JPS649139B2 - - Google Patents

Info

Publication number
JPS649139B2
JPS649139B2 JP56067848A JP6784881A JPS649139B2 JP S649139 B2 JPS649139 B2 JP S649139B2 JP 56067848 A JP56067848 A JP 56067848A JP 6784881 A JP6784881 A JP 6784881A JP S649139 B2 JPS649139 B2 JP S649139B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
shaft
blade
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56067848A
Other languages
Japanese (ja)
Other versions
JPS57184660A (en
Inventor
Juji Tachikake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippei Toyama Corp
Original Assignee
Nippei Toyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippei Toyama Corp filed Critical Nippei Toyama Corp
Priority to JP56067848A priority Critical patent/JPS57184660A/en
Publication of JPS57184660A publication Critical patent/JPS57184660A/en
Publication of JPS649139B2 publication Critical patent/JPS649139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/18Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centreless means for supporting, guiding, floating or rotating work
    • B24B5/22Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centreless means for supporting, guiding, floating or rotating work for grinding cylindrical surfaces, e.g. on bolts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は、大径の円筒部とその軸方向端部から
軸方向に突出する小径の軸部とよりなる加工物を
心無研削盤により研削する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for grinding a workpiece consisting of a large diameter cylindrical portion and a small diameter shaft portion axially protruding from the axial end thereof using a centerless grinder.

大径の円筒部とその軸方向端部から突出する軸
部とよりなる加工物の一例としては、モータコア
の中心部に軸を圧入したものやエンジンのポペツ
トバルブ等がある。なお、ここで「大径」および
「小径」とは相対的な意味で用いてあり、軸部の
方が円筒部より小径となつていることを意味す
る。かかる加工物の一例を第1図に示す。同図に
おいて、1は軸部を、2は円筒部を示す。
Examples of workpieces consisting of a large-diameter cylindrical portion and a shaft portion protruding from its axial end include a shaft press-fitted into the center of a motor core, a poppet valve for an engine, and the like. Note that "large diameter" and "small diameter" are used here in a relative sense, meaning that the shaft portion has a smaller diameter than the cylindrical portion. An example of such a workpiece is shown in FIG. In the figure, 1 indicates a shaft portion, and 2 indicates a cylindrical portion.

このような加工物Wの円筒部2の周面を心無研
削盤によつて研削するには、従来は、第2図に示
すように対向する砥石Gと調整車Rとの間に加工
物支持用ブレード3を設け、このブレードに加工
物を支持しつつ砥石Gおよび調整車Rを回転させ
ている。この場合、軸部1は最初からブレード3
の高い方の支持面3aに支持され、また研削すべ
き円筒部2の周面のために一段低くなつた支持面
3bが設けられている。調整車Rは、砥石Gの送
りに抗する反力を与えるために円筒部2の外周面
に接する円筒面R1と、軸部1に接する円筒面R
2とを備えており、したがつて、調整車Rの周面
は円筒面R1の個所で環状に凹入した形状となつ
ている。
In order to grind the circumferential surface of the cylindrical portion 2 of such a workpiece W using a centerless grinder, conventionally, the workpiece is placed between a grinding wheel G and an adjustment wheel R facing each other, as shown in FIG. A support blade 3 is provided, and the grindstone G and adjustment wheel R are rotated while supporting the workpiece on this blade. In this case, the shaft 1 is attached to the blade 3 from the beginning.
A supporting surface 3b is provided which is supported by the higher supporting surface 3a and which is lowered to accommodate the circumferential surface of the cylindrical part 2 to be ground. The adjustment wheel R has a cylindrical surface R1 that is in contact with the outer peripheral surface of the cylindrical portion 2 and a cylindrical surface R that is in contact with the shaft portion 1 in order to apply a reaction force against the feeding of the grindstone G.
Therefore, the circumferential surface of the adjusting wheel R is annularly recessed at the cylindrical surface R1.

