JP2011051835A - Method for manufacturing high purity calcium carbonate - Google Patents

Method for manufacturing high purity calcium carbonate Download PDF

Info

Publication number
JP2011051835A
JP2011051835A JP2009202313A JP2009202313A JP2011051835A JP 2011051835 A JP2011051835 A JP 2011051835A JP 2009202313 A JP2009202313 A JP 2009202313A JP 2009202313 A JP2009202313 A JP 2009202313A JP 2011051835 A JP2011051835 A JP 2011051835A
Authority
JP
Japan
Prior art keywords
calcium carbonate
slaked lime
high purity
carbonate
purity calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009202313A
Other languages
Japanese (ja)
Inventor
Kazuhisa Tsukada
和久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009202313A priority Critical patent/JP2011051835A/en
Publication of JP2011051835A publication Critical patent/JP2011051835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity calcium carbonate containing a small amount of strontium at low cost. <P>SOLUTION: The method for manufacturing high purity calcium carbonate includes: the step of generating slaked lime slurry by contacting quick lime, having at most 200 sec. of an activation degree tu-80 of quick lime (particle diameter of under 3.35 mm) tested by the temperature release by slaking (DIN EN 459-2:2001) with water; the step of separating the water phase containing impurities and slaked lime in the slaked lime slurry; the step of removing precipitation by dissolving separated slaked lime in an aqueous solution of ammonium chloride and/or ammonium nitrate; and the step of precipitating calcium carbonate by contacting a filtrate liquid obtained by removing the precipitation with a carbonate salt or a carbon dioxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、石灰石を原料とする炭酸カルシウムの製造において、ストロンチウムの含有量を低下させることによって純度を高めた炭酸カルシウムの製造方法に関する。   [Technical Field] The present invention relates to a method for producing calcium carbonate having an increased purity by reducing the content of strontium in the production of calcium carbonate using limestone as a raw material.

近年、高純度炭酸カルシウムは、フッ化カルシウム硝子等の光学部品原料や、セラミックコンデンサ等の電子材料、LED等の蛍光体材料、人工骨等の生体材料として注目されている。このような用途に使用される炭酸カルシウムは、従来使用されているものよりも、高純度品が求められている。   In recent years, high-purity calcium carbonate has attracted attention as optical component raw materials such as calcium fluoride glass, electronic materials such as ceramic capacitors, phosphor materials such as LEDs, and biological materials such as artificial bones. The calcium carbonate used for such applications is required to have a higher purity than those conventionally used.

従来の炭酸カルシウムの精製方法としては、石灰石を水溶性の塩類とし、この溶液のpH調整を行い、不純物を水酸化物として除去して純粋なカルシウム塩溶液を得、この溶液に、炭酸ガスを吹き込むか、炭酸イオンを含む溶液を加えて炭酸化し、炭酸カルシウムを得る方法が一般に行われている。この方法によって、たいていの不純物は除去することができるが、不純物のうちストロンチウムは、カルシウムと同族元素であり性質が似ているため、前記の方法でストロンチウムを除去するのは困難であった。   As a conventional purification method of calcium carbonate, limestone is made into water-soluble salts, pH of this solution is adjusted, impurities are removed as hydroxide to obtain a pure calcium salt solution, and carbon dioxide gas is added to this solution. A method of obtaining calcium carbonate by blowing or adding a solution containing carbonate ions to obtain calcium carbonate is generally performed. Although most impurities can be removed by this method, strontium among the impurities is a similar element to calcium and has similar properties. Therefore, it has been difficult to remove strontium by the above method.

