JP6278380B2 - Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate - Google Patents

Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate Download PDF

Info

Publication number
JP6278380B2
JP6278380B2 JP2013128408A JP2013128408A JP6278380B2 JP 6278380 B2 JP6278380 B2 JP 6278380B2 JP 2013128408 A JP2013128408 A JP 2013128408A JP 2013128408 A JP2013128408 A JP 2013128408A JP 6278380 B2 JP6278380 B2 JP 6278380B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
acid
weight
surface treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013128408A
Other languages
Japanese (ja)
Other versions
JP2015003835A (en
Inventor
英充 笠原
英充 笠原
瀧山 成生
成生 瀧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruo Calcium Co Ltd
Original Assignee
Maruo Calcium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruo Calcium Co Ltd filed Critical Maruo Calcium Co Ltd
Priority to JP2013128408A priority Critical patent/JP6278380B2/en
Publication of JP2015003835A publication Critical patent/JP2015003835A/en
Application granted granted Critical
Publication of JP6278380B2 publication Critical patent/JP6278380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、有機系表面処理剤で表面処理してなる炭酸カルシウム、その製造方法及び該炭酸カルシウムを配合してなるセラミック組成物に関し、さらに詳しくは、例えば、誘電体セラミックに代表される積層セラミックコンデンサ(MLCC)の主剤として使われるチタン酸バリウムに、電気特性や温度特性の調整剤として本発明の炭酸カルシウムを配合した場合、粒子が均一で優れた分散性を示すことから、チタン酸バリウム粒子と均一に混合することができるため、より熱安定性が高く誘電損失の少ない微細なチタン酸バリウムコンデンサを得ることができる。   The present invention relates to calcium carbonate surface-treated with an organic surface treatment agent, a method for producing the same, and a ceramic composition containing the calcium carbonate. More specifically, for example, a multilayer ceramic represented by a dielectric ceramic When the calcium carbonate of the present invention is blended with the barium titanate used as the main agent of the capacitor (MLCC) as a regulator of electrical characteristics and temperature characteristics, the particles are uniform and exhibit excellent dispersibility. Therefore, a fine barium titanate capacitor with higher thermal stability and less dielectric loss can be obtained.

従来より、電子部品用途にMLCCで代表されるチタン酸バリウムが、誘電体材料として広く使われているが、安定した電気特性や温度特性を付与する目的で、チタン酸バリウムに不純物が少ない炭酸塩等の添加物を固溶させた部位をシェルとし、固溶していない部位をコアとしたいわゆるコア−シェル構造のセラミックコンデンサーが市販されている(特許文献1参照)。   Conventionally, barium titanate, represented by MLCC, has been widely used as a dielectric material for electronic components, but for the purpose of imparting stable electrical and temperature characteristics, barium titanate has few impurities. A ceramic capacitor having a so-called core-shell structure in which a portion in which an additive such as an additive is dissolved is used as a shell and a portion where the additive is not dissolved is used as a core is commercially available (see Patent Document 1).

近年、携帯電話やモバイルパソコン、液晶テレビに代表される電子機器は、高速化、高性能化が進んでいるが、MLCC等も小型化、大容量化する必要がある。
従って、MLCC等の材料に使われるチタン酸バリウムも、より分散性を保持しながら微細化する必要がある。よって、微細なチタン酸バリウムに加えられる炭酸カルシウムも、チタン酸バリウム個々の粒子に均一に固溶される必要がある。そのためには不純物の含有量が少ないのはもちろんのこと、より分散性を保持した微細な炭酸カルシウムが求められている。
上記課題に対し、本出願人は、水酸化カルシウム水懸濁液に、金属イオンを配位して錯体を形成する物質を添加して、炭酸化反応により微細な炭酸カルシウムを生成させ、熟成させながら一次粒子を極力成長させることなく良好な分散状態が得られる微細な炭酸カルシウムの製造方法を開示している(特許文献2参照)。
しかしながら、前記公報の製造方法は、錯体形成物質を添加してから炭酸反応を行っているため、得られる炭酸カルシウムは連鎖状になる問題がある。高粘性を付与する用途の場合には有効な製法であるが、本発明の目的用途の場合は好ましくない。また、熟成後の炭酸カルシウム水懸濁液系での平均粒子径が示されているものの、乾粉後の平均粒子径ついては何ら示されていない。また目的用途が塩ビゾル等のプラスチゾル用途が主であり、プラスチゾルと相溶性が高い脂肪酸石鹸が表面処理されているため、好ましくない不純物金属が含有され、また水系での固相反応が主であるMLCC等の場合には、疎水処理ではなく親水処理が好ましい。
従って、より不純物金属類を低減した水分散性の良好な粉末の表面処理炭酸カルシウムが必要である。
In recent years, electronic devices typified by mobile phones, mobile personal computers, and liquid crystal televisions have been improved in speed and performance, but MLCCs and the like need to be reduced in size and capacity.
Therefore, barium titanate used for materials such as MLCC also needs to be refined while maintaining more dispersibility. Therefore, the calcium carbonate added to the fine barium titanate needs to be uniformly dissolved in the individual particles of barium titanate. For this purpose, there is a demand for fine calcium carbonate having a lower dispersibility as well as more dispersibility.
In response to the above problems, the present applicant adds a substance that forms a complex by coordinating metal ions to a calcium hydroxide aqueous suspension, generates fine calcium carbonate by a carbonation reaction, and matures it. However, the manufacturing method of the fine calcium carbonate from which a favorable dispersion state is obtained, without making a primary particle grow as much as possible is disclosed (refer patent document 2).
However, the production method of the above publication has a problem that the resulting calcium carbonate is chained because the carbonation reaction is performed after the complex-forming substance is added. This is an effective production method for applications that impart high viscosity, but is not preferred for the purposes of the present invention. Moreover, although the average particle diameter in the calcium carbonate aqueous suspension system after aging is shown, there is no indication about the average particle diameter after dry powdering. In addition, plastisol applications such as vinyl chloride sol are mainly used, and since fatty acid soap that is highly compatible with plastisol is surface-treated, it contains undesirable impurity metals and is mainly used for solid-phase reactions in aqueous systems. In the case of MLCC or the like, hydrophilic treatment is preferable instead of hydrophobic treatment.
Accordingly, there is a need for a powdered surface treated calcium carbonate with good water dispersibility with reduced impurity metals.

また、炭酸カルシウム微細粒子を、水洗等により金属含有量を限定して貯蔵安定性を改善した表面処理炭酸カルシウムが開示されている(特許文献3参照)。
しかしながら、前記公報と同様、目的用途が塩ビ等のプラスチゾルへの高粘性付与であるため、前記した理由で、MLCC等の用途には不適である。
In addition, surface-treated calcium carbonate in which calcium carbonate fine particles are improved in storage stability by limiting the metal content by washing or the like is disclosed (see Patent Document 3).
However, as in the above publication, the intended use is to impart high viscosity to plastisol such as vinyl chloride, and therefore, it is unsuitable for uses such as MLCC for the reasons described above.

特開平05−21267号公報JP 05-21267 A 特開平10−72215号公報Japanese Patent Laid-Open No. 10-72215 WO2003/42103号公報WO2003 / 42103 Publication

本発明は、かかる実情に鑑み、上記従来技術の課題を解消し、特に、上記セラミックに好適な水分散能を有する表面処理炭酸カルシウム、その製造方法及び該炭酸カルシウムを配合してなるセラミック組成物を提供することを目的とするものである。   In view of such circumstances, the present invention eliminates the above-mentioned problems of the prior art, and in particular, surface-treated calcium carbonate having water dispersibility suitable for the ceramic, a method for producing the same, and a ceramic composition comprising the calcium carbonate. Is intended to provide.

本発明者らは、上記課題を解決せんと鋭意検討を重ねた結果、炭酸カルシウムに特定の錯体形成物質を含有させることにより粒子成長を抑制し、特定の有機系表面処理剤で表面処理した表面処理炭酸カルシウムは、上記セラミックに好適な水分散能を得ることができることを見い出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have suppressed the particle growth by adding a specific complex-forming substance to calcium carbonate, and surface treated with a specific organic surface treatment agent. It has been found that the treated calcium carbonate can obtain a water dispersibility suitable for the above ceramics, and the present invention has been completed.

即ち、本発明の第一は、有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)〜(e)を満足することを特徴とする表面処理炭酸カルシウムを内容とする。
(a) 10≦Sw≦100 (m2 /g)
(b) 0.1≦As≦5.0 (mg/m2
(c) 0.03≦Dxs≦3.0 (μm)
(d) Dys≦30 (重量%)
(e) Is≦0.1 (μmol/m2
但し、
Sw :窒素吸着法によるBET比表面積(m2 /g)
As :次式により算出される単位比表面積当たりの熱減量
200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量Tg(mg/g)/Sw(g/m2
Dxs:レーザー回折式(マルバーン社製:MS−2000)により分散媒として水を用いて測定された粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
I s :次式により算出される単位比表面積当たりのアルカリ金属含有量
炭酸カルシウム1g当たりの金属含有量(μmol/g)/Sw(m2 /g)
That is, the first of the present invention includes surface-treated calcium carbonate in which the calcium carbonate surface-treated with the organic surface treating agent satisfies the following formulas (a) to (e).
(A) 10 ≦ Sw ≦ 100 (m 2 / g)
(B) 0.1 ≦ As ≦ 5.0 (mg / m 2 )
(C) 0.03 ≦ Dxs ≦ 3.0 (μm)
(D) Dys ≦ 30 (wt%)
(E) Is ≦ 0.1 (μmol / m 2 )
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Heat loss per unit specific surface area calculated by the following formula Heat loss Tg (mg / g) / Sw (g / m 2 ) per 1 g of surface-treated calcium carbonate at 200 ° C. to 500 ° C.
Dxs: laser diffraction (Malvern Co.: MS-2000) in the measured particle size distribution using water as a more dispersant, by weight cumulative 50% average particle diameter was calculated from large particles side ([mu] m).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
Is: Alkali metal content per unit specific surface area calculated by the following formula: Metal content per gram of calcium carbonate (μmol / g) / Sw (m 2 / g)

本発明の第二は、水酸化カルシウム水スラリーに炭酸ガスを導通させる炭酸化反応終了後に、0.1〜10重量%の錯体形成物質を添加した後、さらに有機系表面処理剤で表面処理することを特徴とする上記表面処理炭酸カルシウムの製造方法を内容とする。   In the second aspect of the present invention, after completion of the carbonation reaction for allowing carbon dioxide gas to pass through the calcium hydroxide aqueous slurry, 0.1 to 10% by weight of a complex-forming substance is added, followed by further surface treatment with an organic surface treatment agent. The manufacturing method of the said surface treatment calcium carbonate characterized by the above-mentioned is included.

