が均一に撹拌できる程度の撹拌力であれば十分であるが、従来の撹拌能力であると、やむおえず系の濃度を薄める必要性が生じコスト高になりやすい。生産性はもちろんのこと分散性を向上させる点においても、撹拌能力は従来より高い方が好ましい。尚、撹拌機構もパドル、タービン、プロペラ、高速インペラ等が一般的に用いられる。
(表面処理)
▲7▼の表面処理量に関しては、炭酸カルシウム生地の比表面積によって左右されるため、式(b)のAsの範囲内であれば特に限定されるものでないが、通常3.5〜50重量%である。表面処理量が3.5重量%未満の場合、本発明の微細で高分散性である炭酸カルシウムの表面を十分に覆うことができない場合がある。この結果、乾燥・粉末化の際、未処理面同士で2次凝集を形成するため、該表面処理炭酸カルシウムとしての効果が十分発揮できにくくなる。一方、50重量%を越えると、表面処理剤過多による樹脂成分あるいは可塑成分への遊離がおこり、ブリード現象や表面肌荒れ現象の原因となりやすい。従って、より好ましくは5〜40重量%、更に好ましくは7〜35重量%である。表面処理方法は特に限定されず、湿式、乾式のいずれでもよい。
本発明で用いられる有機系表面処理剤は、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラギン酸に代表される飽和脂肪酸、オレイン酸、エライジン酸、リノール酸、リシノール酸に代表される不飽和脂肪酸、ナフテン酸に代表される脂環族カルボン酸、アビエチン酸、ピマル酸、パラストリン酸、ネオアビエチン酸に代表される樹脂酸及びこれらの不均化ロジン、水添ロジン、2量体ロジン、3量体ロジンに代表される変成ロジン、アルキルベンゼンスルホン酸に代表されるスルホン酸類およびそれらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、さらには次に例示されるアニオン性、カチオン性、ノニオン性の界面活性剤を単独であるいは2種類以上組み合わせて使用することも可能である。とりわけ、脂肪酸のアルカリ金属塩、樹脂酸のアルカリ金属塩が炭酸カルシウムとの吸着反応性の点で好ましい。
アニオン性の界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸等で例示されるアルキルエーテル硫酸、ポリオキシエチレンアルキルエーテル燐酸等で例示されるアルキルエーテル燐酸、ポリオキシエチレンアルキルフェニルエーテル硫酸等で例示されるアルキルアリールエーテル硫酸、ポリオキシエチレンアルキルフェニルエーテル燐酸等で例示されるアルキルアリールエーテル燐酸、ポリオキシアルキル硫酸エステル等で例示されるアルキル硫酸エステル、ポリオキシアルキル燐酸エステル等で例示されるアルキル燐酸エステル、ポリオキシアルキルフェニル硫酸エステル等で例示されるアルキルアリール硫酸エステル、ポリオキシアルキルフェニル燐酸エステル等で例示されるアルキルアリール燐酸エステル、脂肪酸アルキロールアミドの硫酸エステル等で例示されるアルキルアミド硫酸エステル、ポリオキシエチレンアルキルスルホン酸等で例示されるアルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、スルホコハク酸、ジアルキルスルホコハク酸エステル等で例示されるスルホコハク酸エステル、α−オレフインスルホン酸、N−アシルスルホン酸及び/又はそれらのアルカリ金属、アルカリ土類金属塩、アミン塩、アンモニウム塩等のアニオン性界面活性剤、α、β不飽和モノカルボン酸、α、β不飽和ジカルボン酸、メタアクリル酸アルキルエステル、アルコキシ基を有する(メタ)アクリルエーテル、シクロヘキシル基を有する(メタ)アクリレート、α、βモノエチレン性不飽和ヒドロキシエステル、ポリアルキレングリコールモノ(メタ)アクリレート、ビニルエステル、ビニル系芳香族、不飽和ニトリル、不飽和ジカルボン酸エステル、ビニルエーテル、共役ジエン、鎖状オレフイン、環状オレフイン、スルホ基含有単量体等からなる共重合物等で例示されるアニオン性高分子分散剤及びそれらのアルカリ金属、アルカリ土類金属、アンモニウム等による部分もしくは完全中和された塩等があげられる。
また、カチオン性の界面活性剤としては、ステアリルアミンアセテート、ステアリルアミン塩酸塩などの脂肪族アミン塩、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどの脂肪族4級アンモニウム塩、アルキルベンジルジメチルアンモニウムクロライドなどの芳香族4級アンモニウム塩、複素環4級アンモニウム物等のカチオン性界面活性剤、アミノ基(第1アミン基)、イミノ基(第2アミン基)、第3アミン基、第4アンモニウム基、ヒドラジノ基等の極性基を有するカチオン性高分子系分散剤、それらの極性基を有する単量体と共重合可能な単量体、例えばα、β不飽和モノカルボン酸、α、β不飽和ジカルボン酸、メタアクリル酸アルキルエステル、アルコキシ基を有する(メタ)アクリルエーテル、シクロヘキシル基を有する(メタ)アクリレート、α、βモノエチレン性不飽和ヒドロキシエステル、ポリアルキレングリコールモノ(メタ)アクリレート、ビニルエステル、ビニル系芳香族、不飽和ニトリル、不飽和ジカルボン酸エステル、ビニルエーテル、共役ジエン、鎖状オレフイン、環状オレフイン、スルホ基含有単量体等の単量体との共重合物及びそれらのアルカリ金属、アルカリ土類金属、アンモニウム等により部分もしくは完全中和された塩等が例としてあげられる。
さらに、ノニオン性の界面活性剤としては、ポリオキシエチレン及びその誘導体、カルボキシベタイン、スルホベタイン等で例示されるベタイン、アミノカルボン酸、イミダゾリン誘導体が例としてあげられる。
表面処理後、前記した(f)式を満たすたようスラリー中に含まれるアルカリ金属イオン等の夾雑イオンをろ過水洗することが望ましい。また、ろ液の電気伝導度は特に限定されないが、通常10mS/cm以下、より好ましくは1mS/cm以下、更に好ましくは300μS/cm以下である。
水洗方法に関しては特に制限はなく、シックナー、オリバー、ロータリーフィルター、ラロックスプレス等を用い、水洗・濃縮を行うことができる。
上記の如き、本発明の表面処理炭酸カルシウムは、特に樹脂用に好適であり、例えば、成型用樹脂、塗料用樹脂、インキ用樹脂、シーラント用樹脂、接着剤用樹脂等各種の樹脂に配合され、優れた特性、物性を有する樹脂組成物とされる。
成型用樹脂としては、特に制限されるものではないが、例えばABS樹脂、フッ素樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン又はプロピレンと他のモノマーの共重合体等のポリオレフィン系樹脂、ポリスチレン系樹脂、アクリル系樹脂、メタクリル系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂等に代表される熱可塑性樹脂や、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリイミド樹脂等に代表される熱硬化性樹脂を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、安定剤等の各種添加剤を添加しても良いことは勿論である。
塗料用樹脂としては、特に限定されるものではないが、アルキド樹脂、アクリル樹脂、酢酸ビニル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、スチレン樹脂、メラミン樹脂、エポキシ樹脂等に代表される溶剤系塗料用樹脂、水系塗料においては、アルキド樹脂、アクリル樹脂、ラッテクス樹脂、酢酸ビニル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、スチレン樹脂、メラミン樹脂、エポキシ樹脂等に代表される一般塗料用エマルジョン樹脂、アルキド樹脂、アミン樹脂、スチレン−アリルアルコール樹脂、アミノアルキド樹脂、ポリブタジエン樹脂等に代表される一般塗料用水溶性樹脂、エマルジョン樹脂と水溶性樹脂とをブレンドした塗料用ディスパージョン樹脂、架橋型水可溶性樹脂を乳化剤としたディスパージョン樹脂、アクリルハイドロゾル等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、可塑剤、分散剤等の各種添加剤を添加しても良いことは勿論である。
プラスチゾル用樹脂としては、塩化ビニルゾル、アクリルゾル、水溶性アクリルゾル、ウレタンゾル等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、安定剤等の各種添加剤を添加しても良いことは勿論である。
インキ用樹脂としては特に限定されるものではないが、ロジン変成フェノール樹脂、尿素樹脂、メラミン樹脂、ケトン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニル−酢酸ビニル共重合体、ブチラール樹脂、スチレン−マレイン酸樹脂、塩素化ポリプロピレン、アクリル樹脂、クマロン・インデン樹脂、石油樹脂、ポリエステル樹脂、アルキド樹脂、ポリアミド樹脂、エポキシ樹脂、ポリウレタン樹脂、ニトロセルロース、エチルセルロース、エチルヒドロキシセルロース、環化ゴム、塩化ゴム等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、安定剤、ドライヤ等の各種添加剤を添加しても良いことは勿論である。
シーラント用樹脂としては特に限定されるものではないが、ポリウレタン樹脂、ポリサルファイド樹脂、シリコーン樹脂、変成シリコーン樹脂、ポリイソブチレン樹脂、エポキシ樹脂、ポリエステル樹脂等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、着色剤、安定剤等の各種添加剤を添加しても良いことは勿論である。
接着剤用樹脂としては特に限定されるものではないが、ユリア樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、安定剤、可塑剤等の各種添加剤を添加しても良いことは勿論である。
本発明の樹脂組成物には、本発明の表面処理炭酸カルシウム以外に、粘性、その他の物性を調整するために、コロイド炭酸カルシウム、重質炭酸カルシウム、コロイド状シリカ、タルク、カオリン、ゼオライト、樹脂バルーン、ガラスバルーン等の充填剤、ジオクチルフタレート、ジブチルフタレート等の可塑剤、トルエン、キシレン等の石油系溶剤、アセトン、メチルエチルケトン等のケトン類、セロソルブアセテート等のエーテルエステル等に例示される溶剤、或いはシリコーンオイル、脂肪酸エステル変成シリコーンオイル等、その他必要に応じて種々の添加剤、着色剤等を1種又は2種以上組み合わせて添加することが可能である。
本発明の樹脂組成物は、例えばシーラント、接着剤に代表される硬化型樹脂組成物の場合には、優れた粘性・チキソ性、並びに目地追従性を有する。また、例えば塗料、インキ用樹脂組成物の場合は、優れた防タレ性、高光沢、高い透明性、高い塗膜強度を有する。更に、例えば成形用樹脂組成物の場合は、ウエルドライン面の強度低下が防止され、優れた強度を有する。
以下に実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明は、その要旨を越えない限り、これらに何ら制限されるものではない。
尚、以下の記載において、特に断らない限り、%は重量%、部は重量部を意味する。
実施例1
温度10℃、濃度8%の石灰乳に、錯体形成物質としてクエン酸を水酸化カルシウムに対し1.7%添加し、該スラリーに水酸化カルシウム1kg当たり1700L/hrの20%COガスを導入し、炭酸カルシウムスラリーを作製した。次いで該炭酸カルシウムスラリーを、濃度10%に調整し、温度45〜50℃で50時間撹拌熟成を行った。熟成後の平均粒子径(Dx)=0.20μmであった。該炭酸カルシウムスラリーに、温水に熱溶解させた10%ステアリン酸ナトリウムを炭酸カルシウム固形分に対して15%添加し、撹拌することにより該表面処理剤を炭酸カルシウム表面に十分吸着せしめた後、脱水、乾燥、粉末化し、BET比表面積(Sw)=48m/gの有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。尚、該表面処理炭酸カルシウムの200℃〜500℃の熱減量率(Tg)=118mg/gであった。また、平均細孔直径(Dxp)=0.016μm、平均細孔径量(Dyp/Dxp)=79であった。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例2
炭酸カルシウムスラリー濃度を7%に変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例3
熟成時間を120時間に変更した以外は、実施例2と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例4
表面処理後にフィルタープレス機(ラロックス社製)を用い、ろ液の伝導度が300μS/cmまで炭酸カルシウムケーキを水洗脱水した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例5
表面処理量を25%に変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例6
温度10℃、濃度5%の石灰乳に、錯体形成物質としてクエン酸を水酸化カルシウムに対し10%添加し、該スラリーに水酸化カルシウム1kg当たり1700L/hrの20%COガスを導入し、炭酸カルシウムスラリーを作製した。次いで該炭酸カルシウムスラリーを、濃度3%に調整し、温度45〜50℃で150時間撹拌熟成を行った。熟成後の平均粒子径(Dx)=0.38μmであった。該炭酸カルシウムスラリーに、温水に熱溶解させた10%ステアリン酸ナトリウムを炭酸カルシウム固形分に対して35%添加し、撹拌することにより該表面処理剤を炭酸カルシウム表面に十分吸着せしめた後、脱水、乾燥、粉末化し、BET比表面積(Sw)=125m/gの有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。尚、該表面処理炭酸カルシウムの200℃〜500℃の熱減量率(Tg)=296mg/gであった。また、平均細孔径(Dxp)=0.005μm、平均細孔径量(Dyp/Dxp)=148であった。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例7
錯体形成物質として、クエン酸三ナトリウムを水酸化カルシウムに対し3%添加する以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例8
有機系表面処理剤をラウリン酸に変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表1に示す。
実施例9
有機系表面処理剤をラウリン酸ナトリウムに変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
実施例10
有機系表面処理剤をパルミチン酸ナトリウムに変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
実施例11
有機系表面処理剤を、ステアリン酸ナトリウム:樹脂酸カリウム=3:2に変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
実施例12
有機系表面処理剤を樹脂酸カリウムに変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
実施例13
有機系表面処理剤を、ステアリン酸ナトリウム:アルキルベンゼンスルホン酸ナトリウム=3:1に変更した以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
比較例1
有機系表面処理剤の添加量を5%にした以外は、実施例1と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
比較例2
温度10℃、濃度4%の石灰乳に、錯体形成物質としてクエン酸を水酸化カルシウムに対し18%添加し、該スラリーに水酸化カルシウム1kg当たり17000L/hrの20%COガスを導入し、炭酸カルシウムスラリーを作製した。次いで該炭酸カルシウムスラリーを、濃度2%に調整し、温度45〜50℃で200時間撹拌熟成を行った。熟成後の平均粒子径(Dx)=2.3μmであった。該炭酸カルシウムスラリーに、温水に熱溶解させた10%ステアリン酸ナトリウムを炭酸カルシウム固形分に対して45%添加し、撹拌することにより該表面処理剤を炭酸カルシウム表面に十分吸着せしめた後、脱水、乾燥、粉末化し、BET比表面積(Sw)=175m/gの有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。尚、該表面処理炭酸カルシウムの200℃〜500℃の熱減量率(Tg)=402mg/gであった。また、平均細孔直径(Dxp)=0.003μm、平均細孔径量(Dyp/Dxp)=47であった。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
比較例3
特開平10−72215号公報の実施例1の如く、温度10℃、濃度11.8%の石灰乳に、錯体形成物質としてクエン酸三ナトリウムを水酸化カルシウムに対し3%添加し、該スラリーに水酸化カルシウム1kg当たり1700L/hrの20%COガスを導入し、炭酸カルシウムスラリーを作製した。次いで該炭酸カルシウムスラリーを、濃度調整を行わず炭酸カルシウム濃度14.9%のまま、温度45〜50℃で50間撹拌熟成を行った。熟成後の平均粒子径(Dx)=0.50μmであった。該炭酸カルシウムスラリーに、温水に熱溶解させた10%ステアリン酸ナトリウムを炭酸カルシウム固形分に対して15%添加し、強撹拌することにより該表面処理剤を炭酸カルシウム表面に十分吸着せしめた後、脱水、乾燥、粉末化し、BET比表面積(Sw)=42m/gの有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。尚、該表面処理炭酸カルシウムの200℃〜500℃の熱減量率(Tg)=101mg/gであった。また、また、平均細孔径(Dxp)=0.018m、平均細孔径量(Dyp/Dxp)=27であった。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
比較例4
温度10℃、濃度11.8%の石灰乳に、錯体形成物質としてクエン酸を水酸化カルシウムに対し0.2%添加し、該スラリーに水酸化カルシウム1kg当たり1700L/hrの20%COガスを導入し、炭酸カルシウムを作製した。次いで該炭酸カルシウムスラリーを、濃度調整を行わず炭酸カルシウム濃度14.9%のまま、温度45〜50℃で50間撹拌熟成を行った。熟成後の平均粒子径(Dx)=0.49μmであった。該炭酸カルシウムスラリーに、温水に熱溶解させた10%ステアリン酸ナトリウムを炭酸カルシウム固形分に対して5%添加し、強撹拌することにより該表面処理剤を炭酸カルシウム表面に十分吸着せしめた後、脱水、乾燥、粉末化し、BET比表面積(Sw)=17m/gの有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。尚、該表面処理炭酸カルシウムの200℃〜500℃の熱減量率(Tg)=42mg/gであった。
また、平均細孔径(Dxp)=0.042m、平均細孔径量(Dyp/Dxp)=38であった。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
比較例5
有機系表面処理剤を、樹脂酸カリウムに変更した以外は、比較例3と同様の製造方法で有機系表面処理剤を表面処理してなる炭酸カルシウムを合成した。得られた表面処理炭酸カルシウムの各物性値を表2に示す。
Figure 2003042103
Figure 2003042103
実施例14〜20、比較例6〜9
前記実施例1〜7、比較例1〜4で合成した表面処理炭酸カルシウムを用い、下記の配合に基づき成型用樹脂組成物を調製した。得られた成型樹脂組成物の評価結果を表3に示す。
(配合)
表面処理炭酸カルシウム 15部
ポリプロピレン樹脂 85部
上記の2種をヘンシェルミキサー(カワタ社製)にてドライブレンドした後、押出し成形機(神戸製鋼社製NEXT T−60)でペレット化した後、射出成形機によりダンベル片を作製し、引張強度、曲げ弾性率、衝撃強度を試験した。但し、ウエルドライン面の強度測定の試験片については、2カ所のゲートから注入し、真ん中でウエルドライン界面を作った。その他の物性測定の試験片は1カ所のゲートから注入した。
得られた試験片について下記の方法で各種特性を測定、評価した。
(引張強度、曲げ強度、衝撃強度)
引張強度はJIS K7113のプラスチックの引張試験方法に、曲げ強度はJIS K7203の硬質プラスチックの曲げ試験方法に、衝撃強度についてはJIS K7111の硬質プラスチックのシャルピー衝撃試験方法にそれぞれ準じて行った。
(引っ掻き試験)
30mm×80mm厚さ1mmに成形したプラスチック板を、引っ掻き試験機(東洋精機製作所社製)を用いて引っ掻き試験を行い、その状態を下記の基準で評価した。
◎:極めて良好(全く傷が付かない。)
○:良好(ほとんど傷が付かない。)
△:普通(多少傷が付く。)
×:不良(かなり傷が付く。)
Figure 2003042103
表3の結果から明らかな様に、本発明の表面処理炭酸カルシウムを配合してなる成型用樹脂組成物は、引張強度、曲げ強度、衝撃強度に優れているだけでなく、ウエルドライン面の強度低下防止にも優れており、このことから被接着物との接着力にも優れていることもわかる。また、従来よりも炭酸カルシウムの添加量を5%程減量化でき、軽量化においても有効であることが確かめられた。
実施例21〜27、比較例10〜13
前記実施例1〜7、比較例1〜4で合成した表面処理炭酸カルシウムを用い、下記の配合に基づき塗料樹脂組成物を調製した。
(配合)
Figure 2003042103
上記配合物を、粒ゲージにて20ミクロン以下になるまでSGミルにて分散させた後、ガラスビーズを取り除いて塗料樹脂組成物を作製し、下記の方法で各種特性を測定、評価した。結果を表4に示す。
(光沢、耐水性試験後光沢、光沢保持率)
各塗料樹脂組成物をガラス板に100ミクロンのアプリケーターを用いて片面に塗布し、常温にて24時間乾燥後、村上式グロスメーターにて60°光沢を測定した。その後、ガラス板を水中に浸漬し、3日後の光沢保持率を測定した。
(タレ性)
各塗料樹脂組成物をKU値が78になるようにミネラルスピリットを用いて希釈調整し、250、200、150、100ミクロンのアプリケーターを用いて、全黒測定用紙に塗布し、塗布後直ちに塗布面が垂直になるように立てかけ常温にて24時間放置し、そのタレの状態を下記の基準で評価した。
○:良好(全くタレていない。)
△:普通(若干たれている。)
×:不良(タレている。)
(塗膜の引っ掻き試験)
各塗料樹脂組成物をガラス板に1000ミクロンのアプリケーターを用いて片面に塗布し、常温にて1週間乾燥後、引っ掻き試験機(東洋精機製作所社製)を用いて引っ掻き試験を行い、その状態を下記の基準で評価した。
◎:極めて良好(全く傷が付かない。)
○:良好(ほとんど傷が付かない。)
△:普通(多少傷が付く。)
×:不良(かなり傷が付く。)
Figure 2003042103
表4の結果から明らかなように、本発明の表面処理炭酸カルシウムを配合してなる塗料樹脂組成物は、防タレ性に優れていることから、高いチキソ性を有しており、且つ、耐水性試験後の光沢保持率に優れており、このことから、高耐久性及び、強固な塗膜強度を有することがわかる。
実施例28〜34、比較例14〜17
前記実施例1〜7、比較例1〜4で合成した表面処理炭酸カルシウムを用い、下記の配合に基づき調整したプラスチゾル樹脂組成物を調製した。
(配合)
表面処理炭酸カルシウム 300部
アクリルレジン ゼオンアクリルレジンF345(新第一塩ビ工業
社製) 250部
ブロックウレタン樹脂硬化剤(三井武田ケミカル社製)120部
DINP 500部
ターペン 80部
ウレタン硬化剤(三井武田ケミカル社製) 6部
それぞれ配合剤5L万能攪拌機(ダルトン社製)にて常温でツブが無くなるまで混練し、アクリルゾル樹脂組成物を作製し、下記の方法で各種特性を測定評価した。結果を表5に示す。
(粘性・チキソ性)
前記配合に基づき調整したアクリルゾルの粘度をBH型粘度計を用いて2rpm、20rpmの粘度を測定し、2rpm粘度/20rpm粘度をチキソ性として表示した。
(耐チッピング性)
電着塗装版に上記乾燥条件にて焼き付け硬化後の塗膜を、塗装面を上にして水平より60°の角度で固定し、この塗膜面に垂直に立てた長さ2mのパイプの下端を当てJISナット落下試験法に準じてM−4ナットを落下させ、塗装面が破壊され下地が露出するまでのナットの積算重量で耐チッピング性を表した。
Figure 2003042103
表5の結果から明かなように、本発明の表面処理してなる炭酸カルシウムを配合してなるプラスチゾル樹脂組成物は、粘性や強度(耐チッピング性)が明らかに改善されていることが確認された。
実施例35〜46、比較例18〜21
前記実施例1〜11及び13、比較例1〜4で合成した表面処理炭酸カルシウムを用い、下記の配合に基づき調整し、得られた硬化樹脂組成物の各種特性を評価した。結果を表6、7に示す。
(配合)
(基材)
Figure 2003042103
それぞれの配合物を5リットル万能混合撹拌機(ダルトン社製)にて、ツブがなくなるまで十分混練し、基材および硬化剤を作製し、下記の方法で各種特性を測定評価した。結果を表6に示す。
(粘性・チキソ性)
前記配合に基づき調整した硬化樹脂組成物の基材粘度をBS型粘度計を用いて1rpm、10rpmの粘度を測定し、1rpm粘度/10rpm粘度をチキソ性として表示した。
(貯蔵安定性試験)
前記硬化樹脂組成物を恒温装置20℃×2週間静置後の基剤粘度を測定した。
(H型引張強度及び伸び試験)
基材:硬化剤=10:1で十分に脱泡混合後、JIS A5757 6.11引張応力及び伸び試験に基づいてH型を作製し評価を行った。
(接着性試験)
上記H型引張強度試験において、下記の基準により接着性を評価した。
○:良好(材料破壊している。)
△:普通(やや界面剥離しているが、材料破壊もしている。)
×:不良(界面剥離している。)
(追従性試験後H型引張試験及び接着性試験)
上記H型引張強度試験において、50%伸ばした状態で硬化物を1週間固定した後、同様にしてH型引張強度(残留応力)を測定し、また接着性を評価することにより、シーリング材の目地に対する追従性を評価した。
Figure 2003042103
Figure 2003042103
表6及び表7の結果から明らかなように、本発明の表面処理してなる炭酸カルシウムを配合してなる、シーラント、接着剤に代表される硬化樹脂組成物は、破断強度が高く、被着体との接着力に優れており、追従性試験後においてもその効果が維持されていることが確認できた。
また、実施例4及び8の如く炭酸カルシウム中のアルカリ金属含有量を水洗により低減することにより、貯蔵安定性が優れていることが確認された。
実施例47、比較例22
前記の実施例12、比較例5で合成した表面処理炭酸カルシウムを用い、下記の配合に基づきインキ樹脂組成物を調製した。得られたインキ樹脂組成物の評価結果を表8に示す。
(配合)
表面処理炭酸カルシウム 25部
ロジン変成フェノール樹脂 35部
アマニ油 20部
精製軽油 17部
ドライヤー 3部
上記配合物を、粒ゲージで5ミクロン以下になるまで、3本ロール(井上製作所製)を用いて分散させ、インキ樹脂組成物を作製した。
(粘性・チキソ性)
上記配合に基づき調整したインキ樹脂組成物をBS型粘度計を用いて1rpm、10rpmの粘度を測定し、1rpm粘度/10rpm粘度をチキソ性として表示した。
(透明性)
上記配合に基づき調整したインキ樹脂組成物をガラス板に25ミクロンのアプリケーターを用いて片面に塗布し、常温にて24時間乾燥後、光電分光光度計(島津製作所社製)を用いて、550μm光透過率を測定した。
(光沢)
上記と同様にインキ樹脂組成物を塗布し、常温にて24時間乾燥後、村上式グロスメーターにて60°光沢を測定した。
(耐摩擦性試験)
各樹脂組成物を全黒測定用紙に25ミクロンのアプリケーターを用いて片面に塗布し、常温にて24時間乾燥後、JISK5701の耐摩擦性試験に基づいて、S型摩耗試験機(サザーランドラボテスター)を用いて下記の基準で評価を行った。
○:良好(摩耗しない。)
△:普通(やや摩耗する。)
×:不良(かなり摩耗する。)
(接着性)
上記と同様に塗布乾燥後、セロテープ(登録商標)〔ニチバン社製CT405A−18〕を塗膜表面に張り付け、これを急速に引き剥がし、インキの剥離状態を下記の基準で評価した。
◎:極めて良好(全く剥離しない。)
○:良好(ほとんど剥離しない。)
△:普通(やや剥離する。)
×:不良(かなり剥離する。)
(耐引っ掻き性)
上記と同様に塗布乾燥後、引っ掻き試験機(東洋精機製作所社製)を用いて引っ掻き試験を行い、その状態を下記の基準で評価した。
◎:極めて良好(全く傷が付かない。)
○:良好(ほとんど傷が付かない。)
△:普通(やや傷が付く。)
×:不良(かなり傷が付く。)
Figure 2003042103
表8の結果から明らかなように、本発明の表面処理炭酸カルシウムを配合してなるインキ樹脂組成物は、粘性・チキソ性付与効果に優れるだけでなく、光沢、透明性が高いことがわかる。更に、耐摩耗性、耐引っ掻き性に優れ、高い塗膜強度に優れており、被着体との接着性にも優れていることがわかる。その結果、従来よりも炭酸カルシウムの添加量を減量化することが可能となるため、インキ特性の安定化に有効である。
産業上の利用可能性
叙上の通り、本発明の有機系表面処理剤を表面処理してなる、特定の粒度特性を有する炭酸カルシウムは、特に樹脂用として有用で、樹脂に配合した場合に該樹脂組成物と被着体との接着力を向上させ、且つ強靱な塗膜を形成することが可能である。
本発明の表面処理炭酸カルシウムを、例えば成型用樹脂に使用した場合には、ウエルドライン面の強度低下を防止し、また、優れた衝撃強度を有する樹脂組成物を、例えば塗料、インキに使用した場合には、高光沢及び優れた防タレ性、高い塗膜強度を有する樹脂組成物を、例えばプラスチゾル用樹脂組成物に使用した場合には、優れた粘性・チキソ性及び耐チッピング性を有する樹脂組成物を、例えばシーラントや接着剤に代表される硬化型樹脂に使用した場合には、優れた粘性・チキソ性及び目地追従性を有する樹脂組成物を提供することができる。TECHNICAL FIELD The present invention relates to calcium carbonate obtained by surface-treating an organic surface treatment agent, a method for producing the same, and a resin composition obtained by blending the calcium carbonate, and more specifically, for example, represented by a sealant and an adhesive. When used in a curable resin, it gives a resin composition with excellent jointing ability as well as viscosity and thixotropic properties. For example, when blended with paints, inks, and plastisols, it has high gloss and high thixotropy. Calcium carbonate obtained by surface-treating an organic surface treatment agent, giving a resin composition that not only has sagging resistance but also realizes a high-strength coating film, its production method, and a composition thereof It relates to a resin composition.
BACKGROUND ART Calcium carbonate is widely used as a filler or pigment for plastics, paints, inks, sealants, adhesives, paper, rubber and the like. For example, sealants are widely used for waterproofing, sealing, etc. in the fields of construction, automobiles, flooring, etc., but are often applied to vertical parts, and of course, from construction to curing. It is necessary not to sag, and it is necessary to have high viscosity and high thixotropy.
In order to cope with the above problems, the present inventors have already proposed a method for producing precipitated calcium carbonate (Japanese Patent Laid-Open No. 10-72215). It has become to.
For example, the demand for siding boards is increasing rapidly in private homes, and siding boards are used with low modulus sealants in consideration of wet and dry wrapping and movement of components, but siding boards expand and contract under the influence of temperature and humidity. For this reason, the sealant needs to follow the joint. Conventionally, colloidal calcium carbonate has been used to give these characteristics, lowering the modulus after curing, increasing the followability to the adherend to some extent, and fine adjustment of the viscosity is possible, but further lower modulus In addition, the conventional colloidal calcium carbonate is the limit for viscosity adjustment by addition of a trace amount, and a finer and highly dispersible one is desired.
In paints and inks, colloidal calcium carbonate has been used for a long time. As for paints, in recent years, a guarantee period such as a 10-year guarantee has been set, and paints with higher durability have been demanded. Ink also has a problem that the transparency of the ink is lowered due to the difference in refractive index between calcium carbonate and the ink vehicle, so there is a demand to reduce the amount of conventional colloidal calcium carbonate and maintain the ink characteristics. Has been made.
Furthermore, in plastics, wollastonite and acicular calcium carbonate are used to prevent a decrease in the strength of the weld line of the injection molding machine, both of which have a relatively large particle size of several tens to 200 microns. There is a problem in that the impact strength is reduced. With conventional colloidal calcium carbonate, it has been difficult to suppress a decrease in weld line strength and impact strength.
In addition, vinyl chloride resin-based plastisol is often used especially for automobile bodies, but in recent years, alternatives to acrylic resin-based materials have been studied from the environmental viewpoint. In particular, in the acrylic resin system, thinning is being considered from the price difference with the vinyl chloride resin system as well as weight reduction, and a filler capable of imparting high viscosity with a small amount of addition is required. Colloidal calcium carbonate is not satisfactory.
In view of the actual situation, the present invention, when used in, for example, a curable resin typified by a sealant or an adhesive, has not only the effect of imparting viscosity and thixotropy but also a joint followability, such as paints, inks, and plastisols. When used in a plastic, it has high gloss, excellent sagging resistance, and high coating film strength.For example, when used in plastic, it prevents the weld line surface from being reduced in strength and has excellent impact strength. Calcium carbonate obtained by surface-treating an organic surface treatment agent capable of reducing the weight by reducing the amount added to the resin, a method for producing the same, and a composition thereof The resin composition obtained is provided.
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention added a specific substance to perform a carbonation reaction, and then aged at a specific concentration. Precipitated calcium carbonate with good properties, surface treatment of the calcium carbonate with a specific amount of organic surface treatment agent improves the adhesion to the adherend, and the strength of the formed coating film itself As a result, the inventors have found that these problems can be solved and completed the present invention.
DISCLOSURE OF THE INVENTION That is, the first of the present invention is characterized in that calcium carbonate surface-treated with an organic surface treatment agent satisfies the following formulas (a), (b), (c) and (d): The content of the surface treated calcium carbonate is as follows.
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(C) 0.003 ≦ Dxp ≦ 0.03 (μm)
(D) 50 ≦ Dyp / Dxp ≦ 180
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
AS: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (integrated pore volume increase amount / log average pore diameter) is the maximum value (Dys). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: Average pore diameter The second aspect of the present invention is that calcium carbonate surface-treated with an organic surface treatment agent satisfies the following formulas (a), (b), (e) and (f): The content of the surface-treated calcium carbonate is as follows.
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
AS: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxs: 50% cumulative particle weight average particle diameter (μm) calculated from the large particle side in the particle size distribution in the laser diffraction type (manufactured by Shimadzu Corporation: SALD-2000).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
According to a third aspect of the present invention, the surface treated calcium carbonate is characterized by comprising calcium carbonate surface-treated with an organic surface treating agent and satisfying the following formulas (a) to (f).
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(C) 0.003 ≦ Dxp ≦ 0.03 (μm)
(D) 50 ≦ Dyp / Dxp ≦ 180
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (cumulative pore volume increase amount / 10 g average pore diameter) is the maximum value (Dys). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: Average pore diameter Dxs: 50% average particle diameter (μm) of cumulative weight from the large particle side in the particle size distribution in the laser diffraction method (manufactured by Shimadzu Corporation: SALD-2000).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
In the fourth aspect of the present invention, 0.5-15% by weight of a substance that forms a complex by coordination with metal ions is added to the calcium hydroxide slurry, and carbon dioxide is blown to synthesize calcium carbonate by a carbonation reaction. A method for producing a surface-treated calcium carbonate, characterized by adjusting the calcium carbonate concentration to 2.4 to 13.0% by weight and aging, and surface-treating the obtained calcium carbonate with an organic surface treatment agent Content.
According to a fifth aspect of the present invention, there is provided a resin composition characterized in that the surface-treated calcium carbonate is blended with a resin.
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be specifically described below.
The formula (a) is a BET specific surface area of the surface-treated calcium carbonate of the present invention by a nitrogen adsorption method, and needs to be 20 to 200 m 2 / g. When the specific surface area is less than 20 m 2 / g, it is difficult to impart high viscosity, which is the object of the present invention. On the other hand, when it exceeds 200 m 2 / g, it is preferable that the primary particles are very small, but the stability with time is poor and there is a problem in terms of dispersibility. Therefore, Preferably it is 30-150 m < 2 > / g, More preferably, it is 40-120 m < 2 > / g.
In addition, the apparatus for measuring a BET specific surface area used NOVA2000 type | mold by Yuasa Ionics.
The formula (b) is the amount of the organic surface treatment agent per unit specific surface area of the surface-treated calcium carbonate of the present invention, and the organic surface treatment amount As per unit specific surface area is 1.0 to 7.5 mg / m 2 . It is necessary to be. Among conventional calcium carbonates, there are some commercially available fine primary particles that satisfy the formula (a). However, in the calcium carbonate, secondary particles formed by agglomeration of primary particles are further agglomerated. The surface treatment amount covering the calcium carbonate is less than 1.0 mg / m 2 and is a sufficient treatment amount. However, the calcium carbonate of the present invention is more tertiary than the conventional one. Since there are few formed bodies and the dispersibility of the secondary particle formed body is extremely high, it is difficult to sufficiently cover the surface. Therefore, when drying and pulverization are performed while the treatment amount is insufficient, tertiary agglomerates are formed between the untreated surfaces, so that the effect as the surface-treated calcium carbonate cannot be sufficiently exhibited. On the other hand, when it exceeds 7.5 mg / m 2 , the surface treatment agent is liberated to the resin component or the plastic component due to the excess of the surface treatment agent, causing a bleed phenomenon and a rough surface phenomenon. Therefore, Preferably it is 1.5-5.0 mg / m < 2 >, More preferably, it is 2.0-4.0 mg / m < 2 >.
The heat loss per unit specific surface area is TG-8110 manufactured by Rigaku Corporation. About 100 mg of surface-treated calcium carbonate is sampled on a sample pan (made of platinum) having a diameter of 10 mm and heated at a rate of 15 ° C./min. The heat loss up to ° C. was measured to determine the heat loss rate (mg / g) per gram of surface-treated calcium carbonate, and this value was divided by the BET specific surface area value.
Equations (c) and (d) serve as indices for knowing the dispersion state of the surface-treated calcium carbonate of the present invention.
(C) is an average pore diameter (Dxp) of a value (Dys) at which the amount of increase in mercury intrusion becomes maximum in the pore distribution in the range of 0.001 to 0.1 μm measured by the mercury intrusion method (porosimeter). It means the fineness of the gap between the surface treated calcium carbonate particles. Therefore, it represents the average diameter of the gaps between the primary particles, not the fineness of the particles shown by the (nitrogen) gas adsorption method of the formula (a), and it must be 0.003 to 0.03 μm. is there. When the average pore diameter is less than 0.003 μm, the primary particles or secondary particles are too fine, which causes a problem in stability over time. On the other hand, if it exceeds 0.03 μm, there are many secondary particle forming bodies in which the primary particles are too large or the primary particles are strongly agglomerated, and the high-viscosity physical property which is the object of the present invention is as follows. I can't get it. Therefore, it is preferably 0.005 to 0.025 μm, more preferably 0.006 to 0.020 μm.
The increase in the amount of mercury intrusion means the increase in the pore volume, and is expressed by the formula of (integrated pore volume increase / log average pore diameter) (unit: ml / g). Of course, the smaller the pore diameter, the smaller the pore volume, so the maximum mercury intrusion increase (Dys) depends on the pore diameter.
The formula (d) shows the number of average pore diameters of the formula (c), and is an index indicating the high viscosity that is the object of the present invention. As described above, the smaller the pore diameter, the smaller the pore volume. Therefore, it is necessary in the present invention by adding the maximum mercury intrusion increase amount (Dyp) and the average pore diameter (Dxp) of the formula (c). The amount (number) of pore diameters can be derived, and the higher the value of Dyp / Dxp, the higher the viscosity. Accordingly, it is necessary that the average pore diameter (Dyp / Dxp) of the present invention is 50 to 180. When Dyp / Dxp is less than 50, the high viscosity which is the object of the present invention cannot be obtained. On the other hand, if the average particle diameter exceeds 180, the average pore diameter is too small, which causes a problem in the temporal stability of the primary particles or secondary particles. Therefore, it is preferably 60 to 150, more preferably 70 to 130.
When the surface-treated calcium carbonate of the present invention is out of the ranges of the formulas (c) and (d), for example, the coating composition containing the calcium carbonate has low gloss, and the sealant composition has reduced strength at break. .
In addition, the mercury intrusion apparatus (porosimeter) used in the present invention and main measurement conditions are shown below.
<Measurement device>
Model 9520 manufactured by Shimadzu Corporation <Main measurement conditions>
Mercury purity = 99.99 (%)
Mercury surface tension = 480 (dyns / cm)
Mercury contact angle = 135 ° C
Cell constant = 10.79 (μl / pF)
Sample weight: Weighed to about 0.10 g each and measured The surface-treated calcium carbonate of the present invention may satisfy the following formulas (e) to (f), and further, the above formulas (a) to (d) In addition, it is preferable that the following expressions (e) to (f) are satisfied.
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Dxs: 50% cumulative particle weight average particle diameter (μm) calculated from the large particle side in the particle size distribution in the laser diffraction type (manufactured by Shimadzu Corporation: SALD-2000).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
The expressions (e) and (f) serve as indices for knowing the dispersion state in the resin composition, for example. Therefore, it is a preferred embodiment to add the above formula to the factor.
The particle size distribution was determined by weighing the following compounding materials (I) and (II) into a 140 ml mayonnaise bottle, stirring with a stainless spoon until they were visually dispersed, diluting with compounding material (III), and then using an ultrasonic disperser. Then, a pre-dispersed sample is used as a sample and measured by a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation: SALD-2000).
(I) Neutral detergent (5 times diluted with water) 2.0 g
(II) Calcium carbonate sample 0.4g
(III) Water 40g
In particular, it is preferable that the ultrasonic dispersion used as the pre-dispersion after adjusting with the above-described formulation as the pretreatment is performed under a certain condition, and the ultrasonic dispersion machine used in the examples of the present invention is US-300T (Nippon Seiki Seisakusho Co. And pre-dispersed under constant conditions of 100 μA-60 seconds. The neutral detergent is not particularly limited and is a general commercial product, and there is no problem. In the present invention, Mama Lemon (manufactured by Lion) was used.
In the particle size distribution measuring method described above, when the average particle diameter (Dxs) of the present invention is less than 0.03 μm, the temporal stability of the primary or secondary particles may be lowered. On the other hand, if it exceeds 1 μm, the number of tertiary particle forming bodies tends to increase as described above, and the dispersibility in the resin composition tends to deteriorate. Accordingly, the thickness is more preferably 0.05 to 0.8 μm, still more preferably 0.08 to 0.5 μm.
On the other hand, if the cumulative total weight (Dys) with an average particle diameter exceeding 3 μm exceeds 30% by weight, the dispersion state in the resin composition cannot be said to be sufficient, and it is difficult to obtain desired high viscosity properties. Therefore, it is more preferably 25% by weight or less, and most preferably 20% by weight or less.
When the surface-treated calcium carbonate of the present invention is out of the range of the above formulas (e) and (f), for example, the coating composition containing the calcium carbonate has reduced gloss, and the sealant composition has a breaking strength, etc. It is preferable that the surface-treated calcium carbonate of the present invention that easily causes problems further satisfy the following formulas (g) to (j). These define preferred ranges of the above-mentioned formulas (c), (d), (e), and (f), respectively.
(G) 0.005 ≦ Dxp ≦ 0.025 (μm)
(H) 60 ≦ Dyp / Dxp ≦ 150
(I) 0.05 ≦ Dxs ≦ 0.8 (μm)
(J) Dys ≦ 25 (% by weight)
It is preferable that the surface-treated calcium carbonate of the present invention further satisfies the following formula (k).
(K) 0.1 ≦ Sw · Dxp ≦ 1.5
The equation (k) is a value obtained by multiplying the BET specific surface area value (Sw) indicating the fineness of the surface-treated calcium carbonate primary particles by the average pore diameter (Dxp) indicating the fineness of the secondary particles. is there. The primary particles and the secondary particles are already individually limited by the formulas (a) to (j), but preferably not the individual but both have the desired viscosity as in the formula (k). It is easy to obtain physical properties. When Sw · Dxp in the formula (k) is less than 0.1, the temporal stability of the primary or secondary particles may be lowered. On the other hand, if it exceeds 1.5, the number of tertiary particle forming bodies tends to increase as described above. Therefore, it is more preferably 0.3 to 1.2, still more preferably 0.5 to 1.0.
The surface-treated calcium carbonate of the present invention preferably further satisfies the following formula (1).
(L) 0.03 ≦ Is ≦ 3 (μmol / m 2 )
However,
Is: Alkali metal content per unit specific surface area calculated by the following formula {metal content per gram of calcium carbonate (μmol / g)} / Sw (m 2 / g)
The formula (l) represents the alkali metal content in the surface-treated calcium carbonate, and is usually preferably in the range of 0.03 to 3 μmol / m 2 . Among alkali metal compounds, especially sodium compounds are highly exothermic and easily react with moisture outside the system, so when sodium compounds in an amount exceeding 3 μmol / m 2 are present in calcium carbonate, they are dispersed especially in sealing material applications. There may be problems in storage stability such as defects. Further, the alkali metal content of the To level or below 0.03μmol / m 2 of 0.03μmol / m 2 is 1) or very small the amount of surface treatment, 2) or excessive washing carried out after the surface treatment, 3) It is necessary to use an acid such as a fatty acid or a resin acid as a surface treatment agent. In the case of 1), the above-mentioned physical property defects are likely to occur, and in the case of 2), a large amount of water is required, resulting in an increase in cost. In the case of 3), since the surface treatment is performed at a temperature equal to or higher than the melting point, the cost tends to be high and the selectivity of the surface treatment agent is limited. Therefore, more preferably 0.15 to 2 μmol / m 2 , and still more preferably. Is 0.3 to 1.5 μmol / m 2 .
As a more preferable aspect, in the calcium carbonate slurry before the surface treatment, it is preferable that the slurry behavior satisfies the following formula (m).
(M) 0.03 ≦ Dx ≦ 0.40
However,
Dx: Particle size (μm) at 50% cumulative weight calculated from the large particle size side in the particle size distribution measured with a centrifugal particle size distribution meter (SA-CP4, manufactured by Shimadzu Corporation)
The formula (m) represents the average particle diameter of the secondary particles before the surface treatment of the surface-treated calcium carbonate of the present invention, and incorporates a numerically clear particle size distribution index. The surface-treated calcium carbonate of the present invention that satisfies the formula (m) can surely exhibit the high viscosity imparting that is the object of the present invention. Therefore, when Dx is less than 0.03, problems are likely to occur in the temporal stability and dispersibility of the calcium carbonate primary particles. On the other hand, when it exceeds 0.40 μm, the proportion of the tertiary particle forming body is increased as described above, and thus it is difficult to obtain the high viscosity imparted object of the present invention in the surface-treated calcium carbonate. Therefore, it is more preferably 0.07 to 0.35 μm, and still more preferably 0.10 to 0.30 μm.
In addition, the primary particle shape of calcium carbonate can be used without particular limitation such as spherical shape, spindle shape, needle shape, lump shape, chain shape (necklace shape), etc. It is suitable not only for imparting viscosity but also for imparting resin strength.
As a more preferable aspect, the surface-treated calcium carbonate of the present invention preferably satisfies the following formula.
(N) VIS2 ≧ 400 (Pa · s)
(O) VIS20 ≧ 80 (Pa · s)
(P) VIS2 / VIS20 ≧ 5.0
However,
VIS2: viscosity of a mixed paste of diisononyl phthalate (DINP) and surface-treated calcium carbonate, BH viscometer at 2 rpm (Pa · s)
VIS20: 20 rpm viscosity (Pa · s) of the paste
(N)-(p) shows the viscous behavior in the resin component of the surface treatment calcium carbonate of this invention. A method for preparing a mixed paste of DINP and the calcium carbonate is as follows.
Calcium carbonate sample 50 parts by weight DINP 30 parts by weight DINP 30 parts by weight (additional)
30 parts by weight of DINP (additional)
(1) Take 30 g of DINP into a 1 L paper cup and then weigh out 50 g of calcium carbonate. A paper cup is set in a planetary stirring device KK-502N (manufactured by Kurabo Industries Co., Ltd.), kneaded for 60 seconds at 765 rpm for rotation and 765 rpm for revolution, and then hand-stirred with a stainless spoon, and then kneaded for 180 seconds.
(2) Add 30 g of DINP to the cup, knead for 60 seconds at 765 rpm for rotation and 765 rpm for revolution, and then knead manually with a stainless spoon, and then knead for 180 seconds.
(3) Further, 30 g of DINP is added to the cup, kneaded for 60 seconds at a rotation of 765 rpm and revolution of 765 rpm, followed by manual stirring with a stainless spoon, and then kneaded for 180 seconds to prepare a paste.
The paste prepared by the above method is allowed to cool at 20 ° C. for 12 hours, and then the viscosity at 2 rpm and 20 rpm is measured with a BH viscometer.
It is preferable that the paste viscosity created by the above method satisfies the formulas (n) to (p).
When VIS2 is less than 400 Pa · s, there are cases where the difference in sacrificing property and the like is not so large. When VIS20 is less than 80 Pa · s, it is difficult to obtain the desired viscosity of the present invention. Moreover, when VIS2 / VIS20 is less than 5.0, it becomes difficult to impart high thixotropy. Therefore, VIS2 ≧ 500, VIS20 ≧ 90, VIS2 / VIS20 ≧ 5.5, more preferably VIS2 ≧ 800, VIS20 ≧ 130, and VIS2 / VIS20 ≧ 6 are more preferable.
The method for producing calcium carbonate before the surface treatment of the surface-treated calcium carbonate of the present invention is not particularly limited. For example, as described in JP-A-10-72215, which is a conventional method, lime milk is mixed with calcium. The production method in which the complexing agent is added to terminate the carbonation reaction and then ripened is distinguished from the method of dispersion by, for example, the ripening concentration and the aging time. In the above conventional method, the fine particles dispersed are obtained by keeping the BET specific surface area after aging as high as possible. However, in order to achieve high viscosity and light weight as the problems of the present invention, further dispersion is required. Need to be prepared.
Preferred preparation conditions for the calcium carbonate used in the present invention are shown below.
Figure 2003042103
A preferred method for producing calcium carbonate used in the present invention will be specifically described below.
(Reaction conditions)