従来の高純度炭酸カルシウムの製造方法としては、生石灰を消化させて消石灰スラリーとし、これをろ過してストロンチウムの少なくとも一部を水相に溶出させ、固形分を硝酸アンモニウム又は塩酸アンモニウムの水溶液に溶解し、不純物を除去した後、ろ液に炭酸ガスを吹き込んで炭酸化する方法(特許文献1)がある。また、カルシウム塩の水溶液を炭酸化する際、CO2/Caのモル比を0.2〜0.9の条件として反応させる方法(特許文献2)がある。また、水酸化カルシウム濃度が0.5重量%以下の希薄水溶液と、1容量%以下に希釈した二酸化炭素とを40〜90℃の温度で反応させる方法(特許文献3)など、多数の方法が提案されている。 As a conventional method for producing high-purity calcium carbonate, quick lime is digested to obtain slaked lime slurry, which is filtered to elute at least a part of strontium into the aqueous phase, and the solid content is dissolved in an aqueous solution of ammonium nitrate or ammonium hydrochloride. There is a method (Patent Document 1) in which carbonic acid gas is blown into a filtrate after removing impurities. In addition, there is a method (Patent Document 2) in which an aqueous solution of calcium salt is reacted under the condition of a CO 2 / Ca molar ratio of 0.2 to 0.9. A number of methods have been proposed, such as a method in which a dilute aqueous solution having a calcium hydroxide concentration of 0.5% by weight or less and carbon dioxide diluted to 1% by volume or less are reacted at a temperature of 40 to 90 ° C. (Patent Document 3). ing.

しかしながら、いずれの方法も、その効果が不十分であり、炭酸カルシウムの純度を十分に向上させるには工程を繰り返す必要があるため、製造コストが高くなるなど、工業レベルで製造することは困難であった。   However, both methods have insufficient effects, and it is necessary to repeat the steps to sufficiently improve the purity of calcium carbonate, so that it is difficult to manufacture at an industrial level such as an increase in manufacturing cost. there were.

特開昭62-36021号公報JP 62-36021 A 特開昭63-156012号公報JP-A-63-156012 特開2005-206456号公報JP 2005-206456 A

本発明の目的は、ストロンチウム含有量の少ない、高純度炭酸カルシウムを低コストで製造する方法を提供することにある。   An object of the present invention is to provide a method for producing high-purity calcium carbonate having a low strontium content at a low cost.

本発明者は、原料である石灰石として、消化発熱試験(DIN EN 459-2:2001)における生石灰(粒子径3.35mmアンダー)の活性度tu-80が200秒以内である生石灰を原料に用いることにより、極めて高純度の炭酸カルシウムを、容易かつ安価に製造できることを見出した。   The present inventor uses quick lime whose raw material has an activity tu-80 of 200 seconds or less in the digestive fever test (DIN EN 459-2: 2001) within 200 seconds as the raw material limestone. Thus, it has been found that extremely high purity calcium carbonate can be produced easily and inexpensively.

本発明は、消化発熱試験(DIN EN 459-2:2001)における生石灰(粒子径3.35mmアンダー)の活性度tu-80が200秒以内である生石灰を水に接触させて消石灰スラリーを生成させる工程、
消石灰スラリー中の不純物を含む水相と消石灰を分離する工程、
分離した消石灰を塩化アンモニウム及び/又は硝酸アンモニウムの水溶液に溶解し、沈殿を除去する工程、
上記沈殿を除去して得られたろ液に炭酸塩又は炭酸ガスを接触させ、炭酸カルシウムを析出させる工程
を含むことを特徴とする高純度炭酸カルシウムの製造方法を提供するものである。
The present invention is a process for producing slaked lime slurry by contacting quick lime with an activity tu-80 of 200 seconds or less in a digestive fever test (DIN EN 459-2: 2001) within 200 seconds with water. ,
Separating the aqueous phase containing impurities in the slaked lime slurry and slaked lime,
Dissolving the separated slaked lime in an aqueous solution of ammonium chloride and / or ammonium nitrate and removing the precipitate;
The present invention provides a method for producing high-purity calcium carbonate, comprising a step of bringing carbonate or carbon dioxide gas into contact with a filtrate obtained by removing the precipitate, thereby precipitating calcium carbonate.

本発明の製造方法を用いれば、不純物、特にストロンチウムの含有量が低下し、高い純度の炭酸カルシウムを、低コストで製造することができる。これにより、光学部品原料、電子材料、蛍光体材料、生体材料の分野に、安価な高純度炭酸カルシウムを提供できるようになる。   By using the production method of the present invention, the content of impurities, particularly strontium, is reduced, and high-purity calcium carbonate can be produced at a low cost. Thereby, inexpensive high-purity calcium carbonate can be provided in the fields of optical component raw materials, electronic materials, phosphor materials, and biomaterials.