本発明の第三は、上記表面処理炭酸カルシウムセラミック材料との混合物が焼成されていることを特徴とするセラミック組成物を内容とする。 The third aspect of the present invention is directed to the content of the ceramic composition characterized Rukoto mixture of the surface-treated calcium carbonate and ceramic material are fired.

本発明の表面処理炭酸カルシウムは、粒子が均一で優れた分散性を有するとともに、上記セラミックに好適な水分散能を有し、X7R特性やX8R特性を満足するセラミック組成物を提供することができる。   The surface-treated calcium carbonate of the present invention can provide a ceramic composition having uniform particles and excellent dispersibility, water dispersibility suitable for the ceramic, and satisfying X7R characteristics and X8R characteristics. .

以下、本発明を詳細に説明する。
(a)式は、本発明の表面処理炭酸カルシウムの窒素吸着法によるBET比表面積(Sw)であり、10〜100m2 /gが必要である。BET比表面積(Sw)が10m2 /g未満の場合は、粉体物性に問題はないが、チタン酸バリウム等のセラミック粒子と均一に分散するには粒子が大き過ぎるため緻密性の面で不向きである。一方、BET比表面積(Sw)が100m2 /gを越えると、一次粒子が小さ過ぎるために経時安定性が悪く分散性の面で問題が生じる。従って、好ましくは15〜75m2 /g、より好ましくは20〜60m2 /gである。
BET比表面積(Sw)の測定装置と主な測定条件を下記に示す。
<測定装置>
Mountech社製Macsorb
<測定条件>
前処理温度と時間=200℃−10分
Hereinafter, the present invention will be described in detail.
The formula (a) is the BET specific surface area (Sw) of the surface-treated calcium carbonate of the present invention according to the nitrogen adsorption method, and 10 to 100 m 2 / g is necessary. When the BET specific surface area (Sw) is less than 10 m 2 / g, there is no problem with the powder physical properties, but the particles are too large to be uniformly dispersed with ceramic particles such as barium titanate, which is not suitable in terms of denseness. It is. On the other hand, if the BET specific surface area (Sw) exceeds 100 m 2 / g, the primary particles are too small, so that the temporal stability is poor and a problem arises in terms of dispersibility. Therefore, it is preferably 15 to 75 m 2 / g, more preferably 20 to 60 m 2 / g.
The measurement apparatus and main measurement conditions for the BET specific surface area (Sw) are shown below.
<Measurement device>
Macsorb manufactured by Mounttech
<Measurement conditions>
Pretreatment temperature and time = 200 ° C.-10 minutes

(b)式は、本発明の表面処理炭酸カルシウムの単位比表面積当たりの有機系表面処理剤量(As)で、200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量Tg(mg/g)/Sw(g/m2 )により求められる。単位比表面積当たりの有機系表面処理剤量(As)は0.1〜5.0mg/m2 が必要である。従来の炭酸カルシウムの中には、(a)式を満足する1次粒子が細かいパウダーはいくつか市販されているが、1 次粒子が細かい炭酸カルシウムは、粒子の自重より粒子間結合の方が強いために、1次粒子が凝集形成して2次粒子を形成させたり、また、さらに2次粒子同士が凝集して3次粒子を形成するため、凝集パウダーを水系で再分散させるには問題がある。従って、有機系表面処理剤で炭酸カルシウムを覆い、水への再分散性を良くする必要がある。単位比表面積当たりの有機系表面処理剤量(As)が0.1mg/m2 未満では、水系での再分散性を十分に得ることができず、例えばセラミック誘電体用のチタン酸バリウム等セラミック粒子の表面を、表面処理炭酸カルシウムで混合処理しようとしても均一に処理することはできない。
一方、単位比表面積当たりの有機系表面処理剤量(As)が5.0mg/m2 を超えると、例えば本発明の目的用途である誘電体セラミックへ配合した場合、結晶の緻密性を損なわせるという問題がある。従って、好ましくは0.3〜4.0mg/m2 、より好ましくは0.5〜2.0mg/m2 である。
単位比表面積当りの有機系表面処理剤量(As)の測定装置と主な測定条件を下記に示す。
<測定装置>
リガク社製TG−8110型
<測定条件>
熱天秤(リガク社製TG−8110型)にて、直径10mmで0.5mlの白金製容器に表面処理した炭酸カルシウム粒子1gを入れ、15℃/分の昇温速度で昇温して200℃から500℃までの熱減量を測定し、表面処理した炭酸カルシウム粒子1g当りの熱減量(Tg)(mg/g)を求め、BET比表面積(Sw)(g/m2 )で除して求める。
The formula (b) is the amount of organic surface treatment agent (As) per unit specific surface area of the surface-treated calcium carbonate of the present invention, and the heat loss Tg (mg) per 1 g of the surface-treated calcium carbonate at 200 ° C. to 500 ° C. / G) / Sw (g / m 2 ). The amount of the organic surface treatment agent per unit specific surface area (As) needs to be 0.1 to 5.0 mg / m 2 . Among conventional calcium carbonates, several powders with fine primary particles satisfying the formula (a) are commercially available, but calcium carbonate with fine primary particles is more bound between particles than the weight of the particles. Due to its strength, primary particles are aggregated to form secondary particles, or secondary particles are aggregated to form tertiary particles, which makes it difficult to redisperse the aggregated powder in an aqueous system. There is. Therefore, it is necessary to cover the calcium carbonate with an organic surface treatment agent to improve redispersibility in water. If the amount of the organic surface treatment agent per unit specific surface area (As) is less than 0.1 mg / m 2 , sufficient redispersibility in an aqueous system cannot be obtained. For example, ceramic such as barium titanate for ceramic dielectrics Even if the surface of the particles is mixed with the surface-treated calcium carbonate, it cannot be uniformly treated.
On the other hand, when the amount of the organic surface treatment agent per unit specific surface area (As) exceeds 5.0 mg / m 2 , for example, when blended with a dielectric ceramic which is the intended use of the present invention, the compactness of the crystal is impaired. There is a problem. Therefore, preferably 0.3~4.0mg / m 2, more preferably 0.5-2.0 mg / m 2.
An apparatus for measuring the amount of organic surface treatment agent (As) per unit specific surface area and main measurement conditions are shown below.
<Measurement device>
TG-8110 type manufactured by Rigaku <Measurement conditions>
With a thermobalance (TG-8110 type manufactured by Rigaku Corporation), 1 g of calcium carbonate particles having a surface treatment of 10 mm in diameter and placed in a 0.5 ml platinum container, the temperature was raised at a rate of 15 ° C./min, and the temperature was increased to 200 ° C. The heat loss from 1 to 500 ° C. is measured, the heat loss per 1 g of the surface treated calcium carbonate particles (Tg) (mg / g) is obtained, and it is obtained by dividing by the BET specific surface area (Sw) (g / m 2 ). .

(c)式、(d)式は、例えば誘電体セラミック中における本発明の表面処理炭酸カルシウムの分散状態を示すもで、(c)式はレーザー回折式(マルバーン社製:MS−2000)における粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(Dxs)(μm)、(d)式は上記粒度分布において、3μmを越える粒子径の重量累計(Dys)(重量%)である。   The formulas (c) and (d) show, for example, the dispersion state of the surface-treated calcium carbonate of the present invention in a dielectric ceramic. The formula (c) is a laser diffraction formula (manufactured by Malvern: MS-2000). In the particle size distribution, the weight cumulative 50% average particle diameter (Dxs) (μm) calculated from the large particle side is expressed as the weight cumulative (Dys) (weight%) of the particle diameter exceeding 3 μm in the above particle size distribution. is there.

前記(c)式の50%平均粒子径(Dxs)は0.03〜3.0μmである必要がある。50%平均粒子径(Dxs)が0.03未満の場合、1次もしくは2次粒子の経時安定性が悪くなる。一方、3.0μmを越えると、前記した如く3次粒子凝集体の再分散性不良が多くなり、チタン酸バリウム等セラミック粒子への均一混合の面で問題となる。従って、好ましくは0.05〜2.0μm 、より好ましくは0.1〜1.0μmである。
前記(d)式の粒度分布において、3μmを越える粒子径の重量累計(Dys)は30重量%以下である必要がある。該重量累計(Dys)が30重量%を越えると、誘電体セラミック中での十分な分散性、均一性が得られず、所望の誘電特性が得られにくい。従って、好ましくは20重量%以下、より好ましくは10重量%以下である。
The 50% average particle diameter (Dxs) of the formula (c) needs to be 0.03 to 3.0 μm. When the 50% average particle diameter (Dxs) is less than 0.03, the temporal stability of the primary or secondary particles is deteriorated. On the other hand, if it exceeds 3.0 μm, the redispersibility defect of the tertiary particle aggregate increases as described above, which causes a problem in terms of uniform mixing with ceramic particles such as barium titanate. Accordingly, the thickness is preferably 0.05 to 2.0 μm, more preferably 0.1 to 1.0 μm.
In the particle size distribution of the formula (d), the cumulative weight (Dys) of the particle diameter exceeding 3 μm needs to be 30% by weight or less. If the cumulative weight (Dys) exceeds 30% by weight, sufficient dispersibility and uniformity in the dielectric ceramic cannot be obtained, and it is difficult to obtain desired dielectric properties. Therefore, it is preferably 20% by weight or less, more preferably 10% by weight or less.

粒度分布測定条件:下記の配合材(I)と(II)を140mlマヨネーズ瓶に秤量し、超音波分散機にて予備分散させたものを試料としてレーザー回折式粒度分布計(マルバーン社製:MS−2000)により測定を行う。
(I)本発明の表面処理炭酸カルシウム 1g
(II)水 60g
特に、前処理として前記した配合で調整後、予備分散として用いる超音波分散は、一定条件で行う方が好ましく、本発明の合成例で用いる超音波分散機は、チップ式超音波US−300T(日本精機製作所社製)を用い、電流値300μAの下、180秒間の一定条件で予備分散させる。
なお、超音波の予備分散時間は、水分散性での指標であり、通常180秒であるが、好ましくは120秒、より好ましくは60秒で所望の分散性が得られる。
Particle size distribution measurement conditions: Laser diffraction particle size distribution meter (manufactured by Malvern Co., Ltd .: MS) was prepared by weighing the following compounding materials (I) and (II) into a 140 ml mayonnaise bottle and preliminarily dispersing them with an ultrasonic disperser. -2000).
(I) 1 g of surface treated calcium carbonate of the present invention
(II) Water 60g
In particular, it is preferable that the ultrasonic dispersion used as the pre-dispersion after adjusting with the above-described formulation as the pretreatment is performed under a certain condition, and the ultrasonic disperser used in the synthesis example of the present invention is a chip type ultrasonic US-300T ( Nippon Seiki Seisakusho Co., Ltd.) and pre-dispersed under a constant condition of 180 seconds under a current value of 300 μA.
The ultrasonic pre-dispersion time is an indicator of water dispersibility, and is usually 180 seconds, but the desired dispersibility can be obtained in 120 seconds, more preferably 60 seconds.

