JPS648685B2 - - Google Patents

Info

Publication number
JPS648685B2
JPS648685B2 JP15386684A JP15386684A JPS648685B2 JP S648685 B2 JPS648685 B2 JP S648685B2 JP 15386684 A JP15386684 A JP 15386684A JP 15386684 A JP15386684 A JP 15386684A JP S648685 B2 JPS648685 B2 JP S648685B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel
hot
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15386684A
Other languages
Japanese (ja)
Other versions
JPS6134116A (en
Inventor
Kazutoshi Kunishige
Shigeki Hamamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15386684A priority Critical patent/JPS6134116A/en
Publication of JPS6134116A publication Critical patent/JPS6134116A/en
Publication of JPS648685B2 publication Critical patent/JPS648685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、歪時効劣化が少なく、強靭性および
耐セパレーシヨン性能に優れた厚肉熱間圧延高張
力鋼ストリツプコイルの製造法に関する。更に詳
述すれば、本発明は、低P―微量Ti―低Nで特
徴づけられる組成を有するNb含有鋼を用い、制
御圧延後急冷を行い更に従来に比して著しく低い
温度で巻取ることから成る、歪時効劣化が少な
く、強靭性および耐セパレーシヨン性能にすぐれ
た厚肉熱間圧延高張力鋼ストリツプコイルの製造
法に関する。 ここに、「セパレーシヨン」とは衝撃試験片の
破面にみられる層状開口であり、かかるセパレー
シヨンの発生は延性の低下を意味する。 特に本発明は、4.5mm厚以上の板厚のラインパ
イプ、構造物等に使用する低温用鋼板の製造法と
して有用であり、あるいはセパレーシヨンは板厚
方向に延性あるいは靭性などの特性が劣る場合に
発生しやすいので、構造上板厚方向に力が加わる
ような使用に供する低温用鋼板の製造法として有
用である。 (従来の技術) 従来、特公昭58−19724号にも開示されている
ように、かかる用途に利用される熱間圧延高張力
鋼板の製造法としては、Nb含有鋼に対して制御
圧延を行い強靭性を得ると同時に、P≦0.01%と
いう低P化により耐セパレーシヨン性能の向上を
得ようとする方法がある。 (発明が解決しようとする問題点) セパレーシヨンの発生は高温巻取りによるもの
と考えられており、上記特許公報においても作業
能率や工程及び設備的に不利になるとしながら
も、熱間圧延終了後冷却して低温で巻取ることを
も可能性として示唆している。しかしながら、本
発明者らがこの点について追試も含めて種々検討
したところ、熱間圧延後の急冷は鋼板に大きな熱
歪を残すことになりこれが歪時効硬化をもたら
し、結局、耐セパレーシヨン性能も満足する程度
には改善されないことが判明した。 (問題点を解決するための手段) すなわち、本発明は、強靭性(歪時効劣化対策
も含む)および耐セパレーシヨン性能にすぐれた
熱間圧延コイルの製造法を提供することを目的と
し、強靭性の実現にはNb添加鋼に制御圧延を加
え、急冷、低温巻取りを行い、併せて低P化を図
つて耐セパレーシヨン性能を改善し、その際の歪
時効対策としては、鋼組成調整を行い、微量Ti
の添加、低N化を行うのである。 本発明は、つまり、従来実施されないような著
しく低い温度域へ急冷してから巻取つて耐セパレ
ーシヨン性能の向上を狙うとともに固溶N、固溶
Cによる歪時効劣化を防止するために鋼組成を特
定したのである。 そして本発明者らの研究結果によれば、上述の
各対策の相乗的作用効果としてすぐれた強靭性熱
間圧延高張力鋼コイルの製造法が得られる。 ここに、本発明は重量%で、 C:0.01〜0.25%、Si:0.7%以下、 Mn0.5〜1.8%、P:0.025%以下、 S:0.010%以下、Nb:0.005〜0.15%、 Ti:0.005〜0.05%、Sol.Al:0.01〜0.10%、 N:0.0050%以下を含有し、さらに必要によ
り、 V:0.15%以下、Cu:0.50%以下、 Ni:0.50%以下、Cr:0.50%以下、 Mo:0.30%、B:0.0050%以下、 およびCa:0.010%以下の1種または2種以上、 残部実質的にFe よりなる組成を有する鋼を1000℃以下における加
工率で50%以上で熱間圧延を行い、850〜700℃の
温度で熱間圧延を終了し、次いで、5℃/sec以上
の冷却速度で急冷して500℃未満〜200℃の温度で
巻取ることを特徴とする、4.5mm厚以上の板厚を
有する強靭性熱間圧延コイルの製造法。 本発明において、鋼組成を上述のように限定し
た理由は次の通りである。 C:強度上昇を生じる好ましい元素である。強度
の点より下限は0.01%とする。しかし、0.25%
より多いと溶接性能や低温靭性が劣化するので
上限を0.25%とする。好ましくは0.15%以下で
ある。 Si:固溶体硬化を通じて、強度上昇に有効であ
る。上限は溶接性より0.7%とする。 Mn:固溶体硬化、変態硬化、細粒硬化を通じ
て、強靭化に有効な元素である。下限はかかる
硬化が大いに期待できる量として0.5%とし、
上限は溶接性を確保するために1.8%とする。 P:Pはセパレーシヨン性能に対して好ましくな
い元素であり、可能なかぎり少ない方がよい。
本発明においては、低温巻取により、後述する
ようにPの悪影響をかなり軽減できていること
および経済性を考えて上限を0.025%とするが、
好ましくは、0.010%以下とする。 S:Mnと結合してA系介在物を生じて、靭性、