本発明においては、原料として、消化発熱試験(DIN EN 459-2:2001)における生石灰(粒子径3.35mmアンダー)の活性度tu-80が200秒以内である生石灰を用いる。生石灰のより好ましい活性度tu-80は、150秒以内、特に70秒以内である。   In the present invention, quick lime having an activity tu-80 of 200 seconds or less in quick lime (under 3.35 mm particle diameter) in the digestive fever test (DIN EN 459-2: 2001) is used as a raw material. The more preferable activity tu-80 of quicklime is within 150 seconds, particularly within 70 seconds.

消化発熱試験は、DIN EN 459:2001記載の装置で消化試験を行い、tu値を求める。
「消化発熱試験の条件」
粒度:CaOは3.35mmアンダーに粒度を調整したものを用いる。
液固比:L/S=4(溶媒:生石灰=600g:150g)
溶媒:蒸留水
測定方法:デュア瓶(1L)に蒸留水を投入し、DIN準拠の羽根で、300rpmで攪拌しながら、CaOを投入し、水温を記録する。
tu-80の計算方法:Tu-80(℃)=(Max温度−開始温度)×80%+開始温度
tu-80(秒)=Tu-80に到達するまでの時間
In the digestive fever test, the digestion test is performed with the apparatus described in DIN EN 459: 2001, and the tu value is obtained.
“Conditions for digestive fever test”
Particle size: Use CaO with a particle size adjusted to under 3.35 mm.
Liquid-solid ratio: L / S = 4 (solvent: quicklime = 600 g: 150 g)
Solvent: Distilled water Measurement method: Charge distilled water into a deer bottle (1 L), add CaO while stirring at 300 rpm with a DIN-compliant blade, and record the water temperature.
Tu-80 calculation method: Tu-80 (° C) = (Max temperature-start temperature) x 80% + start temperature
tu-80 (seconds) = time to reach Tu-80

本発明で用いる生石灰は、石灰石を工業用石灰焼成炉等で焼成することにより製造することができる。工業用石灰焼成炉としては、ベッケンバッハ炉、メルツ炉、クオリカル炉、コマ式炉、ロータリーキルン、外熱キルン、トンネル炉、箱型電気炉等が用いることができる。   The quicklime used in the present invention can be produced by firing limestone in an industrial lime firing furnace or the like. As an industrial lime baking furnace, a Beckenbach furnace, a Merz furnace, a qualical furnace, a top furnace, a rotary kiln, an external heat kiln, a tunnel furnace, a box-type electric furnace, or the like can be used.

生灰石の活性度tu値は、焼成条件を選定することで調整する。焼成時間が長く、かつ焼成温度が高いほど、結晶径が大きくなり、活性度tu値が大きくなる(低活性となる)傾向がある。この観点より、焼成時間は、できるだけ短時間、かつ脱炭酸の生じる低い温度で行うことが好ましい。具体的な焼成温度は800〜1200℃、特に900〜1100℃とすることが好ましい。   The activity tu value of raw apatite is adjusted by selecting the firing conditions. As the firing time is longer and the firing temperature is higher, the crystal diameter is larger and the activity tu value tends to be larger (lower activity). From this viewpoint, the firing time is preferably as short as possible and at a low temperature at which decarboxylation occurs. The specific firing temperature is preferably 800 to 1200 ° C, particularly 900 to 1100 ° C.

焼成炉の種類や焼成炉内の石灰石の滞留時間は、石灰石の粒度に応じ、調整する。細かい石灰石(20mmアンダー)を焼成する場合には、外熱キルン、ロータリーキルンが適しており、焼成温度における滞留時間は、10分〜2時間、特に15分〜1時間30分とすることが好ましい。また、粗い石灰石(20〜60mm)を焼成する場合には、ベッケンバッハ炉、メルツ炉、クオリカル炉が適しており、その焼成温度における滞留時間は、2〜20時間、特に3〜10時間とすることが好ましい。さらに細かい石灰石(5mmアンダー)を焼成する場合には、トンネル炉、箱型電気炉が適しており、焼成温度における滞留時間は、2〜10時間、特に3〜5時間とすることが好ましい。   The kind of firing furnace and the residence time of limestone in the firing furnace are adjusted according to the particle size of the limestone. When fine limestone (under 20 mm) is fired, an external heat kiln and a rotary kiln are suitable, and the residence time at the firing temperature is preferably 10 minutes to 2 hours, particularly preferably 15 minutes to 1 hour 30 minutes. In addition, when firing coarse limestone (20-60 mm), a Beckenbach furnace, a Merz furnace, or a qualical furnace is suitable, and the residence time at the firing temperature is 2 to 20 hours, particularly 3 to 10 hours. It is preferable. In the case of firing finer limestone (under 5 mm), a tunnel furnace and a box-type electric furnace are suitable, and the residence time at the firing temperature is preferably 2 to 10 hours, particularly 3 to 5 hours.