The concentration of lime milk of (1) is preferably 3.5 to 10.2% by weight. When the lime milk concentration is less than 3.5%, not only the productivity is low and the cost is high, but even if the concentration is further reduced, it is difficult to expect improvement in dispersibility. On the other hand, if it exceeds 10.2% by weight, the primary particle size after the reaction tends to agglomerate, and even after aging, it becomes larger than the average secondary particle size and it is difficult to obtain desired viscosity properties. Therefore, it is more preferably 5.0 to 9.0% by weight, still more preferably 6.0 to 8.0% by weight.
The addition amount of the complex-forming substance (2) is preferably 0.5 to 15% by weight. When the addition amount is less than 0.5% by weight, it is difficult to obtain the intended fine particles of the present invention. On the other hand, when the addition amount exceeds 15% by weight, the primary particles after the reaction are too fine. The diameter may not satisfy the range of formula (f), which is a preferable dispersion state, and as a result, it is difficult to obtain a desired high viscosity. At the time of addition, either before the carbonation reaction or during the carbonation reaction, it may be added both before and during the reaction.
Complex forming substances include hydroxycarboxylic acids such as citric acid, oxalic acid and malic acid and alkali metal salts thereof, alkaline earth metal salts and ammonium salts; polyhydroxycarboxylic acids such as gluconic acid and tartaric acid and alkali metal salts thereof; Alkaline earth metal salts and ammonium salts; aminopolycarboxylic acids such as iminodiacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid and their alkali metal salts, alkaline earth metal salts and ammonium salts; polyacetic acids such as hexametaphosphoric acid and tripolyphosphoric acid and their alkalis Metal salts, alkaline earth metal salts and ammonium salts; ketones such as acetylacetone, methyl acetoacetate and allyl acetoacetate; sulfuric acid and alkali metal salts thereof, alkaline earth metal salts and ammonium salts, etc. Use more than one type in combination Possible it is. Of these, hydroxycarboxylic acids have high binding properties with calcium, and citric acid can be preferably used.
The carbon dioxide gas flow rate of (3) is usually 300 to 3000 L / hr per 1 kg of calcium hydroxide. If it is less than 300 L / hr, the primary particles after the reaction tend to be large, and if it exceeds 3000 L / hr, the cost is industrially increased.
Regarding the gas concentration of (4), 10 to 50% is preferable. When the gas concentration is less than 10%, the primary particles after the reaction tend to be large, and when it exceeds 50%, the cost is industrially increased.
(Maturation conditions)
Regarding the calcium carbonate concentration of (5), 2.4 to 13.0% by weight is preferable. When the amount is less than 2.4% by weight, the productivity is industrially low. On the other hand, when the amount exceeds 13.0% by weight, the system is uniformly stirred when the dispersibility is improved by aging and the structural viscosity of the system is increased. In some cases, the average secondary particle size may not satisfy the range of the formula (f). As a result, it becomes difficult to obtain a desired high viscosity. Therefore, it is more preferably 4.0 to 11.0% by weight, still more preferably 5.0 to 9.0% by weight.
As described above, the ripening concentration tends to be an important index for improving the dispersibility. Therefore, it is more effective to reduce the concentration to a preferable range for finer particles.
Regarding the ripening time of (6), it is preferable to ripen to a level satisfying the formula (f), which is a preferred range as an index of dispersibility, because the expression of imparting high viscosity, which is the object of the present invention, can be easily obtained. Accordingly, the aging time depends on the production conditions described above, and thus the aging time is not particularly limited, but usually 24 to 240 hours is preferable. If the aging time is less than 24 hours, it is difficult to obtain desired dispersed particles, and if it exceeds 240 hours, the cost is increased industrially. Therefore, it is more preferably 30 to 200 hours, still more preferably 40 to 180 hours.
Manufacturing conditions other than those described above may be performed in the conventional manner. For example, the synthesis temperature condition is usually in the range of 5 to 30 ° C, and the aging temperature condition is usually in the range of 30 to 70 ° C. In addition, the stirring conditions at the time of aging are sufficient as long as the entire liquid system can be stirred uniformly. However, if the conventional stirring capacity is used, the concentration of the system will inevitably need to be reduced. It tends to be high. From the viewpoint of improving dispersibility as well as productivity, it is preferable that the stirring ability is higher than the conventional one. In addition, a paddle, a turbine, a propeller, a high-speed impeller, etc. are generally used also as a stirring mechanism.
(surface treatment)
Since the surface treatment amount of (7) depends on the specific surface area of the calcium carbonate dough, it is not particularly limited as long as it is within the range of As in the formula (b), but usually 3.5 to 50% by weight It is. When the surface treatment amount is less than 3.5% by weight, the surface of the fine and highly dispersible calcium carbonate of the present invention may not be sufficiently covered. As a result, secondary agglomeration is formed between untreated surfaces during drying and pulverization, so that the effect as the surface-treated calcium carbonate cannot be sufficiently exhibited. On the other hand, if it exceeds 50% by weight, the resin component or the plastic component is liberated due to excessive surface treatment agent, which tends to cause a bleed phenomenon or a rough surface phenomenon. Therefore, it is more preferably 5 to 40% by weight, still more preferably 7 to 35% by weight. The surface treatment method is not particularly limited, and may be either wet or dry.
The organic surface treating agent used in the present invention is represented by caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, saturated fatty acid represented by araginic acid, oleic acid, elaidic acid, linoleic acid, and ricinoleic acid. Unsaturated fatty acids, alicyclic carboxylic acids typified by naphthenic acid, abietic acid, pimaric acid, parastrinic acid, resin acids typified by neoabietic acid and their disproportionated rosin, hydrogenated rosin, dimer Rosin, modified rosin represented by trimer rosin, sulfonic acid represented by alkylbenzene sulfonic acid, and alkali metal salts, alkaline earth metal salts, ammonium salts, amine salts thereof, and anionic properties exemplified below , Cationic and nonionic surfactants can be used alone or in combination of two or more. A. In particular, an alkali metal salt of a fatty acid and an alkali metal salt of a resin acid are preferable from the viewpoint of adsorption reactivity with calcium carbonate.
Examples of the anionic surfactant include alkyl ether sulfuric acid exemplified by polyoxyethylene alkyl ether sulfuric acid, alkyl ether phosphoric acid exemplified by polyoxyethylene alkyl ether phosphoric acid, polyoxyethylene alkyl phenyl ether sulfuric acid and the like. Alkyl aryl ether sulfuric acid, alkyloxy ether exemplified by polyoxyethylene alkyl phenyl ether phosphoric acid, etc., alkyl sulfuric acid ester exemplified by polyoxyalkyl sulfuric acid ester, etc., alkyl phosphoric acid ester exemplified by polyoxyalkyl phosphoric acid ester, etc. Alkylaryl sulfates exemplified by polyoxyalkylphenyl sulfates, alkylaryl phosphates exemplified by polyoxyalkylphenyl phosphates, fatty acid alkyls Illustrated by alkylamide sulfates exemplified by roll amide sulfates, alkyl sulfonates exemplified by polyoxyethylene alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, sulfosuccinates, dialkyl sulfosuccinates, etc. Sulfosuccinic acid esters, α-olefin sulfonic acids, N-acyl sulfonic acids and / or anionic surfactants such as alkali metals, alkaline earth metal salts, amine salts, ammonium salts, α, β unsaturated monocarboxylic acids Acid, α, β unsaturated dicarboxylic acid, methacrylic acid alkyl ester, (meth) acrylic ether having alkoxy group, (meth) acrylate having cyclohexyl group, α, β monoethylenically unsaturated hydroxy ester, polyalkylene group Copolymers comprising recalled mono (meth) acrylate, vinyl ester, vinyl aromatic, unsaturated nitrile, unsaturated dicarboxylic acid ester, vinyl ether, conjugated diene, chain olefin, cyclic olefin, sulfo group-containing monomer, etc. And an anionic polymer dispersant exemplified by the above, and a partially neutralized or completely neutralized salt of these with an alkali metal, alkaline earth metal, ammonium or the like.
Examples of cationic surfactants include aliphatic amine salts such as stearylamine acetate and stearylamine hydrochloride, aliphatic quaternary ammonium salts such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride, and alkylbenzyldimethylammonium chloride. Cationic surfactants such as aromatic quaternary ammonium salts, heterocyclic quaternary ammonium compounds, amino groups (primary amine groups), imino groups (secondary amine groups), tertiary amine groups, quaternary ammonium groups, Cationic polymer dispersants having polar groups such as hydrazino groups, monomers copolymerizable with monomers having these polar groups, such as α, β unsaturated monocarboxylic acids, α, β unsaturated dicarboxylic acids Acids, alkyl methacrylates, (meth) alkoxy groups Ryl ether, (meth) acrylate having cyclohexyl group, α, β monoethylenically unsaturated hydroxy ester, polyalkylene glycol mono (meth) acrylate, vinyl ester, vinyl aromatic, unsaturated nitrile, unsaturated dicarboxylic acid ester, vinyl ether , Copolymers with monomers such as conjugated dienes, chained olefins, cyclic olefins, sulfo group-containing monomers, and salts partially or completely neutralized by alkali metals, alkaline earth metals, ammonium, etc. Is given as an example.
Furthermore, examples of nonionic surfactants include betaine, aminocarboxylic acid, and imidazoline derivatives exemplified by polyoxyethylene and derivatives thereof, carboxybetaine, sulfobetaine and the like.
After the surface treatment, it is preferable to filter and wash contaminated ions such as alkali metal ions contained in the slurry so as to satisfy the above-described formula (f). The electrical conductivity of the filtrate is not particularly limited, but is usually 10 mS / cm or less, more preferably 1 mS / cm or less, and still more preferably 300 μS / cm or less.
There is no restriction | limiting in particular about the washing method, Thickener, an oliver, a rotary filter, a Larox press etc. can be used and washing and concentration can be performed.
As described above, the surface-treated calcium carbonate of the present invention is particularly suitable for resins. For example, it is blended in various resins such as molding resins, paint resins, ink resins, sealant resins, and adhesive resins. The resin composition has excellent characteristics and physical properties.
The molding resin is not particularly limited, but for example, ABS resin, fluororesin, polyethylene terephthalate, polycarbonate, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene or a copolymer of propylene and other monomers, etc. Represented by polyolefin resins, polystyrene resins, acrylic resins, methacrylic resins, vinyl chloride resins, vinylidene chloride resins, polyamide resins, polyether resins, vinyl acetate resins, polyvinyl alcohol resins, etc. Thermosetting resins such as thermoplastic resins, phenol resins, urea resins, melamine resins, epoxy resins, polyurethane resins, polyimide resins and the like can be exemplified, and these resin components can be used alone or in combination of two or more. used.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a stabilizer may be added as necessary.
The resin for paint is not particularly limited, but is a solvent-based paint represented by alkyd resin, acrylic resin, vinyl acetate resin, urethane resin, silicone resin, fluororesin, styrene resin, melamine resin, epoxy resin, etc. For resin and water-based paints, alkyd resin, acrylic resin, latex resin, vinyl acetate resin, urethane resin, silicone resin, fluororesin, styrene resin, melamine resin, epoxy resin, etc. Resin, amine resin, styrene-allyl alcohol resin, amino alkyd resin, polybutadiene resin, and other general water-soluble resin for paints, dispersion resin for paints blended with emulsion resin and water-soluble resin, and cross-linked water-soluble resin Dispersion tree as emulsifier , It can be exemplified an acrylic hydrosol. These resin components may be used alone or in combination of two or more kinds.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a plasticizer and a dispersant may be added as necessary.
Examples of the plastisol resin include vinyl chloride sol, acrylic sol, water-soluble acrylic sol, and urethane sol. These resin components are used alone or in combination of two or more.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a stabilizer may be added as necessary.
The resin for ink is not particularly limited, but rosin modified phenolic resin, urea resin, melamine resin, ketone resin, polyvinyl chloride resin, polyvinyl chloride-vinyl acetate copolymer, butyral resin, styrene-maleic acid Examples include resin, chlorinated polypropylene, acrylic resin, coumarone / indene resin, petroleum resin, polyester resin, alkyd resin, polyamide resin, epoxy resin, polyurethane resin, nitrocellulose, ethylcellulose, ethylhydroxycellulose, cyclized rubber, chlorinated rubber, etc. These resin components are used alone or in combination of two or more.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a stabilizer and a dryer may be added as necessary.
The sealant resin is not particularly limited, but examples thereof include polyurethane resin, polysulfide resin, silicone resin, modified silicone resin, polyisobutylene resin, epoxy resin, polyester resin, and the like. Or two or more types are used in combination.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a colorant and a stabilizer may be added as necessary.
The resin for adhesive is not particularly limited, but examples include urea resins, phenol resins, epoxy resins, silicone resins, acrylic resins, polyurethane resins, polyester resins, and the like, and these resin components are used alone or Used in combination of two or more.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a stabilizer and a plasticizer may be added as necessary.
In addition to the surface-treated calcium carbonate of the present invention, the resin composition of the present invention includes colloidal calcium carbonate, heavy calcium carbonate, colloidal silica, talc, kaolin, zeolite, resin in order to adjust viscosity and other physical properties. Fillers such as balloons and glass balloons, plasticizers such as dioctyl phthalate and dibutyl phthalate, petroleum solvents such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, solvents exemplified by ether esters such as cellosolve acetate, or Various additives such as silicone oil and fatty acid ester-modified silicone oil, and various additives, colorants and the like can be added alone or in combination of two or more.
In the case of a curable resin composition represented by a sealant and an adhesive, for example, the resin composition of the present invention has excellent viscosity / thixotropic properties and joint followability. For example, in the case of a resin composition for paints and inks, it has excellent sagging resistance, high gloss, high transparency, and high coating strength. Furthermore, for example, in the case of a molding resin composition, a decrease in the strength of the weld line surface is prevented, and the resin composition has excellent strength.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these unless it exceeds the gist.
In the following description, “%” means “% by weight” and “part” means “part by weight” unless otherwise specified.
Example 1
1.7% citric acid as a complex-forming substance is added to calcium hydroxide at a temperature of 10 ° C. and a concentration of 8%, and 1700 L / hr of 20% CO 2 gas per 1 kg of calcium hydroxide is introduced into the slurry. A calcium carbonate slurry was prepared. Next, the calcium carbonate slurry was adjusted to a concentration of 10%, and stirred and aged at a temperature of 45 to 50 ° C. for 50 hours. The average particle size (Dx) after aging was 0.20 μm. The surface treatment agent is sufficiently adsorbed on the surface of calcium carbonate by adding 10% sodium stearate dissolved in hot water to the calcium carbonate slurry by 15% with respect to the solid content of calcium carbonate, followed by dehydration. Then, it was dried and powdered to synthesize calcium carbonate obtained by surface-treating an organic surface treatment agent having a BET specific surface area (Sw) = 48 m 2 / g. In addition, it was 200 to 500 degreeC heat loss rate (Tg) = 118 mg / g of this surface treatment calcium carbonate. The average pore diameter (Dxp) = 0.016 μm and the average pore diameter (Dyp / Dxp) = 79. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 2
Except for changing the calcium carbonate slurry concentration to 7%, calcium carbonate obtained by surface-treating an organic surface treatment agent by the same production method as in Example 1 was synthesized. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 3
Calcium carbonate obtained by surface-treating an organic surface treatment agent was synthesized by the same production method as in Example 2 except that the aging time was changed to 120 hours. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 4
After the surface treatment, the organic surface treatment agent was applied to the surface by the same production method as in Example 1 except that the calcium carbonate cake was washed with water and dehydrated until the filtrate had a conductivity of 300 μS / cm using a filter press (manufactured by Lalox). The treated calcium carbonate was synthesized. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 5
Calcium carbonate formed by surface-treating an organic surface treatment agent was synthesized by the same production method as in Example 1 except that the surface treatment amount was changed to 25%. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 6
10% citric acid as a complex-forming substance is added to calcium hydroxide at a temperature of 10 ° C. and a concentration of 5%, and 1700 L / hr of 20% CO 2 gas per 1 kg of calcium hydroxide is introduced into the slurry, A calcium carbonate slurry was prepared. Next, the calcium carbonate slurry was adjusted to a concentration of 3%, and stirred and aged at a temperature of 45 to 50 ° C. for 150 hours. The average particle size (Dx) after aging was 0.38 μm. After 35% of 10% sodium stearate dissolved in hot water is dissolved in the calcium carbonate slurry with respect to the solid content of calcium carbonate, the surface treatment agent is sufficiently adsorbed on the calcium carbonate surface by stirring, and then dehydrated. Then, it was dried and pulverized to synthesize calcium carbonate obtained by surface-treating an organic surface treatment agent having a BET specific surface area (Sw) = 125 m 2 / g. In addition, it was 200 to 500 degreeC heat loss rate (Tg) = 296 mg / g of this surface treatment calcium carbonate. Further, the average pore diameter (Dxp) = 0.005 μm and the average pore diameter (Dyp / Dxp) = 148. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 7
As a complex-forming substance, calcium carbonate obtained by surface-treating an organic surface treatment agent was synthesized by the same production method as in Example 1 except that 3% of trisodium citrate was added to calcium hydroxide. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 8
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to lauric acid. Table 1 shows the physical property values of the obtained surface-treated calcium carbonate.
Example 9
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to sodium laurate. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Example 10
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to sodium palmitate. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Example 11
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to sodium stearate: potassium resinate = 3: 2. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Example 12
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to potassium resinate. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Example 13
Calcium carbonate formed by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the organic surface treatment agent was changed to sodium stearate: sodium alkylbenzenesulfonate = 3: 1. . Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Comparative Example 1
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Example 1 except that the addition amount of the organic surface treatment agent was changed to 5%. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Comparative Example 2
18% citric acid as a complex-forming substance is added to calcium hydroxide at a temperature of 10 ° C. and a concentration of 4%, and 17,000 L / hr of 20% CO 2 gas per 1 kg of calcium hydroxide is introduced into the slurry, A calcium carbonate slurry was prepared. Next, the calcium carbonate slurry was adjusted to a concentration of 2%, and stirred and aged at a temperature of 45 to 50 ° C. for 200 hours. The average particle size (Dx) after aging was 2.3 μm. After adding 45% of 10% sodium stearate dissolved in hot water to the calcium carbonate slurry with respect to the solid content of calcium carbonate, the surface treatment agent was sufficiently adsorbed on the calcium carbonate surface by stirring, and then dehydrated. Then, it was dried and powdered to synthesize calcium carbonate obtained by surface-treating an organic surface treatment agent having a BET specific surface area (Sw) = 175 m 2 / g. In addition, it was 200 to 500 degreeC heat loss rate (Tg) = 402 mg / g of this surface treatment calcium carbonate. Further, the average pore diameter (Dxp) = 0.003 μm and the average pore diameter (Dyp / Dxp) = 47. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Comparative Example 3
As in Example 1 of JP-A-10-72215, 3% trisodium citrate as a complex-forming substance is added to calcium hydroxide at a temperature of 10 ° C. and a concentration of 11.8%, and the slurry is added to the slurry. A calcium carbonate slurry was prepared by introducing 1700 L / hr of 20% CO 2 gas per 1 kg of calcium hydroxide. Next, the calcium carbonate slurry was stirred and aged for 50 minutes at a temperature of 45 to 50 ° C. while maintaining the calcium carbonate concentration of 14.9% without adjusting the concentration. The average particle size (Dx) after aging was 0.50 μm. To the calcium carbonate slurry, 15% of 10% sodium stearate dissolved in hot water is added to the calcium carbonate solid content, and the surface treatment agent is sufficiently adsorbed on the calcium carbonate surface by vigorous stirring. Calcium carbonate was synthesized by dehydration, drying and pulverization, and surface treatment with an organic surface treatment agent having a BET specific surface area (Sw) of 42 m 2 / g. In addition, it was 200 to 500 degreeC heat loss rate (Tg) = 101 mg / g of this surface treatment calcium carbonate. Moreover, it was average pore diameter (Dxp) = 0.018m, average pore diameter amount (Dyp / Dxp) = 27. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Comparative Example 4
A lime milk having a temperature of 10 ° C. and a concentration of 11.8% is added with 0.2% citric acid as a complex-forming substance with respect to calcium hydroxide, and 1700 L / hr of 20% CO 2 gas per 1 kg of calcium hydroxide is added to the slurry. Was introduced to prepare calcium carbonate. Next, the calcium carbonate slurry was aged and stirred for 50 minutes at a temperature of 45 to 50 ° C. with the calcium carbonate concentration of 14.9% without adjusting the concentration. The average particle size (Dx) after aging was 0.49 μm. To the calcium carbonate slurry, 5% of 10% sodium stearate dissolved in hot water with respect to the solid content of calcium carbonate is added, and the surface treatment agent is sufficiently adsorbed on the calcium carbonate surface by vigorous stirring. Calcium carbonate was synthesized by dehydration, drying and pulverization, and surface treatment with an organic surface treatment agent having a BET specific surface area (Sw) = 17 m 2 / g. In addition, it was 200 mg-500 degreeC heat loss rate (Tg) = 42 mg / g of this surface treatment calcium carbonate.
The average pore diameter (Dxp) was 0.042 m, and the average pore diameter (Dyp / Dxp) was 38. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Comparative Example 5
Calcium carbonate obtained by surface-treating the organic surface treatment agent was synthesized by the same production method as in Comparative Example 3 except that the organic surface treatment agent was changed to potassium resinate. Table 2 shows each physical property value of the obtained surface-treated calcium carbonate.
Figure 2003042103
Figure 2003042103
Examples 14-20, Comparative Examples 6-9
Using the surface-treated calcium carbonate synthesized in Examples 1 to 7 and Comparative Examples 1 to 4, a molding resin composition was prepared based on the following formulation. Table 3 shows the evaluation results of the obtained molded resin composition.
(Combination)
Surface treated calcium carbonate 15 parts Polypropylene resin 85 parts The above two types are dry blended with a Henschel mixer (manufactured by Kawata), then pelletized with an extruder (NEXT T-60, manufactured by Kobe Steel), and then injection molded. Dumbbell pieces were produced by a machine and tested for tensile strength, flexural modulus, and impact strength. However, the test piece for measuring the strength of the weld line surface was injected from two gates to form a weld line interface in the middle. Other specimens for measuring physical properties were injected from one gate.
Various characteristics of the obtained test piece were measured and evaluated by the following methods.
(Tensile strength, bending strength, impact strength)
Tensile strength was determined in accordance with a plastic tensile test method of JIS K7113, bending strength was determined in accordance with a hard plastic bending test method of JIS K7203, and impact strength was determined in accordance with a JIS K7111 hard plastic Charpy impact test method.
(Scratch test)
A plastic plate molded to 30 mm × 80 mm thickness 1 mm was subjected to a scratch test using a scratch tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the state was evaluated according to the following criteria.
A: Very good (no scratches at all)
○: Good (nearly scratched)
Δ: Normal (slightly scratched)
X: Defect (slightly scratched)
Figure 2003042103
As is apparent from the results in Table 3, the molding resin composition comprising the surface-treated calcium carbonate of the present invention is not only excellent in tensile strength, bending strength, and impact strength, but also in the strength of the weld line surface. It is excellent also in prevention of a fall, and it turns out that it is excellent also in the adhesive force with to-be-adhered thing from this. In addition, it was confirmed that the amount of calcium carbonate added can be reduced by about 5% compared to the prior art, and it is also effective in reducing the weight.
Examples 21-27, Comparative Examples 10-13
Using the surface-treated calcium carbonate synthesized in Examples 1 to 7 and Comparative Examples 1 to 4, paint resin compositions were prepared based on the following formulation.
(Combination)
Figure 2003042103
The above blend was dispersed with an SG mill until the particle gauge became 20 microns or less, and then glass beads were removed to prepare a coating resin composition. Various properties were measured and evaluated by the following methods. The results are shown in Table 4.
(Gloss, gloss after water resistance test, gloss retention)
Each paint resin composition was applied to one side of a glass plate using a 100 micron applicator, dried at room temperature for 24 hours, and then measured for 60 ° gloss with a Murakami gloss meter. Then, the glass plate was immersed in water and the gloss retention after 3 days was measured.
(Sagging)
Each coating resin composition is diluted with mineral spirit so that the KU value is 78, and applied to all black measurement paper using an applicator of 250, 200, 150, and 100 microns. Was stood so as to be vertical and allowed to stand at room temperature for 24 hours, and the sagging state was evaluated according to the following criteria.
○: Good (no sagging at all)
Δ: Normal (slightly leaning)
X: Defect (sagging)
(Scratch test of coating film)
Each paint resin composition is applied to one side of a glass plate using a 1000 micron applicator, dried at room temperature for 1 week, and then subjected to a scratch test using a scratch tester (manufactured by Toyo Seiki Seisakusho). Evaluation was made according to the following criteria.
A: Very good (no scratches at all)
○: Good (nearly scratched)
Δ: Normal (slightly scratched)
X: Defect (slightly scratched)
Figure 2003042103
As is apparent from the results in Table 4, the coating resin composition formed by blending the surface-treated calcium carbonate of the present invention is excellent in sagging resistance, and thus has high thixotropy and water resistance. The gloss retention after the property test is excellent, and this shows that it has high durability and strong coating strength.
Examples 28-34, Comparative Examples 14-17
Using the surface-treated calcium carbonate synthesized in Examples 1 to 7 and Comparative Examples 1 to 4, plastisol resin compositions adjusted based on the following formulation were prepared.
(Combination)
Surface treatment Calcium carbonate 300 parts Acrylic resin Zeon acrylic resin F345 (manufactured by Shin-Daiichi Vinyl Industrial Co., Ltd.) 250 parts Block urethane resin curing agent (Mitsui Takeda Chemical Co., Ltd.) 120 parts DINP 500 parts Turpen 80 parts Urethane curing agent (Mitsui Takeda Chemical) 6 parts, respectively, were kneaded with a 5 L universal stirrer (manufactured by Dalton Co.) at room temperature until no tabs were formed to prepare an acrylic sol resin composition, and various properties were measured and evaluated by the following methods. The results are shown in Table 5.
(Viscosity / thixotropic)
The viscosity of the acrylic sol adjusted based on the above formulation was measured at 2 rpm and 20 rpm using a BH viscometer, and 2 rpm viscosity / 20 rpm viscosity was displayed as thixotropy.
(Chip resistance)
The coating film after baking and curing on the electrodeposition coating plate under the above-mentioned drying conditions is fixed at an angle of 60 ° from the horizontal with the coating surface facing up, and the lower end of a 2 m long pipe standing vertically to the coating surface The M-4 nut was dropped according to the JIS nut drop test method, and the chipping resistance was expressed by the integrated weight of the nut until the coated surface was broken and the base was exposed.
Figure 2003042103
As is clear from the results in Table 5, it was confirmed that the plastisol resin composition containing the calcium carbonate obtained by surface treatment of the present invention has clearly improved viscosity and strength (chipping resistance). It was.
Examples 35-46, Comparative Examples 18-21
Using the surface-treated calcium carbonate synthesized in Examples 1 to 11 and 13 and Comparative Examples 1 to 4, adjustment was made based on the following formulation, and various characteristics of the obtained cured resin compositions were evaluated. The results are shown in Tables 6 and 7.
(Combination)
(Base material)
Figure 2003042103
Each compound was sufficiently kneaded with a 5 liter universal mixing stirrer (Dalton) until no crumbs were formed to prepare a base material and a curing agent, and various properties were measured and evaluated by the following methods. The results are shown in Table 6.
(Viscosity / thixotropic)
The substrate viscosity of the cured resin composition adjusted based on the above formulation was measured at 1 rpm and 10 rpm using a BS viscometer, and 1 rpm viscosity / 10 rpm viscosity was displayed as thixotropy.
(Storage stability test)
The base viscosity of the cured resin composition after standing at 20 ° C. for 2 weeks was measured.
(H type tensile strength and elongation test)
Substrate: Curing agent = 10: 1 was sufficiently defoamed and mixed, and an H-type was prepared and evaluated based on JIS A5757 6.11 tensile stress and elongation test.
(Adhesion test)
In the H-type tensile strength test, the adhesion was evaluated according to the following criteria.
○: Good (material is destroyed)
Δ: Normal (Slight interface peeling but material destruction)
X: Defect (exfoliation at the interface)
(After follow-up test, H-type tensile test and adhesion test)
In the H-type tensile strength test, the cured product was fixed for one week in a state of being stretched by 50%, and then the H-type tensile strength (residual stress) was measured in the same manner and the adhesiveness was evaluated. The followability to the joint was evaluated.
Figure 2003042103
Figure 2003042103
As is apparent from the results of Tables 6 and 7, the cured resin composition represented by the sealant and adhesive, which is formed by blending the calcium carbonate obtained by surface treatment of the present invention, has high breaking strength and is attached. It was excellent in the adhesive strength with the body, and it was confirmed that the effect was maintained even after the followability test.
Moreover, it was confirmed that the storage stability was excellent by reducing the alkali metal content in calcium carbonate by washing as in Examples 4 and 8.
Example 47, Comparative Example 22
Using the surface-treated calcium carbonate synthesized in Example 12 and Comparative Example 5, an ink resin composition was prepared based on the following formulation. Table 8 shows the evaluation results of the obtained ink resin composition.
(Combination)
Surface treatment Calcium carbonate 25 parts Rosin modified phenolic resin 35 parts Linseed oil 20 parts Refined light oil 17 parts Dryer 3 parts The above compound is dispersed using 3 rolls (Inoue Seisakusho) until the particle gauge is 5 microns or less. To prepare an ink resin composition.
(Viscosity / thixotropic)
The ink resin composition prepared based on the above formulation was measured for viscosity at 1 rpm and 10 rpm using a BS viscometer, and 1 rpm viscosity / 10 rpm viscosity was displayed as thixotropy.
(transparency)
The ink resin composition prepared on the basis of the above composition was applied to one side of a glass plate using a 25 micron applicator, dried at room temperature for 24 hours, and then lighted at 550 μm using a photoelectric spectrophotometer (manufactured by Shimadzu Corporation). The transmittance was measured.
(Glossy)
The ink resin composition was applied in the same manner as described above, dried at room temperature for 24 hours, and then measured for 60 ° gloss with a Murakami type gloss meter.
(Abrasion resistance test)
Each resin composition was applied to one side using a 25-micron applicator on all black measurement paper, dried at room temperature for 24 hours, and then based on the JISK5701 rub resistance test, S-type abrasion tester (Sutherland Lab Tester) The following criteria were used for evaluation.
○: Good (not worn)
Δ: Normal (slightly worn)
X: Defect (wears considerably)
(Adhesiveness)
After coating and drying in the same manner as described above, Cellotape (registered trademark) [CT405A-18 manufactured by Nichiban Co., Ltd.] was applied to the surface of the coating film, and then rapidly peeled off. The peeled state of the ink was evaluated according to the following criteria.
A: Very good (not peeled at all)
○: Good (almost no peeling)
Δ: Normal (slightly peels off)
X: Defect (exfoliates considerably)
(Scratch resistance)
After coating and drying in the same manner as described above, a scratch test was performed using a scratch tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the state was evaluated according to the following criteria.
A: Very good (no scratches at all)
○: Good (nearly scratched)
Δ: Normal (slightly scratched)
X: Defect (slightly scratched)
Figure 2003042103
As is apparent from the results in Table 8, it can be seen that the ink resin composition obtained by blending the surface-treated calcium carbonate of the present invention is not only excellent in the viscosity / thixotropic property imparting effect, but also has high gloss and transparency. Further, it can be seen that the film is excellent in wear resistance and scratch resistance, has high coating strength, and has excellent adhesion to an adherend. As a result, the amount of calcium carbonate added can be reduced as compared with the prior art, which is effective in stabilizing the ink characteristics.
Industrial Applicability As described above, calcium carbonate having a specific particle size characteristic obtained by surface-treating the organic surface treatment agent of the present invention is particularly useful for a resin, and when incorporated in a resin, the calcium carbonate has a specific particle size characteristic. It is possible to improve the adhesive force between the resin composition and the adherend and to form a tough coating film.
When the surface-treated calcium carbonate of the present invention is used, for example, as a molding resin, a decrease in the strength of the weld line surface is prevented, and a resin composition having excellent impact strength is used, for example, in paints and inks. In this case, when a resin composition having high gloss, excellent sagging resistance, and high coating strength is used, for example, as a resin composition for plastisol, a resin having excellent viscosity, thixotropy and chipping resistance. When the composition is used for, for example, a curable resin typified by a sealant or an adhesive, a resin composition having excellent viscosity / thixotropy and joint followability can be provided.

