JPH0493169A - Polishing spindle - Google Patents

Polishing spindle

Info

Publication number
JPH0493169A
JPH0493169A JP2208600A JP20860090A JPH0493169A JP H0493169 A JPH0493169 A JP H0493169A JP 2208600 A JP2208600 A JP 2208600A JP 20860090 A JP20860090 A JP 20860090A JP H0493169 A JPH0493169 A JP H0493169A
Authority
JP
Japan
Prior art keywords
polishing
elastic body
spline shaft
polishing member
hollow spline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2208600A
Other languages
Japanese (ja)
Other versions
JP2712782B2 (en
Inventor
Tomohiro Soku
側 友宏
Katsuki Shingu
克喜 新宮
Kiyoshi Mayahara
馬屋原 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2208600A priority Critical patent/JP2712782B2/en
Priority to KR1019910013565A priority patent/KR940011287B1/en
Publication of JPH0493169A publication Critical patent/JPH0493169A/en
Priority to US08/031,927 priority patent/US5255474A/en
Application granted granted Critical
Publication of JP2712782B2 publication Critical patent/JP2712782B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To enable the polishing of a general spherical face and nonspherical face not only a Toric face by providing a polishing tool that a polishing member of a 1st elastic body having a bag shape at the tip of a hollow spline shaft is air-tightly installed to a joint part. CONSTITUTION:A polishing member 7 which is a 1st elastic body having a bag shape is expanded with its internal pressure being increased by a compression fluid to press the surface of the body (1a) to be worked subjected to grinding in advance. As it is difficult to control the deformation quantity of the elastic body polishing member 7 and its spot pressure quantitatively, only be controlling the internal pressure of this elastic body polishing member 7, the contact area with the body (1a) to be worked is kept constant with a 2nd elastic body 31 pressing the polishing member 7 which is a 1st elastic body to the body (1a) to be worked together with a hollow spline shaft 10 further, and simultaneously the spot pressure generated at a work point is kept constant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、球面、非球面等、全てのレンズ研磨仕」−げ
工程、いわゆるポリソシング工程における研磨装置の研
磨スピンドルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a polishing spindle for a polishing apparatus used in a polishing process for all types of lenses, such as spherical and aspherical surfaces, the so-called polishing process.

従来の技術 レンズ研磨工程は球面、非球面に対して各々種々の加工
方法がとられてきだ。
In the conventional lens polishing process, various processing methods have been used for spherical and aspheric surfaces.

近年、光学機器には球面だけでなく、非球面形状の光学
ガラスレンズが装置の小型化、軽量化。
In recent years, not only spherical but also aspherical optical glass lenses have been used in optical equipment to make equipment smaller and lighter.

高機能化を促しつつある。例えば、レーザービームプリ
ンターに用いられるトーリックレンズは特殊な形状が要
求され、近似曲率半径の球面にあらかじめ研削加工され
た被加工物を、加工工具をかえて再度研磨仕上げするこ
とにより所要の形状を得ていた。−例として特開昭63
−216664号公報に記載されている第3図のような
構成がとられていた。
We are promoting higher functionality. For example, toric lenses used in laser beam printers require a special shape, and the desired shape is obtained by first grinding the workpiece into a spherical surface with an approximate radius of curvature, then changing the processing tool and polishing it again. was. -For example, JP-A-63
The configuration shown in FIG. 3 described in Japanese Patent No. 216664 was used.

以下図面を参照しながら説明する。第3図(a)は従来
の研磨装置の側断面図、同図(b)は正面図である。
This will be explained below with reference to the drawings. FIG. 3(a) is a side sectional view of a conventional polishing apparatus, and FIG. 3(b) is a front view.