(e)式は、本発明の表面処理炭酸カルシウム中に含有される、単位比表面積当たりのアルカリ金属含有量(Is)で、0.5μmol/m2 以下であることが必要である。アルカリ金属は、焼成しても残留物として存在するため、MLCCの電気特性に悪影響を及ぼす。また下限値は特に限定されないが、例えば0.001μmol/m2 未満にするには、炭酸カルシウムの生成量を極めて少なくするか、生成した炭酸カルシウムを過度に水洗する必要性がある。この結果、生産量が極端に少なくなったり、多量の水を必要とするため、生産性が低くコスト高となる。従って、好ましくは0.005〜0.3μmol/m2 、より好ましくは0.01〜0.1μmol/m2 である。
単位比表面積当たりのアルカリ金属含有量(Is)の測定装置と主な測定条件を下記に示す。
<測定装置>
島津製作所社製原子吸光分光光度計AA-677F 型
<測定条件>
検量線法によりアルカリ金属含有量を求める。
The formula (e) is an alkali metal content (Is) per unit specific surface area contained in the surface-treated calcium carbonate of the present invention, and is required to be 0.5 μmol / m 2 or less. Alkali metal exists as a residue even after firing, and thus adversely affects the electrical characteristics of MLCC. The lower limit is not particularly limited, but for example, to make it less than 0.001 μmol / m 2 , it is necessary to extremely reduce the amount of calcium carbonate produced or excessively wash the produced calcium carbonate. As a result, the production volume is extremely reduced or a large amount of water is required, resulting in low productivity and high cost. Therefore, it is preferably 0.005 to 0.3 μmol / m 2 , more preferably 0.01 to 0.1 μmol / m 2 .
An apparatus for measuring alkali metal content (Is) per unit specific surface area and main measurement conditions are shown below.
<Measurement device>
Atomic absorption spectrophotometer AA-677F manufactured by Shimadzu Corporation <Measurement conditions>
The alkali metal content is determined by a calibration curve method.

本発明有表面処理炭酸カルシウムは、更に下記の式(g)、(f)を満足することが好ましい。
(f) Im≦0.2 (μmol/m2
(g) Ir≦0.2 (μmol/m2
但し、
I m :次式により算出される単位比表面積当たりのマグネシウム金属含有量
炭酸カルシウム1g当たりの金属含有量(μmol/g)/Sw(m2 /g)
I r :次式により算出される単位比表面積当たりのストロンチウム金属含有量
炭酸カルシウム1g当たりの金属含有量(μmol/g)/Sw(m2 /g)
前記(f)式、(g)式は、それぞれ本発明の表面処理炭酸カルシウム中に含有される、単位比表面積当たりのマグネシウム金属の含有量(Im)、ストロンチウム金属の含有量(Ir)を示している。
The surface-treated calcium carbonate of the present invention preferably further satisfies the following formulas (g) and (f).
(F) Im ≦ 0.2 (μmol / m 2 )
(G) Ir ≦ 0.2 (μmol / m 2 )
However,
I m: Magnesium metal content per unit specific surface area calculated by the following formula: Metal content per gram of calcium carbonate (μmol / g) / Sw (m 2 / g)
I r: Strontium metal content per unit specific surface area calculated by the following formula: Metal content per gram of calcium carbonate (μmol / g) / Sw (m 2 / g)
The formulas (f) and (g) indicate the magnesium metal content (Im) and the strontium metal content (Ir) per unit specific surface area contained in the surface-treated calcium carbonate of the present invention, respectively. ing.

マグネシウムやストロンチウムは、カルシウムと同族なアルカリ土類金属であるため、他の金属と比べ含有量が比較的多くなり易く、本発明の目的用途である誘電体セラミックへ配合した場合、格子欠陥による誘電率の低下や品質係数(Q値)の低下を招く場合があるため、0.2μmol/m2 以下であることが好ましい。また(Im)や(Ir)の下限値は特に限定されないが、例えば0.0001μmol/m2 未満にするには、前記したように、生産性やコストの面で問題が生じ易い。従って、(Im)のより好ましい範囲は0.0001〜0.1μmol/m2 、さらに好ましくは0.0001〜0.05μmol/m2 である。(Ir)のより好ましい範囲は、0.0001〜0.01μmol/m2 、さらに好ましくは0.0001〜0.001μmol/m2 である。
単位比表面積当たりのマグネシウム金属含有量(I m)及び単位比表面積当たりのストロンチウム金属含有量(I r)の測定装置と主な測定条件を下記に示す。
<測定装置>
島津製作所社製原子吸光分光光度計AA-6700F型
<測定条件>
検量線法により、Mg金属、Sr金属の含有量を求める。
Magnesium and strontium are alkaline earth metals of the same family as calcium, so their content is likely to be relatively large compared to other metals, and when blended into the dielectric ceramic, which is the intended application of the present invention, The rate is preferably 0.2 μmol / m 2 or less because it may cause a decrease in the rate and a decrease in the quality factor (Q value). Further, the lower limit value of (Im) and (Ir) is not particularly limited. However, for example, if it is less than 0.0001 μmol / m 2 , as described above, problems are likely to occur in terms of productivity and cost. Therefore, a more preferable range of (Im) is 0.0001 to 0.1 μmol / m 2 , and further preferably 0.0001 to 0.05 μmol / m 2 . A more preferable range of (Ir) is 0.0001 to 0.01 μmol / m 2 , and further preferably 0.0001 to 0.001 μmol / m 2 .
An apparatus for measuring magnesium metal content (I m) per unit specific surface area and strontium metal content (I r) per unit specific surface area and main measurement conditions are shown below.
<Measurement device>
Atomic absorption spectrophotometer AA-6700F manufactured by Shimadzu Corporation <Measurement conditions>
Obtain the contents of Mg metal and Sr metal by the calibration curve method.

本発明の表面処理炭酸カルシウムの表面処理を行う前の炭酸カルシウムの調整方法は水酸化カルシウム水スラリーに炭酸ガスを導通する炭酸ガス法が好ましく、炭酸化反応で粒子径を調整した後、錯体形成物質を所定量添加し、微細な炭酸カルシウム粒子を保持調整する方法が例示できる。但し、原料となる石灰石は、一般的な緻密質石灰石を利用しても構わないが、前記した(e)式を満たすために、カルシウムと同族元素であるマグネシウムやストロンチウム等の不純物金属元素が除去された水酸化カルシルシウム懸濁液が好ましく、例えば特開平10−130020に記載の如く、不純物金属元素が比較的少ない溶液反応を利用した炭酸カルシウムを原料として用いるのが好ましい。   The method for adjusting calcium carbonate before the surface treatment of the surface-treated calcium carbonate of the present invention is preferably a carbon dioxide method in which carbon dioxide gas is conducted to a calcium hydroxide aqueous slurry, and after adjusting the particle size by carbonation reaction, complex formation A method of adding a predetermined amount of a substance and holding and adjusting fine calcium carbonate particles can be exemplified. However, as the raw material limestone, general dense limestone may be used, but in order to satisfy the above-mentioned formula (e), impurity metal elements such as magnesium and strontium, which are elements similar to calcium, are removed. The calcium hydroxide suspension is preferably used. For example, as described in JP-A-10-130020, calcium carbonate using a solution reaction with a relatively small amount of impurity metal elements is preferably used as a raw material.

また、錯体形成物質を添加する場合、焼成後の灰分が残存しないものが好ましい。具体的には、クエン酸、シュウ酸、リンゴ酸等のヒドロキシカルボン酸とそのアンモニウム塩及びアミン塩;グルコン酸、酒石酸等のポリヒドロキシカルボン酸とそのアンモニウム塩及びアミン塩;イミノジ酢酸、エチレンジアミン4酢酸、ニトリロトリ酢酸等のアミノポリカルボンとアンモニウム塩及びアミン塩;アセルアセトン、アセト酢酸メチル、アセト酢酸アリル等のケトン類等が挙げられ、これらは単独であるいは2種類以上組み合わせて使用される。中でもヒドロキカルボン酸類は、カルシウムとの結合性が高く、特にクエン酸で代表されるヒドロキシカルボン酸系が、カルシウムの錯体形成効果が高く好適に使用することができる。   Moreover, when adding a complex formation substance, the thing in which the ash after baking does not remain | survive is preferable. Specifically, hydroxycarboxylic acids such as citric acid, oxalic acid and malic acid and ammonium salts and amine salts thereof; polyhydroxycarboxylic acids such as gluconic acid and tartaric acid and ammonium salts and amine salts thereof; iminodiacetic acid and ethylenediaminetetraacetic acid And aminopolycarboxylic acids such as nitrilotriacetic acid and ammonium salts and amine salts; ketones such as acetacetone, methyl acetoacetate and allyl acetoacetate, and the like. These may be used alone or in combination of two or more. Of these, hydroxycarboxylic acids have a high binding property with calcium, and hydroxycarboxylic acids represented by citric acid are particularly preferable because of their high calcium complexing effect.

