JP4175720B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4175720B2
JP4175720B2 JP07619299A JP7619299A JP4175720B2 JP 4175720 B2 JP4175720 B2 JP 4175720B2 JP 07619299 A JP07619299 A JP 07619299A JP 7619299 A JP7619299 A JP 7619299A JP 4175720 B2 JP4175720 B2 JP 4175720B2
Authority
JP
Japan
Prior art keywords
wear
plating
continuous casting
mold
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07619299A
Other languages
Japanese (ja)
Other versions
JP2000263190A (en
Inventor
昭 久保田
康彦 坪田
康典 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13598286&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4175720(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP07619299A priority Critical patent/JP4175720B2/en
Publication of JP2000263190A publication Critical patent/JP2000263190A/en
Application granted granted Critical
Publication of JP4175720B2 publication Critical patent/JP4175720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼の連続鋳造設備に用いる連続鋳造用鋳型に係り、特に凝固した鋳片による摩耗損耗及びスラグや鋳造潤滑パウダーやスプレー冷却水による腐食損耗のいずれをも防止できる連続鋳造用鋳型に関する。
【0002】
【従来の技術】
従来、溶鋼の連続鋳造用鋳型においては、鋳造の高速化に伴い、凝固した鋳片による鋳型内面の摩耗等による損耗が重要課題となり、この損耗の防止のため、鋳型内面にCrめっき、Niめっき、(Ni+Cr)めっき、(Ni+(Ni−Co))めっき、(Cr+Ni+(Ni−Co))めっき、(Cr+(Ni−Co))めっきのいずれかを形成する長辺を有する鋳型が提案されている。
また、図1に示すように、この損耗は長辺鋳型部(長辺鋳型の一辺)10の内面下部、特に最下端に顕著に現れるため、Co−Ni合金めっき(Co−Niめっきとも言う)11にテーパー12を付けたり(図2(A)を参照)、下部のみに、めっきを施す(図3(A)を参照)方法が実用化されている。ただし、Crめっきに限っては、鋳型内面全面に施されることが一般的である(図2(B)、図3(B)及び図4(B)を参照)。なお、図1中符号13は銅板を、符号14は水箱(バックプレートとも言う)を表しており、各めっき厚さ、銅板の厚さは図2〜図4に示すようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の溶鋼の連続鋳造用鋳型においては、未だ解決すべき以下のような問題があった。
長辺鋳型部10の内面にNi−Coめっき11を主体とするめっきを施工することによって、長辺鋳型部10の耐摩耗性は相当程度向上し、長辺鋳型部10の耐用使用回数(チャージ数)は増加してきたが、未だ十分ではなく、特に、スラグや鋳造潤滑パウダーが起源となってできる溶融生成物とスプレー冷却水の存在による長辺鋳型部10の内面、特に下端部での腐食損耗が十分に防止できないという問題がある。長辺鋳型部10と共に、鋳型を構成する図示しない短辺鋳型部についても、長辺鋳型部10と同様のことが発生している。
【0004】
本発明はかかる事情に鑑みてなされたもので、鋳型内面の鋳片による摩耗損耗を防止すると共に、特に鋳型内面の下端部での腐食損耗をも併せて防止可能な連続鋳造用鋳型を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う第1の発明に係る連続鋳造用鋳型は、1対の平行に配置された長辺モールド銅板とその間に平行に配置された1対の短辺モールド銅板を備えた連続鋳造用鋳型において、長辺モールド銅板及び/又は短辺モールド銅板の下部或いは全面に、Niを10〜30wt%含有するNi−Coめっきが形成され、鋳片による摩耗損耗を防止すると共に腐食損耗をも防止可能としている。従って、モールド銅板の摩耗(磨耗)と同時に、腐食損耗のより少ない連続鋳造用鋳型を製作できる。Niを10wt%未満とすると、モールド銅板の腐食損耗が急激に増大し、一方、Niが30wt%を超えると、モールド銅板の摩耗が急激に増大する。
前記目的に沿う第2の発明に係る連続鋳造用鋳型は、1対の平行に配置された長辺モールド銅板とその間に平行に配置された1対の短辺モールド銅板を備えた連続鋳造用鋳型において、長辺モールド銅板及び/又は短辺モールド銅板の下部或いは全面に、Niを16〜30wt%含有するNi−Coめっきが形成され、鋳片による摩耗損耗を防止すると共に腐食損耗をも防止可能としている。従って、モールド銅板の摩耗と同時に、腐食損耗の少ない連続鋳造用鋳型を製作できる。Niを16wt%未満とすると、モールド銅板の腐食損耗が増大し、一方、Niが30wt%を超えると、モールド銅板の摩耗が急激に増大する。
ここで、長辺モールド銅板及び/又は短辺モールド銅板には、傾斜めっきを形成することもでき、これによってモールド銅板の損耗量を均一にでき、耐用回数が向上する。
【0006】
本発明者等は、連続鋳造用鋳型について鋭意、実用機の観察調査と実験検討解析を重ねた結果、次のような知見を得るに到った。
即ち、工業的に実用化されている連続鋳造用鋳型15は、図5に示すような状態で使用されるが、使用後の内面損耗は、図6(A)に示す弱い腐食摩耗痕跡16、或いは図6(B)に示す強い腐食摩耗痕跡17のような状態が観察され、腐食摩耗痕跡16及び腐食摩耗痕跡17共、冷却水スプレー18の配置と対応した損耗であることが判る。
この現象は鋳片19による摩耗損耗(磨耗損耗)とは別の摩耗損耗の存在を示すものと考えられた。
なお、図5又は図6中の符号20は長辺モールド水箱を、符号21は長辺モールド銅板を、符号22はNi−Coめっきを、符号23は短辺モールド水箱を、符号24は平行に配置された一対の長片モールド銅板21の間に平行に配置された一対の短辺モールド銅板を表している。
【0007】
次に、本発明者等は、Ni−CoめっきにおけるNi含有量が耐摩耗性に及ぼす影響を摩耗実験によって確認した。