この構成は、軸1を基準としてそれとの同心度
を得るために円筒部2の周面を研削するためのも
のであつて、円筒部2の周面が研削を受けて径が
減少するにつれて軸部1に大きな負荷がかかるよ
うになる。すなわち、加工物Wは、研削が開始さ
れると、軸部1のみによつてブレード3および調
整車Rに支持されるので、軸部1が細い場合に
は、軸部が大きな負荷に耐えられなくなり、重研
削は不可能となる。また、軸部1は常に調整車面
R2に接するため傷が残り易い。軸部に傷が残つ
た場合には、円筒部2の研削完了後、軸部のみの
後加工を行なわなければならなくなる。一方、調
整車Rの周面に前述のように環状に凹入する面R
1がある関係上、その凹入面に円筒部2が対向す
るように加工物Wをローデイングするには、加工
物をかなり上方へ移動させた後下方へ変位させな
ければならず、加工物の軸方向(第2図の紙面に
直交する方向)での移動はかなり面倒であつてロ
ーデイングに時間を要する欠点がある。さらに、
調整車Rは、その面R1,2を加工物の寸法に応
じて異ならせねばならないから、寸法の異なる加
工物の研削の度に調整車を交換しなければならな
いという問題もある。
This configuration is for grinding the circumferential surface of the cylindrical portion 2 in order to obtain concentricity with the axis 1, and as the circumferential surface of the cylindrical portion 2 undergoes grinding and its diameter decreases, the axis A large load will be placed on section 1. That is, when the workpiece W starts grinding, it is supported by the blade 3 and the adjusting wheel R only by the shaft 1, so if the shaft 1 is thin, the shaft cannot withstand a large load. As a result, heavy grinding becomes impossible. Furthermore, since the shaft portion 1 is always in contact with the adjustment wheel surface R2, it is likely to be scratched. If any scratches remain on the shaft, post-processing of only the shaft must be performed after grinding of the cylindrical portion 2 is completed. On the other hand, the surface R that is annularly recessed on the circumferential surface of the adjustment wheel R as described above.
1, in order to load the workpiece W so that the cylindrical portion 2 faces the concave surface, the workpiece must be moved considerably upward and then displaced downward, and the workpiece Movement in the axial direction (direction perpendicular to the plane of the paper in FIG. 2) is quite troublesome and has the drawback of requiring time for loading. moreover,
Since the surfaces R1 and R2 of the adjusting wheel R must be made different depending on the size of the workpiece, there is also the problem that the adjusting wheel must be replaced every time a workpiece of a different size is ground.

本発明は、従来技術の上述の問題点を解決する
ことのできる心無研削盤における研削方法を提供
するものである。
The present invention provides a grinding method for a centerless grinder that can solve the above-mentioned problems of the prior art.

以下、第3図以下を参照して本発明の実施例を
説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIG. 3 and subsequent figures.

第3図において、Gは心無研削盤の砥石を、R
は同じく調整車を示す。これらの砥石Gおよび調
整車Rは互いに対向し、それらの間には従来の場
合と同様に加工物支持用ブレード3が設けられて
いる。ブレード3は、従来の場合と同様に高い支
持面3aおよび低い支持面3bを有している。第
4図に示すように、低い支持面3bは1対の高い
支持面3aの間に位置しており、低い支持面3b
は加工物Wの大径円筒部2に対応し、高い支持面
3aは加工物Wの小径軸部1に対応している。こ
れらの支持面3a,3bは公知の場合と同様、調
整車Rの側へ向つて低くなつている。
In Figure 3, G is the grinding wheel of the centerless grinder, R
also indicates the adjustment wheel. These grinding wheels G and adjusting wheels R face each other, and a workpiece supporting blade 3 is provided between them as in the conventional case. The blade 3 has a high support surface 3a and a low support surface 3b as in the conventional case. As shown in FIG. 4, the low support surface 3b is located between a pair of high support surfaces 3a, and the low support surface 3b
corresponds to the large diameter cylindrical portion 2 of the workpiece W, and the high support surface 3a corresponds to the small diameter shaft portion 1 of the workpiece W. These support surfaces 3a, 3b are lowered toward the adjusting wheel R, as in the known case.