延性を低下させるばかりでなく、セパレーシヨ
ンを誘発しやすい元素であり可能なかぎり少な
い方がよい。経済性を考えて上限を0.010%と
するが、好ましくは、0.005%以下が望まれる。 Nb:微量添加で大巾な強度上昇と制御圧延との
相乗作用により優れた低温靭性を付与する好ま
しい元素である。下限はかかる効果が大いに期
待できる量として0.005%とし、上限は溶接性
の点より0.15%とする。 Ti:本発明におけるように著しく低い温度で巻
取る場合には、固溶Nによる歪時効劣化を生じ
やすいが、かかる歪時効劣化対策として好まし
い元素である。また一般的にCCのひび割れ対
策としても好ましい元素でもある。従つて、そ
の効果が期待される量として、下限を0.005%
とする。上限は、上記効果が飽和する量として
0.05%とする。好ましくは0.010〜0.03%であ
る。 Sol.Al:脱酸剤として添加される。下限はその効
果が生じる0.010%とし、上限はその効果が飽
和する0.10%とする。 N:本発明におけるような著しく低い温度で巻取
る場合には、固溶Nによる歪時効劣化を生じや
すい。従つて可能なかぎり少ない方がよい。経
済性を考えて、上限を0.0050%とする。 さらに、本発明においては必要に応じて、熱間
圧延鋼板の機械的特性改善、特に強靭化を図るた
め下記元素の少なくとも1種を添加してもよい。 V:微量添加で大巾な強度上昇を生じる好ましい
元素である。上限は経済性を考えて0.15%とす
る。 Cu、Ni、Cr:これらは強靭化に有効な元素であ
る。経済性を考えて、上限をそれぞれ0.50%と
する。 Mo:強靭化に有効な元素である。経済性を考え
て上限を0.30%とする。 B:本発明におけるように急冷後著しく低い温度
で巻取るような場合には、Bは極微量添加で強
度上昇を生じる好ましい元素である。上限はそ
の効果が飽和する0.0050%とする。 Ca:介在物の形態制御により、低温靭性、延性
に好ましいばかりでなく、セパレーシヨン対策
としても好ましい元素である。しかし多すぎる
と鋼中の介在物量が増加して、靭性、延性の劣
化を生じる。従つて、上限を0.010%とする。 本発明における熱間圧延条件を限定した理由は
次の通りである。 圧延条件: まず、1000℃以下の加工率50%以上で熱間圧延
する理由は、この温度より高いかあるいはこの加
工率より低いと、オーステナイト中への変形帯の
導入が不充分で最終的に得られる組織も微細化せ
ず、充分な強靭性能が得られないためである。ま
た、850〜700℃の温度で圧延を終了するのは、こ
の温度より高いとオーステナイト中へ導入された
変形帯から発生する単位面積当たりのフエライト
粒の数が減少するのでやはり最終的に得られる組
織が微細化しない。またこの温度範囲より低いと
多量のフエライトが生じた以後も圧延加工するこ
とになるので温間加工フエライトに基づき異方性
が大きくなるばかりか、タンデム圧延機では実際
上突かけなどの圧延操業上のトラブルが多発して
圧延が困難となる。 冷却・巻取り条件: 上記制御圧延後、5℃/sec以上の急冷を行い、
次いで500℃未満〜200℃で巻取る理由は、この冷
却速度より遅いかあるいはこの温度より高い巻取
温度ではPの粒界偏析に基づく脆化によりセパレ
ーシヨンを生じやすいためである。また200℃よ
り低い巻取温度では、マルテンサイト組織が混入
したいわゆる二相組織となつて降伏比が著しく低
くなり、降伏点でもつて設計される構造物には適
用され難いばかりでなく、低温靭性も劣化してセ
パレーシヨンも多発してくる。また、200℃より
低い巻取温度では、本発明において特定する化学
組成でも鋼中に固溶Cが残存し、耐歪時効性能も
よくない。 一方、巻取温度が500℃以上であると、熱間圧
延終了後の冷却速度が5℃/sec以上であつたとし
ても、やはり良好な耐セパレーシヨン性能を実現
することができない。 第1図は、本発明の対象鋼であるところの、
0.10%C―0.25%Si―1.35%Mn―0.008%P―
0.001%S―0.065%Nb―0.015%Ti―0.03%Al―
0.0025%N鋼の強靭性とセパレーシヨンに及ぼす
巻取温度の影響を示すグラフであり、熱間圧延に
際しての加熱温度:1150℃、1000℃以下での累積
圧下率:80%、熱間圧延仕上げ温度:750℃、仕
上げ板厚:7.0mm、熱間圧延巻取りに至るまでの
冷却速度は全て10〜50℃/secの範囲に入つている
ものについて調べたものである。なお、「引張り
破面上のセパレーシヨン状割れの合計長さ」は、
第2図に示されるように、引張り試験片1の破面
上に認められるセパレーシヨン状の割れ2のそれ
ぞれの長さの合計量(l1+l2)で表わした。 第1図からも、特定成分組成の鋼を、本発明の
条件で熱間圧延し巻取つた場合に、優れた耐セパ
レーシヨン性能と強靭性と比較的高い降伏比(70
%超)とが実現できることは明らかである。 次に実施例によつてさらに本発明を説明する。 実施例 第1表に鋼組成を示す鋼種AないしQを通常の
方法で溶製し、鋳片(CCスラブ)をつくり第2
表に示す熱間圧延条件で熱間圧延およびそれに続
く熱処理を行つた。各表中、本発明において規定
する範囲を外れた条件については「*」印を付し
て示してある。 得られた各供試圧延材について機械的性質を決
定した。結果を同じく第2表にまとめて示す。 第1表、第2表から理解される通り本発明の製
造法により得た熱間圧延鋼板はいずれも、強靭
性、耐歪時効性、耐セパレーシヨン性の上で優れ
た特性を有している。特に、試験No.1〜3と本発
明例である試験No.9〜22とを比較するとTi添加
低N鋼は耐セパレーシヨン性の点ですぐれている
ことが分かる。 なお、本発明に規定する範囲から外れる条件で
処理された試験No.1、2ではTi含有量が少ない
かあるいはN含有量が多いため、耐歪時効性能が
良くなく、試験No.3はTiに代えてNiを加えた場
合を示すが、同様に歪時効性能は良くない。理由
は不明だが試験No.1〜3のセパレーシヨン性能も
よくない。同じく試験No.4〜6では低温靭性が良
くなく、同じく試験No.7、8では耐セパレーシヨ
ン性能が良くない。また本発明に係る場合でも試
験No.9、10に示すデータからもわかるように、P
量が低い試験No.9の方が耐セパレーシヨン性能が
よい。 なお、本発明のように、圧延後急冷して低温で