さらに、収率向上の観点から、生石灰中のCO2残量が5%以下、より好ましくは3%以下になるまで焼成するのが好ましい。 Furthermore, from the viewpoint of improving the yield, it is preferable to calcine until the remaining amount of CO 2 in quicklime is 5% or less, more preferably 3% or less.

また、石灰石の純度が低くなると、不純物によって、生石灰の結晶径が大きくなり、活性度が低下する。このため、使用する石灰石は、不純物含有量(XRFビード法)の少ないものが好ましく、その含有量は、1.5%以下、より好ましくは、0.6%以下である。   Moreover, when the purity of limestone becomes low, the crystal diameter of quick lime increases due to impurities, and the activity decreases. For this reason, the limestone used preferably has a low impurity content (XRF bead method), and its content is 1.5% or less, more preferably 0.6% or less.

精製工程では、生石灰を水(消化水と洗浄水)に接触させて消石灰スラリーを製造するが、本工程で使用する水は、高温度であるほど、ストロンチウムがろ液に溶けやすくなることから、30℃以上、更には50℃以上、特に60〜100℃の水を使用するのが好ましい。   In the refining process, quick lime is brought into contact with water (digested water and washing water) to produce a slaked lime slurry, but the higher the temperature of the water used in this process, the more easily strontium dissolves in the filtrate. It is preferable to use water of 30 ° C. or higher, more preferably 50 ° C. or higher, particularly 60 to 100 ° C.

生成した消石灰スラリーにおける不純物を含む水相と消石灰とを分離する工程は、遠心分離機、吸引ろ過器、加圧ろ過器等を用いて行うことができる。この工程により、ストロンチウム等の不純物の少なくとも一部が、水相として除去される。   The process which isolate | separates the water phase and the slaked lime which contain the impurity in the produced | generated slaked lime slurry can be performed using a centrifuge, a suction filter, a pressure filter, etc. By this step, at least a part of impurities such as strontium is removed as an aqueous phase.

次に、分離した消石灰を塩化アンモニウム及び/又は硝酸アンモニウムの水溶液に溶解し、生じる沈殿を除去する。上記水溶液の濃度としては特に限定されないが、1〜20重量%の範囲内が好ましく、またその使用量は、溶解させる消石灰のカルシウムに対し、塩化アンモニウム及び/又は硝酸アンモニウムが1.0〜2.5当量となる範囲が好ましい。沈殿の除去は、遠心分離機、吸引ろ過器、加圧ろ過器等を用いて行うことができる。この工程により、残存するストロンチウム等の不純物を除去することができる。   Next, the separated slaked lime is dissolved in an aqueous solution of ammonium chloride and / or ammonium nitrate, and the resulting precipitate is removed. Although it does not specifically limit as a density | concentration of the said aqueous solution, The inside of the range of 1-20 weight% is preferable, and the usage-amount is the range from which ammonium chloride and / or ammonium nitrate are 1.0-2.5 equivalent with respect to calcium of the slaked lime to dissolve. Is preferred. The removal of the precipitate can be performed using a centrifuge, a suction filter, a pressure filter, or the like. By this step, remaining impurities such as strontium can be removed.

上記沈殿を除去して得られたろ液に炭酸塩又は炭酸ガスを接触させることで消石灰を炭酸化し、炭酸カルシウムを析出させる。炭酸塩としては、一般的な原料として、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム等があるが、中でも、不純物として金属を含まない炭酸アンモニウム、炭酸水素アンモニウム等が好ましい。炭酸ガスは、市販のCO2ボンベや生石灰の製造工程で生成する炭酸ガスを使用することができる。 The slaked lime is carbonated by bringing carbonate or carbon dioxide gas into contact with the filtrate obtained by removing the precipitate, thereby precipitating calcium carbonate. Examples of carbonates include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, etc., among which ammonium carbonate and ammonium hydrogen carbonate that do not contain metals as impurities. Etc. are preferred. As the carbon dioxide gas, carbon dioxide gas generated in a manufacturing process of a commercially available CO 2 cylinder or quicklime can be used.