【0004】
(d) 50≦Dyp/Dxp≦180
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
AS :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/log平均細孔直径)が最大値(Dyp)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
本発明の第2は、有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)、(b)、(e)及び(f)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
AS :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計5
[0004]
(D) 50 ≦ Dyp / Dxp ≦ 180
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
AS: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (integrated pore volume increase amount / log average pore diameter) is the maximum value (Dyp). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: Average pore diameter The second aspect of the present invention is that calcium carbonate surface-treated with an organic surface treatment agent satisfies the following formulas (a), (b), (e) and (f): The content of the surface-treated calcium carbonate is as follows.
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
AS: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxs: Cumulative weight 5 calculated from the large particle side in the particle size distribution in the laser diffraction method (SALD-2000, manufactured by Shimadzu Corporation)

【0005】
0%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
本発明の第3は、有機系表面処理剤で表面処理された炭酸カルシウムからなり、下記の式(a)〜(f)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(c) 0.003≦Dxp≦0.03(μm)
(d) 50≦Dyp/Dxp≦180
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
As :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/log平均細孔直径)が最大値(Dyp)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
[0005]
0% average particle size (μm).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
According to a third aspect of the present invention, the surface treated calcium carbonate is characterized by comprising calcium carbonate surface-treated with an organic surface treating agent and satisfying the following formulas (a) to (f).
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(C) 0.003 ≦ Dxp ≦ 0.03 (μm)
(D) 50 ≦ Dyp / Dxp ≦ 180
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (integrated pore volume increase amount / log average pore diameter) is the maximum value (Dyp). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: Average pore diameter Dxs: 50% average particle diameter (μm) of cumulative weight from the large particle side in the particle size distribution in the laser diffraction method (manufactured by Shimadzu Corporation: SALD-2000).