錯体形成物質の添加量は、(a)式に示した表面処理炭酸カルシウムのBET比表面積(Sw)や、(b)式に示した単位比表面積当たりの有機系表面処理剤量(As)により左右されるため、一概には測定できないが、通常0.1〜10重量%である。錯体形成物質の添加量が、0.1重量%未満の場合は、カルシウムとのキレート効果が低く、10重量%を超えると錯体形成物質の劣化で炭酸カルシウムの分散安定性を低下させる場合がある。従って、好ましくは0.3〜5重量%、より好ましくは0.5〜3重量%である。
錯体形成物質は、炭酸化反応を終了した直後の炭酸カルシウム水スラリーに添加され、5〜60分程度攪拌する。
The addition amount of the complex-forming substance depends on the BET specific surface area (Sw) of the surface-treated calcium carbonate represented by the formula (a) and the organic surface treatment agent amount (As) per unit specific surface area represented by the formula (b). However, it is generally 0.1 to 10% by weight although it cannot be measured in general. When the addition amount of the complex-forming substance is less than 0.1% by weight, the chelate effect with calcium is low, and when it exceeds 10% by weight, the dispersion stability of the calcium carbonate may be lowered due to the deterioration of the complex-forming substance. . Therefore, it is preferably 0.3 to 5% by weight, more preferably 0.5 to 3% by weight.
The complex-forming substance is added to the calcium carbonate water slurry immediately after the carbonation reaction is completed, and is stirred for about 5 to 60 minutes.

上記の如き方法で炭酸カルシウム水スラリーを調整した後、炭酸カルシウムは有機系表面処理剤で表面処理(表面被覆)される。
本発明で用いられる有機系表面処理剤は、セラミック誘電体の混合系が主に水系である場合が多いため、数平均分子量(ゲル浸透圧クロマトグラフ測定)が500〜50000程度の親水性界面活性剤であることが好ましい。数平均分子量が500未満の場合は炭酸カルシウムへの表面処理率が低下する傾向があり、また50000を越える場合、疎水化により炭酸カルシウムの均一な処理が悪化する場合がある。従って、より好ましくは2000〜30000の範囲である。
After adjusting the calcium carbonate water slurry by the method as described above, the calcium carbonate is subjected to surface treatment (surface coating) with an organic surface treatment agent.
Since the organic surface treatment agent used in the present invention is mainly an aqueous ceramic dielectric mixture, the hydrophilic surface activity has a number average molecular weight (gel osmotic pressure chromatographic measurement) of about 500 to 50,000. It is preferable that it is an agent. When the number average molecular weight is less than 500, the surface treatment rate to calcium carbonate tends to decrease, and when it exceeds 50,000, the uniform treatment of calcium carbonate may deteriorate due to hydrophobization. Therefore, the range of 2000 to 30000 is more preferable.

具体的には、α、βモノエチレン性不飽和カルボン酸系が例示できる。不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸等から選ばれるα、β不飽和モノカルボン酸、マレイン酸、イタコン酸、フマール酸等から選ばれるα、β不飽和ジカルボン酸を例示することができる。
また本発明の有機表面処理剤の重合体は、(I)α、βモノエチレン性不飽和カルボン酸又はその塩の1種又は2種以上の単独重合体、及び(II)α、βモノエチレン性不飽和カルボン酸又は共重合体、及びα、βモノエチレン性不飽和カルボン酸又は共重合体、及び(III)α、βモノエチレン性不飽和カルボン酸又はその塩と共重合性を有する単量体を1種以上共重合した有機系表面処理剤が例示できる。
Specific examples include α and β monoethylenically unsaturated carboxylic acid systems. Examples of unsaturated carboxylic acids include α, β unsaturated monocarboxylic acids selected from acrylic acid, methacrylic acid, crotonic acid, etc., α, β unsaturated dicarboxylic acids selected from maleic acid, itaconic acid, fumaric acid, etc. be able to.
The polymer of the organic surface treating agent of the present invention comprises (I) one or more homopolymers of α, β monoethylenically unsaturated carboxylic acid or a salt thereof, and (II) α, β monoethylene. Unsaturated carboxylic acid or copolymer, and α, β monoethylenically unsaturated carboxylic acid or copolymer, and (III) α, β monoethylenically unsaturated carboxylic acid or a salt thereof. Examples thereof include organic surface treating agents obtained by copolymerizing one or more monomers.

また、(III)の共重合性を有する具体的な単量体としては、下記の(A)〜(E)のものが例示できる。
(A)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソブチル、メタクリル酸2−エチルヘキシル等のアクリル酸アルキルエステル及びメタクリル酸アルキルエステル系。
(B)メトキシエチルアクリレート、メトシキエチルメタクリレート、エトキシエチルアクリレート、エトキシエチルメタクリレート等のアルコキシ基を有するアクリレート及びメタクリレート系。
(C)シクロヘキシルアクリレート、シクロヘキシルメタクリレート等のシクロヘキシル基を有するアクリレート及びメタクリレート系。
(D)2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート等のα、βモノエチレン性不飽和ヒドロキシエステル系。
(E)ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート、ポリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノメタクリレート、ポリエチレングリコールポリプロピレングリコールモノメタクリレート、メトキシポリエチレングリコールポリテトラメチレングリコールモノメタクリレート、メトキシポリエチレングリコールモノメタクリレート等のポリアルキレングリコールモノアクリレート及びモノメタクリレート系。
中でも(E)群の重合性単量体は、炭酸カルシウムの分散性において、好適に用いることができる。
Specific examples of the monomer (III) having copolymerizability include the following (A) to (E).
(A) Acrylic acid such as methyl acrylate, ethyl acrylate, propyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate Alkyl esters and methacrylic acid alkyl esters.
(B) Acrylates and methacrylates having alkoxy groups such as methoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate and the like.
(C) Acrylates and methacrylates having a cyclohexyl group, such as cyclohexyl acrylate and cyclohexyl methacrylate.
(D) α, β monoethylenically unsaturated hydroxyesters such as 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate.
(E) Polyalkylene glycols such as polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, polypropylene glycol monoacrylate, polypropylene glycol monomethacrylate, polyethylene glycol polypropylene glycol monomethacrylate, methoxypolyethylene glycol polytetramethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate Monoacrylate and monomethacrylate.
Among them, the polymerizable monomer of group (E) can be preferably used in terms of the dispersibility of calcium carbonate.

α、βモノエチレン系不飽和モノカルボン酸から選ばれる少なくとも1種に、該α、βモノエチレン系不飽和ジカルボン酸との共重合性を有するその他の単量体との共重合体において、該α、βモノエチレン系不飽和ジカルボン酸の占める割合は、α、βモノエチレン不飽和モノカルボン酸100重量部当たり、0〜200重量部であることが好ましい。 α、βモノエチレン系不飽和モノカルボン酸から選ばれる少なくとも1種に、前記(A)〜(E)の共重合性を有する単量体の占める割合は、α、βモノエチレン不飽和モノカルボン酸100重量部当たり、10〜200重量部であることが好ましい。当該単量体の効果を十分に発揮させるためには、5〜150重量が好ましく、10〜100重量部がより好ましい。   In at least one selected from α, β monoethylenically unsaturated monocarboxylic acid, a copolymer with the other monomer having copolymerizability with the α, β monoethylenically unsaturated dicarboxylic acid, The proportion of the α, β monoethylenically unsaturated dicarboxylic acid is preferably 0 to 200 parts by weight per 100 parts by weight of the α, β monoethylenically unsaturated monocarboxylic acid. The proportion of the monomers (A) to (E) having copolymerizability in at least one selected from α and β monoethylenically unsaturated monocarboxylic acids is α, β monoethylenically unsaturated monocarboxylic acid. The amount is preferably 10 to 200 parts by weight per 100 parts by weight of the acid. In order to fully exhibit the effect of the monomer, 5 to 150 parts by weight is preferable, and 10 to 100 parts by weight is more preferable.

表面処理剤の表面処理量は、炭酸カルシウムのBET比表面積によって左右されるため、(b)式に示した単位比表面積当たりの有機系表面処理剤量(As)の範囲内の吸着量であれば特に限定されないが、通常0.1〜10重量%である。表面処理剤量が0.1重量%未満の場合、本発明の微細で高分散性である炭酸カルシウムの表面を十分に覆うことができず、乾燥・粉末化の際、未処理面同士で2次凝集を形成し易いため、該表面処理炭酸カルシウムとしての効果が十分発揮できにくくなる。また、10重量%を越えると、焼成の際に表面処理剤過多によるセラミック誘電体に空孔ができ、製品の安定性や信頼性に影響を与える原因となる場合がある。従って、より好ましくは0.5〜7重量%、さらに好ましくは1〜5重量%である。   Since the surface treatment amount of the surface treatment agent depends on the BET specific surface area of calcium carbonate, it may be an adsorption amount within the range of the organic surface treatment agent amount (As) per unit specific surface area shown in the formula (b). Although it will not specifically limit if it is 0.1 to 10 weight% normally. When the amount of the surface treatment agent is less than 0.1% by weight, the fine and highly dispersible calcium carbonate surface of the present invention cannot be sufficiently covered. Since secondary agglomeration is easily formed, the effect as the surface-treated calcium carbonate cannot be sufficiently exhibited. On the other hand, when the content exceeds 10% by weight, pores are formed in the ceramic dielectric due to excessive surface treatment agent during firing, which may cause an influence on the stability and reliability of the product. Therefore, it is more preferably 0.5 to 7% by weight, still more preferably 1 to 5% by weight.

表面処理後、さらに分散効果を高めるために、湿式であればサンドグラインダーミルや湿式ジェット粉砕機、ホモジナイザー等を、乾式であれば振動ボールミルや乾式ジェット粉砕機を通過させ、所望の粒度になるよう調整する方法は好ましい態様である。   After the surface treatment, in order to further enhance the dispersion effect, if it is wet, it is passed through a sand grinder mill, wet jet pulverizer, homogenizer, etc. The method of adjusting is a preferred embodiment.

次に、本発明のセラミック組成物について説明する。
先ず本発明の表面処理炭酸カルシウムが使われるセラミック組成物は、誘電体もしくは圧電体構造であれば特に限定されるものでなく、BaTiO3系、SrTiO3系、CaTiO3系、PbTiO3系、PbZrO3系、CaZrO3系、CaCu3Ti4O12 系などのセラミック組成物が例示できる。中でも特に、ニッケル(Ni)を内部電極に用いたチタン酸バリウム(BaTiO3)系積層セラミックコンデンサで知られる強誘電体用途に効果が極めて高く、本発明の目的用途から、X7R特性やX8R特性を満足したセラミック組成物として例示することができる。
また、各種センサーやフィルター用途に使われる焦電体も強誘電体セラミックとして問題なく、本発明の表面処理炭酸カルシウムを使用することができる。
Next, the ceramic composition of the present invention will be described.
First, the ceramic composition in which the surface-treated calcium carbonate of the present invention is used is not particularly limited as long as it is a dielectric or piezoelectric structure. BaTiO 3 , SrTiO 3 , CaTiO 3 , PbTiO 3 , PbZrO Examples of the ceramic composition include 3 series, CaZrO 3 series, and CaCu 3 Ti 4 O 12 series. In particular, it is extremely effective for ferroelectric applications known as barium titanate (BaTiO 3 ) multilayer ceramic capacitors using nickel (Ni) as an internal electrode. From the intended use of the present invention, X7R characteristics and X8R characteristics are improved. It can be exemplified as a satisfactory ceramic composition.
In addition, the pyroelectric material used for various sensors and filters can be used as the ferroelectric ceramic without any problem, and the surface-treated calcium carbonate of the present invention can be used.