巻取る場合には、ホツトランテーブル上の冷却法
としては、従来のラミナーフロー方式よりスリツ
ト型のノズルを有するカーテンウオール冷却方式
の方が冷却能率および均一冷却の点から望まし
い。
(Field of Industrial Application) The present invention relates to a method for manufacturing a thick-walled hot-rolled high-strength steel strip coil that exhibits little strain aging deterioration and has excellent toughness and separation resistance. More specifically, the present invention uses Nb-containing steel with a composition characterized by low P, trace Ti, and low N, is rapidly cooled after controlled rolling, and is further coiled at a significantly lower temperature than conventional methods. The present invention relates to a method for manufacturing a thick-walled hot-rolled high-strength steel strip coil having little strain aging deterioration and excellent toughness and separation resistance. Here, "separation" refers to layered openings observed on the fracture surface of an impact test piece, and the occurrence of such separation means a decrease in ductility. In particular, the present invention is useful as a method for manufacturing low-temperature steel plates used for line pipes, structures, etc. with a thickness of 4.5 mm or more, or when separation is inferior in properties such as ductility or toughness in the thickness direction. This is useful as a manufacturing method for low-temperature steel plates that are used in situations where force is applied in the thickness direction due to the structure. (Prior art) As disclosed in Japanese Patent Publication No. 58-19724, the method for manufacturing hot-rolled high-strength steel sheets used for such purposes has been to perform controlled rolling on Nb-containing steel. There is a method of obtaining toughness and at the same time improving separation resistance by reducing P to 0.01%. (Problem to be solved by the invention) Separation is thought to be caused by high-temperature winding, and the above patent publication also states that it is disadvantageous in terms of work efficiency, process, and equipment, but the hot rolling is completed. The possibility of post-cooling and winding at a low temperature is also suggested. However, the inventors conducted various studies on this point, including follow-up tests, and found that quenching after hot rolling leaves a large thermal strain on the steel sheet, which causes strain age hardening, and eventually reduces separation resistance. It turned out that the improvement was not satisfactory. (Means for Solving the Problems) That is, the present invention aims to provide a method for manufacturing a hot-rolled coil with excellent toughness (including measures against strain aging deterioration) and separation resistance. To achieve this, controlled rolling is applied to the Nb-added steel, followed by rapid cooling and low-temperature winding. At the same time, the separation resistance is improved by lowering the P content, and as a countermeasure against strain aging, the steel composition is adjusted. and trace amount of Ti