回転駆動可能なホイール2の外周に、被加工物1を取付
け、この被加工物1の外周加工面に凹状のトーリック面
を形成された鉄、鋳鉄、ステンレス脩等から成る雌型治
具3を所定の力Fで押圧伺勢し、この状態でホイール2
を回転させるとともに、雌型治具3と加工面の間に、例
えば線系炭化珪素砥粒#6o○〜#4000などの研磨
剤を供給しながら雌型治具3をホイール10回転方向と
直交する方向に揺動させ、逐次前記砥粒の粒度を小さく
することによってラッピング加工を行い、仕」二げ工程
で雌型治具3にポリウレタン等のポリソシャーを張り付
けるとともに、1μm程度の粒度の酸化セリウム砥粒を
供給し、同様の動作で研磨を行っていた。なお、雌型治
具3は適当な長さを有しており、その両端部に一対の抑
圧針4の先端が係合されることによって幅方向に揺動を
可能に支持され、かつ押圧針4が雌型治具3の長手方向
に揺動可能な揺動枠5の両端に固定されていることによ
って長手方向にも揺動可能に支持されている。また、揺
動枠6は、ホイール2の軸心に向かってイ\j勢され、
かつホイール2の軸心方向に往復1駆動可能な作動腕6
に揺動可能に取付けられている。
A workpiece 1 is attached to the outer periphery of a rotatable wheel 2, and a female jig 3 made of iron, cast iron, stainless steel, or the like is formed with a concave toric surface on the outer circumferential machined surface of the workpiece 1. Press with a predetermined force F, and in this state, press wheel 2.
At the same time, the female jig 3 is rotated perpendicularly to the direction of rotation of the wheel 10 while supplying abrasives such as wire-based silicon carbide abrasive grains #6o○ to #4000 between the female jig 3 and the processing surface. The lapping process is performed by swinging the abrasive grains in the direction of 1 μm and successively reducing the particle size of the abrasive grains, and in the finishing process, a polysoher such as polyurethane is applied to the female jig 3, and oxidation with a particle size of about 1 μm is applied. Cerium abrasive grains were supplied and polishing was performed in the same manner. The female jig 3 has an appropriate length, and is supported so as to be swingable in the width direction by engaging the tips of a pair of pressing needles 4 at both ends thereof. 4 are fixed to both ends of a swing frame 5 that is swingable in the longitudinal direction of the female jig 3, so that it is supported swingably in the longitudinal direction as well. Further, the swing frame 6 is urged toward the axis of the wheel 2,
and an actuating arm 6 that can be driven reciprocatingly in the axial direction of the wheel 2.
It is swingably mounted on the

発明が解決しようとする課題 しかしながら、このようなラッピングおよび研磨方法で
は、雌型治具3の揺動力向は長手方向のいずれの位置で
も当然同じであるため、中央部では揺動面Sがホイール
2の半径方向Tと一致していたとしても、両端部では揺
動面Sがホイール2の半径方向Tに対して角度θだけ傾
斜することになるため、雌型治具3の揺動によって形成
される曲面の曲率は原理的にトーリック面と一致しない
ことになる。したがって、実際にもこのような加工方法
では高精度のトーIJツク面の加工が極めて困難である
とともに、雌型治具3のトーリック面の精度維持も困難
で、精度の高い加工には手作り的勘や熟練技能が要求さ
れ、生産性が極めて悪く、コスト高になるという問題が
あった。さらにこの問題点について特開昭63−216
664号公報では、加工具の加工点が加工すべきトーリ
ック面の一方の曲率半径に等しい曲率半径の鼓形軌跡運
動を行うことによって、高精度化、高効率化を図ろうと
しているが、これは装置本体が複雑で高精度が要求され
、研削装置としては適しても、研磨装置としては合理的
ではないという問題が残されていた。
Problems to be Solved by the Invention However, in such a lapping and polishing method, since the direction of the swinging force of the female jig 3 is naturally the same at any position in the longitudinal direction, the swinging surface S at the center is not the same as the wheel. Even if the radial direction T of the wheel 2 coincides with the radial direction T of the wheel 2, the swinging surface S at both ends will be inclined by an angle θ with respect to the radial direction T of the wheel 2. In principle, the curvature of the curved surface will not match that of the toric surface. Therefore, in reality, with such a processing method, it is extremely difficult to process the toric surface with high accuracy, and it is also difficult to maintain the accuracy of the toric surface of the female jig 3, and high-precision machining requires manual processing. This method requires intuition and skilled skills, resulting in extremely low productivity and high costs. Furthermore, regarding this problem, JP-A-63-216
Publication No. 664 attempts to improve precision and efficiency by causing the processing point of the processing tool to move in an hourglass-shaped trajectory with a radius of curvature equal to the radius of curvature of one of the toric surfaces to be processed. The main body of the device is complicated and high precision is required, and although it is suitable as a grinding device, it is not reasonable as a polishing device.