加工物Wはその研削前の状態においては、基準
となる軸部1に対して完全に同心的でない円筒部
2を有しているのが普通である。かかる研削前の
円筒部2は、第3図において軸部1に対し偏心し
た実線によつて示してある。このような偏心状態
にある円筒部2は研削を受けて仕上寸法に達した
後は、鎖線2aで示すように基準軸部1に対し同
心をなすようになる。
In the state before grinding, the workpiece W normally has a cylindrical portion 2 that is not completely concentric with the shaft portion 1 serving as a reference. The cylindrical portion 2 before such grinding is indicated by a solid line eccentric to the shaft portion 1 in FIG. After the cylindrical portion 2 in such an eccentric state undergoes grinding and reaches the finished dimensions, it becomes concentric with the reference shaft portion 1 as shown by the chain line 2a.

本発明によれば、加工物支持用ブレード3の軸
部用支持面3aと円筒部用支持面3bの段差すな
わち高さの差が、加工物の仕上寸法における円筒
部2と軸部1の半径差に等しいかまたはそれより
僅かに大きくなるようにして研削を開始する。研
削開始前の加工物の円筒部2と軸部1の半径差
は、偏心のため種々の値があるが、その最小半径
差でも仕上寸法における半径差よりは大きい。し
たがつて、支持面3a,3bの段差を上述のよう
に定めて未研削加工物Wをブレード3上に支持す
ると、第3図に示すように、円筒部2が支持面3
bに接し、軸部1が支持面3aから浮き、その間
に隙間Cのある状態になる。本発明ではこの状態
で、円筒部2の研削が開始される。
According to the present invention, the step, that is, the difference in height between the shaft part support surface 3a and the cylindrical part support surface 3b of the workpiece support blade 3 is the radius of the cylindrical part 2 and the shaft part 1 in the finished dimension of the workpiece. Begin grinding with a difference equal to or slightly greater than the difference. The radius difference between the cylindrical portion 2 and the shaft portion 1 of the workpiece before the start of grinding has various values due to eccentricity, but even the minimum radius difference is larger than the radius difference in the finished dimension. Therefore, when the unground workpiece W is supported on the blade 3 by defining the steps between the support surfaces 3a and 3b as described above, the cylindrical portion 2 is placed on the support surface 3 as shown in FIG.
b, the shaft portion 1 floats from the support surface 3a, and there is a gap C therebetween. In the present invention, grinding of the cylindrical portion 2 is started in this state.

このようにして研削が進行するが、その初期段
階では、軸部1はブレード3と干渉することなく
回転し、円筒部2もそれにつれて回転して砥石G
による研削を受け、滑らかな偏心円に仕上げられ
ていく。
Grinding progresses in this way, but at the initial stage, the shaft part 1 rotates without interfering with the blade 3, and the cylindrical part 2 also rotates accordingly.
It is then ground to create a smooth eccentric circle.

円筒部2の径が研削により減少するにつれ、軸
部1は漸次支持面3aに近付き、遂には第5図に
示すように軸部1が支持面3aに接する。そし
て、それ以後は加工物Wは主として基準軸1のみ
で支持されて研削が進行する。この最終段階の研
削では、円筒部2の偏心の方向によつて第6図に
示すような加工物の上下運動が生ずる。この運動
は、一般の心無研削における造円作用とまつたく
同じであり、偏肉の厚い部分ほど研削代が多くな
る。加工物の1回転当りの研削代変化量は、各部
が剛体と考えた場合、心高角α(第6図)、ブレー
ド頂角β(第5図)および偏心量e(第5図)のみ
によつて決定される。実例をあげると、心高角α
が7゜(通常の心無研削加工ではこの程度)、ブレー
ド頂角βが60゜、偏心量eが0.05mmTIR(トータ
ル・インジケーター・リーデイグ)で、研削代変
化量(半径)は約5μとなる。しかし、実際の研
削作業では基準軸1が弾性変形するため、軸部1
がブレード3と干渉しているにもかかわらず、円
筒部2のみで運動が決定される状態が過渡的に存
在するが、この場合には同心度向上作用がほとん
どないと予想されるので、切込速度とブレード支
持面の段差を加工物に合せ適宜決定する必要があ
る。
As the diameter of the cylindrical portion 2 is reduced by grinding, the shaft portion 1 gradually approaches the support surface 3a, and finally, as shown in FIG. 5, the shaft portion 1 comes into contact with the support surface 3a. After that, the workpiece W is mainly supported only by the reference shaft 1 and the grinding progresses. In this final stage of grinding, the direction of eccentricity of the cylindrical portion 2 causes vertical movement of the workpiece as shown in FIG. This motion is exactly the same as the circle-forming action in general centerless grinding, and the thicker the uneven thickness, the greater the grinding allowance. When each part of the workpiece is considered to be a rigid body, the amount of change in grinding allowance per revolution of the workpiece is determined only by the center height angle α (Fig. 6), the blade apex angle β (Fig. 5), and the eccentricity e (Fig. 5). It is determined accordingly. To give an example, the center height angle α
is 7° (about this amount in normal centerless grinding), the blade apex angle β is 60°, the eccentricity e is 0.05mmTIR (total indicator reading), and the grinding allowance change (radius) is approximately 5μ. . However, in actual grinding work, the reference shaft 1 is elastically deformed, so the shaft portion 1
Although there is a transient state in which the motion is determined only by the cylindrical part 2 even though the blade 3 interferes with the blade 3, in this case it is expected that there will be little concentricity improvement effect, so cutting It is necessary to appropriately determine the loading speed and the level difference of the blade support surface according to the workpiece.

試験の結果によれば、炭素工具鋼のブレードを
用いその段差を加工物仕上寸法における円筒部と
軸部の半径差に等しくし、各研削代で研削を行な
い比較したところ、ブレード段差が円筒部軸部半
径差より10〜20μ多い方が良好な同心度が得られ
た。
According to the test results, when a carbon tool steel blade was used and the height difference was made equal to the radius difference between the cylindrical part and the shaft part in the finished dimensions of the workpiece, and grinding was performed at each grinding allowance and compared, it was found that the blade height difference was Better concentricity was obtained when the radius difference was 10 to 20μ greater than the shaft radius difference.

試験では、加工物を0.02〜0.05mm(直径につい
て)ずつ研削しながら偏心の方向および量を測定
する直接的な方法を採つた。試験結果では、加工
物の円筒部軸部半径差がブレードの段差と等しく
なる直前まで、円筒部外周が滑らかに研削された
にもかかわらず、偏心の方向および量はほとんど
変化せず、さらに研削を行なつて半径差が段差よ
り0.02〜0.03mm小さくなるようにすると、研削音
が加工物の回転と同期して強弱の変化を示すとと
もに同心度の向上がみられた。連続的に研削した
場合の音の変化の一例を第7図に示す。
The test employed a direct method of measuring the direction and amount of eccentricity while grinding the workpiece in steps of 0.02-0.05 mm (about diameter). The test results show that even though the outer periphery of the cylindrical part was ground smoothly until just before the difference in radius of the axial part of the workpiece became equal to the step of the blade, the direction and amount of eccentricity hardly changed, and even after further grinding When this was done so that the radius difference was 0.02 to 0.03 mm smaller than the step difference, the grinding sound showed changes in intensity in synchronization with the rotation of the workpiece, and an improvement in concentricity was observed. FIG. 7 shows an example of the change in sound when grinding is performed continuously.

同図において、縦軸は音圧を横軸は時間または
直径減少を示し、Sはバリ研削範囲を、Tは均一
研削範囲を、Uは同心向上範囲をそれぞれ示す。
範囲Uにおいて、rは工作物の1回転を示し、音
圧が各回転に対応して周期的に増加していること
がわかる。同心向上範囲Uの周期的な音の変化は
本発明の研削方法を特徴付けるものであり、この
範囲で切込速度を大きくすると均一な研削音にな
り同心度向上作用が消滅することが確認された。
これは軸部のたわみによるものと推定される。
In the figure, the vertical axis represents sound pressure, the horizontal axis represents time or diameter reduction, S represents the burr grinding range, T represents the uniform grinding range, and U represents the concentric improvement range.
In the range U, r indicates one rotation of the workpiece, and it can be seen that the sound pressure increases periodically corresponding to each rotation. It was confirmed that the periodic sound change in the concentricity improvement range U characterizes the grinding method of the present invention, and that increasing the cutting speed in this range results in a uniform grinding sound and the concentricity improvement effect disappears. .
This is presumed to be due to the deflection of the shaft.

均一研削範囲Tでの研削音は通常の心無研削時
の音とほぼ同様である。また、バリ研削範囲Sで
は砥粒の脱落による大きな影響があるようで、適
当なエアカツト領域が必要なようである。よつ
て、最終的な研削サイクルは例えば次の通りにす
ることができる。
The grinding sound in the uniform grinding range T is almost the same as the sound during normal centerless grinding. Furthermore, in the burr grinding range S, it seems that there is a large influence due to the dropout of abrasive grains, and an appropriate air cut area seems to be necessary. Thus, the final grinding cycle can be as follows, for example.

エアカツト……2秒 均一研削範囲T……1秒(研削代φ0.1mm程度) 同心度向上範囲U……1秒(研削代φ0.05mm程度) スパークアウト……0.5秒 急速後退……0.5秒 以上に述べたところから明らかなように、本発
明では、第2図に示したような凹面R1を有する
調整車を用いる必要がなく、調整車Rの周面Ra
は単なる円筒面でよい。したがつて、加工物Wを
軸方向にローデイングまたはアンローデイングす
るにあたつては、加工物Wを、最低減、その円筒
部と軸部の半径差だけ上方へ変位させればよい。
このように僅かな上下方向変位で加工物のローデ
イング、アンローデイングを行なう手段の一例を
第8図に示す。
Air cut...2 seconds Uniform grinding range T...1 second (grinding allowance φ0.1mm approx.) Concentricity improvement range U...1 second (grinding allowance φ0.05mm approx.) Spark out...0.5 seconds Rapid retreat...0.5 seconds As is clear from the above description, in the present invention, there is no need to use the adjusting wheel having the concave surface R1 as shown in FIG.
can be a simple cylindrical surface. Therefore, when loading or unloading the workpiece W in the axial direction, it is sufficient to displace the workpiece W upward by at least the difference in radius between the cylindrical portion and the shaft portion.
FIG. 8 shows an example of a means for loading and unloading a workpiece with a slight displacement in the vertical direction.

同図において、10はローデイング・アンロー
デイングアームであつて平行する2枚のプレート
からなり、これらのプレート10は第5図に示す
ようにブレード3の両側に加工物Wの軸方向に平
行をなして設けられる。これらのプレート10の
基端はピン12によつて回転円板13に枢着さ
れ、その先端部は図示しない手段によつて支持さ
れ、プレート10が平行移動できるようになつて
いる。よつて円板13を適当な手段で矢印方向に
回転駆動すると、プレート10は鎖線で示すよう
に乃至で示す順序で平行移動し、上下動およ
び長手方向移動を行なう。プレート10上には、
間隔をおいて加工物支持用凹部11a,11bが
設けられている。凹部11aはローデイング用凹
部で、この凹部11aに加工物Waを載置して回
転円板13を駆動すると、第9図で矢印L方向に
送られてきた加工物Waは同図に〜等で示す
軌跡を画いてブレード3上に載置される。また、
研削ずみ加工物Wbは、同様に軌跡〜を画い
て移動し矢印ULで示す方向に送り出される。な
お、回転円板13の枢着ピン12の軌跡円の直径
Dは加工物Wの軸方向長さの1.5倍とするのがよ
い。
In the figure, reference numeral 10 denotes a loading/unloading arm, which consists of two parallel plates.These plates 10 are arranged parallel to the axial direction of the workpiece W on both sides of the blade 3, as shown in FIG. It will be established. The proximal ends of these plates 10 are pivotally connected to a rotating disk 13 by pins 12, and the distal ends thereof are supported by means not shown so that the plates 10 can be moved in parallel. Therefore, when the disk 13 is driven to rotate in the direction of the arrow by a suitable means, the plate 10 moves in parallel in the order shown by the chain lines, and performs vertical and longitudinal movements. On the plate 10,
Workpiece supporting recesses 11a and 11b are provided at intervals. The recess 11a is a loading recess, and when a workpiece Wa is placed in the recess 11a and the rotating disk 13 is driven, the workpiece Wa sent in the direction of the arrow L in FIG. It is placed on the blade 3 with the trajectory shown. Also,
The ground workpiece Wb similarly moves along a trajectory ~ and is sent out in the direction indicated by the arrow UL. Note that the diameter D of the trajectory circle of the pivot pin 12 of the rotating disk 13 is preferably 1.5 times the axial length of the workpiece W.

以上に実施例について説明した本発明によれ
ば、加工物の大径円筒部が調整車に支持されるう
え、基準軸部とブレードの接触はスパークアウト
時のみになされるから従来例の場合と異なり軸部
に傷が入りにくく、したがつて軸部の後加工を必
要としない。また、加工物がモータコアのように
軸部の細いものであつても大径円筒部が常にブレ
ードに支持され軸部に負荷がかかりにくいため重
研削を行なうことが可能である。そして、加工物
のローデイング、アンローデイングのために加工
物の最小リフト量を小さくでき、ローデイングタ
イムを短縮でき、研削部寸法の異なる加工物への
セツト替えの場合にも砥石および調整車の交換を
必要としない利点が得られる。
According to the present invention, the embodiments of which have been described above, the large-diameter cylindrical portion of the workpiece is supported by the adjustment wheel, and the contact between the reference shaft portion and the blade is made only at the time of spark-out, which is different from the case of the conventional example. In contrast, the shaft part is less likely to be damaged, so post-processing of the shaft part is not required. Furthermore, even if the workpiece has a thin shaft such as a motor core, heavy grinding is possible because the large diameter cylindrical portion is always supported by the blade and no load is easily applied to the shaft. In addition, the minimum lift amount of the workpiece can be reduced for loading and unloading the workpiece, shortening the loading time, and the grinding wheel and adjusting wheel can be changed when changing the set of workpieces with different dimensions of the grinding part. Benefits can be obtained without the need for

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加工物の全体的形状を示す斜視図、第
2図は従来の研削方法を示す説明図、第3図は本
発明の研削方法の初期段階を示す説明図、第4図
は同方法で用いるブレードと加工物の関係を示す
側面図、第5図は本発明の研削方法の後期の段階
を示す説明図、第6図は第5図の状態に到達以後
の同心向上段階の説明図、第7図は研削中の研削
音の状態を示すグラフ、第8図は本発明の方法と
併用するに適するローデイング、アンローデイン
グ装置の原理図、第9図は同装置による加工物の
移動状態を示す図である。 G……砥石、R……調整車、W,Wa,Wb…
…加工物、1……軸部、2……円筒部、3……加
工物支持ブレード、3a……軸部用支持面、3b
……円筒部用支持面、C……隙間、S……バリ研
削範囲、T……均一研削範囲、U……同心向上範
囲、10……ローデイング、アンローデイング用
プレート、12……ピン。
Fig. 1 is a perspective view showing the overall shape of the workpiece, Fig. 2 is an explanatory drawing showing the conventional grinding method, Fig. 3 is an explanatory drawing showing the initial stage of the grinding method of the present invention, and Fig. 4 is the same. A side view showing the relationship between the blade used in the method and the workpiece, FIG. 5 is an explanatory diagram showing the latter stage of the grinding method of the present invention, and FIG. 6 is an explanation of the concentricity improvement stage after reaching the state shown in FIG. 5. Fig. 7 is a graph showing the state of grinding noise during grinding, Fig. 8 is a principle diagram of a loading/unloading device suitable for use in conjunction with the method of the present invention, and Fig. 9 is a graph showing the movement of the workpiece by the same device. It is a figure showing a state. G... Grindstone, R... Adjustment wheel, W, Wa, Wb...
...Workpiece, 1...Shaft part, 2...Cylindrical part, 3...Workpiece support blade, 3a...Support surface for shaft part, 3b
... Supporting surface for cylindrical part, C ... Gap, S ... Burr grinding range, T ... Uniform grinding range, U ... Concentric improvement range, 10 ... Plate for loading and unloading, 12 ... Pin.

