JPS649393B2 - - Google Patents
Info
- Publication number
- JPS649393B2 JPS649393B2 JP55049540A JP4954080A JPS649393B2 JP S649393 B2 JPS649393 B2 JP S649393B2 JP 55049540 A JP55049540 A JP 55049540A JP 4954080 A JP4954080 A JP 4954080A JP S649393 B2 JPS649393 B2 JP S649393B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- corrosion
- roll
- alloy layer
- rolls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005246 galvanizing Methods 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 33
- 238000005260 corrosion Methods 0.000 description 33
- 229910045601 alloy Inorganic materials 0.000 description 24
- 239000000956 alloy Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 18
- 239000011651 chromium Substances 0.000 description 11
- 238000007747 plating Methods 0.000 description 11
- 239000002436 steel type Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910000976 Electrical steel Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- -1 corrosion amount Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Description
この発明は溶融亜鉛メツキに用いられる支えロ
ールなどのロール、特にその材質に関する。
周知のように溶融亜鉛メツキ装置にはメツキ方
法に応じて支えロール(エクジツトロール、コー
デイングロール)、シンクロール、デフレクター
ロールなど種々のロールが設けられている。これ
らロールはメツキされる板材を支持し、案内し、
あるいは板材にメツキ浴を付着させる機能を持つ
ている。また、最近ではメツキ直後のガスワイピ
ングおよびメツキ浴中からのドロスの除去を容易
にするために、メツキ浴に少量のAlを含ませて
いる。
ところで、溶融亜鉛メツキ用ロールの材料とし
ては、
(1) メツキ浴による溶食量が少ないこと。
(2) ロール胴部周囲に生ずる肌荒れが少ないこ
と。
(3) 浴温による熱衝撃に強いこと。
(4) 亜鉛に対してロール表面の漏れ性がよいこ
と。
などの諸性質を具えていなければならない。従来
ではこれら性質を考慮して低炭素−低珪素鋼また
は低炭素−高ニツケル−高クロム鋼が溶融亜鉛メ
ツキ用ロールとして用いられていた。しかし、最
近のように亜鉛メツキ板の表面肌についての要求
が厳しくなるに従つて更に肌荒れの少ないロール
が必要とされ、またメツキ設備の保守、経済性の
点から長寿命のロール材が要望され始めており、
これら材質のロール材では不満足なものとなつて
来た。すなわち、低炭素−低珪素鋼では前述のメ
ツキ浴中のAlによる溶食が激しく、製品に肌荒
れ、メツキ不良が生じ易く、またロールを早期に
廃棄しなければならない。また、低炭素−高ニツ
ケル−高クロム鋼ではロールの減耗量は小さい
が、ロール面に比較的硬度の低いAl,Zn,Fe合
金層が形成され難い。したがつて、板材と硬度の
高いロールの母材と直接に接触して製品に板疵が
生じ易いという問題がある。特に、メツキ板材の
走行速度とロール周速とが異る支えロールの場
合、この問題は深刻である。
この発明は、従来の溶融亜鉛メツキ用ロールに
おける上記のような問題を解決するためになされ
たもので、耐摩耗性および耐食性に優れると共に
板疵を発生することのない溶融亜鉛メツキ用ロー
ルを提供しようとするものである。
以下この発明を詳細に説明する。
この発明では、ロール材がC0.3〜1.0%、Si0.8
%以下、Mn0.1〜1.0%、Cr0.5〜6.0%、残部Feよ
りなることを特徴としている。また、上記成分に
Ni1.0%以下、およびMo0.5%以下の1種または
2種を含むことをもう1つの特徴としている。
以下、各成分含有量の限定理由について説明す
る。
C:0.3%以上としたのはこれ以下であると耐
摩耗性が低下するためであり、1.0%以下とした
のは溶食量を抑えるためである。
Si:Siは主として基地に固溶し、焼戻し抵抗性
を高める作用があり、また脱酸剤であるため材料
に不可避的にある量は含まれる。Siを0.8%以下
としたのはCと同様に溶食量を抑えるためであ
る。
Mn:Siと同様に脱酸元素であるので材料中に
必ず含まれるが、耐食性についてはあまり効果の
ない元素である。Mnが1.0%を超えると耐クラツ
ク性が減じるので、含有量を0.1〜1.0%とした。
Cr:この発明において重要な元素であり、耐
食性を向上するためにはCrを0.5%以上含有する
ことが必要である。また、Crが6.0%を越えると
耐食性が低下すると共に、ロール表面に形成され
る前記合金層が薄くなる。
Ni:Niの添加は耐食性の大幅な低下をまねき、
通常の試験条件化ではTPが溶損し、その比較を
することはむずかしい。このため、耐食性を向上
させるCr等の元素との複合添加でなけらばなん
ら意味をなさない。このため耐食性が著しく低下
しない範囲ということで1.0%以下とした。
Mo:Moの添加も耐食性そのものに対する効
果を狙つたものではなく、硬さおよび、硬化深度
の確保のために添加したものである。このため、
必要以上の添加は高硬度になりすぎたり、焼入深
度が過大となつたり、その靭性が低下するので、
0.5%以下とした。
つぎに、上記成分含有量の限定理由を裏付ける
実験結果およびロール使用実績について説明す
る。
比較材およびこの発明の各種組成のロール材に
ついて浸漬試験を行つた。試験ロール材の組成を
第1表に示す。また、実験浴は溶融亜鉛浴にAl
を添加して現場浴の成分と同一にした。
The present invention relates to rolls such as support rolls used in hot-dip galvanizing, and particularly to the materials thereof. As is well known, hot-dip galvanizing equipment is provided with various rolls, such as support rolls (exit rolls, coding rolls), sink rolls, deflector rolls, etc., depending on the plating method. These rolls support and guide the board to be plated,