【0007】
市販されているが、該炭酸カルシウムは、1次粒子が凝集形成した2次粒子同士がさらに凝集した3次粒子を形成しているため、炭酸カルシウムを覆う表面処理処理量は、1.0mg/m未満で十分な処理量であるが、本発明の炭酸カルシウムは従来のものより3次粒子形成体が少なく、2次粒子形成体の分散性が極めて高いため、表面を十分に覆うには困難である。従って、処理量不足のまま乾燥・粉末化をした場合、未処理面同士で3次凝集を形成するため、該表面処理炭酸カルシウムとしての効果が十分発揮できなくなる。一方、7.5mg/mを越えると、表面処理剤過多による表面処理剤の樹脂成分あるいは可塑成分への遊離がおこり、ブリード現象や表面肌荒れ現象の原因となる。従って、好ましくは、1.5〜5.0mg/m、より好ましくは2.0〜4.0mg/mである。
単位比表面積当りの熱減量は、リガク社製TG−8110型を用い、直径10mmの試料パン(白金製)に表面処理炭酸カルシウムを約100mg採取し、昇温速度15℃/分で200〜500℃までの熱減量を測定し、表面処理炭酸カルシウム1g当たりの熱減量率(mg/g)を求め、この値をBET比表面積値で除して求めた。
(c)式及び(d)式は、本発明の表面処理炭酸カルシウムの分散状態を知る指標になるものである。
(c)式は、水銀圧入法(ポロシメーター)にて測定した0.001〜0.1μmの範囲における細孔分布において、水銀圧入増加量が最大となる値(Dyp)の平均細孔直径(Dxp)であり、表面処理炭酸カルシウム粒子間の隙間の細かさを意味するものである。従って、(a)式の(窒素)ガス吸着法で示される粒子の細かさではなく、1次粒子間の間隙の平均径を表わしており、0.003〜0.03μmであることが必要である。平均細孔径が0.003μm未満の場合、1次粒子もし
[0007]
Although commercially available, the calcium carbonate forms tertiary particles in which secondary particles formed by aggregation of primary particles are further aggregated. Therefore, the surface treatment amount for covering calcium carbonate is 1.0 mg / Although the amount of treatment is less than m 2 , the calcium carbonate of the present invention has less tertiary particle former than the conventional one, and the dispersibility of the secondary particle former is extremely high. Have difficulty. Therefore, when drying and pulverization are performed while the treatment amount is insufficient, tertiary agglomerates are formed between the untreated surfaces, so that the effect as the surface-treated calcium carbonate cannot be sufficiently exhibited. On the other hand, when it exceeds 7.5 mg / m 2 , the surface treatment agent is liberated to the resin component or the plastic component due to the excess of the surface treatment agent, causing a bleed phenomenon and a rough surface phenomenon. Therefore, Preferably it is 1.5-5.0 mg / m < 2 >, More preferably, it is 2.0-4.0 mg / m < 2 >.
The heat loss per unit specific surface area is TG-8110 manufactured by Rigaku Corporation. About 100 mg of surface-treated calcium carbonate is sampled on a sample pan (made of platinum) having a diameter of 10 mm and heated at a rate of 15 ° C./min. The heat loss up to ° C. was measured to determine the heat loss rate (mg / g) per gram of surface-treated calcium carbonate, and this value was divided by the BET specific surface area value.
Equations (c) and (d) serve as indices for knowing the dispersion state of the surface-treated calcium carbonate of the present invention.
(C) is an average pore diameter (Dxp) of a value (Dyp) at which the amount of increase in mercury intrusion becomes maximum in the pore distribution in the range of 0.001 to 0.1 μm measured by the mercury intrusion method (porosimeter). It means the fineness of the gap between the surface treated calcium carbonate particles. Therefore, it represents the average diameter of the gaps between the primary particles, not the fineness of the particles shown by the (nitrogen) gas adsorption method of the formula (a), and it must be 0.003 to 0.03 μm. is there. If the average pore diameter is less than 0.003 μm, the primary particles