図7には、めっき被膜中のCo濃度とめっき被膜硬度との関係を示す。図7中、□は既知の報告例を示し、○は本発明での測定値を示している。図7に示すように、Ni−Coめっき中のCo含有量が大きくなるほど、即ち、Ni含有量が小さくなるほど(Ni含有量が40wt%以下)めっき層(又は被膜)の硬度が小さくなることを示すが、図8(B)に示すように、耐摩耗性(摩耗減重量)はめっき被膜硬度に比例(図中の破線で示す)せず、図8(A)に示すように、Co含有量が高いほど、即ち、Ni含有量が低いほど耐摩耗性が向上することを確認した。これは、Co含有量が高いほどCoによる潤滑効果が高くなるためであると考察される。
【0008】
なお、Co−Ni合金電析特性がNiに比べてCoが優先析出するため、Co濃度50wt%以下の領域ではめっき浴中のCoイオン濃度の微妙なコントロールが難しいことから、めっき施工時においてめっき浴条件の変動に影響されにくいCo濃度90%以上の合金めっきが実用化されつつある。この領域のCo−Ni合金めっき被膜は後述するように、優れた被膜潤滑を有して耐摩耗性を発揮するが、欠点として腐食に弱いことである。
【0009】
この現象は、別の実験によっても明らかに確認できた。本実験で用いた供試材は、2mm厚の銅板にNi−Coめっき層(Co:Ni=0:100から、Co:Ni=100:0に適宜変えたもの)を施した後、マイクロカッターにて30mm×30mmのサイズとし、600番のペーパで表面研磨して作製した。実機モールド下部での摩耗を想定して、供試材を300℃×5min間保持後、引続き300℃の条件にて摩擦摩耗試験機を用い、リングオンプレート型の摺動摩耗試験を実施した。固定させたプレート(供試材又は試験片)に、S45C製の外径25.6mm、肉厚2.8mmの製リングを20kgfの力で押付け、300℃、50mm/secにて20分間回転させた。摩耗試験後のめっき層(プレート)及びリングの各表面を光学顕微鏡及びSEM(走査型電子顕微鏡)にて観察した。光学顕微鏡観察結果及びSEM観察結果を図9の模式図により示す。
【0010】
図8(A)では、Co−Ni合金めっき被膜(○)の耐摩耗性は、Co含有率が0%と50%ではほとんど差が認められないが、Co含有率が50%以上の領域では、Co%が高くなるほど良好となる。また、供試材に押し付けているリング(◇)の摩耗量も供試材の摩耗量と同様の値となり、被膜中Co%が高くなるほど小さくなっている。
【0011】
図9に示す、めっき被膜中のCo含有率が50%の試験片及び85%の試験片の摩耗試験後の表面、及びそれぞれの試験片に押し付けているリングの表面の観察結果を要約すると、Ni含有量50wt%めっきの場合には、めっき層の欠損、めっき層表面へのリングの転写並びにリングへのめっき層の転写が認められるのに対し、Ni含有量15wt%めっきの場合には、めっき層及びリングの各表面とも表面層の欠損、転写はまったく認められなかった。
詳しく説明すると、まずCo含有率が50%の場合では、光学顕微鏡観察結果から明らかなように試験片の表面、リングの表面共に引きちぎられたような荒れた凹凸が存在している。またSEM観察結果から明らかなように、Co、Ni、Feの特性X線像より、試験片側にFeの付着が、リング側にCo、Niの付着が認められることから、めっき被膜とリングの表面が凝着摩耗を起こし、めっき被膜、リング表面共に剥離し、接触している相手側に移行して付着したと考えられる。なお、試験片の表面には、直線状の切削傷は生じていないことから、アブレイシブ摩耗までには到っていないと思われる。
【0012】
一方、Co含有率が85%の場合では、光学顕微鏡観察結果から明らかなように試験片では、局部的に軽い擦り傷が認められる程度で、全体的に平滑なままである。SEM観察結果からCo、Ni、Feの特性X線像より、リング側に線状に若干Coが付着していることから、僅かではあるがめっきが剥離し、リング側に移行していることが判る。ただし、そのCo付着量は、Co含有率が50%の供試材に比べると非常に少なく、また、供試材の表面にFeの付着がほとんど認められないことから、基本的に凝着摩耗が起こり難くなっていると考えられる。
【0013】
めっき被膜の耐摩耗性に及ぼす因子については、従来より、
1)表面の硬さ
2)表面の潤滑性
3)めっき被膜の靱性
等が報告されている。この中で、めっき被膜の靱性は、図9に示すように、摩耗試験後のめっき被膜表面に割れが存在していないことから、本発明の耐摩耗性には特に影響を及ぼしていないと予想される。そこで、表面の硬さ及び表面の潤滑性について、耐摩耗性との関係を以下に調査した。
【0014】
図8(B)に耐摩耗性(又は摩耗減重量)とめっき被膜硬度との関係を示す。図に示すように、耐摩耗性とめっき被膜硬度との間には特に相関関係が認められない。従来より報告されているめっき被膜(例えば、Niめっき、Crめっき)の耐摩耗性は、図8(B)中の破線のように硬度が高い方が優れているが、そのような傾向は全く見られない。アブレイシブ摩耗については、めっき被膜硬度の高い方が有利であることが知られている。本発明での摩耗形態は、図9に示すように、凝着摩耗が主体であることが、めっき被膜硬度の影響が認められない一因として考えられる。
【0015】
そこで、次に表面の潤滑性(又は摩擦係数)との関係を調査した。図10(A)にめっき被膜の300℃での摩擦係数とめっき被膜組成との関係を示す。Co−Niめっき被膜の摩擦係数は、被膜中のCo含有率が増加するほど小さくなり、特にCo含有率が70%を超えると急激に低下している。
【0016】
次に、図8(A)と図10(A)の結果より、めっき被膜の耐摩耗性と摩擦係数の関係を図10(B)に整理した。図10(B)から明らかなように、めっき被膜の耐摩耗性と摩擦係数の間には相関があり、摩擦係数が低くなるほど耐摩耗性は向上している。以上の結果から、Co−Niめっき被膜において、Co%が高くなるほど耐摩耗性が向上するのは、Co%の増加に伴いめっき被膜の潤滑性が改善され、めっき被膜とリングの凝着が抑制されたためと考えられる。
上述の2種類の実験結果から、鋳型の耐摩耗性に対しては、Ni−Coめっき中のNi含有量は40wt%以下、好ましくは30wt%以下であり、より少ないほうが効果が高いと推論される。
【0017】
さらに、本発明者等は、実際に使用されている連続鋳造用鋳型の観察結果から、耐腐食性に及ぼすNi−Coめっき中のNi含有量の影響に着目した腐食実験を行った。
本実験で用いた供試材は、前記摩耗試験で使用した供試材と同様、2mm厚の銅板にNi−Coめっき層(5種類、Co含有率が、0、50、70、90、100wt%のもの)を施した後、マイクロカッターにて30mm×30mmのサイズとし、600番のペーパで表面研磨した。その後めっき面を窓面積1.5mm×1.5mmを開口させるようにして樹脂に埋め込んで作製した。
【0018】
腐食溶液としては、次の点を考慮して実験した。凝固した鋳片19が連続鋳造用鋳型15の下端から引き抜かれる際に冷却水スプレー18によって冷却水が吹きつけられるが、この際冷却水が鋳片19の表面のスラグや潤滑パウダーを起源とする溶融生成物と反応して、硫酸、塩酸、フッ酸、硝酸などが混在した腐食環境が生成されると推察されるので、腐食溶液としては、以下の理由により硝酸、フッ酸、硫酸を選んだ。