Alternatively, it has the function of attaching plating bath to the plate material. Recently, a small amount of Al has been added to the plating bath to facilitate gas wiping immediately after plating and removal of dross from the plating bath. By the way, the materials for rolls for hot-dip galvanizing are: (1) The amount of corrosion caused by the plating bath is small. (2) There should be less rough skin around the roll body. (3) Must be resistant to thermal shock due to bath temperature. (4) The roll surface should have good leakage against zinc. It must have the following properties. Conventionally, in consideration of these properties, low carbon-low silicon steel or low carbon-high nickel-high chromium steel has been used as rolls for hot dip galvanizing. However, as the requirements for the surface texture of galvanized sheets have recently become stricter, rolls with even less rough surface are required, and roll materials with a long life are also required from the viewpoint of maintenance and economic efficiency of plating equipment. We have started
Roll materials made of these materials have become unsatisfactory. That is, low carbon-low silicon steel is severely corroded by the Al in the plating bath, which tends to cause surface roughness and poor plating in the product, and the roll must be discarded early. In addition, with low carbon-high nickel-high chromium steel, the wear amount of the roll is small, but it is difficult to form an Al, Zn, and Fe alloy layer with relatively low hardness on the roll surface. Therefore, there is a problem in that the plate material comes into direct contact with the base material of the roll, which has high hardness, and the product is likely to have plate defects. This problem is particularly serious in the case of supporting rolls in which the traveling speed of the plating plate material and the roll circumferential speed are different. This invention was made to solve the above-mentioned problems with conventional hot-dip galvanizing rolls, and provides a hot-dip galvanizing roll that has excellent wear resistance and corrosion resistance and does not cause sheet defects. This is what I am trying to do. This invention will be explained in detail below. In this invention, the roll material has C0.3~1.0% and Si0.8%.
%, Mn 0.1-1.0%, Cr 0.5-6.0%, and the balance Fe. In addition, the above ingredients
Another feature is that it contains one or both of Ni 1.0% or less and Mo 0.5% or less. The reason for limiting the content of each component will be explained below. C: The reason why C is set at 0.3% or more is because if it is less than this, the wear resistance decreases, and the reason why C is set at 1.0% or less is to suppress the amount of corrosion. Si: Si is mainly dissolved in the matrix, has the effect of increasing tempering resistance, and is also a deoxidizing agent, so a certain amount is unavoidably contained in the material. The reason for setting Si to 0.8% or less is to suppress the amount of corrosion, similar to C. Mn: Like Si, Mn is a deoxidizing element, so it is always included in materials, but it is not very effective in terms of corrosion resistance. If Mn exceeds 1.0%, crack resistance decreases, so the content was set to 0.1 to 1.0%. Cr: An important element in this invention, and in order to improve corrosion resistance, it is necessary to contain 0.5% or more of Cr. Moreover, when Cr exceeds 6.0%, corrosion resistance decreases and the alloy layer formed on the roll surface becomes thin. Ni: Addition of Ni causes a significant decrease in corrosion resistance.
Under normal test conditions, TP melts and is difficult to compare. Therefore, it is meaningless unless it is added in combination with an element such as Cr that improves corrosion resistance. For this reason, the content was set at 1.0% or less so that the corrosion resistance would not deteriorate significantly. Mo: The addition of Mo is not intended to improve corrosion resistance itself, but is added to ensure hardness and hardening depth. For this reason,
Adding more than necessary will result in too high hardness, excessive quenching depth, and decreased toughness.