まだ、内圧を有する弾性体による研磨方法も提案されて
いるが、内圧の管理だけでは弾性体の変形量に制約があ
り、被加工物との接触面積が変動して単位面積あたりの
押圧力が不均一で、加工量が定量的に把握できず、高精
度の研磨面は得られなかった。
Polishing methods using an elastic body with internal pressure have also been proposed, but controlling the internal pressure alone limits the amount of deformation of the elastic body, and the contact area with the workpiece fluctuates, causing the pressing force per unit area to decrease. Due to the unevenness, the amount of processing could not be quantitatively determined, and a highly accurate polished surface could not be obtained.

本発明は上記問題点にかんがみ、構造が簡単で高精度な
、トーリック面だけでなく一般的な球面や非球面の研磨
加工も実現できる研磨スピンドルの提供を目的とする。
In view of the above problems, it is an object of the present invention to provide a polishing spindle that has a simple structure, high precision, and is capable of polishing not only toric surfaces but also general spherical and aspheric surfaces.

課題を解決するだめの手段 上記目的を達成するために、本発明の研磨スピンドルは
、中空スプラインシャフトの先端に袋形状を有する第1
の弾性体である研磨部材(以下単に弾性体研磨部材とい
う場合がある)を接合部を完密に装着した研磨工具と、
中空スプラインシャフトの他端に回転継手を介して圧縮
性流体を供給する手段と、中空スプラインシャフトに係
合するナツトを回転可能に支持する手段と、中空スプラ
インシャフトを回転させる手段と、回転軸方向に移動さ
せる手段と被加工物に研磨部材が定圧にて押圧されるよ
うに回転軸方向に設けられた第2の弾性体とを備えたも
のである。さらに、袋形状を有する第1の弾性体の研磨
部材の破損による圧縮性流体の圧力低下を検出する圧力
検出器を備えるようにしたものである。
Means for Solving the Problems In order to achieve the above objects, the polishing spindle of the present invention includes a first bag-shaped shaft at the tip of the hollow spline shaft.
A polishing tool having a joint part completely fitted with a polishing member that is an elastic body (hereinafter sometimes simply referred to as an elastic polishing member);
means for supplying compressible fluid to the other end of the hollow spline shaft via a rotary joint; means for rotatably supporting a nut that engages with the hollow spline shaft; means for rotating the hollow spline shaft; and a second elastic body provided in the direction of the rotation axis so that the polishing member is pressed against the workpiece at a constant pressure. Furthermore, a pressure detector is provided to detect a pressure drop in the compressible fluid due to damage to the bag-shaped first elastic polishing member.

作  用 本発明は上記の構成により、第1の発明では袋形状を有
する第1の弾性体である研磨部材が、圧縮流体により内
圧を高めて膨張し、あらかじめ研削加工された被加工物
の表面を押圧する。弾性体研磨部材の内圧を管理するだ
けでは、弾性体研磨部材の変形量と押圧力を定量的に制
御することは困難なため、さらに第2の弾性体が第1の
弾性体である研磨部材を中空スプラインシャフトごと被
加工物に押圧して、被加工物との接触面積を一定に保ち
、同時に加工点に発生する押圧力を一定に保つことがで
きる。しだがって、あらかじめ研削された被加工物は形
状を維持したまま、面粗度Rmax−0、5〜0.01
μm程度の研磨仕」−げ加工が実現できる。この研磨ス
ピンドルを用いることにより装置の構造が簡素化され、
装置の精度も約0.1陥程度まで許容され、軸心調整容
易で、より高精度な研磨加工ができる研磨装置が実現で
きる。
According to the above-described configuration, the polishing member, which is the first elastic body having a bag shape, expands by increasing the internal pressure with the compressed fluid, and grinds the surface of the workpiece that has been previously ground. Press. Since it is difficult to quantitatively control the deformation amount and pressing force of the elastic polishing member by simply managing the internal pressure of the elastic polishing member, it is difficult to quantitatively control the deformation amount and pressing force of the elastic polishing member. By pressing the entire hollow spline shaft against the workpiece, the contact area with the workpiece can be kept constant, and at the same time, the pressing force generated at the processing point can be kept constant. Therefore, the pre-ground workpiece maintains its shape and has a surface roughness of Rmax-0, 5 to 0.01.
Polishing finish on the order of μm can be achieved. By using this polishing spindle, the structure of the device is simplified,
The accuracy of the device is also allowed to be about 0.1 indentation, the axis can be easily adjusted, and a polishing device that can perform polishing with higher precision can be realized.