炭酸化により生成した高純度炭酸カルシウムは、分離後、乾燥する。乾燥した炭酸カルシウムは、必要に応じ、粉砕し、粒度を調整する。   The high purity calcium carbonate produced by carbonation is dried after separation. The dried calcium carbonate is pulverized to adjust the particle size as necessary.

以下に、実施例を挙げて、さらに具体的に説明する。   Hereinafter, examples will be described in more detail.

実施例1
石灰石(5mmアンダー)を、箱型電気炉により1000℃で5時間焼成し、30gの生石灰を得た。この生石灰を70℃のお湯300mLに投入し、消石灰スラリーを調製した。得られた消石灰スラリーは、遠心分離し、ろ液と消石灰を分離した後、再度、消石灰に70℃のお湯300mLを添加して洗浄した。
次に消石灰を13.5重量%塩化アンモニウム水溶液425mLに溶解し、不溶分をろ過した。最後に、生成した塩化カルシウム溶液に、6重量%炭酸アンモニウム水溶液700mLを添加して炭酸化を行った。
生成した炭酸カルシウムは、ろ過分離後、105℃で2時間乾燥し、高純度炭酸カルシウムを得た。原料石灰石の分析はXRDビート法、生成した炭酸カルシウムの分析は、ICP-MASSで行った。また、DIN EN 459-2:2001に準拠した方法で、消化発熱を測定し、生石灰のtu値を求めた。試験結果を表1に示す。
Example 1
Limestone (5 mm under) was fired at 1000 ° C. for 5 hours in a box-type electric furnace to obtain 30 g of quick lime. This quicklime was poured into 300 mL of hot water at 70 ° C. to prepare a slaked lime slurry. The obtained slaked lime slurry was centrifuged to separate the filtrate and slaked lime, and then washed again by adding 300 mL of 70 ° C. hot water to the slaked lime.
Next, slaked lime was dissolved in 425 mL of a 13.5 wt% ammonium chloride aqueous solution, and the insoluble matter was filtered off. Finally, 700 mL of a 6 wt% ammonium carbonate aqueous solution was added to the resulting calcium chloride solution to perform carbonation.
The produced calcium carbonate was separated by filtration and dried at 105 ° C. for 2 hours to obtain high-purity calcium carbonate. The raw material limestone was analyzed by the XRD beet method, and the generated calcium carbonate was analyzed by ICP-MASS. Moreover, digestion fever was measured by the method based on DIN EN 459-2: 2001, and tu value of quicklime was calculated | required. The test results are shown in Table 1.

実施例2
石灰石(50〜30mm)を、クオリカル炉(反応温度1000〜1100℃,滞留時間5時間)で焼成し、得られた生石灰を用いる以外は、実施例1と同様の方法により、炭酸カルシウムを精製した。試験結果を表1に示す。
Example 2
Limestone (50-30 mm) was calcined in a qualical furnace (reaction temperature 1000-1100 ° C., residence time 5 hours), and calcium carbonate was purified by the same method as in Example 1 except that the obtained quicklime was used. . The test results are shown in Table 1.

実施例3
13.5重量%塩化アンモニウム水溶液425mLに代えて13.5重量%硝酸アンモニウム水溶液を用いる以外は、実施例1と同様の方法により、生石灰を焼成し、炭酸カルシウムを精製した。試験結果を表1に示す。
Example 3
Quick lime was baked and calcium carbonate was purified by the same method as in Example 1 except that 13.5 wt% ammonium nitrate aqueous solution was used instead of 425 mL of 13.5 wt% ammonium chloride aqueous solution. The test results are shown in Table 1.

実施例4
実施例1と同じ石灰石(5mmアンダー)を、箱型電気炉により1100℃で3時間焼成し、得られた生石灰を用いる以外は、実施例1と同様の方法により、炭酸カルシウムを精製した。試験結果を表1に示す。
Example 4
Calcium carbonate was purified by the same method as in Example 1 except that the same limestone (5 mm under) as in Example 1 was fired at 1100 ° C. for 3 hours in a box-type electric furnace and the obtained quicklime was used. The test results are shown in Table 1.