BaTiO3系セラミックの構造は、BaTiO3系に炭酸カルシウム(CaCO3 )を含む各種添加剤を固溶させるのが一般的である。俗にいう、コア層にBaTiO3系、シェル層にCaCO3 を含む添加剤を配合したコア−シェル構造を有する構造体であってもよい。
具体的に各種添加剤としては、CaCO3 以外に、BaCO3 、SrCO3 、SiO2等のガラス系焼結材の他、Y2O3、Dy2O3 、Ho2O3 等の希土類酸化物で代表される絶縁抵抗材、MgO で代表される拡散制御材、MnCO3 やCr2O3 で代表される電気抵抗材等が例示できる。
BaTiO3系セラミック組成物は、固相法、水熱合成法、蓚酸法、ゾルゲル法等で調整することができる。さらにキュリー点等を制御する目的等でBaサイトにCaやSr、Pb、Bi、Zn等の酸化物を添加し固溶させても問題ない。
本発明の表面処理炭酸カルシウムを含む、各種主剤や添加剤を混合分散した水懸濁液を乾燥後、任意の大きさに調整し、任意の焼成条件で還元焼成等を行い、本発明のセラミック組成物を得ることができる。
The structure of BaTiO 3 ceramic is generally obtained by dissolving various additives including calcium carbonate (CaCO 3 ) in the BaTiO 3 system. The core may be a structure having a core-shell structure in which an additive containing BaTiO 3 in the core layer and CaCO 3 in the shell layer is blended.
Specifically, in addition to CaCO 3 , various additives include glass-based sintered materials such as BaCO 3 , SrCO 3 , and SiO 2 , and rare earth oxidation such as Y 2 O 3 , Dy 2 O 3 , and Ho 2 O 3. Insulation resistance materials typified by materials, diffusion control materials typified by MgO 2, electrical resistance materials typified by MnCO 3 and Cr 2 O 3 , etc. can be exemplified.
The BaTiO 3 ceramic composition can be prepared by a solid phase method, a hydrothermal synthesis method, an oxalic acid method, a sol-gel method, or the like. Furthermore, there is no problem even if an oxide such as Ca, Sr, Pb, Bi, or Zn is added to the Ba site and dissolved in order to control the Curie point or the like.
The aqueous suspension containing the surface treated calcium carbonate of the present invention, in which various main ingredients and additives are mixed and dispersed, is dried, adjusted to any size, subjected to reduction firing under any firing conditions, and the ceramic of the present invention A composition can be obtained.

実施例1
特開平10−130020号公報に記載の実施例3に従い、濃度1.6mol/L の炭酸アンモニウム水溶液と、濃度0.8mol/L の液体塩化カルシウム水溶液を各100L用意し共に液温10℃に温調した。次に、炭酸アンモニウム水溶液側に塩化カルシウム水溶液100Lを動力0.5kwの攪拌条件で、滴下混合を開始し、600秒後に炭酸化反応を終了した。
該炭酸カルシウム水スラリーを遠心脱水機を用いて濃縮し、濃縮液に水を加えて再度希釈し攪拌した希釈液を遠心脱水機を用いて濃縮し、遠心脱水機の濾液の電気伝導度が200μS/cm以下に降下するまで水洗濃縮し、平均系2.6μmの炭酸カルシウム(カルサイト結晶)を得た。
該炭酸カルシウムをロータリーキルンで焼成し生石灰を得、純水で消化して水酸化カルシム水スラリーを調整した。
次に、濃度7重量%に調整した水酸化カルシウム水スラリーを20L用意し、温度15℃に冷却後、水酸化カルシウム1kg当たり600L/hrの二酸化炭素ガスを導入し、pH7.0まで炭酸化反応を行った。炭酸化反応を終了した直後の炭酸カルシウム水スラリーに、錯体形成物質としてクエン酸を炭酸カルシウムに対し0.5重量%添加し10分間攪拌した。その後、フィルタープレスを用いて含水率約60%に脱水し、攪拌下で表1に示す表面処理剤を炭酸カルシウムに対して2重量%添加し表面処理した後、常法に従い、粉砕、乾燥を行うことにより本発明の表面処理炭酸カルシウムを得た。
Example 1
According to Example 3 described in Japanese Patent Laid-Open No. 10-130020, 100 L each of a 1.6 mol / L ammonium carbonate aqueous solution and a 0.8 mol / L liquid calcium chloride aqueous solution were prepared and heated to a liquid temperature of 10 ° C. Adjusted. Next, dropwise mixing of 100 L of calcium chloride aqueous solution on the ammonium carbonate aqueous solution side under stirring conditions with a power of 0.5 kw was started, and the carbonation reaction was terminated after 600 seconds.
The calcium carbonate aqueous slurry is concentrated using a centrifugal dehydrator, and the diluted liquid is diluted again by adding water to the concentrated liquid, and the stirred diluted liquid is concentrated using a centrifugal dehydrator. The electric conductivity of the filtrate of the centrifugal dehydrator is 200 μS. The solution was concentrated by washing with water until it dropped below / cm, and an average system of 2.6 μm calcium carbonate (calcite crystal) was obtained.
The calcium carbonate was calcined in a rotary kiln to obtain quicklime, and digested with pure water to prepare a calcium hydroxide water slurry.
Next, 20 L of a calcium hydroxide water slurry adjusted to a concentration of 7% by weight is prepared, cooled to a temperature of 15 ° C., carbon dioxide gas of 600 L / hr per 1 kg of calcium hydroxide is introduced, and the carbonation reaction is carried out to pH 7.0. Went. To the calcium carbonate water slurry immediately after the carbonation reaction was completed, 0.5% by weight of citric acid as a complex-forming substance was added to the calcium carbonate and stirred for 10 minutes. Then, after dehydrating to a moisture content of about 60% using a filter press and adding 2% by weight of the surface treatment agent shown in Table 1 to the calcium carbonate with stirring, the surface treatment was performed, followed by pulverization and drying according to conventional methods. By performing, the surface-treated calcium carbonate of the present invention was obtained.

実施例2
濃度5重量%に調整した水酸化カルシウム水スラリーを20L用意し、温度10℃に冷却後、水酸化カルシウム1kg当たり600L/hrの二酸化炭素ガスを導入し、pH7.0まで炭酸化反応を行った。炭酸化反応を終了した直後の炭酸カルシウム水スラリーに、錯体形成物質としてクエン酸を炭酸カルシウムに対し1.0重量%添加に変更した以外は、実施例1と同様の方法で炭酸カルシウムを調整した。
その後、表1に示す表面処理剤を炭酸カルシウムに対して4重量%添加した以外は実施例1と同様の方法により本発明の表面処理炭酸カルシウムを得た。
Example 2
20 L of calcium hydroxide water slurry adjusted to a concentration of 5% by weight was prepared, cooled to a temperature of 10 ° C., carbon dioxide gas of 600 L / hr per 1 kg of calcium hydroxide was introduced, and the carbonation reaction was carried out to pH 7.0. . The calcium carbonate was adjusted in the same manner as in Example 1 except that citric acid was added to the calcium carbonate water slurry immediately after the carbonation reaction as a complex-forming substance in an amount of 1.0% by weight based on calcium carbonate. .
Then, the surface treatment calcium carbonate of this invention was obtained by the method similar to Example 1 except having added 4 weight% of surface treatment agents shown in Table 1 with respect to calcium carbonate.

実施例3
濃度3重量%に調整した水酸化カルシウム水スラリーを20L用意し、温度8℃に冷却後、水酸化カルシウム1kg当たり600L/hrの二酸化炭素ガスを導入し、pH7.0まで炭酸化反応を行った。炭酸化反応を終了した直後の炭酸カルシウム水スラリーに、錯体形成物質としてクエン酸を炭酸カルシウムに対し2.0重量%添加に変更した以外は、実施例1と同様の方法で炭酸カルシウムを調整した。
その後、表1に示す表面処理剤を炭酸カルシウムに対して5.5重量%添加した以外は実施例1と同様の方法により本発明の表面処理炭酸カルシウムを得た。
Example 3
20 L of calcium hydroxide water slurry adjusted to a concentration of 3% by weight was prepared, cooled to a temperature of 8 ° C., and then carbon dioxide gas of 600 L / hr per 1 kg of calcium hydroxide was introduced to conduct a carbonation reaction to pH 7.0. . Calcium carbonate was prepared in the same manner as in Example 1 except that citric acid was added to the calcium carbonate water slurry immediately after the carbonation reaction was added to 2.0% by weight of calcium carbonate as a complex-forming substance. .
Then, the surface treatment calcium carbonate of this invention was obtained by the method similar to Example 1 except having added 5.5 weight% of surface treatment agents shown in Table 1 with respect to calcium carbonate.

実施例4
濃度10重量%に調整した水酸化カルシウム水スラリーを20L用意し、錯体形成物質としてクエン酸を炭酸カルシウムに対し0.1重量%添加に変更した以外は、実施例1と同様の方法で炭酸カルシウムを調整した。
Example 4
Calcium carbonate was prepared in the same manner as in Example 1 except that 20 L of a calcium hydroxide aqueous slurry adjusted to a concentration of 10% by weight was prepared, and citric acid was changed to 0.1% by weight added to calcium carbonate as a complex-forming substance. Adjusted.