一般工業酸液として硝酸、塩酸、硫酸が代表的であり、その腐食強さは硝酸は自分は還元されて相手金属を酸化することから最も強い腐食性を有する。次に、塩酸が多くの金属と錯塩を形成するので腐食性は強いが、本実験では同じ系統の中でガラスをも溶解するフッ酸を選択した。硫酸は硫酸昆が安定であり、水素の還元のみによる相手金属の酸化であるので腐食性はさほど強くはない。硝酸の腐食性は、フッ酸の数千倍であり、硫酸の数万倍を示している。
【0019】
実験方法として、30wt%に調整されたこれらの腐食溶液100ccの中に供試材を室温にて浸漬し、溶液着色状態を目視で観察してある程度着色したところで1回目のサンプリングとして腐食溶液を1cc採取した。その後も浸漬を続行して充分に着色した時点で2回目のサンプリングを行った。それぞれ採取した腐食溶液を誘導結合高周波プラズマ(ICP)でCo、Niを定量し、1回目と2回目の増分値をその差時間で除して溶出速度を求めた。図11(A)、(B)、(C)に実験結果を示す。
【0020】
図11(A)に示すように、腐食溶液が硝酸の場合には、めっき被膜中のCo(●)%を増加すると、Coの溶出速度は急速に増加している。特にCo85wt%を超えると2次曲線的に増加している。Coが腐食されやすいことを示している。Ni(▲)はCo%が増加すると被膜中濃度は減少するが、Niの溶出速度は僅かに減少しているだけである。合金全体(○)の溶出速度はCo80wt%まではCo濃度に比例するが、それ以上になると急速に腐食されやすくなる。
【0021】
図11(B)に示すように、腐食溶液がフッ酸の場合には、Co(●)%の増加とCo溶出速度は、Co90wt%までは直線的に増加しているが、それ以上になるとCoの溶出速度は急激に大きくなっており、ここでもCoが腐食されやすいことを示している。合金全体(○)の溶出速度はCo90wt%までは略一定値を示すが、それ以上では腐食されやすくなる。
【0022】
図11(C)に示すように、腐食溶液が硫酸の場合には、Co(●)もNi(▲)もめっき合金比率に従った溶出速度を示している。結果として合金全体(○)の溶出速度は略一定の値を示している。従ってCo−Ni合金は硫酸においては、合金化の効果は見られず、ごく僅かに腐食されることが判る。
【0023】
腐食実験の結果を要約すると、実用域条件と比べて苛酷すぎる硝酸では、Ni含有量が低くなるほど急速にめっき層の溶損が進行するが、特に10wt%以下で急激に溶損する。また比較的腐食効果の穏やかなフッ酸、硫酸による試験結果では、Ni含有量20wt%までは、Ni含有量の影響はほとんど認められないが、Ni含有量10wt%以下でめっき層の腐食溶損量は急に増加する傾向が認められた。
この腐食実験結果からは、連続鋳造用鋳型の内面Ni−Coめっきに関して、Ni含有量は、耐腐食性の観点から、10wt%以上、好ましくは16wt%以上が望ましいことが判る。
【0024】
本発明者等は、以上の実験結果等を総合して、溶鋼の連続鋳造用鋳型の内面めっきとして、Ni−Coめっきであって、さらにNi含有量が40wt%以下であって10wt%以上、好ましくは30wt%以下であって16wt%以上であることが、耐摩耗性及び耐腐食性の両方を満足し、鋳型の耐用使用回数を増加せしめるのに有効であることを知見し得た。
【0025】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図2〜図4を参照して、本発明の一実施の形態に係わる連続鋳造用鋳型の製造方法について説明する。
まず、鋳型内張母材(銅板)の内側全面或いは部分を研削する。このとき、全面を研削する場合は(図2(A))、図に示すように、上端を厚く、かつ下端を薄くして、テーパー(傾斜)12をつけるのが望ましい。図3(A)に示すように、銅板の部分を研削する場合は下側を、全体の高さHの1/3〜2/3に相当する範囲を研削する。さらに、この研削面に対し、図4(A)に示すように、Niめっきを施して、必要な厚みを残して等しい厚みに研削してもよい。
【0026】
このように準備した研削面に対し、Ni含有量が10wt%を超え、30wt%以下であるNi−Coめっきを施し(図2(A)、図3(A)、及び図4(A)参照)、所定の厚みを残して研削して仕上げる。
仕上がったNi−Coめっきの厚みは、傾斜めっきの場合、上端で0.1〜1.0mm、下端で1.0〜2.0mmとし、部分等厚めっきの場合では、0.5〜2.0mmの厚みとする。
さらに、図2(B)、図3(B)、及び図4(B)に示すように、この表面に、溶鋼注入時のスプラッシュ付着防止のため、50〜100μm厚程度のCrめっきを施してもよい。
このように製造することによって、内面の銅板の摩耗や腐食損耗の少ない連続鋳造用鋳型が得られ、長期間の使用を可能にし、コスト低減を達成できる。
【0027】
【実施例】
次に、本発明の一実施の形態に係わる連続鋳造用鋳型の実用確認試験結果について表1及び表2を参照して説明する。
【0028】
【表1】

Figure 0004175720
【0029】
表1は、従来、Ni含有量4〜6wt%のNi−Coめっきを施して使用していた鋳型(従来例A)に対して、本発明の知見に基き、Ni含有量15wt%のNi−Coめっきを施して実用した結果であるが、従来例Aでは平均2200チャージの耐用回数(モールド寿命)であったものが、本実施の形態に係わる連続鋳造用鋳型(実施例A)では2800チャージの連続使用に耐え、30%の寿命の向上を示した。
【0030】
【表2】
Figure 0004175720
【0031】
表2では従来、Ni含有量6〜8wt%のNi−Coめっきを施して使用していた鋳型(従来例B)に対して、本発明の知見に基き、Ni含有量30wt%のNi−Coめっきを施して実用したところ、従来例Bでは平均1400チャージの耐用回数であったものが、本実施の形態に係わる連続鋳造用鋳型(実施例B)では1900チャージの連続使用に耐え、40%の向上を示した。
【0032】
本実施の形態では、Ni−Coめっき等のめっきを長辺モールド銅板に施工することを述べたが、これに限定されず、めっきを短辺モールド銅板にも同様に施工することもできる。
【0033】
【発明の効果】
請求項1〜3記載の連続鋳造用鋳型においては、長辺モールド銅板及び/又は短辺モールド銅板の下部或いは全面に、Niを10〜30wt%、好ましくは16〜30wt%含有するNi−Coめっきが形成されているので、凝固鋳片との摩耗及び冷却スプレーによる腐食環境下においても、モールド銅板の摩耗及び腐食損耗の少ない連続鋳造用鋳型を製作できる。
特に、請求項3記載の連続鋳造用鋳型においては、長辺モールド銅板及び/又は短辺モールド銅板には、傾斜めっきを形成することによって、モールド銅板の損耗量を均一にでき、その結果耐用回数が向上する。
【図面の簡単な説明】
【図1】連続鋳造用鋳型の長辺鋳型部の斜視図である。