比較例1
実施例1と同じ石灰石(5mmアンダー)を、箱型電気炉により1200℃で7時間焼成し、得られた生石灰を用いる以外は、実施例1と同様の方法により、炭酸カルシウムを精製した。試験結果を表1に示す。
Comparative Example 1
The same limestone (5 mm under) as in Example 1 was calcined at 1200 ° C. for 7 hours in a box-type electric furnace, and calcium carbonate was purified by the same method as in Example 1 except that the obtained quicklime was used. The test results are shown in Table 1.

比較例2
実施例1と同じ石灰石(5mmアンダー)を、箱型電気炉により1200℃で3時間焼成し、得られた生石灰を用いる以外は、実施例1と同様の方法により、炭酸カルシウムを精製した。試験結果を表1に示す。
Comparative Example 2
Calcium carbonate was purified by the same method as in Example 1 except that the same limestone (5 mm under) as in Example 1 was fired at 1200 ° C. for 3 hours in a box-type electric furnace and the obtained quicklime was used. The test results are shown in Table 1.

Figure 2011051835
Figure 2011051835

Claims (2)

消化発熱試験(DIN EN 459-2:2001)における生石灰(粒子径3.35mmアンダー)の活性度tu-80が200秒以内である生石灰を水に接触させて消石灰スラリーを生成させる工程、
消石灰スラリー中の不純物を含む水相と消石灰を分離する工程、
分離した消石灰を塩化アンモニウム及び/又は硝酸アンモニウムの水溶液に溶解し、沈殿を除去する工程、
上記沈殿を除去して得られたろ液に炭酸塩又は炭酸ガスを接触させ、炭酸カルシウムを析出させる工程
を含むことを特徴とする高純度炭酸カルシウムの製造方法。
A process of generating slaked lime slurry by contacting quick lime with a water activity of tu-80 within 200 seconds in the digestive fever test (DIN EN 459-2: 2001), with an activity tu-80 within 200 seconds,
A step of separating the slaked lime from the aqueous phase containing impurities in the slaked lime slurry,
Dissolving the separated slaked lime in an aqueous solution of ammonium chloride and / or ammonium nitrate and removing the precipitate;
A method for producing high-purity calcium carbonate, comprising a step of bringing carbonate or carbon dioxide gas into contact with a filtrate obtained by removing the precipitate, thereby precipitating calcium carbonate.
請求項1に記載の方法により得られた高純度炭酸カルシウム。   High purity calcium carbonate obtained by the method according to claim 1.
JP2009202313A 2009-09-02 2009-09-02 Method for manufacturing high purity calcium carbonate Pending JP2011051835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202313A JP2011051835A (en) 2009-09-02 2009-09-02 Method for manufacturing high purity calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202313A JP2011051835A (en) 2009-09-02 2009-09-02 Method for manufacturing high purity calcium carbonate

Publications (1)

Publication Number Publication Date
JP2011051835A true JP2011051835A (en) 2011-03-17

Family

ID=43941251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202313A Pending JP2011051835A (en) 2009-09-02 2009-09-02 Method for manufacturing high purity calcium carbonate

Country Status (1)

Country Link
JP (1) JP2011051835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240872A (en) * 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk Method for producing high purity calcium carbonate
JP2015003835A (en) * 2013-06-19 2015-01-08 丸尾カルシウム株式会社 Surface-treated calcium carbonate, method of producing the same and ceramic composition blended with the same
CN114716161A (en) * 2022-06-09 2022-07-08 天津市新天钢钢铁集团有限公司 Method for quickly digesting sintered lime