【0008】
くは2次粒子が細か過ぎるため経時安定性に問題が生じる。一方、0.03μmを越えると、1次粒子が大きすぎるか、もしくは1次粒子が強く凝集した2次粒子形成体が多く存在していることになり、本発明の目的である高粘性物性は得られない。従って、好ましくは0.005〜0.025μm、より好ましくは0.006〜0.020μmである。
尚、水銀圧入増加量とは細孔容積増加量のことを意味し、(積算細孔容積増加量/log平均細孔直径)の計算式で表される(単位はml/g)。当然のことながら細孔直径が小さい程、細孔容積は小さくなるため、最大水銀圧入増加量(Dyp)は細孔直径に依存する。
(d)式は、(c)式の平均細孔直径の数を示しており、本発明の目的である高粘性を示す指標である。前記したように、細孔径が小さいほど細孔容積も小さくなるため、最大水銀圧入増加量(Dyp)と、(c)式の平均細孔直径(Dxp)を加味することにより、本発明で必要とする細孔径量(数)を導き出すことができ、Dyp/Dxpの数値が高い程高粘性である。従って、本発明の平均細孔径量(Dyp/Dxp)が、50〜180であることが必要である。Dyp/Dxpが50未満の場合、本発明の目的である高粘性を得ることができない。一方、180を越えると平均細孔径量が極端に小さ過ぎるため、1次粒子もしくは2次粒子の経時安定性に問題が生じる。従って、好ましくは60〜150、より好ましくは70〜130である。
本発明の表面処理炭酸カルシウムが(c)式、(d)式の範囲外の場合、例えば該炭酸カルシウムを配合した塗料組成物においては光沢が低く、シーラント組成物においては破断強度低下等が生じる。
尚、本発明において使用した水銀圧入装置(ポロシメータ)及び主な測定条件を、下記に示す。
<測定装置>
[0008]
In other words, the secondary particles are too fine, which causes a problem in stability over time. On the other hand, if it exceeds 0.03 μm, there are many secondary particle forming bodies in which the primary particles are too large or the primary particles are strongly agglomerated, and the high-viscosity physical property which is the object of the present invention is as follows. I can't get it. Therefore, it is preferably 0.005 to 0.025 μm, more preferably 0.006 to 0.020 μm.
The increase in the amount of mercury intrusion means the increase in the pore volume, and is expressed by the formula of (integrated pore volume increase / log average pore diameter) (unit: ml / g). As a matter of course, the smaller the pore diameter, the smaller the pore volume. Therefore, the maximum mercury intrusion increase (Dyp) depends on the pore diameter.
The formula (d) shows the number of average pore diameters of the formula (c), and is an index indicating the high viscosity that is the object of the present invention. As described above, the smaller the pore diameter, the smaller the pore volume. Therefore, it is necessary in the present invention by adding the maximum mercury intrusion increase amount (Dyp) and the average pore diameter (Dxp) of the formula (c). The amount (number) of pore diameters can be derived, and the higher the value of Dyp / Dxp, the higher the viscosity. Accordingly, it is necessary that the average pore diameter (Dyp / Dxp) of the present invention is 50 to 180. When Dyp / Dxp is less than 50, the high viscosity which is the object of the present invention cannot be obtained. On the other hand, if the average particle diameter exceeds 180, the average pore diameter is too small, which causes a problem in the temporal stability of the primary particles or secondary particles. Therefore, it is preferably 60 to 150, more preferably 70 to 130.
When the surface-treated calcium carbonate of the present invention is out of the ranges of the formulas (c) and (d), for example, the coating composition containing the calcium carbonate has low gloss, and the sealant composition has reduced strength at break. .
In addition, the mercury intrusion apparatus (porosimeter) used in the present invention and main measurement conditions are shown below.
<Measurement device>