次に第2の発明によれば、第1の弾性体である研磨部材
の磨耗などによる破損の発生などの異常に備えて、弾性
体研磨部材の内圧が圧縮空気のりりなどにより低下した
場合、圧力検出器によって圧力低下を検出し、異常信号
を発生させることにより、警報を発したり装置を停止さ
せるなど、異常発生に対し即時対応が可能となる。
Next, according to the second invention, in preparation for an abnormality such as occurrence of damage due to wear of the first elastic polishing member, when the internal pressure of the elastic polishing member decreases due to compressed air, etc. By detecting a pressure drop with a pressure detector and generating an abnormality signal, it becomes possible to immediately respond to the occurrence of an abnormality, such as issuing an alarm or stopping the device.

実施例 以下本発明の一実施例の研磨スピンドルについて、図面
を参照しながら説明する。
EXAMPLE Hereinafter, a polishing spindle according to an example of the present invention will be described with reference to the drawings.

第1図は第1の発明の実施例における研磨ヌビンドルの
縦断面図を示すものである。図において、1aは被加工
物で、回転可能なホイール2aに保持されている。7は
第1の弾性体である研磨部材で、ケー78とケース9で
圧縮性流体Cを封1トするように有袋形状の研磨工具3
5を構成する。この研磨工具35は中空スプラインシャ
フト10の先端に装着され、中空スプラインシャフト1
0の他端には軸受23を介して回転継手24が設けられ
管路25を経由して圧縮性流体源26に接続されている
。一方、中空スプラインシャツ)10はいわゆる中空の
スプラインシャフトで軸受部のナツト11と一体で回転
運動を伝達でき、軸方向に摺動も可能である。このナツ
ト11は軸受12aおよび軸受12bを介してスピンド
ルケース15に回転自在に支持され、軸受12aは軸受
内輪押え13と軸受外輪押え14とによってアキシャル
与圧を発生することができる。またナツト11はプーリ
ー19とプーリー21およびベルト20を介して回転駆
動装置22に連動する。これらスピンドルケース16や
回転駆動装置22は研磨加工機本体18に取付けられた
レール1了を摺動して被加工物1aと研磨工具35が接
触と離脱を可能にするスライドベース16に固定される
。ストッパー34はスライドベース16の位置決めをす
るとともに、研磨工具35と被加工物1dとの接触状態
を決定する。
FIG. 1 shows a longitudinal cross-sectional view of a polishing nubindle in an embodiment of the first invention. In the figure, 1a is a workpiece, which is held by a rotatable wheel 2a. Reference numeral 7 denotes a polishing member which is a first elastic body, and a marsupial-shaped polishing tool 3 is arranged so that a compressible fluid C is sealed between a case 78 and a case 9.
5. This polishing tool 35 is attached to the tip of the hollow spline shaft 10.
A rotary joint 24 is provided at the other end of the rotary joint 24 via a bearing 23, and is connected to a compressible fluid source 26 via a conduit 25. On the other hand, the hollow spline shirt 10 is a so-called hollow spline shaft that is integrated with the nut 11 of the bearing portion and can transmit rotational motion and can also slide in the axial direction. This nut 11 is rotatably supported by a spindle case 15 via a bearing 12a and a bearing 12b, and the bearing 12a can generate axial pressurization by a bearing inner ring holder 13 and a bearing outer ring holder 14. Further, the nut 11 is interlocked with a rotational drive device 22 via a pulley 19, a pulley 21, and a belt 20. These spindle case 16 and rotary drive device 22 are fixed to a slide base 16 that slides on a rail 1 attached to the polishing machine main body 18 and allows the workpiece 1a and the polishing tool 35 to come into contact with and separate from each other. . The stopper 34 positions the slide base 16 and determines the contact state between the polishing tool 35 and the workpiece 1d.