The addition of nitrogen reduces the amount of nitrogen. In other words, the present invention aims to improve separation resistance by rapidly cooling to an extremely low temperature range that has not been conventionally carried out and then winding the steel. They identified the following. According to the research results of the present inventors, a method for manufacturing a hot-rolled high-strength steel coil with excellent toughness can be obtained as a synergistic effect of the above-mentioned measures. Here, the present invention is expressed in weight%: C: 0.01 to 0.25%, Si: 0.7% or less, Mn 0.5 to 1.8%, P: 0.025% or less, S: 0.010% or less, Nb: 0.005 to 0.15%, Ti : 0.005 to 0.05%, Sol.Al: 0.01 to 0.10%, N: 0.0050% or less, and if necessary, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50%. Hereinafter, steel having a composition consisting of one or more of Mo: 0.30%, B: 0.0050% or less, and Ca: 0.010% or less, and the remainder substantially Fe, is processed at a processing rate of 50% or more at a temperature of 1000°C or less. It is characterized by hot rolling, finishing the hot rolling at a temperature of 850 to 700°C, then quenching at a cooling rate of 5°C/sec or more, and winding at a temperature of less than 500°C to 200°C. , a method for manufacturing a strong hot-rolled coil having a plate thickness of 4.5 mm or more. In the present invention, the reason why the steel composition is limited as described above is as follows. C: A preferable element that increases strength. From the viewpoint of strength, the lower limit is set at 0.01%. But 0.25%
If the content is higher than this, welding performance and low-temperature toughness will deteriorate, so the upper limit is set at 0.25%. Preferably it is 0.15% or less. Si: Effective in increasing strength through solid solution hardening. The upper limit is set at 0.7% based on weldability. Mn: An effective element for toughening through solid solution hardening, transformation hardening, and fine grain hardening. The lower limit is 0.5%, which is the amount at which such hardening can be expected.
The upper limit is set at 1.8% to ensure weldability. P: P is an element that is unfavorable for separation performance, and it is better to have as little amount as possible.
In the present invention, the upper limit is set at 0.025% in consideration of the fact that the adverse effects of P can be considerably reduced by low-temperature winding, as will be described later, and in consideration of economic efficiency.