【0010】
(I)中性洗剤(水で5倍希釈したもの) 2.0g
(II)炭酸カルシウム試料 0.4g
(III)水 40g
特に、前処理として前記した配合で調整後、予備分散として用いる超音波分散は、一定条件で行う方が好ましく、本発明の実施例で用いる超音波分散機は、US−300T(日本精機製作所社製)を用い100μA−60秒間の一定条件にて予備分散させた。また中性洗剤は、特に限定されるものでなく一般の市販品で問題なく、本発明ではママレモン(登録商標ライオン社製)を使用した。
前記した粒度分布測定方法において、本発明の平均粒子径(Dxs)が0.03μm未満の場合、一次もしくは2次粒子の経時安定性が低下する場合がある。一方、1μmを越えると、前記した如く3次粒子形成体が多くなりやすく、樹脂組成物中の分散性が悪化しやすい。従って、より好ましくは0.05〜0.8μm、更に好ましくは0.08〜0.5μmである。
また、3μmを越える平均粒子径の重量累計(Dys)が30重量%を越えると、樹脂組成物中の分散状態が十分とはいえず、所望の高粘度物性が得られにくい。従って、より好ましくは25重量%以下、最も好ましくは20重量%以下である。
本発明の表面処理炭酸カルシウムが上記(e)式と(f)式の範囲外の場合、例えば該炭酸カルシウムを配合した塗料組成物においては光沢性が低下し、シーラント組成物においては破断強度等に問題が生じやすい
本発明の表面処理炭酸カルシウムは、更に、下記の式(g)〜(j)を満足することが好ましい。これらは上記した式(c)、(d)、(e)、(f)のそれぞれ好ましい範囲を規定したものである。
[0010]
(I) Neutral detergent (5 times diluted with water) 2.0 g
(II) Calcium carbonate sample 0.4g
(III) Water 40g
In particular, it is preferable that the ultrasonic dispersion used as the pre-dispersion after adjusting with the above-described formulation as the pretreatment is performed under a certain condition, and the ultrasonic dispersion machine used in the examples of the present invention is US-300T (Nippon Seiki Seisakusho Co. And pre-dispersed under constant conditions of 100 μA-60 seconds. In addition, the neutral detergent is not particularly limited and is a general commercial product, and there is no problem.
In the particle size distribution measuring method described above, when the average particle diameter (Dxs) of the present invention is less than 0.03 μm, the temporal stability of the primary or secondary particles may be lowered. On the other hand, if it exceeds 1 μm, the number of tertiary particle forming bodies tends to increase as described above, and the dispersibility in the resin composition tends to deteriorate. Accordingly, the thickness is more preferably 0.05 to 0.8 μm, still more preferably 0.08 to 0.5 μm.
On the other hand, if the cumulative total weight (Dys) with an average particle diameter exceeding 3 μm exceeds 30% by weight, the dispersion state in the resin composition cannot be said to be sufficient, and it is difficult to obtain desired high viscosity properties. Therefore, it is more preferably 25% by weight or less, and most preferably 20% by weight or less.
When the surface-treated calcium carbonate of the present invention is out of the range of the above formulas (e) and (f), for example, the coating composition containing the calcium carbonate has reduced gloss, and the sealant composition has a breaking strength, etc. It is preferable that the surface-treated calcium carbonate of the present invention that easily causes problems further satisfy the following formulas (g) to (j). These define preferred ranges of the above-mentioned formulas (c), (d), (e), and (f), respectively.