実施例5
濃度0.8mol/L の工業用塩化カルシウム水溶液と、濃度1.6mol/L の液体苛性ソーダ水溶液を各100L用意した。塩化カルシウム水溶液側の液温を95℃に温調し、動力0.5kwの攪拌条件で苛性ソーダ水溶液を滴下混合開始し、約200分に消化反応を終了した。
得られた水酸化カルシウム水スラリーを、遠心脱水機を用いて濃縮し、該濃縮液に純水を加えて希釈し攪拌した後、再度希釈液を遠心脱水機で濃縮し、遠心脱水機の濾液の電気伝導度が1000μS/cm以下に降下するまで水洗濃縮し、水酸化カルシウム水スラリーを得た。それ以降は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
次に濃度5重量%に調整した水酸化カルシウム水スラリーを20L用意し、温度13℃に冷却後、水酸化カルシウム1kg当たり600L/hrの二酸化炭素ガスを導入しpH7.0まで炭酸化を行った。調整した炭酸カルシウム水スラリーに、錯体形成物質としてクエン酸を炭酸カルシウムに対し0.5重量%添加し十分撹拌した。
その後、表1に示す表面処理剤を炭酸カルシウムに対して2重量%添加した以外は、実施例1と同様の方法により本発明の表面処理炭酸カルシウムを得た。
Example 5
100 L each of an industrial calcium chloride aqueous solution having a concentration of 0.8 mol / L and a liquid caustic soda aqueous solution having a concentration of 1.6 mol / L were prepared. The liquid temperature on the calcium chloride aqueous solution side was adjusted to 95 ° C., and the caustic soda aqueous solution was dropped and mixed under a stirring condition with a power of 0.5 kw, and the digestion reaction was completed in about 200 minutes.
The obtained calcium hydroxide aqueous slurry is concentrated using a centrifugal dehydrator, and pure water is added to the concentrate to dilute and stir, and then the diluted solution is concentrated again using a centrifugal dehydrator, and the filtrate of the centrifugal dehydrator is added. The resulting solution was concentrated by washing with water until the electric conductivity of the solution dropped to 1000 μS / cm or less to obtain a calcium hydroxide aqueous slurry. Thereafter, the surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1.
Next, 20 L of calcium hydroxide water slurry adjusted to a concentration of 5 wt% was prepared, cooled to a temperature of 13 ° C., and then carbonized to 600 by introducing 600 L / hr of carbon dioxide gas per kg of calcium hydroxide. . To the adjusted calcium carbonate aqueous slurry, 0.5% by weight of citric acid as a complex-forming substance was added with respect to calcium carbonate and sufficiently stirred.
Then, the surface treatment calcium carbonate of this invention was obtained by the method similar to Example 1 except having added 2 weight% of surface treatment agents shown in Table 1 with respect to calcium carbonate.

実施例6
得られた水酸化カルシウム水懸濁液を、遠心脱水機を用いて濃縮し、濃縮液に純水を加えて希釈し攪拌した後、再度希釈液を遠心脱水機で濃縮し、遠心脱水機の濾液の電気伝導度が600μS/cm以下に降下するまで水洗濃縮し、水酸化カルシウム水懸濁液を得た以外は、実施例5と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 6
Concentrate the obtained calcium hydroxide aqueous suspension using a centrifugal dehydrator, add pure water to the concentrate, dilute and stir, and then concentrate the diluted solution again with a centrifugal dehydrator. The surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 5 except that the filtrate was washed and concentrated until the electrical conductivity dropped to 600 μS / cm or less to obtain a calcium hydroxide aqueous suspension.

実施例7
錯体形成物質としてクエン酸の添加量を炭酸カルシウムに対して6重量%に変更した以外は、実施例5と同様の方法で表面処理炭酸カルシウムを得た。
Example 7
Surface-treated calcium carbonate was obtained in the same manner as in Example 5 except that the amount of citric acid added as a complex-forming substance was changed to 6% by weight with respect to calcium carbonate.

実施例8
都市ガスを熱源に灰色緻密質石灰石をキルンで焼成し、得られた生石灰を水道水で溶解して水酸化カルシウム水スラリーを得た。それ以降は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 8
Gray dense limestone was calcined in a kiln using city gas as a heat source, and the obtained quicklime was dissolved in tap water to obtain a calcium hydroxide water slurry. Thereafter, the surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1.

実施例9
表面処理剤の重合性単量体として、アクリル酸マレイン酸の共重合体に変更した以外は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 9
The surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1 except that the monomer for the surface treatment agent was changed to a copolymer of maleic acrylate.

実施例10
表面処理剤の重合性単量体として、ポリエチレングリコールモノメタクリレートをアクリル酸メチルに変更した以外は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 10
The surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1 except that polyethylene glycol monomethacrylate was changed to methyl acrylate as the polymerizable monomer for the surface treatment agent.

実施例11
表面処理剤の重合性単量体として、ポリエチレングリコールモノメタクリレートをメトキシエチルアクリレートに変更した以外は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 11
The surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1 except that polyethylene glycol monomethacrylate was changed to methoxyethyl acrylate as the polymerizable monomer for the surface treatment agent.

実施例12
表面処理剤の重合性単量体として、ポリエチレングリコールモノメタクリレートをシクロヘキシルアクリレートに変更し、さらにアンモニウム塩をアミン塩に変更した以外は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 12
As a polymerizable monomer for the surface treatment agent, the surface-treated calcium carbonate of the present invention was prepared in the same manner as in Example 1 except that polyethylene glycol monomethacrylate was changed to cyclohexyl acrylate and the ammonium salt was changed to an amine salt. Obtained.

実施例13
表面処理剤の重合性単量体として、ポリエチレングリコールモノメタクリレートを2−ヒドロキシエチルアクリレートに変更した以外は、実施例1と同様の方法で本発明の表面処理炭酸カルシウムを得た。
Example 13
The surface-treated calcium carbonate of the present invention was obtained in the same manner as in Example 1 except that polyethylene glycol monomethacrylate was changed to 2-hydroxyethyl acrylate as the polymerizable monomer for the surface treatment agent.

比較例1
錯体形成物質としてクエン酸を添加しない以外は、実施例1と同様の方法で炭酸化反応を行った。次いで、該炭酸カルシウム水スラリーを、温度50〜55℃で48時間撹拌熟成を行った。その後、表1に示す表面処理剤を炭酸カルシウムに対して1.2重量%添加した以外は実施例1と同様の方法により本発明の表面処理炭酸カルシウムを得た。
Comparative Example 1
A carbonation reaction was performed in the same manner as in Example 1 except that citric acid was not added as a complex-forming substance. Next, the calcium carbonate water slurry was aged and stirred at a temperature of 50 to 55 ° C. for 48 hours. Then, the surface treatment calcium carbonate of this invention was obtained by the method similar to Example 1 except having added 1.2 weight% of surface treatment agents shown in Table 1 with respect to calcium carbonate.

比較例2
濃度7重量%に調整した水酸化カルシウム水スラリーを20L用意し、温度15℃に冷却後、錯体形成物質としてクエン酸を水酸化カルシウムに対し3.0重量%添加し、水酸化カルシウム1kg当たり600L/hrの二酸化炭素ガスを導入し、pH7.0まで炭酸化反応を行った。次いで該炭酸カルシウム水スラリーを、温度50〜55℃で50時間撹拌熟成を行った。その後、表1に示す表面処理剤を炭酸カルシウムに対して6.5重量%添加した以外は実施例1と同様の方法により本発明の表面処理炭酸カルシウムを得た。
Comparative Example 2
20 L of calcium hydroxide water slurry adjusted to a concentration of 7% by weight is prepared, cooled to a temperature of 15 ° C., and 3.0% by weight of citric acid as a complex-forming substance is added to the calcium hydroxide, and 600 L per kg of calcium hydroxide. / Hr carbon dioxide gas was introduced to carry out carbonation reaction to pH 7.0. Next, the calcium carbonate water slurry was aged and stirred at a temperature of 50 to 55 ° C. for 50 hours. Then, the surface treatment calcium carbonate of this invention was obtained by the method similar to Example 1 except having added 6.5 weight% of surface treatment agents shown in Table 1 with respect to calcium carbonate.

比較例3
錯体形成物質としてクエン酸の添加量を炭酸カルシウムに対して11重量%に変更した以外は、実施例5と同様の方法で表面処理炭酸カルシウムを得た。
Comparative Example 3
Surface-treated calcium carbonate was obtained in the same manner as in Example 5 except that the amount of citric acid added as a complex-forming substance was changed to 11% by weight with respect to calcium carbonate.

比較例4
試薬(和光純薬社製:3N)の炭酸カルシウムを用いて焼成した以外は実施例1と同様にして調整して得た水酸化カルシウム水スラリーを、濃度7.5%重量%、温度16℃に調整後、撹拌しながら水酸化カルシウム1kg当たり300L/hrとなるよう二酸化炭素ガスを導入しpH7.0まで炭酸化反応を行った。炭酸化後のBET比表面積は29.6m2 /g であった。さらに3時間攪拌熟成した後、表2に示す表面処理剤を3.4重量%添加した後、常法に従い、粉砕、乾燥を行うことにより表面処理炭酸カルシウムを得た。
Comparative Example 4
A calcium hydroxide aqueous slurry obtained by adjusting in the same manner as in Example 1 except that baking was performed using calcium carbonate as a reagent (manufactured by Wako Pure Chemical Industries, Ltd .: 3N). Then, carbon dioxide gas was introduced with stirring to 300 L / hr per 1 kg of calcium hydroxide, and the carbonation reaction was carried out to pH 7.0. The BET specific surface area after carbonation was 29.6 m 2 / g. After further agitation and aging for 3 hours, 3.4% by weight of the surface treatment agent shown in Table 2 was added, followed by pulverization and drying according to conventional methods to obtain surface-treated calcium carbonate.

比較例5
特開平10−130020号公報に記載の比較例6に従い、濃度0.5mol/L の工業用炭酸ナトリウム水溶液と25重量%アンモニア水を4.5L加えた混合水溶液と、濃度0.5mol/L の液体塩化カルシウム水溶液を各100L用意し共に液温17℃に温調した。次に、炭酸ナトリウム水溶液側に塩化カルシウム水溶液100Lを動力0.5kwの攪拌条件で滴下混合を開始し、250秒後に炭酸化反応を終了した。
該炭酸カルシウム水スラリーを遠心脱水機を用いて濃縮し、濃縮液に水を加えて希釈し攪拌した後、再度希釈液を遠心脱水機を用いて濃縮し、遠心脱水機の濾液の電気伝導度が200μS/cm以下に降下するまで水洗濃縮し、平均径11.3μmの炭酸カルシウム(カルサイト結晶)を得た。
該炭酸カルシウムをロータリーキルンで焼成し生石灰を得、純水で消化して水酸化カルシム水スラリーを調整した。その後、実施例1と同様の操作を行い、表面処理炭酸カルシウムを得た。
Comparative Example 5
According to Comparative Example 6 described in JP-A-10-130020, a mixed aqueous solution in which 4.5 L of an industrial sodium carbonate aqueous solution having a concentration of 0.5 mol / L and 25 wt% ammonia water was added, and a concentration of 0.5 mol / L 100 L each of liquid calcium chloride aqueous solution was prepared, and the temperature was adjusted to 17 ° C. Next, 100 L of calcium chloride aqueous solution was added dropwise to the sodium carbonate aqueous solution side under stirring conditions with a power of 0.5 kw, and the carbonation reaction was completed after 250 seconds.
Concentrate the calcium carbonate aqueous slurry using a centrifugal dehydrator, add water to the concentrate, dilute and stir, and then concentrate the diluted solution again using a centrifugal dehydrator. The electrical conductivity of the filtrate of the centrifugal dehydrator The solution was concentrated by washing with water until it decreased to 200 μS / cm or less to obtain calcium carbonate (calcite crystal) having an average diameter of 11.3 μm.
The calcium carbonate was calcined in a rotary kiln to obtain quicklime, and digested with pure water to prepare a calcium hydroxide water slurry. Then, operation similar to Example 1 was performed and the surface treatment calcium carbonate was obtained.