Preferably, it is 0.010% or less. S: Combines with Mn to form A-based inclusions, improving toughness,
It is an element that not only reduces ductility but also tends to induce separation, so it is better to have as little as possible. Considering economic efficiency, the upper limit is set to 0.010%, but preferably 0.005% or less. Nb: A preferable element that provides excellent low-temperature toughness due to a large increase in strength with the addition of a small amount and a synergistic effect with controlled rolling. The lower limit is set at 0.005% as the amount at which such effects can be expected greatly, and the upper limit is set at 0.15% from the viewpoint of weldability. Ti: When coiling at a significantly low temperature as in the present invention, strain aging deterioration due to solid solution N tends to occur, but this is a preferable element as a countermeasure against such strain aging deterioration. It is also generally a preferable element as a countermeasure against cracks in CC. Therefore, the lower limit is set at 0.005% as the amount at which the effect is expected.
shall be. The upper limit is the amount at which the above effect is saturated.
It shall be 0.05%. Preferably it is 0.010-0.03%. Sol.Al: Added as a deoxidizing agent. The lower limit is 0.010% where the effect occurs, and the upper limit is 0.10% where the effect is saturated. N: When winding at a significantly low temperature as in the present invention, strain aging deterioration due to solid solution N tends to occur. Therefore, it is better to have as few as possible. Considering economic efficiency, the upper limit is set at 0.0050%. Furthermore, in the present invention, at least one of the following elements may be added, if necessary, in order to improve the mechanical properties of the hot rolled steel sheet, particularly to strengthen it. V: A preferable element that causes a large increase in strength even when added in a small amount. The upper limit is set at 0.15% considering economic efficiency. Cu, Ni, Cr: These are elements effective for toughening. Considering economic efficiency, the upper limit is set at 0.50% for each. Mo: An element effective for toughening. Considering economic efficiency, the upper limit is set at 0.30%. B: In the case of winding at a significantly low temperature after quenching as in the present invention, B is a preferable element that increases strength even when added in a very small amount. The upper limit is set at 0.0050%, where the effect is saturated. Ca: This element is not only preferable for low-temperature toughness and ductility by controlling the morphology of inclusions, but also for preventing separation. However, if it is too large, the amount of inclusions in the steel increases, resulting in deterioration of toughness and ductility. Therefore, the upper limit is set at 0.010%. The reason for limiting the hot rolling conditions in the present invention is as follows. Rolling conditions: First, the reason why hot rolling is performed at a working rate of 50% or more at 1000°C or less is that if the temperature is higher than this or lower than this, the introduction of deformation bands into the austenite is insufficient and the final This is because the resulting structure is not refined and sufficient toughness cannot be obtained. Also, the reason why rolling is finished at a temperature of 850 to 700℃ is because if the temperature is higher than this, the number of ferrite grains per unit area generated from the deformation zone introduced into the austenite will decrease, so the final result will still be obtained. The tissue does not become finer. In addition, if the temperature is lower than this range, a large amount of ferrite will be produced and rolling will continue, which not only increases the anisotropy due to warm-worked ferrite, but also causes problems in rolling operations such as bumping in tandem rolling mills. These troubles occur frequently, making rolling difficult. Cooling/winding conditions: After the above controlled rolling, quench cooling at 5°C/sec or more,
The reason why the film is then wound at a temperature of less than 500°C to 200°C is that separation is likely to occur due to embrittlement due to grain boundary segregation of P at a winding temperature slower than this cooling rate or higher than this temperature. Furthermore, at a coiling temperature lower than 200°C, a so-called two-phase structure containing martensitic structure occurs, resulting in a significantly low yield ratio. It also deteriorates and separation occurs frequently. Further, at a coiling temperature lower than 200° C., solid solution C remains in the steel even with the chemical composition specified in the present invention, and the strain aging resistance is not good. On the other hand, if the coiling temperature is 500° C. or higher, even if the cooling rate after hot rolling is 5° C./sec or higher, good separation resistance cannot be achieved. FIG. 1 shows the steel that is the object of the present invention.
0.10%C-0.25%Si-1.35%Mn-0.008%P-
0.001%S-0.065%Nb-0.015%Ti-0.03%Al-
This is a graph showing the effect of coiling temperature on the toughness and separation of 0.0025% N steel. Heating temperature during hot rolling: 1150°C, cumulative reduction rate below 1000°C: 80%, hot rolling finish. The temperature: 750°C, finished plate thickness: 7.0mm, and the cooling rate until hot rolling and winding were all within the range of 10 to 50°C/sec. The "total length of separation-like cracks on the tensile fracture surface" is
As shown in FIG. 2, it was expressed as the total length (l 1 +l 2 ) of the separation-like cracks 2 observed on the fracture surface of the tensile test piece 1. Figure 1 also shows that when steel with a specific composition is hot-rolled and coiled under the conditions of the present invention, it has excellent separation resistance, toughness, and a relatively high yield ratio (70
%) is clearly achievable. Next, the present invention will be further explained by examples. Example Steel types A to Q, whose steel compositions are shown in Table 1, are melted in the usual manner to produce slabs (CC slabs).
Hot rolling and subsequent heat treatment were performed under the hot rolling conditions shown in the table. In each table, conditions outside the range defined in the present invention are marked with an asterisk (*). The mechanical properties of each test rolled material obtained were determined. The results are also summarized in Table 2. As understood from Tables 1 and 2, the hot rolled steel sheets obtained by the manufacturing method of the present invention all have excellent properties in terms of toughness, strain aging resistance, and separation resistance. There is. In particular, when comparing Tests Nos. 1 to 3 and Tests Nos. 9 to 22, which are examples of the present invention, it can be seen that the Ti-added low N steel is superior in terms of separation resistance. Note that in Test Nos. 1 and 2, which were processed under conditions outside the range specified in the present invention, the Ti content was low or the N content was high, so the strain aging resistance was poor, and Test No. 3 The case where Ni is added instead of is shown, but the strain aging performance is similarly not good. Although the reason is unknown, the separation performance in test Nos. 1 to 3 was also poor. Similarly, in Test Nos. 4 to 6, the low temperature toughness was not good, and similarly, in Tests Nos. 7 and 8, the separation resistance performance was not good. Furthermore, even in the case of the present invention, as can be seen from the data shown in Test Nos. 9 and 10, P
Test No. 9, which had a lower amount, had better separation resistance. In addition, when quenching after rolling and winding at a low temperature as in the present invention, a curtain wall cooling method with a slit-type nozzle is preferable to the conventional laminar flow method as a cooling method on a hot run table. Desirable from the standpoint of cooling efficiency and uniform cooling.

【表】【table】

【表】 (注) *:本発明の範囲外
[Table] (Note) *: Outside the scope of the present invention

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼の強靭性とセパレーシヨンに及ぼ
す巻取り温度の影響を示すグラフ;および第2図
は「引張り破面上のセパレーシヨン状割れの合計
長さ」の表示方法を説明するための概略模式図で
ある。 1……引張り試験片、2……セパレーシヨン状
の割れ。
Figure 1 is a graph showing the effect of coiling temperature on the toughness and separation of steel; and Figure 2 is a graph to explain how to display the "total length of separation-like cracks on a tensile fracture surface." FIG. 1...Tensile test piece, 2...Separation-like cracks.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.01〜0.25%、Si:0.7%以下、 Mn0.5〜1.8%、P:0.025%以下、 S:0.010%以下、Nb:0.005〜0.15%、 Ti:0.005〜0.05%、Sol.Al:0.01〜0.10%、 N:0.0050%以下、 残部実質的にFe よりなる組成を有する鋼を1000℃以下における加
工率50%以上で熱間圧延を行い、850〜700℃の温
度で熱間圧延を終了し、次いで、5℃/sec以上の
冷却速度で急冷して500℃未満〜200℃の温度で巻
取ることを特徴とする、4.5mm厚以上の板厚を有
する強靭性熱間圧延コイルの製造法。 2 重量%で、 C:0.01〜0.25%、Si:0.7%以下、 Mn0.5〜1.8%、P:0.025%以下、 S:0.010%以下、Nb:0.005〜0.15%、 Ti:0.005〜0.05%、Sol.Al:0.01〜0.10%、 N:0.0050%以下を含有し、さらに、 V:0.15%以下、Cu:0.50%以下、 Ni:0.50%以下、Cr:0.50%以下、 Mo:0.30%、B:0.0050%以下、 およびCa:0.010%以下の1種または2種以上、 残部実質的にFe よりなる組成を有する鋼を1000℃以下における加
工率で50%以上で熱間圧延を行い、850〜700℃の
温度で熱間圧延を終了し、次いで、5℃/sec以上
の冷却速度で急冷して500℃未満〜200℃の温度で
巻取ることを特徴とする、4.5mm厚以上の板厚を
有する強靭性熱間圧延コイルの製造法。
[Claims] 1% by weight: C: 0.01 to 0.25%, Si: 0.7% or less, Mn 0.5 to 1.8%, P: 0.025% or less, S: 0.010% or less, Nb: 0.005 to 0.15%, A steel having a composition consisting of Ti: 0.005 to 0.05%, Sol.Al: 0.01 to 0.10%, N: 0.0050% or less, and the remainder substantially Fe is hot rolled at a processing rate of 50% or more at 1000°C or less, Hot rolling is completed at a temperature of 850 to 700°C, then quenched at a cooling rate of 5°C/sec or more, and coiled at a temperature of less than 500°C to 200°C, with a thickness of 4.5 mm or more. A method for manufacturing a strong hot-rolled coil with plate thickness. 2 In weight%, C: 0.01-0.25%, Si: 0.7% or less, Mn 0.5-1.8%, P: 0.025% or less, S: 0.010% or less, Nb: 0.005-0.15%, Ti: 0.005-0.05%. , Sol.Al: 0.01 to 0.10%, N: 0.0050% or less, and further contains V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.30%, A steel having a composition consisting of one or more of B: 0.0050% or less, Ca: 0.010% or less, and the remainder substantially Fe is hot rolled at a processing rate of 50% or more at 1000℃ or less to produce 850 A plate with a thickness of 4.5 mm or more, characterized in that hot rolling is completed at a temperature of ~700°C, then quenched at a cooling rate of 5°C/sec or more, and coiled at a temperature of less than 500°C - 200°C. A method for manufacturing a strong hot-rolled coil having a high thickness.
JP15386684A 1984-07-24 1984-07-24 Manufacture of high toughness hot rolled coil Granted JPS6134116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15386684A JPS6134116A (en) 1984-07-24 1984-07-24 Manufacture of high toughness hot rolled coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15386684A JPS6134116A (en) 1984-07-24 1984-07-24 Manufacture of high toughness hot rolled coil

Publications (2)

Publication Number Publication Date
JPS6134116A JPS6134116A (en) 1986-02-18
JPS648685B2 true JPS648685B2 (en) 1989-02-15

Family

ID=15571812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15386684A Granted JPS6134116A (en) 1984-07-24 1984-07-24 Manufacture of high toughness hot rolled coil

Country Status (1)

Country Link
JP (1) JPS6134116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575243A (en) * 2019-09-27 2021-03-30 宝山钢铁股份有限公司 High-strength anti-fatigue seamless steel tube and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157628A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Manufacture of hot coil for high-toughness sour-resistant steel pipe
JPS62205230A (en) * 1986-03-04 1987-09-09 Kobe Steel Ltd Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
US4950060A (en) * 1988-05-07 1990-08-21 Minolta Camera Kabushiki Kaisha Lens driving cam mechanism
DE50205631D1 (en) * 2002-09-11 2006-04-06 Thyssenkrupp Stahl Ag Ferritic / martensitic steel with high strength and very fine structure
KR101105113B1 (en) * 2004-12-27 2012-01-16 주식회사 포스코 Manufacturing method of hot rolled steel plate for linepipe having excellent low temperature toughness and corrosion resistance
CN105624585B (en) * 2014-11-26 2018-02-02 鞍钢股份有限公司 A kind of floating LNG pipelines X80Q hot-rolled thick planks and its production method
KR102119975B1 (en) * 2018-11-29 2020-06-08 주식회사 포스코 High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575243A (en) * 2019-09-27 2021-03-30 宝山钢铁股份有限公司 High-strength anti-fatigue seamless steel tube and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6134116A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
RU2675183C2 (en) Method for producing a high-strength flat steel product
US4572748A (en) Method of manufacturing high tensile strength steel plates
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPS6256209B2 (en)
JPH0312131B2 (en)
JPS648685B2 (en)
JPS6141968B2 (en)
JPS625216B2 (en)
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPS6144122B2 (en)
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JPS6145687B2 (en)
JPS6026808B2 (en) Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPS6115929B2 (en)
JPS6119687B2 (en)
JP2698374B2 (en) Method of manufacturing high-strength PC steel rod
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPS5922774B2 (en) Manufacturing method for high-tensile hot-rolled wire rods and steel bars with excellent weldability and workability
JPH0941035A (en) Production of low yield ratio hot rolled steel sheet excellent in toughness
KR100514813B1 (en) A METHOD FOR MANUFACTURING Cr-Mo STEEL FOR HIGH TEMPERATURE APPLICATIONS
JPH0138849B2 (en)
JPH027368B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term