【図2】(A)、(B)は本発明の一実施の形態に係る連続鋳造用鋳型に傾斜めっきを施工する場合の施工要領図である。
【図3】(A)、(B)は本発明の一実施の形態に係る連続鋳造用鋳型に部分めっきを施工する場合の施工要領図である。
【図4】(A)、(B)は本発明の一実施の形態に係る連続鋳造用鋳型に部分めっきを施工する場合の施工要領図である。
【図5】冷却水スプレーを備えた連続鋳造用鋳型の斜視図である。
【図6】(A)、(B)はそれぞれ使用後の鋳型の弱い腐食摩耗痕跡、強い腐食摩耗痕跡の説明図である。
【図7】めっき被膜中のCo濃度とめっき被膜硬度との関係を示すグラフである。
【図8】(A)、(B)はそれぞれ、めっき被膜中のCo濃度と摩耗減重量との関係、めっき被膜硬度と摩耗減重量との関係を示すブラフである。
【図9】めっき被膜の摩耗試験による試験片及びリングの光学顕微鏡観察結果及びSEM観察結果の模式図である。
【図10】(A)、(B)はそれぞれ、めっき被膜中のCo濃度と摩擦係数との関係、摩擦係数と摩耗減重量との関係を示すグラフである。
【図11】(A)、(B)、(C)はそれぞれ、腐食溶液が硫酸、フッ酸、硫酸の場合における、めっき被膜中のCo濃度とメタル溶解速度との関係を示すグラフである。
【符号の説明】
10:長辺鋳型部、11:Co−Ni合金めっき(Co−Niめっき)、12:テーパー、13:銅板、14:水箱(バックプレート)、15:連続鋳造用鋳型、16:腐食摩耗痕跡、17:腐食摩耗痕跡、18:冷却水スプレー、19:鋳片、20:長辺モールド水箱、21:長辺モールド銅板、22:Ni−Coめっき、23:短辺モールド水箱、24:短辺モールド銅板、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold for use in a continuous casting facility for molten steel, and more particularly to a continuous casting mold capable of preventing both wear and wear caused by solidified slabs and corrosion and wear caused by slag, casting lubricating powder and spray cooling water. .
[0002]
[Prior art]
Conventionally, in continuous casting molds of molten steel, as the casting speed increases, wear due to wear on the inner surface of the mold due to solidified slabs has become an important issue. To prevent this wear, Cr plating and Ni plating are applied to the inner surface of the mold. , (Ni + Cr) plating, (Ni + (Ni-Co)) plating, (Cr + Ni + (Ni-Co)) plating, and (Cr + (Ni-Co)) plating molds having long sides are proposed. Yes.
Further, as shown in FIG. 1, this wear appears remarkably at the lower part of the inner surface of the long side mold part (one side of the long side mold) 10, particularly at the lowermost end, so Co—Ni alloy plating (also referred to as Co—Ni plating). 11 has a taper 12 (see FIG. 2A), and a method of plating only the lower part (see FIG. 3A) has been put into practical use. However, the Cr plating is generally performed on the entire inner surface of the mold (see FIGS. 2B, 3B, and 4B). In FIG. 1, reference numeral 13 denotes a copper plate, and reference numeral 14 denotes a water box (also referred to as a back plate). The plating thickness and the thickness of the copper plate are as shown in FIGS.
[0003]
[Problems to be solved by the invention]
However, the conventional mold for continuous casting of molten steel still has the following problems to be solved.
By applying plating mainly composed of Ni-Co plating 11 on the inner surface of the long side mold part 10, the wear resistance of the long side mold part 10 is considerably improved, and the number of times the long side mold part 10 is used (charged) However, the corrosion of the inner surface of the long side mold part 10 due to the presence of the molten product and spray cooling water, which are originated from slag and cast lubricating powder, in particular, the lower end part has been increased. There is a problem that wear cannot be sufficiently prevented. Along with the long side mold part 10, the same thing as that of the long side mold part 10 occurs for a short side mold part (not shown) constituting the mold.