Claims (1)

【特許請求の範囲】[Claims] 1 大径の円筒部とその軸方向端部から軸方向に
突出する、基準となる小径の軸部とよりなる加工
物を心無研削盤により研削する方法であつて、心
無研削盤の対向する砥石および調整車の間に位置
する加工物支持ブレードに、小径の軸部に下方か
ら接触可能な軸部用支持面と、大径の円筒部に下
方から接触可能な円筒部用支持面とを設けてお
き、両支持面の高さの差を、加工物仕上寸法にお
ける円筒部と軸部の半径差に等しいかまたはそれ
より僅かに大きな値とし、研削開始時に円筒部が
円筒部用支持面に支持されかつ軸部が軸部用支持
面から上方に離れるようにして、円筒部を砥石と
調整車で挾持しつつ研削することを特徴とする研
削方法。
1 A method of grinding a workpiece consisting of a large-diameter cylindrical part and a small-diameter shaft part that protrudes in the axial direction from the axial end of the large-diameter part using a centerless grinder. The workpiece support blade, which is located between the grinding wheel and the adjusting wheel, has a support surface for the shaft part that can contact the small diameter shaft part from below, and a support surface for the cylindrical part that can contact the large diameter cylinder part from below. The difference in height between the two support surfaces is set to a value that is equal to or slightly larger than the difference in radius between the cylindrical part and the shaft part in the finished dimensions of the workpiece, so that the cylindrical part becomes the support for the cylindrical part at the start of grinding. A grinding method characterized in that the cylindrical part is held between a grindstone and an adjustment wheel and ground while the cylindrical part is supported by a surface and the shaft part is separated upward from the support surface for the shaft part.
JP56067848A 1981-05-06 1981-05-06 Grinding by centerless grinder Granted JPS57184660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56067848A JPS57184660A (en) 1981-05-06 1981-05-06 Grinding by centerless grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56067848A JPS57184660A (en) 1981-05-06 1981-05-06 Grinding by centerless grinder

Publications (2)

Publication Number Publication Date
JPS57184660A JPS57184660A (en) 1982-11-13
JPS649139B2 true JPS649139B2 (en) 1989-02-16

Family

ID=13356781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56067848A Granted JPS57184660A (en) 1981-05-06 1981-05-06 Grinding by centerless grinder

Country Status (1)

Country Link
JP (1) JPS57184660A (en)

Also Published As

Publication number Publication date
JPS57184660A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
JP3937148B2 (en) Centerless grinding apparatus and centerless grinding method
KR930006787B1 (en) Roundness processing device of a slipper surface of a rocker arm
JP5034951B2 (en) Wheel correction device
JPH0493169A (en) Polishing spindle
JP4110396B2 (en) Super finishing method and super finishing device for bearing raceway surface
JP2002361543A (en) Internal surface grinding device
JPS649139B2 (en)
JP4284792B2 (en) Super finishing method of ball bearing raceway surface
JP3610716B2 (en) Casting seal surface processing method
JP3669722B2 (en) Processing method of fixed scroll
JPH11221759A (en) Polishing device for stainless steel pipe
JP2006116634A (en) Surface grinding method and grinder for thin sheet metal ring
JP3100640B2 (en) Grinding method of roll having rubber-like elasticity
JPS60232868A (en) Formation of grinding wheel for finishing gear
JP2820806B2 (en) Processing method of inner peripheral surface of cup-shaped mold
JP2617081B2 (en) Grinding method of cylindrical ceramic body
JPS62213954A (en) Method and device for grinding peripheral surface of hard and brittle material
JPS585138B2 (en) Chiyoushiagehouhouto Souchi
JPH08252770A (en) Grinding wheel for super-finish and grinding method for super-finish
JPS6113946B2 (en)
JP2000317832A (en) Dressing method and device for grinding wheel for valve stem
JPH0248157A (en) Curved surface forming method
JP2834016B2 (en) Whetstone with centering mechanism
JPS62282852A (en) Grinding method
JPS6253309B2 (en)