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236021A (en) * 1985-08-09 1987-02-17 Nippon Sekkai Kogyosho:Kk Production of calcium carbonate having low strontium content
JPS63107811A (en) * 1986-10-27 1988-05-12 Tdk Corp Method for purifying alkaline earth metal oxide
JPH01215710A (en) * 1988-02-25 1989-08-29 Mitsubishi Mining & Cement Co Ltd Production of high-purity quick lime having low phosphorus
JPH0566890A (en) * 1991-09-10 1993-03-19 Nec Corp Magnetic disk processor
JP2001139327A (en) * 1999-11-05 2001-05-22 Okutama Kogyo Co Ltd Method for manufacturing calcium hydroxide
JP2003080270A (en) * 2001-09-12 2003-03-18 Okutama Kogyo Co Ltd Method for treating fluorine-containing waste water
JP2005206456A (en) * 2003-12-22 2005-08-04 Showa Denko Kk High purity calcium carbonate and its manufacturing method
JP2010222220A (en) * 2009-03-25 2010-10-07 Taiheiyo Cement Corp Method for manufacturing high-purity calcium carbonate
EP2447213A1 (en) * 2010-10-26 2012-05-02 Omya Development AG Production of high purity precipitated calcium carbonate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236021A (en) * 1985-08-09 1987-02-17 Nippon Sekkai Kogyosho:Kk Production of calcium carbonate having low strontium content
JPS63107811A (en) * 1986-10-27 1988-05-12 Tdk Corp Method for purifying alkaline earth metal oxide
JPH01215710A (en) * 1988-02-25 1989-08-29 Mitsubishi Mining & Cement Co Ltd Production of high-purity quick lime having low phosphorus
JPH0566890B2 (en) * 1988-02-25 1993-09-22 Mitsubishi Materials Corp
JPH0566890A (en) * 1991-09-10 1993-03-19 Nec Corp Magnetic disk processor
JP2001139327A (en) * 1999-11-05 2001-05-22 Okutama Kogyo Co Ltd Method for manufacturing calcium hydroxide
JP2003080270A (en) * 2001-09-12 2003-03-18 Okutama Kogyo Co Ltd Method for treating fluorine-containing waste water
JP2005206456A (en) * 2003-12-22 2005-08-04 Showa Denko Kk High purity calcium carbonate and its manufacturing method
JP2010222220A (en) * 2009-03-25 2010-10-07 Taiheiyo Cement Corp Method for manufacturing high-purity calcium carbonate
EP2447213A1 (en) * 2010-10-26 2012-05-02 Omya Development AG Production of high purity precipitated calcium carbonate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240872A (en) * 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk Method for producing high purity calcium carbonate
JP2015003835A (en) * 2013-06-19 2015-01-08 丸尾カルシウム株式会社 Surface-treated calcium carbonate, method of producing the same and ceramic composition blended with the same
CN114716161A (en) * 2022-06-09 2022-07-08 天津市新天钢钢铁集团有限公司 Method for quickly digesting sintered lime

Similar Documents

Publication Publication Date Title
JP5044925B2 (en) Method for producing high purity calcium carbonate
CN1194898C (en) Process for preparing both barium sulfate and calcium chloride from waste ardealite dregs
JP5389491B2 (en) Method for producing high purity calcium carbonate
KR101663515B1 (en) Method for manufacturing hydrated magnesium carbonate
JP2022547859A (en) Process for preparing alumina
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
EA010106B1 (en) Process for complete utilization of olivine constituents
JP5246510B2 (en) Method for producing decolorized sodium aluminate aqueous solution
JP2011051835A (en) Method for manufacturing high purity calcium carbonate
JP2010184841A (en) High purity calcium hydroxide powder, high purity calcium carbonate powder, high purity calcium oxide powder, and process for producing these
JP5315359B2 (en) Method for producing calcium compound
JPS6236021A (en) Production of calcium carbonate having low strontium content
RU2424188C1 (en) Method of producing high-purity calcium fluoride
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP7284596B2 (en) Method for producing gypsum dihydrate
JP2004049952A (en) Treatment method for acidic wastewater
JP5537238B2 (en) Method for producing high purity calcium salt solution
WO2024101157A1 (en) Production method for magnesium oxide
KR101204168B1 (en) The Manufacturing Method for High-yield Aluminum Hydroxide from Supersaturation Dissolution
RU2355639C2 (en) Method of receiving of aluminium sulfate
JP2006117487A (en) Platy strontium carbonate particle
WO2024101158A1 (en) Production method for magnesium oxide
TWI398408B (en) Process for neutralizing bauxite dissolution residual substance and process for producing aluminum hydroxide
US3447899A (en) Method of purifying magnesium values
JP2006117486A (en) Strontium hydroxide and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028