[0004]
The present invention has been made in view of such circumstances, and provides a continuous casting mold capable of preventing wear and abrasion due to a cast piece on the inner surface of the mold, and in particular, preventing corrosion and wear at the lower end portion of the inner surface of the mold. For the purpose.
[0005]
[Means for Solving the Problems]
A continuous casting mold according to the first aspect of the present invention that meets the above-mentioned object is a continuous casting mold provided with a pair of long-side mold copper plates arranged in parallel and a pair of short-side mold copper plates arranged in parallel therebetween. In Ni-Co plating containing 10 to 30 wt% of Ni is formed on the lower side or the entire surface of the long-side molded copper plate and / or the short-side molded copper plate to prevent wear and wear due to slabs and also prevent corrosion and wear. It is set to. Therefore, a continuous casting mold with less corrosion wear can be produced simultaneously with the wear (wear) of the mold copper plate. When Ni is less than 10 wt%, the corrosion wear of the molded copper plate increases rapidly, while when Ni exceeds 30 wt%, the wear of the molded copper plate increases rapidly.
A continuous casting mold according to the second aspect of the present invention that meets the above-mentioned object is a continuous casting mold comprising a pair of parallel long mold copper plates and a pair of short mold copper plates arranged in parallel therebetween. In Ni-Co plating containing 16 to 30 wt% Ni is formed on the lower side or the whole surface of the long side mold copper plate and / or the short side mold copper plate to prevent wear and wear due to slabs and to prevent corrosion wear It is set to. Therefore, a continuous casting mold with little corrosion wear can be produced simultaneously with the wear of the mold copper plate. When Ni is less than 16 wt%, the corrosion wear of the molded copper plate increases. On the other hand, when Ni exceeds 30 wt%, the wear of the molded copper plate increases rapidly.
Here, inclined plating can also be formed on the long-side molded copper plate and / or the short-side molded copper plate, whereby the amount of wear of the molded copper plate can be made uniform, and the service life is improved.
[0006]
The inventors of the present invention diligently performed continuous casting molds, repeated observational observations of practical machines, and experimental study analysis, and as a result, obtained the following knowledge.
That is, the continuous casting mold 15 industrially used is used in a state as shown in FIG. 5, but the internal surface wear after use is weak corrosion wear trace 16 shown in FIG. Alternatively, a state like a strong corrosion wear trace 17 shown in FIG. 6B is observed, and it is found that both the corrosion wear trace 16 and the corrosion wear trace 17 are wear corresponding to the arrangement of the cooling water spray 18.
This phenomenon was considered to indicate the presence of wear wear different from the wear wear (wear wear) due to the slab 19.
5 or 6, reference numeral 20 denotes a long-side molded water box, reference numeral 21 denotes a long-side molded copper plate, reference numeral 22 denotes Ni—Co plating, reference numeral 23 denotes a short-side molded water box, and reference numeral 24 denotes parallel. A pair of short side mold copper plates arranged in parallel between a pair of long piece mold copper plates 21 arranged is shown.
[0007]
Next, the present inventors confirmed the influence of the Ni content in the Ni—Co plating on the wear resistance through wear experiments.
FIG. 7 shows the relationship between the Co concentration in the plating film and the plating film hardness. In FIG. 7, □ indicates a known report example, and ◯ indicates a measured value according to the present invention. As shown in FIG. 7, the hardness of the plating layer (or coating) decreases as the Co content in Ni—Co plating increases, that is, as the Ni content decreases (Ni content is 40 wt% or less). As shown in FIG. 8 (B), the wear resistance (weight loss on wear) is not proportional to the plating film hardness (indicated by the broken line in the figure), and as shown in FIG. It was confirmed that the higher the amount, that is, the lower the Ni content, the better the wear resistance. It is considered that this is because the higher the Co content, the higher the lubrication effect by Co.
[0008]
In addition, since Co is preferentially deposited in comparison with Ni in the Co-Ni alloy electrodeposition characteristics, it is difficult to delicately control the Co ion concentration in the plating bath in the region where the Co concentration is 50 wt% or less. Alloy plating with a Co concentration of 90% or more, which is hardly affected by fluctuations in bath conditions, is being put into practical use. As will be described later, the Co—Ni alloy plating film in this region has excellent film lubrication and exhibits wear resistance, but is disadvantageous in corrosion.
[0009]
This phenomenon was clearly confirmed by another experiment. The test material used in this experiment is a micro cutter after a Ni-Co plating layer (Co: Ni = 0: 100 is appropriately changed from Co: Ni = 0: 100) to a 2 mm thick copper plate. The size was 30 mm × 30 mm, and the surface was polished with No. 600 paper. Assuming wear at the lower part of the actual machine mold, the specimen was held at 300 ° C. for 5 minutes, and then a ring-on-plate sliding wear test was carried out using a friction wear tester at 300 ° C. An S45C outer ring with a diameter of 25.6 mm and a wall thickness of 2.8 mm was pressed against a fixed plate (test material or test piece) with a force of 20 kgf and rotated at 300 ° C. and 50 mm / sec for 20 minutes. It was. Each surface of the plating layer (plate) and ring after the wear test was observed with an optical microscope and SEM (scanning electron microscope). The optical microscope observation result and the SEM observation result are shown in the schematic diagram of FIG.
[0010]
In FIG. 8A, the wear resistance of the Co—Ni alloy plating film (◯) shows almost no difference between the Co content of 0% and 50%, but in the region where the Co content is 50% or more. The higher the Co%, the better. In addition, the wear amount of the ring ()) pressed against the test material is the same value as the wear amount of the test material, and decreases as the Co% in the coating increases.
[0011]
To summarize the observation results of the surface after the abrasion test of the test piece having a Co content of 50% and 85% in the plating film shown in FIG. 9 and the surface of the ring pressed against each test piece, In the case of plating with a Ni content of 50 wt%, defects in the plating layer, transfer of the ring to the surface of the plating layer and transfer of the plating layer to the ring are observed, whereas in the case of plating with a Ni content of 15 wt%, Defects and transfer of the surface layer were not observed at all on each surface of the plating layer and the ring.