さらに中空スプラインシャフト10にはリング27が固
定され、スラスト軸受28をリング27とブツシュ29
が挟持し、ブツシュ29に取伺けられたストッパーリン
グ30は第2の弾性体であるばね31の押圧力を調整で
きるように配設されている。実際の加工時には研磨液3
3をノズル32等により被加工物1aと弾性研磨甘子と
の圧接点りに供給する。
Further, a ring 27 is fixed to the hollow spline shaft 10, and a thrust bearing 28 is connected to the ring 27 and the bush 29.
A stopper ring 30 held by the bushings 29 is arranged so that the pressing force of a spring 31, which is a second elastic body, can be adjusted. During actual machining, use polishing liquid 3.
3 is supplied to the pressure contact point between the workpiece 1a and the elastic polishing sweetener through a nozzle 32 or the like.

以上のように構成された研磨スピンドルについて、以下
その動作を説明する。
The operation of the polishing spindle configured as described above will be described below.

先ず、研磨加工機本体18に図示はしないが被加工物1
aにスライドベース16を接触、離脱させる昇降手段に
より矢印入方向にストッパー34で設定された位置まで
研磨スピンドル本体が下降する。研磨工具35は圧縮性
流体源26より圧縮o X 性流体Cの供給を受け、弾性体研磨部材7の内圧が高圧
となり一様に膨張するとともに被加工物1aの加工され
るべき面に接触する。研磨工具35は中空スプラインシ
ャフト10に装着されており、中空スプラインシャフト
10は回転駆動装置22によりプーリー19.21とベ
ルト20を介してナツト11に伝達された回転駆動力を
矢印B方向に受け、約10〜200 Orpm程度の回
転数で回転する。しだがって、研磨工具36も同方向B
に回転することになる。中空スプラインシャフト10の
他端は、管路26で圧縮性流体源26に接続されている
が、中空スプラインシャフト10と管路26との間には
回転継手24が介在し、回転継手24はスライドベース
16で回転規制されているので、管路25はねじれを受
けることはない。
First, although not shown in the figure, the workpiece 1 is placed on the polishing machine main body 18.
The polishing spindle main body is lowered in the direction of the arrow to the position set by the stopper 34 by means of elevating means that brings the slide base 16 into and out of contact with a. The polishing tool 35 receives compressed fluid C from the compressible fluid source 26, and the internal pressure of the elastic polishing member 7 increases to high pressure, expands uniformly, and comes into contact with the surface of the workpiece 1a to be machined. . The polishing tool 35 is attached to a hollow spline shaft 10, and the hollow spline shaft 10 receives the rotational driving force transmitted to the nut 11 by the rotational drive device 22 via the pulley 19, 21 and the belt 20 in the direction of arrow B. It rotates at a rotation speed of approximately 10 to 200 Orpm. Therefore, the polishing tool 36 also moves in the same direction B.
It will rotate to . The other end of the hollow spline shaft 10 is connected to a compressible fluid source 26 through a conduit 26, but a rotary joint 24 is interposed between the hollow spline shaft 10 and the conduit 26, and the rotary joint 24 is a slider. Since rotation is restricted by the base 16, the conduit 25 is not twisted.

このときナソl−11はスライドベース16に固定され
たスピンドルケース15に軸受12a、12bにより回
転可能に保持されているだめにこのナンド11に係合す
る中空スプラインシャフト10が回転し得る。
At this time, the naso l-11 is rotatably held by a spindle case 15 fixed to a slide base 16 by bearings 12a, 12b, so that the hollow spline shaft 10 that engages with this nand 11 can rotate.