It was set to 0.5% or less. Next, experimental results and roll usage records that support the reason for limiting the above-mentioned component content will be explained. Immersion tests were conducted on comparative materials and roll materials of various compositions of the present invention. The composition of the test roll material is shown in Table 1. In addition, the experimental bath was a molten zinc bath with Al
was added to match the composition of the in-situ bath.
【表】【table】
【表】
まず、すべての鋼種について試験浴により浸漬
試験を行い、試験成績が良好な鋼種については現
場浴により再び浸漬試験を行つた。そして、これ
らの試験により溶食量の少ない鋼種を探し出し
た。
上記試験の結果を第1図〜第5図に示す。
第1図イと第2図イは鋼種と溶食量との関係を
示す線図で、第1図イは試験浴の、第2図イは現
場浴での結果である。この図から明らかなよう
に、本発明鋼は比較鋼に比べ溶食量が著しく低下
している。比較鋼TP7は本発明鋼と同程度に溶
食量は小さいが、これはC含有量が0.16%と低
く、CrおよびNiの含有量が多いため製造コスト
が極めて高い(例えば本発明のものに比べ2〜3
倍)ものとなる。なお、TP8は表面凹凸が大き
く溶食量の測定が不能であつた。
第1図ロと第2図ロは鋼種と合金層の厚みとの
関係を示す線図であり、第1図ロは試験浴の、第
2図ロは現場浴での結果である。この図面と第1
図を比較してみると大体において溶食量の小さい
鋼種は合金層が薄くなる傾向にある。本発明鋼で
は合金層の厚みはほぼ50μm以上であるが、実際
の溶融亜鉛メツキ設備での使用実績によると、合
金層の厚みがこの程度であれば板疵の発生はない
ことがわかつた。なお、TP6では合金層は溶損
し、厚みが0であつた。
第3図はCrと溶食量、合金層厚みとの関係を
示すグラフで、Cr3.0%前後および13.0%以上で
溶食量は小さく、合金層はCr12%以上で著しく
薄くなることを示している。また、このグラフに
よれば、溶食量が小さくて合金層が厚いCr量の
範囲は0.5〜6.0%の範囲であり、特に1.0〜5.0%
の範囲が好ましい。
第4図はNi量と溶食量、合金層厚みとの関係
を示すグラフである。溶食量はNi量の増加と共
に急激に大きくなり、合金層の厚みはNi1.0%で
最大となり、Ni量が1.0%を越えると薄くなる。
溶食量と合金層厚みの上記のような傾向からNi
量は1.0%以下が適当である。
第5図はC量と溶食量、合金層厚みとの関係を
示すもので、C量が0.3〜0.8%の範囲では溶食量
および合金層厚みは大きく変化しない。しかし、
C量が〜0.3%未満となると合金層が薄くなると
共に耐摩耗性が低下し、また1.0%を越えると溶
食量が多くなることが、他のロールの使用実績か
ら判明している。
第2表は従来およびこの発明の材質よりなるロ
ールを実際の溶融亜鉛メツキ設備において支えロ
ールとして使用した結果を示すものである。[Table] First, all steel types were immersed in a test bath, and steel types with good test results were immersed in an on-site bath again. Through these tests, they found a steel type with a low amount of corrosion. The results of the above tests are shown in FIGS. 1 to 5. Figures 1A and 2A are diagrams showing the relationship between the steel type and the amount of corrosion. Figure 1A shows the results for the test bath, and Figure 2A shows the results for the on-site bath. As is clear from this figure, the amount of corrosion of the steel of the present invention is significantly lower than that of the comparative steel. Comparative steel TP7 has a small amount of corrosion comparable to the steel of the present invention, but it has a low C content of 0.16% and a high content of Cr and Ni, resulting in extremely high manufacturing costs (e.g., compared to the steel of the present invention). 2-3
double) become something. Note that TP8 had a large surface unevenness and it was impossible to measure the amount of erosion. Figures 1B and 2B are diagrams showing the relationship between the steel type and the thickness of the alloy layer. Figure 1B shows the results for the test bath, and Figure 2B shows the results for the in-situ bath. This drawing and the first
Comparing the figures, it can be seen that steel types with a small amount of corrosion generally tend to have thinner alloy layers. In the steel of the present invention, the thickness of the alloy layer is approximately 50 μm or more, but according to actual use in hot-dip galvanizing equipment, it has been found that if the thickness of the alloy layer is within this range, no sheet defects will occur. In addition, in TP6, the alloy layer was damaged by melting and had a thickness of 0. Figure 3 is a graph showing the relationship between Cr, the amount of corrosion, and the thickness of the alloy layer, showing that the amount of corrosion is small at around 3.0% Cr and over 13.0%, and the alloy layer becomes significantly thinner at 12% Cr or higher. . Also, according to this graph, the range of Cr content in which the amount of corrosion is small and the alloy layer is thick is in the range of 0.5 to 6.0%, especially 1.0 to 5.0%.
A range of is preferred. FIG. 4 is a graph showing the relationship between the amount of Ni, the amount of corrosion, and the thickness of the alloy layer. The amount of corrosion increases rapidly as the amount of Ni increases, and the thickness of the alloy layer reaches its maximum when the amount of Ni is 1.0%, and becomes thinner when the amount of Ni exceeds 1.0%.
Based on the above trends in the amount of corrosion and the thickness of the alloy layer, Ni
The appropriate amount is 1.0% or less. FIG. 5 shows the relationship between the amount of C, the amount of corrosion, and the thickness of the alloy layer. When the amount of C is in the range of 0.3 to 0.8%, the amount of corrosion and the thickness of the alloy layer do not change significantly. but,
It has been found from the use of other rolls that when the C content is less than ~0.3%, the alloy layer becomes thinner and the wear resistance decreases, and when it exceeds 1.0%, the amount of corrosion increases. Table 2 shows the results of using rolls made of conventional and inventive materials as supporting rolls in actual hot-dip galvanizing equipment.
【表】
第2表において研削量は使用前のロール径と使
用後のロール径(ロール面に生じた凹凸を修正す
るために研削されている)との差を表わしてお
り、溶食および摩耗によるロール径の減少を示し
ている。
第2表が示すように従来の低炭素−低珪素鋼よ
りなるロールでは3日程度の使用でかなり溶食さ
れており、またロールの板材が接触する部分と接
触しない部分との境界には、はつきりとした段差
が生じた。従来の低炭素−高ニツケル−高クロム
鋼よりなるロールではロールでは溶食については
格段に改善されたが、合金層は非常に薄くなつ
た。これに対して、本発明鋼よりなるロールで
は、溶食量が従来の低炭素−高ニツケル−高クロ
ム鋼のもののほぼ半分であつた。また、合金層の
厚みは十分にあり、製品の板疵発生は全くなかつ
た。さらにまた、ロール面の肌も良好であつた。
なお、この発明において合金層の厚みが更に大
きく要求される場合には、前記第2発明のように
NiおよびMoを含む材質を選ぶことが望ましい。
以上詳細に説明したように、この発明の溶融亜
鉛メツキ用ロールは溶食が少なく、ロール表面に
適当な厚みの合金層が形成されるので、ロールは
長期の使用に耐え、また製品に板疵が発生するこ
とはない。特に、ロール面と板材との間に相対的
な速度が生じるロール、例えばメツキ浴出側に設
けられる支えロールのようなロールについては第
2発明はより一層効果的である。[Table] In Table 2, the amount of grinding represents the difference between the roll diameter before use and the roll diameter after use (ground to correct unevenness on the roll surface). This shows the decrease in roll diameter due to As shown in Table 2, conventional rolls made of low-carbon and low-silicon steel are considerably corroded after being used for about 3 days, and there are A sharp step appeared. Conventional rolls made of low carbon-high nickel-high chromium steel have significantly improved erosion corrosion, but the alloy layer has become very thin. On the other hand, in the roll made of the steel of the present invention, the amount of corrosion was approximately half that of the conventional low carbon-high nickel-high chromium steel. Furthermore, the thickness of the alloy layer was sufficient, and no board defects occurred on the product. Furthermore, the skin of the roll surface was also good. In addition, in the case where the thickness of the alloy layer is required to be larger in this invention, as in the second invention,
It is desirable to choose a material containing Ni and Mo. As explained in detail above, the roll for hot-dip galvanizing of the present invention has little corrosion and an alloy layer of an appropriate thickness is formed on the roll surface, so the roll can withstand long-term use, and the product does not have any scratches. will never occur. In particular, the second invention is even more effective for rolls where a relative speed occurs between the roll surface and the plate material, such as a support roll provided on the plating bath outlet side.
第1図イ,ロは第1発明について鋼種と溶食量
および合金層厚みとの関係を比較例と共に示す線
図、第2図イ,ロは第2発明について鋼種と溶食
量および合金層厚みとの関係を比較例と共に示す
線図、第3図はCr量と溶食量、合金層の厚みと
の関係を示すグラフ、第4図はNi量と溶食量、
合金層の厚みとの関係を示すグラフおよび第5図
はC量と溶食量、合金層の厚みとの関係を示すグ
ラフである。
Figures 1A and 2B are diagrams showing the relationship between steel type, corrosion amount, and alloy layer thickness for the first invention together with comparative examples, and Figures 2A and 2B are diagrams showing the relationship between steel type, corrosion amount, and alloy layer thickness for the second invention. Figure 3 is a graph showing the relationship between the amount of Cr, the amount of corrosion, and the thickness of the alloy layer, and Figure 4 is the graph showing the relationship between the amount of Ni and the amount of corrosion, along with comparative examples.
A graph showing the relationship between the thickness of the alloy layer and FIG. 5 is a graph showing the relationship between the amount of C, the amount of corrosion, and the thickness of the alloy layer.
Claims (1)
ツキ用ロール。 2 C 0.3〜1.0%、 Si 0.8%以下、 Mn 0.1〜1.0%、 Cr 0.5〜6.0% およびNi1.0%以下、Mo0.5%以下の1種また
は2種、残部Feよりなることを特徴とする溶融
亜鉛メツキ用ロール。[Claims] 1. A roll for hot-dip galvanizing comprising 0.3 to 1.0% of C, 0.8% or less of Si, 0.1 to 1.0% of Mn, 0.5 to 6.0% of Cr, and the balance Fe. 2 It is characterized by consisting of one or two of the following: 0.3 to 1.0% C, 0.8% or less Si, 0.1 to 1.0% Mn, 0.5 to 6.0% Cr, 1.0% or less Ni, and 0.5% or less Mo, and the balance Fe. Roll for hot-dip galvanizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4954080A JPS56146870A (en) | 1980-04-17 | 1980-04-17 | Roll for zinc hot dipping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4954080A JPS56146870A (en) | 1980-04-17 | 1980-04-17 | Roll for zinc hot dipping |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56146870A JPS56146870A (en) | 1981-11-14 |
JPS649393B2 true JPS649393B2 (en) | 1989-02-17 |
Family
ID=12834009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4954080A Granted JPS56146870A (en) | 1980-04-17 | 1980-04-17 | Roll for zinc hot dipping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56146870A (en) |
-
1980
- 1980-04-17 JP JP4954080A patent/JPS56146870A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56146870A (en) | 1981-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868916B2 (en) | Marine steel with excellent corrosion resistance | |
US4891274A (en) | Hot-dip aluminum coated steel sheet having excellent corrosion resistance and heat resistance | |
JP4868917B2 (en) | Steel material for crude oil tank bottom plate with excellent corrosion resistance | |
US2565768A (en) | Aluminum coating of ferrous metal and resulting product | |
JPH0718403A (en) | Galvannealed steel sheet excellent in press formability | |
JPS649393B2 (en) | ||
JP2932850B2 (en) | Galvannealed steel sheet | |
JP4175720B2 (en) | Continuous casting mold | |
JP3126622B2 (en) | Rustproof steel plate for fuel tank | |
JP4579706B2 (en) | Articles with improved zinc erosion resistance | |
JP3133235B2 (en) | Steel plate for fuel tank with excellent workability | |
JPS61179861A (en) | Zn alloy hot dipped steel plate having high corrosion resistance | |
JP3126623B2 (en) | Rustproof steel plate for fuel tank | |
JPH06346207A (en) | Corrosion resistant composite roll for galvanizing | |
JP3185530B2 (en) | Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same | |
JPH07286240A (en) | High corrosion resistant surface treated steel sheet excellent in workability and its production | |
JP3129628B2 (en) | Rustproof steel plate for fuel tank | |
JP2000119833A (en) | HOT DIP Sn-Zn PLATED STEEL SHEET FOR ELECTRICAL MEMBER | |
JPH0913146A (en) | Surface treated steel sheet excellent in punching workability and formability | |
JPS6142775B2 (en) | ||
JPH06128712A (en) | Hot dip aluminum coated steel sheet excellent in corrosion resistance in worked part | |
JP3172443B2 (en) | Sink roll for alkaline salt bath | |
JPS5855226B2 (en) | Corrosion resistant alloy for molten zinc | |
JP3016333B2 (en) | Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same | |
JPS61119678A (en) | Lead-tin alloy plated steel sheet of high corrosion resistance |