More specifically, first, when the Co content is 50%, as shown in the optical microscope observation results, there are rough irregularities such as the surface of the test piece and the surface of the ring being torn off. Further, as is apparent from the SEM observation results, from the characteristic X-ray images of Co, Ni, and Fe, the adhesion of Fe on the test piece side and the adhesion of Co and Ni on the ring side are recognized. It is considered that adhesion wear occurred, the plating film and the ring surface both peeled off, and transferred to the contacted counterpart and adhered. It should be noted that since no linear cutting flaws are generated on the surface of the test piece, it seems that the abrasive wear has not been reached.
[0012]
On the other hand, when the Co content is 85%, as apparent from the observation result of the optical microscope, the test piece remains smooth as a whole with only slight scratches observed locally. From the SEM observation results, from the characteristic X-ray images of Co, Ni, and Fe, Co slightly adheres linearly on the ring side, so that the plating peels off slightly and moves to the ring side. I understand. However, the amount of Co adhesion is very small compared to the test material having a Co content of 50%, and since there is almost no adhesion of Fe on the surface of the test material, it is basically an adhesive wear. Seems to be difficult to occur.
[0013]
For factors affecting the wear resistance of the plating film,
1) Hardness of the surface 2) Lubricity of the surface 3) Toughness of the plating film has been reported. Among these, as shown in FIG. 9, the toughness of the plating film is expected to have no particular influence on the wear resistance of the present invention because no cracks exist on the surface of the plating film after the wear test. Is done. Therefore, the relationship between the surface hardness and the surface lubricity with the wear resistance was investigated below.
[0014]
FIG. 8B shows the relationship between wear resistance (or wear loss) and plating film hardness. As shown in the figure, there is no particular correlation between the wear resistance and the plating film hardness. The abrasion resistance of the plating film (for example, Ni plating, Cr plating) that has been reported so far is superior when the hardness is higher as indicated by the broken line in FIG. 8B. can not see. As for abrasive wear, it is known that higher plating film hardness is advantageous. As shown in FIG. 9, it is considered that the wear form in the present invention is mainly due to adhesive wear as a factor that the influence of the plating film hardness is not recognized.
[0015]
Then, next, the relationship with the lubricity (or friction coefficient) of the surface was investigated. FIG. 10A shows the relationship between the friction coefficient of the plating film at 300 ° C. and the plating film composition. The coefficient of friction of the Co—Ni plating film decreases as the Co content in the film increases, and particularly decreases rapidly when the Co content exceeds 70%.
[0016]
Next, from the results of FIGS. 8A and 10A, the relationship between the wear resistance and the friction coefficient of the plating film is arranged in FIG. 10B. As is clear from FIG. 10B, there is a correlation between the wear resistance of the plating film and the friction coefficient, and the lower the friction coefficient, the better the wear resistance. From the above results, in Co-Ni plated coatings, the higher the Co%, the higher the wear resistance. The higher the Co%, the better the lubricity of the plated coating and the suppression of adhesion between the plated coating and the ring. This is probably because
From the above two types of experimental results, it can be inferred that the Ni content in the Ni-Co plating is 40 wt% or less, preferably 30 wt% or less, and the lower the effect, the higher the effect. The
[0017]
Furthermore, the present inventors conducted a corrosion experiment focusing on the influence of the Ni content in the Ni—Co plating on the corrosion resistance from the observation results of the continuous casting mold actually used.
The test material used in this experiment was a Ni-Co plating layer (5 types, Co content is 0, 50, 70, 90, 100 wt. %), The size was 30 mm × 30 mm with a microcutter, and the surface was polished with No. 600 paper. Thereafter, the plated surface was embedded in a resin so as to open a window area of 1.5 mm × 1.5 mm.
[0018]
The corrosive solution was tested in consideration of the following points. When the solidified slab 19 is drawn out from the lower end of the continuous casting mold 15, the cooling water is sprayed by the cooling water spray 18. At this time, the cooling water originates from the slag or lubricating powder on the surface of the slab 19. Since it is assumed that a corrosive environment containing sulfuric acid, hydrochloric acid, hydrofluoric acid, nitric acid, etc. is generated by reacting with the molten product, nitric acid, hydrofluoric acid, and sulfuric acid were selected as the corrosive solution for the following reasons. .
Nitric acid, hydrochloric acid, and sulfuric acid are typical as general industrial acid solutions, and nitric acid has the strongest corrosiveness because nitric acid is reduced by itself to oxidize the partner metal. Next, since hydrochloric acid forms complex salts with many metals, it is highly corrosive, but in this experiment, hydrofluoric acid that also dissolves glass was selected in the same system. Sulfuric acid is not very corrosive because sulfuric acid is stable and the oxidation of the partner metal is only by reduction of hydrogen. The corrosiveness of nitric acid is several thousand times that of hydrofluoric acid and tens of thousands of times that of sulfuric acid.
[0019]
As an experimental method, the test material was immersed in 100 cc of these corrosive solutions adjusted to 30 wt% at room temperature, and the colored state of the solution was visually observed to some extent. Collected. Thereafter, the immersion was continued and the second sampling was performed when the color was sufficiently colored. Each of the corrosive solutions collected was quantified with Co and Ni by inductively coupled radio frequency plasma (ICP), and the elution rate was determined by dividing the first and second increments by the difference time. The experimental results are shown in FIGS. 11 (A), (B), and (C).
[0020]
As shown in FIG. 11A, when the corrosive solution is nitric acid, the Co elution rate increases rapidly when the Co (●)% in the plating film is increased. In particular, when it exceeds Co 85 wt%, it increases in a quadratic curve. It shows that Co is easily corroded. As Ni ()) increases in Co%, the concentration in the film decreases, but the Ni elution rate only slightly decreases. The elution rate of the entire alloy (◯) is proportional to the Co concentration up to Co 80 wt%, but when it exceeds that, it tends to corrode rapidly.
[0021]
As shown in FIG. 11 (B), when the corrosive solution is hydrofluoric acid, the increase in Co (●)% and the Co elution rate increase linearly up to Co90wt%, but when it exceeds that, The elution rate of Co increases rapidly, indicating that Co is easily corroded. The elution rate of the entire alloy (◯) shows a substantially constant value up to Co 90 wt%, but it is likely to be corroded at more than that.
[0022]
As shown in FIG. 11C, when the corrosive solution is sulfuric acid, both Co (●) and Ni (▲) show the elution rates according to the plating alloy ratio. As a result, the dissolution rate of the whole alloy (◯) shows a substantially constant value. Therefore, it can be seen that the Co—Ni alloy is corroded slightly in sulfuric acid without the effect of alloying.
[0023]
To summarize the results of the corrosion experiment, nitric acid that is too harsh compared to the practical range conditions, the more rapidly the erosion of the plating layer progresses as the Ni content is lower, but the erosion is rapidly abrupt particularly at 10 wt% or less. Also, in the test results with hydrofluoric acid and sulfuric acid, which have a relatively mild corrosion effect, the influence of Ni content is hardly observed up to Ni content of 20 wt%, but the corrosion loss of the plating layer at Ni content of 10 wt% or less. The amount tended to increase rapidly.
From the results of this corrosion experiment, it can be seen that regarding the inner surface Ni—Co plating of the continuous casting mold, the Ni content is desirably 10 wt% or more, preferably 16 wt% or more from the viewpoint of corrosion resistance.
[0024]
The present inventors combined the above experimental results and the like, Ni-Co plating as the inner plating of the mold for continuous casting of molten steel, and further Ni content is 40 wt% or less, 10 wt% or more, It was found that it is preferably 30 wt% or less and 16 wt% or more, which satisfies both the wear resistance and the corrosion resistance and is effective in increasing the number of times the mold can be used.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
With reference to FIGS. 2-4, the manufacturing method of the casting mold for continuous casting concerning one embodiment of this invention is demonstrated.
First, the entire inner surface or part of the mold lining base material (copper plate) is ground. At this time, when the entire surface is ground (FIG. 2 (A)), it is desirable that the upper end is thick and the lower end is thin, and a taper (inclination) 12 is provided as shown. As shown in FIG. 3A, when grinding a copper plate portion, the lower side is ground in a range corresponding to 1/3 to 2/3 of the entire height H. Further, as shown in FIG. 4A, this ground surface may be Ni-plated and ground to an equal thickness while leaving a necessary thickness.
[0026]
The Ni-Co plating in which the Ni content exceeds 10 wt% and is 30 wt% or less is applied to the ground surface thus prepared (see FIGS. 2A, 3A, and 4A). ), And finish by grinding while leaving a predetermined thickness.
The thickness of the finished Ni—Co plating is 0.1 to 1.0 mm at the upper end in the case of gradient plating, and 1.0 to 2.0 mm at the lower end, and 0.5 to 2 in the case of partial equal thickness plating. The thickness is 0 mm.
Furthermore, as shown in FIGS. 2 (B), 3 (B), and 4 (B), this surface is subjected to Cr plating with a thickness of about 50 to 100 μm to prevent splash adhesion at the time of molten steel injection. Also good.
By manufacturing in this way, a continuous casting mold with less wear and corrosion wear on the inner copper plate can be obtained, enabling long-term use and achieving cost reduction.
[0027]
【Example】
Next, the practical confirmation test result of the continuous casting mold according to the embodiment of the present invention will be described with reference to Tables 1 and 2.
[0028]
[Table 1]
Figure 0004175720
[0029]
Table 1 shows that, based on the knowledge of the present invention, a Ni—15—Ni—15 wt% Ni—Co plating (conventional example A) conventionally used with Ni—Co plating having a Ni content of 4-6 wt% is used. Although it is a result of practical application by applying Co plating, in the conventional example A, the average number of times of use (mold life) was 2200 charges, but in the continuous casting mold according to the present embodiment (example A), 2800 charges were obtained. It withstood continuous use and showed a 30% improvement in service life.
[0030]
[Table 2]
Figure 0004175720
[0031]
In Table 2, Ni-Co having a Ni content of 30 wt% based on the knowledge of the present invention is conventionally used for a mold (conventional example B) that has been Ni-Co plated with a Ni content of 6 to 8 wt%. When the plating was put into practical use, in the conventional example B, the average number of times of use was 1400 charges, but in the continuous casting mold according to the present embodiment (Example B), withstanding continuous use of 1900 charges, 40% Showed improvement.
[0032]
In the present embodiment, it has been described that the plating such as Ni-Co plating is applied to the long-side molded copper plate, but the present invention is not limited to this, and the plating can also be similarly applied to the short-side molded copper plate.
[0033]
【The invention's effect】
In the casting mold for continuous casting according to claims 1 to 3, Ni-Co plating containing 10 to 30 wt%, preferably 16 to 30 wt% of Ni on the lower side or the entire surface of the long side mold copper plate and / or the short side mold copper plate. Therefore, a continuous casting mold with little wear and corrosion wear of the molded copper plate can be produced even in a corrosive environment caused by wear with the solidified slab and cooling spray.
In particular, in the casting mold for continuous casting according to claim 3, the wear amount of the molded copper plate can be made uniform by forming inclined plating on the long side mold copper plate and / or the short side mold copper plate. Will improve.
[Brief description of the drawings]
FIG. 1 is a perspective view of a long side mold part of a continuous casting mold.
FIGS. 2A and 2B are construction procedure diagrams in the case where gradient plating is applied to a continuous casting mold according to an embodiment of the present invention.
FIGS. 3A and 3B are construction procedure diagrams when partial plating is applied to a continuous casting mold according to an embodiment of the present invention.
FIGS. 4A and 4B are construction procedure diagrams when partial plating is applied to a continuous casting mold according to an embodiment of the present invention.
FIG. 5 is a perspective view of a continuous casting mold provided with a cooling water spray.
6A and 6B are explanatory diagrams of a weak corrosion wear trace and a strong corrosion wear trace of the mold after use, respectively.
FIG. 7 is a graph showing the relationship between the Co concentration in the plating film and the plating film hardness.
8A and 8B are graphs showing the relationship between the Co concentration in the plating film and the wear weight loss, and the relationship between the plating film hardness and the wear weight loss, respectively.
FIG. 9 is a schematic diagram of a result of optical microscope observation and SEM observation of a test piece and a ring by a plating film abrasion test.
FIGS. 10A and 10B are graphs showing the relationship between the Co concentration in the plating film and the friction coefficient, and the relationship between the friction coefficient and wear loss, respectively.
FIGS. 11A, 11B, and 11C are graphs showing the relationship between the Co concentration in the plating film and the metal dissolution rate when the corrosive solution is sulfuric acid, hydrofluoric acid, and sulfuric acid, respectively.
[Explanation of symbols]
10: Long side mold part, 11: Co—Ni alloy plating (Co—Ni plating), 12: Taper, 13: Copper plate, 14: Water box (back plate), 15: Mold for continuous casting, 16: Trace of corrosion wear, 17: Corrosion wear trace, 18: Cooling water spray, 19: Cast slab, 20: Long side mold water box, 21: Long side mold copper plate, 22: Ni-Co plating, 23: Short side mold water box, 24: Short side mold Copper plate,

Claims (3)

1対の平行に配置された長辺モールド銅板とその間に平行に配置された1対の短辺モールド銅板を備えた連続鋳造用鋳型において、
前記長辺モールド銅板及び/又は前記短辺モールド銅板の下部或いは全面に、Niを10〜30wt%含有するNi−Coめっきが形成され、鋳片による摩耗損耗を防止すると共に腐食損耗をも防止可能としたことを特徴とする連続鋳造用鋳型。
In a continuous casting mold provided with a pair of long-side mold copper plates arranged in parallel and a pair of short-side mold copper plates arranged in parallel therebetween,
Ni-Co plating containing 10 to 30 wt% of Ni is formed on the lower side or the whole surface of the long side mold copper plate and / or the short side mold copper plate to prevent wear and wear due to slabs and to prevent corrosion wear. A casting mold for continuous casting characterized by the above.
1対の平行に配置された長辺モールド銅板とその間に平行に配置された1対の短辺モールド銅板を備えた連続鋳造用鋳型において、
前記長辺モールド銅板及び/又は前記短辺モールド銅板の下部或いは全面に、Niを16〜30wt%含有するNi−Coめっきが形成され、鋳片による摩耗損耗を防止すると共に腐食損耗をも防止可能としたことを特徴とする連続鋳造用鋳型。
In a continuous casting mold provided with a pair of long-side mold copper plates arranged in parallel and a pair of short-side mold copper plates arranged in parallel therebetween,
Ni-Co plating containing 16 to 30 wt% of Ni is formed on the lower side or the entire surface of the long side mold copper plate and / or the short side mold copper plate to prevent wear and wear due to slabs as well as corrosion wear. A casting mold for continuous casting characterized by the above.
請求項1又は2記載の連続鋳造用鋳型において、前記長辺モールド銅板及び/又は前記短辺モールド銅板には、傾斜めっきが形成されたことを特徴とする連続鋳造用鋳型。  3. The continuous casting mold according to claim 1, wherein inclined plating is formed on the long side mold copper plate and / or the short side mold copper plate. 4.
JP07619299A 1999-03-19 1999-03-19 Continuous casting mold Expired - Lifetime JP4175720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07619299A JP4175720B2 (en) 1999-03-19 1999-03-19 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07619299A JP4175720B2 (en) 1999-03-19 1999-03-19 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2000263190A JP2000263190A (en) 2000-09-26
JP4175720B2 true JP4175720B2 (en) 2008-11-05

Family

ID=13598286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07619299A Expired - Lifetime JP4175720B2 (en) 1999-03-19 1999-03-19 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4175720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773433A (en) * 2012-08-01 2012-11-14 西峡龙成特种材料有限公司 High-casting speed continuous casting crystallizer copper plate
CN103233251A (en) * 2013-04-24 2013-08-07 秦皇岛首钢长白结晶器有限责任公司 Method for electroforming Co-Ni alloy coating on copper plate for continuous casting crystallizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751260B2 (en) * 2006-07-13 2011-08-17 新日本製鐵株式会社 Continuous casting mold and manufacturing method thereof
JP5161842B2 (en) * 2009-06-02 2013-03-13 三島光産株式会社 Continuous casting mold
CN103182489A (en) * 2011-12-27 2013-07-03 上海宝钢设备检修有限公司 Method for electroplating non-uniform performance alloy coating on continuous casting crystallizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773433A (en) * 2012-08-01 2012-11-14 西峡龙成特种材料有限公司 High-casting speed continuous casting crystallizer copper plate
CN103233251A (en) * 2013-04-24 2013-08-07 秦皇岛首钢长白结晶器有限责任公司 Method for electroforming Co-Ni alloy coating on copper plate for continuous casting crystallizer

Also Published As

Publication number Publication date
JP2000263190A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
TW200528213A (en) Continuous casting mold and method of continuous casting for copper alloy
KR100936395B1 (en) Manufacturing method shell
JP4175720B2 (en) Continuous casting mold
US20120067541A1 (en) Permanent mold for continuous casting
Sanz Tribological behavior of coatings for continuous casting of steel
JP6274317B2 (en) Manufacturing method of die casting coating mold
JP4816411B2 (en) How to prevent clogging of spray nozzles for water cooling
US7896061B2 (en) Product having improved zinc erosion resistance
JPH02160145A (en) Cooling roll for producing rapidly cooled strip and production thereof
JP3149801B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3847511B2 (en) Continuous casting mold
JP4466093B2 (en) WC cermet sprayed roll
WO2019039225A1 (en) Aluminum die-casting mold part
Akbari et al. The Formation and Frictional Behavior of Ni and Cu Aluminide Coatings on Copper
JPS5823538A (en) Mold for continuous casting
JP2718954B2 (en) Continuous casting mold
JPS635176B2 (en)
JP2002226992A (en) Mold for continuous casting
JPS62207534A (en) Mold for continuous casting
JPH08132186A (en) Mold for continuous casting and manufacture thereof
JPH05177328A (en) Die for aluminum die casting and manufacture thereof
JPH0953187A (en) Hot-dip aluminized steel sheet having excellent workability and corrosion resistance
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
JP3172443B2 (en) Sink roll for alkaline salt bath
JPS649393B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term