11  、 一方、中空スプラインシャフト10に固定されたリング
27にスラスト軸受28を挟持するようにブツシュ29
を挿入し、ブツシュ29の外周に装備されたストッパー
リング30で第2の弾性体であるばね31の圧縮長さを
調整して固定することでばね圧縮部36で圧縮力を発生
させる。スライドペース16とストッパーリング3Qの
間で発生した圧縮力はブツシュ29.スラスト軸受28
゜リング27.中空スプラインシャフト10を介して研
磨工具35の弾性体研磨部材7まで伝達されることにな
り、被加工物1aに押圧力を与えることができる。した
がって弾性体研磨部材7が内圧だけを均一にしても被加
工物1aとの距離が不均一な非球面レンズ々どは接触面
積が変動し、血圧も不安定であったが、本発明による第
2の弾性体により被加工物1aへの研磨部利の押圧面積
を一定′に保つため加工量の安定化と均一化を積極的に
促進できるとともに押圧力の範囲が拡大され、管理が容
易であり、このため定量的な加工量が杷握できるという
重要な特徴を発揮する。
11. On the other hand, a bush 29 is attached so that a thrust bearing 28 is held between a ring 27 fixed to the hollow spline shaft 10.
is inserted, and the compressed length of the spring 31, which is the second elastic body, is adjusted and fixed by a stopper ring 30 provided on the outer periphery of the bushing 29, thereby generating a compressive force in the spring compression part 36. The compressive force generated between the slide pace 16 and the stopper ring 3Q is caused by the bushing 29. Thrust bearing 28
゜Ring 27. The force is transmitted to the elastic polishing member 7 of the polishing tool 35 via the hollow spline shaft 10, so that a pressing force can be applied to the workpiece 1a. Therefore, even if the elastic polishing member 7 makes only the internal pressure uniform, the contact area of aspherical lenses with uneven distances to the workpiece 1a fluctuates, and the blood pressure is also unstable. The elastic body No. 2 keeps the pressing area of the polishing part against the workpiece 1a constant, so it is possible to actively promote stabilization and uniformity of the amount of processing, and the range of pressing force is expanded, making management easy. Therefore, it exhibits the important feature of being able to control the amount of processing quantitatively.

また第2の発明では、第2図に示した圧縮性流体の回路
図のように、回転継手24と圧縮性流体源26の間の管
路25に圧力計37.圧力検出器38、減圧弁39.パ
ルプ40などを配設し、研磨工具36の磨耗や異物によ
る破損など、弾性体研磨部材7の損傷が発生した場合、
内圧が低ドシて、それを圧力検出gg3sにJ:り検出
可能な構成にすれば、本研磨スピンドルの異常報知や装
置1qの停止など、即時対応が可能となり、被加工物1
aへの悪影響を回避するとともに設備の効率向」−など
、大きな効果を発揮することができる。
Further, in the second invention, as shown in the compressible fluid circuit diagram shown in FIG. 2, a pressure gauge 37. Pressure detector 38, pressure reducing valve 39. If the elastic polishing member 7 is damaged due to abrasion of the polishing tool 36 or damage due to foreign matter when the pulp 40 or the like is provided,
If the internal pressure is low and it can be detected by the pressure detection gg3s, it will be possible to take immediate measures such as reporting an abnormality in the main polishing spindle or stopping the device 1q.
It is possible to achieve great effects such as "improving equipment efficiency" while avoiding adverse effects on "a".

発明の効果 以上のように本発明によれば、球面のみならず非球面を
有するガラスレンズの研磨加工を容易にかつ高精度に実
行でき、しかも研磨装置の低価格化、小型化を実現でき
、さらに被加工物の低価格化にも偉力を発揮できる。
Effects of the Invention As described above, according to the present invention, glass lenses having not only spherical surfaces but also aspherical surfaces can be polished easily and with high precision, and the polishing apparatus can be made lower in price and smaller in size. Furthermore, it can also be used to reduce the cost of workpieces.

また研磨部利の破損により圧縮性流体の圧力低下を検出
する圧力検出器を備えた本発明の研磨スピンドルを用い
れば、研磨装置の高機能化、稼動13 ・\−/ 率向上に大きな効果を発揮する。
In addition, if the polishing spindle of the present invention is equipped with a pressure detector that detects a pressure drop in the compressible fluid due to damage to the polishing part, it will have a significant effect on improving the functionality of the polishing equipment and improving the operating rate. Demonstrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の実施例における研磨スピンドルの
縦断面図、第2図は第2の発明の実施例における研磨ス
ピンドルの圧縮性流体の回路図、第3図(a)は従来の
研磨装置の側断面図、第3図(b)は同装置の正面図で
ある。 1a・・・・・・被加工物、2a・・・・・ホイール、
7・・・・・弾性体研磨部材、10・・・・・・中空ス
プラインシャフト、11・・・・・・ナツト、16・・
・・・・スライドベース、17・・・・・・レール、1
9,21・・・・・・7” −1,1−120・・・・
・・ベルト、22・・・・・・回転駆動装置、24・・
・・・・回転継手、25・・・・・・管路、26・・・
・・・圧縮性流体源、31・・・・・・ばね。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名綜 aフ
FIG. 1 is a longitudinal cross-sectional view of a polishing spindle in an embodiment of the first invention, FIG. 2 is a circuit diagram of the compressible fluid of the polishing spindle in an embodiment of the second invention, and FIG. 3(a) is a conventional A side sectional view of the polishing device, and FIG. 3(b) is a front view of the same device. 1a...Workpiece, 2a...Wheel,
7...Elastic polishing member, 10...Hollow spline shaft, 11...Nut, 16...
...Slide base, 17...Rail, 1
9,21...7" -1,1-120...
...Belt, 22...Rotary drive device, 24...
...Rotating joint, 25...Pipeline, 26...
... Compressible fluid source, 31 ... Spring. Name of agent: Patent attorney Shigetaka Awano and one other person