【0016】
く、一方、15重量%を越えると、反応後の1次粒子が細か過ぎるため、熟成後の二次粒子径が好ましい分散状態である(f)式の範囲を満たない場合があり、結果的に所望の高粘度付与が得られにくい。添加時期においては、炭酸化反応前、炭酸化反応途中のいずれでもよく、反応前と反応途中の両方で添加してもよい。
錯体形成物質としては、クエン酸、シュウ酸、リンゴ酸等のヒドロキシカルボン酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;グルコン酸、酒石酸等のポリヒドロキシカルボン酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;イミノジ酢酸、エチレンジアミン4酢酸、ニトリロトリ酢酸等のアミノポリカルボンとそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;ヘキサメタ燐酸、トリポリ燐酸等のポリ燐酸とそのアルカリ金属塩、アルカリ土類金属塩及びアンモニウム塩;アセチルアセトン、アセト酢酸メチル、アセト酢酸アリル等のケトン類;硫酸とそのアルカリ金属塩、アルカり土類金属塩及びアンモニウム塩等が挙げられ、単独であるいは2種類以上組み合わせて使用することも可能である。中でもヒドロキシカルボン酸類は、カルシウムとの結合性が高く、特にクエン酸は好適に使用することができる。
▲3▼の炭酸ガス流量としては、水酸化カルシウム1Kg当たり、通常300〜3000L/hrである。300L/hr未満では、反応後の1次粒子が大きくなりやすく、3000L/hrを越えると工業的にコスト高になり好ましくない。
▲4▼のガス濃度に関しては、10〜50%が好ましい。ガス濃度が10%未満の場合、反応後の1次粒子が大きくなりやすく、50%を越えると工業的にコスト高になり好ましくない。
(熟成条件)
[0016]
On the other hand, if it exceeds 15% by weight, the primary particles after the reaction are too fine, and the secondary particle size after aging may not satisfy the range of the formula (f) which is a preferable dispersion state. It is difficult to obtain a desired high viscosity. At the time of addition, either before the carbonation reaction or during the carbonation reaction, it may be added both before and during the reaction.
Complex forming substances include hydroxycarboxylic acids such as citric acid, oxalic acid and malic acid and alkali metal salts thereof, alkaline earth metal salts and ammonium salts; polyhydroxycarboxylic acids such as gluconic acid and tartaric acid and alkali metal salts thereof; Alkaline earth metal salts and ammonium salts; aminopolycarboxylic acids such as iminodiacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid and their alkali metal salts, alkaline earth metal salts and ammonium salts; polyphosphoric acids such as hexametaphosphoric acid and tripolyphosphoric acid and their alkalis Metal salts, alkaline earth metal salts and ammonium salts; ketones such as acetylacetone, methyl acetoacetate and allyl acetoacetate; sulfuric acid and alkali metal salts thereof, alkaline earth metal salts and ammonium salts, etc. Use in combination of two or more Possible it is. Of these, hydroxycarboxylic acids have high binding properties with calcium, and citric acid can be preferably used.
The carbon dioxide gas flow rate of (3) is usually 300 to 3000 L / hr per 1 kg of calcium hydroxide. If it is less than 300 L / hr, the primary particles after the reaction tend to be large, and if it exceeds 3000 L / hr, the cost is industrially increased.
Regarding the gas concentration of (4), 10 to 50% is preferable. When the gas concentration is less than 10%, the primary particles after the reaction tend to be large, and when it exceeds 50%, the cost is industrially increased.
(Maturation conditions)

【0020】
また、カチオン性の界面活性剤としては、ステアリルアミンアセテート、ステアリルアミン塩酸塩などの脂肪族アミン塩、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライドなどの脂肪族4級アンモニウム塩、アルキルベンジルジメチルアンモニウムクロライドなどの芳香族4級アンモニウム塩、複素環4級アンモニウム物等のカチオン性界面活性剤、アミノ基(第1アミン基)、イミノ基(第2アミン基)、第3アミン基、第4アンモニウム基、ヒドラジノ基等の極性基を有するカチオン性高分子系分散剤、それらの極性基を有する単量体と共重合可能な単量体、例えばα、β不飽和モノカルボン酸、α、β不飽和ジカルボン酸、メタアクリル酸アルキルエステル、アルコキシ基を有する(メタ)アクリルエーテル、シクロヘキシル基を有する(メタ)アクリレート、α、βモノエチレン性不飽和ヒドロキシエステル、ポリアルキレングリコールモノ(メタ)アクリレート、ビニルエステル、ビニル系芳香族、不飽和ニトリル、不飽和ジカルボン酸エステル、ビニルエーテル、共役ジエン、鎖状オレフイン、環状オレフイン、スルホ基含有単量体等の単量体との共重合物及びそれらのアルカリ金属、アルカリ土類金属、アンモニウム等により部分もしくは完全中和された塩等が例としてあげられる。
さらに、ノニオン性の界面活性剤としては、ポリオキシエチレン及びその誘導体、カルボキシベタイン、スルホベタイン等で例示されるベタイン、アミノカルボン酸、イミダゾリン誘導体が例としてあげられる。
表面処理後、前記した(l)式を満たすようにスラリー中に含まれるアルカリ金属イオン等の夾雑イオンをろ過水洗することが望ましい。また、ろ液の電気伝導度は特に限定されないが、通常10mS/cm以下、より好ましくは1mS/cm以下、更に好ましくは300μS/cm
[0020]
Examples of cationic surfactants include aliphatic amine salts such as stearylamine acetate and stearylamine hydrochloride, aliphatic quaternary ammonium salts such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride, and alkylbenzyldimethylammonium chloride. Cationic surfactants such as aromatic quaternary ammonium salts, heterocyclic quaternary ammonium compounds, amino groups (primary amine groups), imino groups (secondary amine groups), tertiary amine groups, quaternary ammonium groups, Cationic polymer dispersants having polar groups such as hydrazino groups, monomers copolymerizable with monomers having these polar groups, such as α, β unsaturated monocarboxylic acids, α, β unsaturated dicarboxylic acids Acids, alkyl methacrylates, (meth) alkoxy groups Ryl ether, (meth) acrylate having cyclohexyl group, α, β monoethylenically unsaturated hydroxy ester, polyalkylene glycol mono (meth) acrylate, vinyl ester, vinyl aromatic, unsaturated nitrile, unsaturated dicarboxylic acid ester, vinyl ether , Copolymers with monomers such as conjugated dienes, chained olefins, cyclic olefins, sulfo group-containing monomers, and salts partially or completely neutralized by alkali metals, alkaline earth metals, ammonium, etc. Is given as an example.
Furthermore, examples of nonionic surfactants include betaine, aminocarboxylic acid, and imidazoline derivatives exemplified by polyoxyethylene and derivatives thereof, carboxybetaine, sulfobetaine and the like.
After the surface treatment, it is preferable to filter and wash contaminated ions such as alkali metal ions contained in the slurry so as to satisfy the above-described formula (l). The electrical conductivity of the filtrate is not particularly limited, but is usually 10 mS / cm or less, more preferably 1 mS / cm or less, and even more preferably 300 μS / cm.

【0022】
ッ素樹脂、スチレン樹脂、メラミン樹脂、エポキシ樹脂等に代表される溶剤系塗料用樹脂、水系塗料においては、アルキド樹脂、アクリル樹脂、ラテックス樹脂、酢酸ビニル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、スチレン樹脂、メラミン樹脂、エポキシ樹脂等に代表される一般塗料用エマルジョン樹脂、アルキド樹脂、アミン樹脂、スチレン−アリルアルコール樹脂、アミノアルキド樹脂、ポリブタジエン樹脂等に代表される一般塗料用水溶性樹脂、エマルジョン樹脂と水溶性樹脂とをブレンドした塗料用ディスパージョン樹脂、架橋型水可溶性樹脂を乳化剤としたディスパージョン樹脂、アクリルハイドロゾル等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、可塑剤、分散剤等の各種添加剤を添加しても良いことは勿論である。
プラスチゾル用樹脂としては、塩化ビニルゾル、アクリルゾル、水溶性アクリルゾル、ウレタンゾル等を例示することができ、これらの樹脂成分は単独又は2種類以上組み合わせて使用される。
本発明の表面処理炭酸カルシウムとこれらの樹脂との配合割合は特に限定されず、所望の物性に応じて適宜決定すればよいが、通常、樹脂100重量部に対して表面処理炭酸カルシウム1〜100重量部が好ましい。必要に応じ、安定剤等の各種添加剤を添加しても良いことは勿論である。
インキ用樹脂としては特に限定されるものではないが、ロジン変成フェノール樹脂、尿素樹脂、メラミン樹脂、ケトン樹脂、ポリ塩化ビニル
[0022]
Resin for solvent-based paints typified by fluorine resin, styrene resin, melamine resin, epoxy resin, and water-based paint, alkyd resin, acrylic resin, latex resin, vinyl acetate resin, urethane resin, silicone resin, fluorine resin, Emulsion resins for general paints typified by styrene resins, melamine resins, epoxy resins, etc. Water-soluble resins for general paints, emulsion resins typified by alkyd resins, amine resins, styrene-allyl alcohol resins, aminoalkyd resins, polybutadiene resins, etc. Dispersion resins for paints that are blended with water-soluble resins, dispersion resins that use cross-linked water-soluble resins as emulsifiers, acrylic hydrosols, etc., and these resin components can be used alone or in combination of two or more Is done.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a plasticizer and a dispersant may be added as necessary.
Examples of the plastisol resin include vinyl chloride sol, acrylic sol, water-soluble acrylic sol, and urethane sol. These resin components are used alone or in combination of two or more.
The blending ratio of the surface-treated calcium carbonate of the present invention and these resins is not particularly limited, and may be appropriately determined according to desired physical properties. Usually, the surface-treated calcium carbonate is 1 to 100 parts per 100 parts by weight of the resin. Part by weight is preferred. Of course, various additives such as a stabilizer may be added as necessary.
The resin for ink is not particularly limited, but rosin modified phenolic resin, urea resin, melamine resin, ketone resin, polyvinyl chloride

【0041】

Figure 2003042103
[0041]
Figure 2003042103

Claims (17)

有機系表面処理剤で表面処理された炭酸カルシウムからなり、下記の式(a)、(b)、(c)及び(d)を満足することを特徴とする表面処理炭酸カルシウム。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(c) 0.003≦Dxp≦0.03(μm)
(d) 50≦Dyp/Dxp≦180
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
As :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/log平均細孔直径)が最大値(Dys)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
A surface-treated calcium carbonate comprising calcium carbonate surface-treated with an organic surface treating agent and satisfying the following formulas (a), (b), (c) and (d):
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(C) 0.003 ≦ Dxp ≦ 0.03 (μm)
(D) 50 ≦ Dyp / Dxp ≦ 180
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (integrated pore volume increase amount / log average pore diameter) is the maximum value (Dys). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: average pore size
有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)、(b)、(e)及び(f)を満足することを特徴とする表面処理炭酸カルシウム。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
As :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
A surface-treated calcium carbonate, wherein the calcium carbonate surface-treated with an organic surface treatment agent satisfies the following formulas (a), (b), (e) and (f):
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxs: 50% cumulative particle weight average particle diameter (μm) calculated from the large particle side in the particle size distribution in the laser diffraction type (manufactured by Shimadzu Corporation: SALD-2000).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
有機系表面処理剤で表面処理された炭酸カルシウムからなり、下記の式(a)〜(f)を満足することを特徴とする表面処理炭酸カルシウム。
(a) 20≦Sw≦200 (m/g)
(b) 1.0≦As≦7.5 (mg/m
(c) 0.003≦Dxp≦0.03(μm)
(d) 50≦Dyp/Dxp≦180
(e) 0.03≦Dxs≦1 (μm)
(f) Dys≦30 (重量%)
但し、
Sw :窒素吸着法によるBET比表面積(m/g)
As :次式により算出される単位比表面積当たりの熱減量(mg/m)(200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量mg/g)/Sw
Dxp:水銀圧入法において、細孔範囲0.001〜0.1μmの範囲おける細孔分布において、水銀圧入増加量(積算細孔容積増加量/log平均細孔直径)が最大値(Dys)となる平均細孔直径(μm)
Dyp:水銀圧入増加量の最大値(mg/l)
Dyp/Dxp:平均細孔径量
Dxs:レーザー回折式(島津製作所社製:SALD−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
A surface-treated calcium carbonate comprising calcium carbonate surface-treated with an organic surface treating agent and satisfying the following formulas (a) to (f):
(A) 20 ≦ Sw ≦ 200 (m 2 / g)
(B) 1.0 ≦ As ≦ 7.5 (mg / m 2 )
(C) 0.003 ≦ Dxp ≦ 0.03 (μm)
(D) 50 ≦ Dyp / Dxp ≦ 180
(E) 0.03 ≦ Dxs ≦ 1 (μm)
(F) Dys ≦ 30 (wt%)
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula (mg / m 2 ) (mg / g heat loss per gram of surface-treated calcium carbonate at 200 ° C. to 500 ° C.) / Sw
Dxp: In the mercury intrusion method, in the pore distribution in the pore range of 0.001 to 0.1 μm, the mercury intrusion increase amount (integrated pore volume increase amount / log average pore diameter) is the maximum value (Dys). Average pore diameter (μm)
Dyp: Maximum value of mercury intrusion increase (mg / l)
Dyp / Dxp: Average pore diameter Dxs: 50% average particle diameter (μm) of cumulative weight from the large particle side in the particle size distribution in the laser diffraction method (manufactured by Shimadzu Corporation: SALD-2000).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(g)〜(j)を満足する請求項1〜3のいずれか1項に記載の表面処理炭酸カルシウム。
(g) 0.005≦Dxp≦0.025(μm)
(h) 60≦Dyp/Dxp≦150
(i) 0.05≦Dxs≦0.8 (μm)
(j) Dys≦25 (重量%)
The surface-treated calcium carbonate according to any one of claims 1 to 3, wherein the calcium carbonate surface-treated with the organic surface treatment agent satisfies the following formulas (g) to (j).
(G) 0.005 ≦ Dxp ≦ 0.025 (μm)
(H) 60 ≦ Dyp / Dxp ≦ 150
(I) 0.05 ≦ Dxs ≦ 0.8 (μm)
(J) Dys ≦ 25 (% by weight)
有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(k)を満足する請求項1〜4のいずれか1項に記載の表面処理炭酸カルシウム。
(k) 0.1≦Sw・Dxp≦1.5
The surface-treated calcium carbonate according to any one of claims 1 to 4, wherein the calcium carbonate surface-treated with the organic surface treatment agent satisfies the following formula (k).
(K) 0.1 ≦ Sw · Dxp ≦ 1.5
有機系表面処理剤で表面処理された炭酸カルシウムに含有されるアルカリ金属塩が、下記の式(l)を満足する請求項1〜5のいずれか1項に記載の表面処理炭酸カルシウム。
(l) 0.03≦Is≦3 (μmol/m
但し、
Is:次式により算出される単位比表面積当たりのアルカリ金属含有量{炭酸カルシウム1g当たりの金属含有量(mmol/g)}/Sw(m/g)
The surface-treated calcium carbonate according to any one of claims 1 to 5, wherein the alkali metal salt contained in the calcium carbonate surface-treated with the organic surface treatment agent satisfies the following formula (1).
(L) 0.03 ≦ Is ≦ 3 (μmol / m 2 )
However,
Is: Alkali metal content per unit specific surface area calculated by the following formula {metal content per 1 g of calcium carbonate (mmol / g)} / Sw (m 2 / g)
有機系表面処理剤で表面処理を行う前(熟成後)の炭酸カルシウムスラリーが、下記の式(m)を満足する請求項1〜6のいずれか1項に記載の表面処理炭酸カルシウム。
(m) 0.03≦Dx≦0.40 (μm)
但し、
Dx :遠心式粒度分布計(島津製作所社製:SA−CP4)により測定した粒度分布において、大きな粒子径側から起算した重量累計50%のときの粒子径(μm)
The surface-treated calcium carbonate according to any one of claims 1 to 6, wherein the calcium carbonate slurry before the surface treatment with the organic surface treatment agent (after aging) satisfies the following formula (m).
(M) 0.03 ≦ Dx ≦ 0.40 (μm)
However,
Dx: Particle size (μm) at 50% cumulative weight calculated from the large particle size side in the particle size distribution measured by centrifugal particle size distribution analyzer (manufactured by Shimadzu Corporation: SA-CP4)
有機系表面処理剤が飽和脂肪酸、不飽和脂肪酸、樹脂酸、スルホン酸、それらのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩、カチオン性界面活性剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種である請求項1〜7のいずれか1項に記載の表面処理炭酸カルシウム。Organic surface treatment agent is saturated fatty acid, unsaturated fatty acid, resin acid, sulfonic acid, their alkali metal salt, alkaline earth metal salt, ammonium salt, amine salt, cationic surfactant, anionic surfactant, and The surface-treated calcium carbonate according to any one of claims 1 to 7, wherein the surface-treated calcium carbonate is at least one selected from nonionic surfactants. 水酸化カルシウムスラリーに、金属イオンに配位して錯体を形成する物質を0.5〜15重量%添加し、炭酸ガスを吹き込んで炭酸化反応により炭酸カルシウムを合成し、該炭酸カルシウム濃度を2.4〜13.0重量%に調整して熟成し、得られた炭酸カルシウムを有機系表面処理剤で表面処理することを特徴とする表面処理炭酸カルシウムの製造方法。0.5-15% by weight of a substance that forms a complex by coordinating with metal ions is added to the calcium hydroxide slurry, carbon dioxide is blown to synthesize calcium carbonate by a carbonation reaction, and the calcium carbonate concentration is set to 2 A method for producing surface-treated calcium carbonate, characterized by adjusting and aging to 4 to 13.0% by weight, and surface-treating the obtained calcium carbonate with an organic surface treatment agent. 請求項1〜8のいずれか1項に記載の表面処理炭酸カルシウムを樹脂に配合してなることを特徴とする樹脂組成物。A resin composition comprising the surface-treated calcium carbonate according to any one of claims 1 to 8 blended with a resin. 樹脂が成型用樹脂である請求項10記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is a molding resin. 樹脂が塗料用樹脂である請求項10記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is a paint resin. 樹脂がプラスチゾル用樹脂である請求項10記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is a plastisol resin. 樹脂がインキ用樹脂である請求項10記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is an ink resin. 樹脂がシーラント用樹脂である請求項10に記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is a sealant resin. 樹脂が接着剤用樹脂である請求項10記載の樹脂組成物。The resin composition according to claim 10, wherein the resin is an adhesive resin. 表面処理炭酸カルシウムの配合量が樹脂100重量部に対し1〜100重量部である請求項10〜16のいずれか1項に記載の樹脂組成物。The compounding quantity of surface treatment calcium carbonate is 1-100 weight part with respect to 100 weight part of resin, The resin composition of any one of Claims 10-16.
JP2003543947A 2001-11-16 2002-11-01 Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate Expired - Lifetime JP3650391B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001351149 2001-11-16
JP2001351149 2001-11-16
JP2002216217 2002-07-25
JP2002216217 2002-07-25
PCT/JP2002/011475 WO2003042103A1 (en) 2001-11-16 2002-11-01 Surface-treated calcium carbonate, method for production thereof and resin composition comprising said calcium carbonate

Publications (2)

Publication Number Publication Date
JPWO2003042103A1 true JPWO2003042103A1 (en) 2005-03-03
JP3650391B2 JP3650391B2 (en) 2005-05-18

Family

ID=26624556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003543947A Expired - Lifetime JP3650391B2 (en) 2001-11-16 2002-11-01 Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate

Country Status (9)

Country Link
US (1) US7341704B2 (en)
EP (1) EP1457459A4 (en)
JP (1) JP3650391B2 (en)
KR (1) KR100572141B1 (en)
CA (1) CA2466261C (en)
MX (1) MXPA04004579A (en)
MY (1) MY141798A (en)
TW (1) TWI283235B (en)
WO (1) WO2003042103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308813B2 (en) * 2004-06-11 2019-06-04 Omya International Ag Dry mineral pigment containing calcium carbonate, aqueous suspension containing said pigment, and the uses thereof

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452489B1 (en) 2001-12-03 2008-04-09 Shiraishi Kogyo Kaisha, Ltd. Material for imparting thixotropy and pasty resin composition
JP4310134B2 (en) * 2003-05-26 2009-08-05 白石工業株式会社 Surface treatment colloidal calcium carbonate
FR2862308B1 (en) * 2003-11-14 2008-02-15 Solvay PROCESS FOR MANUFACTURING SYNTHETIC RESIN AND SYNTHETIC RESIN OBTAINED USING THE SAME
JP2005272610A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Coating composition for one-coat coating
EP1657278A1 (en) * 2004-11-12 2006-05-17 SOLVAY (Société Anonyme) Coated particles of calcium carbonate having a high specific surface
JP4707497B2 (en) * 2005-08-10 2011-06-22 丸尾カルシウム株式会社 Surface-treated calcium carbonate filler for curable resin composition, and curable resin composition containing the filler
JP5305602B2 (en) * 2007-03-13 2013-10-02 丸尾カルシウム株式会社 Surface-treated calcium carbonate and resin composition comprising the same
CN101679062A (en) * 2007-03-13 2010-03-24 宇部材料工业株式会社 Highly dispersible fine powder of alkaline earth metal carbonate
JP5693005B2 (en) * 2007-07-13 2015-04-01 白石工業株式会社 Surface-treated calcium carbonate and inkjet printing recording medium
EP2036944A1 (en) * 2007-09-14 2009-03-18 SOLVAY (Société Anonyme) Polymer compositions
JP5506228B2 (en) * 2008-04-04 2014-05-28 丸尾カルシウム株式会社 Colloidal calcium carbonate filler, method for producing the same, and resin composition containing the filler
EP2291414B1 (en) * 2008-06-12 2015-07-22 3M Innovative Properties Company Methods of compounding nanoparticles with a resin
PL3069778T3 (en) * 2008-07-18 2018-08-31 Awi Licensing Llc Composition for removing aldehyde from air
EP2617762A1 (en) * 2008-12-19 2013-07-24 3M Innovative Properties Company Nanocalcite composites
KR101988667B1 (en) 2009-10-21 2019-06-12 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Solventless functionalization, milling, and compounding process with reactive diluents
FR2951731B1 (en) * 2009-10-23 2011-10-28 Rhodia Poliamida E Especialidades Ltda AQUEOUS FORMULATIONS COMPRISING DIOXOLANES AS COUPLING AGENTS
US10035909B2 (en) 2009-12-17 2018-07-31 3M Innovative Properties Company High magnesium surface concentration nanocalcite composites
WO2011084380A1 (en) * 2009-12-17 2011-07-14 3M Innovative Properties Company Nanocalcite and vinyl ester composites
WO2011159521A2 (en) * 2010-06-17 2011-12-22 3M Innovative Properties Company Composite pressure vessels
TWI542621B (en) * 2011-02-15 2016-07-21 宇部材料股份有限公司 Alkaline earth metal carbonate powder
JP5728333B2 (en) * 2011-08-29 2015-06-03 白石工業株式会社 Process for producing modified silicone resin composition
JP6100765B2 (en) * 2012-05-08 2017-03-22 丸尾カルシウム株式会社 Surface treated calcium carbonate filler and curable resin composition containing the filler
US9067799B2 (en) * 2012-09-28 2015-06-30 Ube Material Industries, Ltd. Acicular strontium carbonate fine powder treated with a combination of compounds containing a polyoxyalkylene group
EP2722368B1 (en) 2012-10-16 2016-07-13 Omya International AG Process of controlled chemical reaction of a solid filler material surface and additives to produce a surface treated filler material product
JP6278380B2 (en) * 2013-06-19 2018-02-14 丸尾カルシウム株式会社 Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate
EP3102639B1 (en) * 2014-02-05 2023-08-02 Sensient Colors LLC Surface-treated calcium carbonate, methods for making the same, and compositions including the same
KR102164056B1 (en) * 2014-02-28 2020-10-12 마루오 칼슘 가부시키가이샤 Calcium carbonate filler for resin and resin composition including said filler
DE102014212999A1 (en) * 2014-07-04 2016-01-07 Henkel Ag & Co. Kgaa Polyurethane laminating adhesive containing fillers
JP6532204B2 (en) * 2014-09-25 2019-06-19 株式会社白石中央研究所 Polyamide resin composition
JP5728616B2 (en) * 2014-12-16 2015-06-03 白石工業株式会社 Modified silicone resin composition
EP3124436A1 (en) 2015-07-31 2017-02-01 Omya International AG Precipitated calcium carbonate with improved resistance to structural breakdown
EP3192837B1 (en) 2016-01-14 2020-03-04 Omya International AG Wet surface treatment of surface-modified calcium carbonate
EP3272799A1 (en) 2016-07-19 2018-01-24 Omya International AG Use of mono-substituted succinic anhydride in polylactic acid composite filled with calcium carbonate
JP6959669B2 (en) * 2017-07-27 2021-11-02 白石工業株式会社 Calcium carbonate, calcium carbonate preparations for food additives and foods
JP6719779B2 (en) * 2017-07-27 2020-07-08 白石工業株式会社 Foods containing calcium carbonate
CN113247936A (en) * 2021-06-25 2021-08-13 安徽前江超细粉末科技有限公司 Method for reducing energy consumption in production of nano calcium carbonate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927618A (en) * 1987-11-19 1990-05-22 Pfizer Inc. Process for the preparation of large surface area, finely divided precipitated calcium carbonate and filled polymeric compositions of matter containing said calcium carbonate
WO1992002587A1 (en) * 1990-08-06 1992-02-20 Pfizer Inc. Calcium carbonate treated with fatty acids, manufacture and use
JP3058255B2 (en) * 1996-08-29 2000-07-04 丸尾カルシウム株式会社 Method for producing precipitated calcium carbonate
DE19738481C2 (en) * 1997-09-03 1999-08-12 Solvay Alkali Gmbh Calcium carbonate coated in aqueous systems with surface-active substances and process for the controlled bimolecular coating of calcium carbonate ponds
JPH11268912A (en) * 1998-03-24 1999-10-05 Maruo Calcium Co Ltd Inorganic dispersing agent, stabilizer for suspension polymerization, polymeric particle, unsaturated polyester resin composition, and toner composition
JP3151196B2 (en) 1998-04-10 2001-04-03 丸尾カルシウム株式会社 Surface-treated calcium carbonate filler, method for producing the same, and resin composition containing the filler
JP4439041B2 (en) * 1999-08-31 2010-03-24 奥多摩工業株式会社 Light calcium carbonate and ink jet recording paper using the same
PL359386A1 (en) * 2000-05-05 2004-08-23 Imerys Pigments, Inc. Particulate carbonates and their preparation and use in breathable film
JP3893586B2 (en) 2000-12-04 2007-03-14 白石工業株式会社 Surface-coated calcium carbonate particles, method for producing the same, and adhesive
JP2002220547A (en) * 2001-01-29 2002-08-09 Maruo Calcium Co Ltd Surface-treated chain calcium carbonate and resin composition compounded therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308813B2 (en) * 2004-06-11 2019-06-04 Omya International Ag Dry mineral pigment containing calcium carbonate, aqueous suspension containing said pigment, and the uses thereof
US10876005B2 (en) 2004-06-11 2020-12-29 Omya International Ag Dry mineral pigment containing calcium carbonate, aqueous suspension containing said pigment, and the uses thereof

Also Published As

Publication number Publication date
KR100572141B1 (en) 2006-04-18
TWI283235B (en) 2007-07-01
EP1457459A4 (en) 2010-08-25
EP1457459A1 (en) 2004-09-15
KR20040044432A (en) 2004-05-28
CA2466261A1 (en) 2003-05-22
JP3650391B2 (en) 2005-05-18
MY141798A (en) 2010-06-30
US20040092639A1 (en) 2004-05-13
CA2466261C (en) 2012-06-26
WO2003042103A1 (en) 2003-05-22
MXPA04004579A (en) 2004-08-13
US7341704B2 (en) 2008-03-11

Similar Documents

Publication Publication Date Title
JP3650391B2 (en) Surface-treated calcium carbonate, method for producing the same, and resin composition containing the calcium carbonate
JP2002188021A (en) Black composite iron oxide pigment, coating material and resin composition given by using the black composite iron oxide pigment
EP2678396B1 (en) Coating compositions comprising spheroid silica or silicate
AU2005202048B2 (en) Pure-coloured, readily dispersible iron oxide red pigments with high grinding stability
EP1828317A2 (en) Compositions comprising high surface area ground calcium carbonate
EP2547734A1 (en) Paint comprising hydrophobized minerals and related methods
JP3654413B2 (en) Iron-based black composite particle powder and method for producing the same, paint using the iron-based black composite particle powder, and rubber / resin composition colored with the iron-based black composite particle powder
JP2002220547A (en) Surface-treated chain calcium carbonate and resin composition compounded therewith
US2709160A (en) Amine-coated calcium carbonate pigments
JP2001011339A (en) Iron-based black composite pigment and its production, coating using the iron-based black composite pigment and rubber.resin composition colored with the iron-based black composite pigment
JP2000351914A (en) Iron-based black composite particulate powder and its production, coating material using the same and rubber/ resin composition colored therewith
EP1484364B1 (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
US9481581B2 (en) Process for the production of a storage-stable barium sulphate having good dispersibility
JPH08231760A (en) Surface-modified ground calcium carbonate and vinyl chloride resin composition compounded with the calcium carbonate
JP4407789B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP3668544B2 (en) Surface-modified heavy calcium carbonate, method for producing the same, and water-based coating composition
JP3894292B2 (en) Black composite particle powder and paint and resin composition containing the black composite particle powder
JP4438925B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP2000136319A (en) Fine, yellow, composite, water-containing iron oxide pigment, preparation thereof and coating and resin composition using this pigment
JP3232843B2 (en) Method for producing aging-resistant pigment powder
JPH10279314A (en) Nonmagnetic black pigment powder, nonmagnetic black coating material using that nonmagnetic black pigment powder, and black rubber and resin composition using that nonmagnetic black pigment powder
US2345191A (en) Treatment of pigments
JP2004244461A (en) Colored pigment
JP2867297B2 (en) Stable lead chromate pigment and method for producing the same
JPH04249564A (en) Vinyl chloride paste sol composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent or registration of utility model

Ref document number: 3650391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term