Figure 0006278380
Figure 0006278380

Figure 0006278380
Figure 0006278380

実施例14〜26、比較例6〜10
CaTiO3-NdAlO3 系誘電体の作製
下記に示した配合系で混合し、ポットミルにてジルコニアボールと共に1時間粉砕した。
次に、400 ℃で乾燥させた後、1320℃で10時間仮焼させた。
さらに、仮焼したものを再び純水と混合し、再度ポットミルにてジルコニアアボールと共に5時間粉砕した。次に、純水を100℃で乾燥後、直径10mm×厚み2mm の錠剤を作製し、1420℃で2時間で本焼し、NdAlO3を含有したCaTiO3系マイクロ波誘電体を作製した。
表3に、実施例14〜26及び比較例6〜10で得られたマイクロ波誘電体について、誘電率(ε)と品質係数(Q値)を示した。
誘電率と品質係数の測定装置と主な測定条件を下記に示す。
<測定装置>
ウイルトロン社製ネットワクークアナライザー360B。
<測定条件>
空洞共振器を使用し、中心周波数(f0)、中心周波数から10db低下した高周波数側の周波数(fH)、低周波数側の周波数(fL)、中心周波数での挿入損失(dB)から誘電率(ε)、誘電損失(tan δ)、Qf値はQxf0で求めた。但し、品質係数(Q) は、1/tan δである。
表3から明らかなように、実施例14〜26のマイクロ波誘電体は比較例6〜10のマイクロ波誘電体に比べ、誘電率(ε)と品質係数(Q)共に高いことが認められた。
<CaTiO3-NdAlO3 の配合>
(混合〜仮焼)
実施例1〜13、比較例1〜5の炭酸カルシウム:41.26g
酸化チタン(東邦チタニウム社製:3N) :23.94g
Nd2O3 (和光純薬社製:3N) :14.82g
Al2O3 (和光純薬社製:3N) : 4.51g
純水 :250ml
(混合〜本焼)
CaTiO3/(NdAl)O3 :84.55g
純水 :250ml
Examples 14 to 26, Comparative Examples 6 to 10
Preparation of CaTiO 3 —NdAlO 3 System Dielectric Material The following compounding system was used, and the mixture was pulverized with a zirconia ball for 1 hour in a pot mill.
Next, after drying at 400 ° C., it was calcined at 1320 ° C. for 10 hours.
Further, the calcined product was mixed with pure water again, and pulverized again with a zirconia aball in a pot mill for 5 hours. Next, pure water was dried at 100 ° C., and then a tablet having a diameter of 10 mm × thickness of 2 mm was prepared and baked at 1420 ° C. for 2 hours to prepare a CaTiO 3 -based microwave dielectric containing NdAlO 3 .
Table 3 shows dielectric constant (ε) and quality factor (Q value) for the microwave dielectrics obtained in Examples 14 to 26 and Comparative Examples 6 to 10.
The measuring device and main measurement conditions for dielectric constant and quality factor are shown below.
<Measurement device>
Wiltron Network Cook Analyzer 360B.
<Measurement conditions>
Using a cavity resonator, the center frequency (f0), the high frequency side (fH) 10db lower than the center frequency, the low frequency side (fL), the insertion loss (dB) at the center frequency to the dielectric constant ( ε), dielectric loss (tan δ), and Qf value were determined by Qxf0. However, the quality factor (Q) is 1 / tan δ.
As is apparent from Table 3, the microwave dielectrics of Examples 14 to 26 were found to have higher dielectric constant (ε) and quality factor (Q) than the microwave dielectrics of Comparative Examples 6 to 10. .
<Composition of CaTiO 3 -NdAlO 3 >
(Mixed to calcined)
Calcium carbonate of Examples 1 to 13 and Comparative Examples 1 to 5: 41.26 g
Titanium oxide (Toho Titanium Co., Ltd .: 3N): 23.94 g
Nd 2 O 3 (Wako Pure Chemical Industries, Ltd .: 3N): 14.82 g
Al 2 O 3 (Wako Pure Chemical Industries, Ltd .: 3N): 4.51 g
Pure water: 250ml
(Mixed to main firing)
CaTiO 3 / (NdAl) O 3 : 84.55 g
Pure water: 250ml

Figure 0006278380
Figure 0006278380

実施例27〜39、比較例11〜15
BaTiO3系コア−シェル誘電体の作製
下記に示した配合系で、(1)表面処理炭酸カルシウム、(2)MgO 、(3)MnCO3 、(4)Y2O3、(5)BaCO3 、(6)SiO2の順に個々を純水に分散混合し、最後に(7)BaTiO3を投入した。
(混合系)
(1)実施例1〜13、比較例1〜5の表面処理炭酸カルシウム:116.737g
(2)MgO (和光純薬社製:純度3N) : 0.403g
(3)MnCO3 (和光純薬社製:純度3N) : 0.058g
(4)Y2O3(日本イットリウム社製:純度3N : 1.695g
(5)BaCO3 (和光純薬社製:純度3N) : 1.781g
(6)SiO2(和光純薬社製:純度3N) : 0.902g
(7)BaTiO3(富士チタン社製:蓚酸法) : 0.902g
ジルコニアボールと共に1時間混合分散後、バインダーを加えて直径10mm×厚み2mm の錠剤を成形した。
焼成1 段目は、水素3%濃度の還元雰囲気で1300℃で2 時間焼成し、その後400 ℃まで降下させ、酸化性雰囲気で2 時間エージングさせた。
焼成2 段目は、酸化性雰囲気囲のまま1100℃で5 時間焼成して焼結体(錠剤)を得た。 表4に、(a)50℃の誘電率(ε’)及び(b)125℃の誘電率(ε”)と、(b)/(a)により求められる誘電率の損失率を示す。
誘電率と品質係数の測定装置と主な測定条件を下記に示す。
<測定装置>
回路設計ブッロク社製LCR メ−タ−ZM2353。
<測定条件>
測定周波数10KHz 、測定温度(室温〜150 ℃) まで可変し、1℃間隔にLCR メータで誘電率(ε)、誘電損失(tan δ)を測定した。
表4から明らかなように、実施例2739のコア−シェル誘電体は比較例11〜15のコア−シェル誘電体に比べ、誘電率が高く損失率も低いことが認められた。
Examples 27-39, Comparative Examples 11-15
Preparation of BaTiO 3 Core-Shell Dielectric In the compounding system shown below, (1) surface treated calcium carbonate, (2) MgO, (3) MnCO 3 , (4) Y 2 O 3 , (5) BaCO 3 , (6) SiO 2 were dispersed and mixed in pure water in the order, and (7) BaTiO 3 was finally added.
(Mixed system)
(1) Surface treated calcium carbonate of Examples 1 to 13 and Comparative Examples 1 to 5: 116.737 g
(2) MgO (Wako Pure Chemical Industries, Ltd .: purity 3N): 0.403 g
(3) MnCO 3 (Wako Pure Chemical Industries, Ltd .: purity 3N): 0.058 g
(4) Y 2 O 3 (manufactured by Japan Yttrium Co., Ltd .: Purity 3N: 1.695 g
(5) BaCO 3 (Wako Pure Chemical Industries, Ltd .: purity 3N): 1.781 g
(6) SiO 2 (Wako Pure Chemical Industries, Ltd .: purity 3N): 0.902 g
(7) BaTiO 3 (Fuji Titanium Co., Ltd .: oxalic acid method): 0.902 g
After mixing and dispersing with zirconia balls for 1 hour, a binder was added to form a tablet having a diameter of 10 mm and a thickness of 2 mm.
The first stage was fired at 1300 ° C. for 2 hours in a reducing atmosphere containing 3% hydrogen, then lowered to 400 ° C. and aged in an oxidizing atmosphere for 2 hours.
In the second firing stage, a sintered body (tablet) was obtained by firing at 1100 ° C. for 5 hours in an oxidizing atmosphere. Table 4 shows (a) the dielectric constant (ε ′) at 50 ° C. and (b) the dielectric constant (ε ″) at 125 ° C., and the loss rate of the dielectric constant obtained by (b) / (a).
The measuring device and main measurement conditions for dielectric constant and quality factor are shown below.
<Measurement device>
LCR meter ZM2353 from circuit design block.
<Measurement conditions>
The measurement frequency was changed to 10 KHz and the measurement temperature (room temperature to 150 ° C.), and the dielectric constant (ε) and dielectric loss (tan δ) were measured with an LCR meter at 1 ° C. intervals.
As is apparent from Table 4, the core-shell dielectrics of Examples 27 to 39 were found to have a higher dielectric constant and lower loss factor than the core-shell dielectrics of Comparative Examples 11 to 15.

Figure 0006278380
Figure 0006278380

叙上のとおり、本発明の表面処理炭酸カルシウムは、粒子が均一で優れた分散性を有するとともに、X7R特性やX8R特性を満足するセラミックに好適な水分散能を有し、X7R特性やX8R特性を満足するセラミック組成物を提供することができる。   As mentioned above, the surface-treated calcium carbonate of the present invention has uniform and excellent dispersibility, and has a water dispersibility suitable for ceramics satisfying X7R characteristics and X8R characteristics, and X7R characteristics and X8R characteristics. Can be provided.

Claims (7)

有機系表面処理剤で表面処理された炭酸カルシウムが、下記の式(a)〜(e)を満足することを特徴とする表面処理炭酸カルシウム。
(a) 10≦Sw≦100 (m2 /g)
(b) 0.1≦As≦5.0 (mg/m2
(c) 0.03≦Dxs≦3.0 (μm)
(d) Dys≦30 (重量%)
(e) Is≦0.1 (μmol/m2
但し、
Sw :窒素吸着法によるBET比表面積(m2 /g)
As :次式により算出される単位比表面積当たりの有機系表面処理剤量
200℃〜500℃の表面処理された炭酸カルシウム1g当たりの熱減量Tg(mg/g)/Sw(g/m2
Dxs:レーザー回折式(マルバーン社製:MS−2000)により分散媒として水を用いて測定された粒度分布において、大きな粒子側から起算した重量累計50%平均粒子径(μm)。
Dys:上記粒度分布において、3μmを越える粒子径の重量累計(重量%)
I s :次式により算出される単位比表面積当たりのアルカリ金属含有量
{炭酸カルシウム1g当たりの金属含有量(μmol/g)}/Sw(m2 /g)
A surface-treated calcium carbonate, wherein the calcium carbonate surface-treated with an organic surface treatment agent satisfies the following formulas (a) to (e):
(A) 10 ≦ Sw ≦ 100 (m 2 / g)
(B) 0.1 ≦ As ≦ 5.0 (mg / m 2 )
(C) 0.03 ≦ Dxs ≦ 3.0 (μm)
(D) Dys ≦ 30 (wt%)
(E) Is ≦ 0.1 (μmol / m 2 )
However,
Sw: BET specific surface area by nitrogen adsorption method (m 2 / g)
As: Amount of organic surface treatment agent per unit specific surface area calculated by the following formula Heat loss Tg (g / g) / Sw (g / m 2 ) per 1 g of surface-treated calcium carbonate at 200 ° C. to 500 ° C.
Dxs: laser diffraction (Malvern Co.: MS-2000) in the measured particle size distribution using water as a more dispersant, by weight cumulative 50% average particle diameter was calculated from large particles side ([mu] m).
Dys: Cumulative weight (% by weight) of particle diameters exceeding 3 μm in the above particle size distribution
Is: Alkali metal content per unit specific surface area calculated by the following formula {Metal content per gram of calcium carbonate (μmol / g)} / Sw (m 2 / g)
更に、下記の式(f)〜(g)を満足することを特徴とする請求項1記載の表面処理炭酸カルシウム。
(f) Im≦0.2 (μmol/m2
(g) Ir≦0.2 (μmol/m2
但し、
I m :次式により算出される単位比表面積当たりのマグネシウム金属含有量
{炭酸カルシウム1g当たりの金属含有量(μmol/g)}/Sw(m2 /g)
I r :次式により算出される単位比表面積当たりのストロンチウム金属含有量
{炭酸カルシウム1g当たりの金属含有量(μmol/g)}/Sw(m2 /g)
The surface-treated calcium carbonate according to claim 1, further satisfying the following formulas (f) to (g).
(F) Im ≦ 0.2 (μmol / m 2 )
(G) Ir ≦ 0.2 (μmol / m 2 )
However,
I m: Magnesium metal content per unit specific surface area calculated by the following formula {Metal content per gram of calcium carbonate (μmol / g)} / Sw (m 2 / g)
I r: Strontium metal content per unit specific surface area calculated by the following formula {Metal content per gram of calcium carbonate (μmol / g)} / Sw (m 2 / g)
有機系表面処理剤が、(I)アクリル酸、メタクリル酸、クロトン酸から選ばれる少なくとも1 種のα、β不飽和モノカルボン酸100重量部、(II)イタコン酸、マレイン酸、フマール酸から選ばれる少なくとも1種のα、β不飽和ジカルボン酸0〜200重量部、及び(III)α、βモノエチレン性不飽和カルボン酸又はその塩と共重合性を有する単量体の少なくとも1種10〜200重量部の共重合物のアンモニウム塩又はアミン塩からなる水溶性ポリカルボン酸塩であることを特徴とする請求項1又は2記載の表面処理炭酸カルシウム。   The organic surface treatment agent is selected from (I) at least one α, β unsaturated monocarboxylic acid 100 parts by weight selected from acrylic acid, methacrylic acid and crotonic acid, (II) itaconic acid, maleic acid and fumaric acid 0 to 200 parts by weight of at least one α, β unsaturated dicarboxylic acid and (III) at least one monomer having a copolymerizability with α, β monoethylenically unsaturated carboxylic acid or a salt thereof 3. The surface-treated calcium carbonate according to claim 1, wherein the surface-treated calcium carbonate is a water-soluble polycarboxylate composed of 200 parts by weight of an ammonium salt or amine salt of a copolymer. 水酸化カルシウム水スラリーに炭酸ガスを導通して調整した炭酸カルシウム水スラリーに0.1〜10重量%の錯体形成物質を添加した後、さらに有機系表面処理剤で表面処理することを特徴とする請求項1記載の表面処理炭酸カルシウムの製造方法。   After adding 0.1 to 10% by weight of a complex-forming substance to a calcium carbonate water slurry prepared by conducting carbon dioxide through the calcium hydroxide water slurry, the surface treatment is further performed with an organic surface treatment agent. The manufacturing method of the surface treatment calcium carbonate of Claim 1. 有機系表面処理剤が、(I)アクリル酸、メタクリル酸、クロトン酸から選ばれる少なくとも1 種のα、β不飽和モノカルボン酸100重量部、(II)イタコン酸、マレイン酸、フマール酸から選ばれる少なくとも1種のα、β不飽和ジカルボン酸0〜200重量部、及び(III)α、βモノエチレン性不飽和カルボン酸又はその塩と共重合性を有する単量体の少なくとも1種10〜200重量部の共重合物のアンモニウム塩又はアミン塩からなる水溶性ポリカルボン酸塩であることを特徴とする請求項4記載の製造方法。   The organic surface treatment agent is selected from (I) at least one α, β unsaturated monocarboxylic acid 100 parts by weight selected from acrylic acid, methacrylic acid and crotonic acid, (II) itaconic acid, maleic acid and fumaric acid 0 to 200 parts by weight of at least one α, β unsaturated dicarboxylic acid and (III) at least one monomer having a copolymerizability with α, β monoethylenically unsaturated carboxylic acid or a salt thereof 5. The production method according to claim 4, wherein the production method is a water-soluble polycarboxylic acid salt comprising an ammonium salt or an amine salt of 200 parts by weight of a copolymer. 請求項1〜3のいずれか1項に記載の表面処理炭酸カルシウムとセラミック材料との混合物が焼成されていることを特徴とするセラミック組成物。   A ceramic composition, wherein a mixture of the surface-treated calcium carbonate according to claim 1 and a ceramic material is fired. セラミック材料が、BaTiO3系、SrTiO3系、CaTiO3系、PbTiO3系、PbZrO3系、CaZrO3系、CaCu3Ti4O12 系で代表される誘電体セラミックであることを特徴とする請求項6記載のセラミック組成物。 The ceramic material is a dielectric ceramic represented by BaTiO 3 system, SrTiO 3 system, CaTiO 3 system, PbTiO 3 system, PbZrO 3 system, CaZrO 3 system, CaCu 3 Ti 4 O 12 system Item 7. A ceramic composition according to Item 6.
JP2013128408A 2013-06-19 2013-06-19 Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate Active JP6278380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128408A JP6278380B2 (en) 2013-06-19 2013-06-19 Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128408A JP6278380B2 (en) 2013-06-19 2013-06-19 Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate

Publications (2)

Publication Number Publication Date
JP2015003835A JP2015003835A (en) 2015-01-08
JP6278380B2 true JP6278380B2 (en) 2018-02-14

Family

ID=52300040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128408A Active JP6278380B2 (en) 2013-06-19 2013-06-19 Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate

Country Status (1)

Country Link
JP (1) JP6278380B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429079B (en) 2015-03-23 2019-08-23 丸尾钙株式会社 Curable resin composition surface treatment pearl filler and the curable resin composition containing the filler
CN114993892B (en) * 2019-05-13 2024-10-18 南京制药厂有限公司 Light scattering detection method for praziquantel granularity
CN110755882B (en) * 2019-10-31 2022-07-22 厦门市汇创源科技有限公司 Extraction solution for preparing active light calcium carbonate, application and preparation method of active light calcium carbonate
CN114804178B (en) * 2022-05-19 2023-12-01 广西民泰纳米科技有限公司 Preparation method of special nano calcium carbonate for polyester family degradable plastics

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156012A (en) * 1986-12-17 1988-06-29 Central Glass Co Ltd Production of calcium carbonate having high purity
JPH11268912A (en) * 1998-03-24 1999-10-05 Maruo Calcium Co Ltd Inorganic dispersing agent, stabilizer for suspension polymerization, polymeric particle, unsaturated polyester resin composition, and toner composition
TWI283235B (en) * 2001-11-16 2007-07-01 Maruo Calcium Surface-treated calcium carbonate, production method thereof, and resin composition containing the calcium carbonate
JP2011051835A (en) * 2009-09-02 2011-03-17 Taiheiyo Cement Corp Method for manufacturing high purity calcium carbonate

Also Published As

Publication number Publication date
JP2015003835A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP4310318B2 (en) Method for producing dielectric ceramic powder, and multilayer ceramic capacitor produced using the ceramic powder
JP4525788B2 (en) Dielectric particle manufacturing method
KR102020702B1 (en) Coated barium titanate particulate and production method for same
JP6278380B2 (en) Surface-treated calcium carbonate, method for producing the same, and ceramic composition comprising the calcium carbonate
JP2009242212A (en) Compound oxide particles and their manufacturing method
JP2012520232A (en) Fine barium titanate powder
CN103172367A (en) Preparation method of microwave dielectric ceramic material
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR20120030008A (en) Method for manufacturing composite oxide powder
JP2003137649A (en) Dielectric composition
JP3751304B2 (en) Barium titanate and electronic components using the same
JP2006306632A (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
KR100955802B1 (en) Process for preparing fine barium titanate based composite oxide
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
KR101142251B1 (en) Barium titanate powder coated oxide layer and method for fabricating the same
JP2006206364A (en) Ceramic powder and ceramic sintered compact
JP3163649B2 (en) Manufacturing method of ceramic raw material powder
JP2012211058A (en) Barium titanate powder, method for manufacturing barium titanate powder, and ceramic electronic component using the same
JP2764111B2 (en) Method for producing perovskite ceramic powder
JP2006206363A (en) Barium titanate powder and method for manufacturing the same
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
KR100921352B1 (en) Process for preparing fine barium titanate based composite oxide
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6278380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250