Claims (2)

【特許請求の範囲】[Claims] (1)中空スプラインシャフトの先端に袋形状を有する
第1の弾性体である研磨部材を接合部を気密に装着した
研磨工具と、前記中空スプラインシャフトの他端に回転
継手を介して圧縮性流体を供給する手段と、前記中空ス
プラインシャフトに係合するナットを回転可能に支持す
る手段と、前記中空スプラインシャフトを回転させる手
段と、回転軸方向に移動させる手段と被加工物に研磨部
材が定圧で押圧するように回転軸方向に設けられた第2
の弾性体とを備えた研磨スピンドル。
(1) A polishing tool in which a polishing member, which is a bag-shaped first elastic body, is airtightly attached to the tip of a hollow spline shaft, and a compressible fluid is connected to the other end of the hollow spline shaft through a rotary joint. means for rotatably supporting a nut that engages with the hollow spline shaft; means for rotating the hollow spline shaft; means for moving the shaft in the direction of the rotation axis; A second shaft is provided in the direction of the rotation axis so as to press the
Polishing spindle with elastic body.
(2)研磨部材の破損による圧縮性流体の圧力低下を検
出する圧力検出器を備えた請求項1記載の研磨スピンド
ル。
(2) The polishing spindle according to claim 1, further comprising a pressure detector for detecting a pressure drop in the compressible fluid due to damage to the polishing member.
JP2208600A 1990-08-06 1990-08-06 Polishing spindle Expired - Fee Related JP2712782B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2208600A JP2712782B2 (en) 1990-08-06 1990-08-06 Polishing spindle
KR1019910013565A KR940011287B1 (en) 1990-08-06 1991-08-06 Grinding spindle
US08/031,927 US5255474A (en) 1990-08-06 1993-03-16 Polishing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208600A JP2712782B2 (en) 1990-08-06 1990-08-06 Polishing spindle

Publications (2)

Publication Number Publication Date
JPH0493169A true JPH0493169A (en) 1992-03-25
JP2712782B2 JP2712782B2 (en) 1998-02-16

Family

ID=16558894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208600A Expired - Fee Related JP2712782B2 (en) 1990-08-06 1990-08-06 Polishing spindle

Country Status (2)

Country Link
JP (1) JP2712782B2 (en)
KR (1) KR940011287B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179759A (en) * 2011-03-03 2011-09-14 浙江工业大学 Finishing machining system based on flexible controlled air pressure grinding wheel
KR101245043B1 (en) * 2010-11-26 2013-03-25 주식회사 루시드코리아 Bubble tool for polishing scleral contact lens
CN104369064A (en) * 2014-11-20 2015-02-25 苏州大学 Air bag polishing tool and system and method
CN108098555A (en) * 2018-02-09 2018-06-01 新昌县羽林街道智西机械厂 A kind of curved surface polishing machine
CN112536712A (en) * 2020-11-09 2021-03-23 杨晓彤 Multipurpose grinding wheel with overheat protection
CN113263430A (en) * 2021-06-05 2021-08-17 徐州大泰机电科技有限公司 Intelligent polishing equipment for half shaft of electric automobile
CN114918781A (en) * 2022-06-20 2022-08-19 南阳高新区华鑫光学仪器有限公司 Small-diameter high-precision optical lens cold machining device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778807B1 (en) * 2006-12-20 2007-11-22 주식회사 동구기업 Ball lens automatic grinder
JP5123677B2 (en) * 2008-01-25 2013-01-23 有限会社コジマエンジニアリング Lens processing equipment
CN101224559B (en) * 2008-01-31 2010-10-13 浙江工业大学 External hand-held electric polishing tool with air sac polishing head
CN101224558B (en) * 2008-01-31 2010-06-02 浙江工业大学 Internal hand-held electric polishing tool with air sac polishing head
CN107243816B (en) * 2017-08-08 2019-03-29 俞斌 A kind of polishing machine of copper pipe inner wall
CN107932212B (en) * 2017-11-21 2019-10-08 泉州台商投资区大千机械科技有限公司 Inside grinding device for large-diameter cylinder body
CN109732476B (en) * 2019-03-01 2020-10-13 重庆大学 Variable-rigidity constant-force floating polishing grinding head
CN111230653A (en) * 2020-02-03 2020-06-05 天津大学 Novel wheeled gasbag polishing device
CN116985012A (en) * 2023-09-28 2023-11-03 泰州市江南机械制造有限公司 Combined grinding tool mechanism for precision surface grinder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245043B1 (en) * 2010-11-26 2013-03-25 주식회사 루시드코리아 Bubble tool for polishing scleral contact lens
CN102179759A (en) * 2011-03-03 2011-09-14 浙江工业大学 Finishing machining system based on flexible controlled air pressure grinding wheel
CN104369064A (en) * 2014-11-20 2015-02-25 苏州大学 Air bag polishing tool and system and method
CN108098555A (en) * 2018-02-09 2018-06-01 新昌县羽林街道智西机械厂 A kind of curved surface polishing machine
CN108098555B (en) * 2018-02-09 2023-08-22 佛山市东信机械有限公司 Curved surface polishing machine
CN112536712A (en) * 2020-11-09 2021-03-23 杨晓彤 Multipurpose grinding wheel with overheat protection
CN113263430A (en) * 2021-06-05 2021-08-17 徐州大泰机电科技有限公司 Intelligent polishing equipment for half shaft of electric automobile
CN113263430B (en) * 2021-06-05 2022-03-11 徐州大泰机电科技有限公司 Intelligent polishing equipment for half shaft of electric automobile
CN114918781A (en) * 2022-06-20 2022-08-19 南阳高新区华鑫光学仪器有限公司 Small-diameter high-precision optical lens cold machining device

Also Published As

Publication number Publication date
JP2712782B2 (en) 1998-02-16
KR920004088A (en) 1992-03-27
KR940011287B1 (en) 1994-12-05

Similar Documents

Publication Publication Date Title
US5255474A (en) Polishing spindle
JPH0493169A (en) Polishing spindle
CN101486167A (en) Device and method to trim a processing disk using a rotating processing tool and tool device with such a device
JPH11507598A (en) Method and apparatus for optical polishing
US5551908A (en) Centerless grinder and wheel truing device therefor
JP4110396B2 (en) Super finishing method and super finishing device for bearing raceway surface
JPH05185371A (en) Device to recover rotating precision grinding tool
JP4458235B2 (en) Concave end machining method and apparatus
US3334445A (en) Grinding machine
CN112935949A (en) Valve fine conical surface grinding machine
JP3635501B2 (en) Optical element grinding method and apparatus
JP2941134B2 (en) Spherical grinding device and grinding method
JP2003205459A (en) Polishing machining device and method
JPH0631608A (en) Spherical body polishing device
JP3791292B2 (en) Ring groove forming method and ring groove forming apparatus for spherical polishing apparatus
JP2690797B2 (en) Grinding fluid supply device
JP2875344B2 (en) Processing apparatus and processing method for toric and aspheric lenses
CN215092486U (en) Valve fine conical surface grinding machine
JPS59219152A (en) Mirror finishing machine
JPH06254762A (en) Recessed spherical surface lapping device
JP2005103668A (en) Free-form surface machining method and device
JPH01274960A (en) Lens processing method
JPH04331058A (en) Concave lens finishing method and device
JPH04240071A (en) Method and device for polishing ring-shaped grinder element
JP4136283B2 (en) Polishing equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees