JPS6026808B2 - Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness - Google Patents

Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness

Info

Publication number
JPS6026808B2
JPS6026808B2 JP10330580A JP10330580A JPS6026808B2 JP S6026808 B2 JPS6026808 B2 JP S6026808B2 JP 10330580 A JP10330580 A JP 10330580A JP 10330580 A JP10330580 A JP 10330580A JP S6026808 B2 JPS6026808 B2 JP S6026808B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel strip
rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10330580A
Other languages
Japanese (ja)
Other versions
JPS5729528A (en
Inventor
和俊 国重
典昭 長尾
政司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10330580A priority Critical patent/JPS6026808B2/en
Publication of JPS5729528A publication Critical patent/JPS5729528A/en
Publication of JPS6026808B2 publication Critical patent/JPS6026808B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はラインパイプ、産業機械用構造物などの素材と
して50k9f/柵以上の高い強度と低温級性が要求さ
れる厚肉熱延高張力鋼帯の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thick hot rolled high tensile strength steel strip which is required to have high strength of 50k9f/fence or higher and low temperature resistance as a material for line pipes, structures for industrial machinery, etc.

一般にか)る特性を有する6肋厚以上の厚肉熱延高張力
鋼帯を得るためには、Nb含有鋼を用いる制御圧延が実
施されているが、Nb含有鋼ではオーステナイトの再結
晶抑制作用が大きいため、圧延方向に伸展した粗大な上
部ベイナイト組織が混入し易い。
Generally, in order to obtain a thick-walled hot-rolled high-strength steel strip with a thickness of 6 ribs or more having the above characteristics, controlled rolling is carried out using Nb-containing steel, but Nb-containing steel has an effect of suppressing austenite recrystallization. Since this is large, a coarse upper bainite structure extending in the rolling direction is likely to be mixed in.

そのため対策の一つとして低温加熱などによるオーステ
ナィト紬粒化に重点をおいた制御圧延が実施されている
が、圧延後急袷を受けると、やはりベイナイト組織が混
入し易い上に低温加熱のためNb(CN)の粗大化によ
る強度低下も避けられない欠点を有している。本発明は
オーステナィトの再結晶抑制作用がづ・さく、さらに固
溶量の大きいV含有鋼に関してNb含有鋼と比較しなが
ら制御圧延、制御冷却の方法を鋭意検討した結果完成す
るに至ったものであり、その特徴はNbを含まないV含
有鋼を用いてVによる紬粒作用と低温変態促進作用とを
最大限有効に発揮するような制御圧延、制御冷却を実施
することにある。
As a countermeasure for this, controlled rolling is being carried out with an emphasis on austenite pongee granulation through low-temperature heating, but when it undergoes rolling after rolling, bainite structure is likely to be mixed in, and due to low-temperature heating, Nb It also has the unavoidable drawback of a decrease in strength due to coarsening of (CN). The present invention was completed as a result of intensive study of controlled rolling and controlled cooling methods for V-containing steels, which have a large amount of solid solubility, while comparing them with Nb-containing steels. The feature is that controlled rolling and controlled cooling are performed using V-containing steel that does not contain Nb so as to maximize the effect of V on pongee graining and low-temperature transformation promotion.

添付図面に0.08%C−1.5%Mn−0.13%V
鋼のと0.07%C−1.6%Mn−0.04%N均綱
B}を用いて機械的性質に及ぼす巻取温度の影響を熱延
シミュレーション実験法を用いて調査した結果を示す。
0.08%C-1.5%Mn-0.13%V in the attached drawings
The results of investigating the effect of coiling temperature on the mechanical properties of steel (0.07%C-1.6%Mn-0.04%N uniform steel B) using hot rolling simulation experiment method are as follows. show.

これによればV鋼とNb鋼では巻取温度の影響が著しく
異なることがわかる。N鴇鋼では550℃以下の低温巻
取により強度の上昇とともに大中な縦化を生じ、この腕
化はミクロ組織調査の結果、前記ベイナイト組織の混入
によることが判明した。他方、V鋼では600qoにて
腕化のピークが存在するが500〜300qoの低温巻
取にてすぐれた低温靭性と高強度との両者が得られてい
る。これは600℃時の腕化のピークが巻取後の徐冷中
に生ずるV(CN)の二次析出腕化によるためであり、
通常の低温巻取(550〜600qo)ではこの腕化が
大きいためV鋼よりNb鋼が好んで使用されてきたが、
500〜300℃の低温巻取ではNb鋼よりV鋼の方が
強度も低温鰯I性もすぐれていることを知見した。
According to this, it can be seen that the influence of the coiling temperature is significantly different between V steel and Nb steel. In N-type steel, when the steel is rolled at a low temperature of 550° C. or less, its strength increases and large-scale verticalization occurs.As a result of microstructural investigation, it was found that this formation of arms was due to the inclusion of the bainite structure. On the other hand, V steel has a peak of arm formation at 600 qo, but both excellent low-temperature toughness and high strength are obtained by low-temperature coiling at 500 to 300 qo. This is because the peak of arm formation at 600°C is due to the formation of secondary precipitated arms of V(CN) that occurs during slow cooling after coiling.
In normal low-temperature winding (550 to 600 qo), Nb steel has been used more favorably than V steel because this arming is large.
It has been found that in low-temperature winding of 500 to 300°C, V steel has better strength and low-temperature sardine resistance than Nb steel.

これはミクロ組織の観察の結果によれば、いずれもベイ
ナイト組織は混入しているが、V鋼でのベイナイト組織
はNb鋼のそれとは大いに異なり少量で、さらに多数の
微細粒のポリゴナルフェラィトにより分断されており、
つまり500午0以下の低温巻取ではV(CN)の二次
析出強化が抑制されて、Vによる紬粒強化作用と低温変
態強化作用が発揮されているためと解釈される。一方3
00ooより低い低温巻取での腕化は巻取後の徐冷によ
る自己焼戻し作用の消失によるためと考えられる。なお
図面は上記のV鋼凶とNb鋼脚とをそれぞれ約1200
℃に加熱し、1100qo以下で75%圧下して800
℃で圧延を終了し、巻取までの冷却速度を5〜10℃/
sとした11柵厚さの熱延板の引張強さくTS)とシャ
ルピー破面遷移温度(vT岱)に及ぼす巻取温度の影響
を示したものである。
This is because, according to the results of microstructural observation, a bainite structure is mixed in all cases, but the bainite structure in V steel is very different from that in Nb steel, with a small amount and a large number of fine grained polygonal ferrite. It is divided by
In other words, this is interpreted to be because the secondary precipitation strengthening of V (CN) is suppressed in low-temperature winding of 500 pm or less, and the pongee grain strengthening effect and low-temperature transformation strengthening effect of V are exerted. On the other hand 3
It is thought that the formation of arms during winding at a temperature lower than 00oo is due to the disappearance of the self-tempering effect due to slow cooling after winding. The drawing shows the above-mentioned V steel legs and Nb steel legs with approximately 1,200 pieces each.
℃, reduce the pressure by 75% at 1100 qo or less and
Finish rolling at ℃ and set the cooling rate to 5 to 10℃/
This figure shows the influence of the winding temperature on the tensile strength (TS) and the Charpy fracture surface transition temperature (vT) of a hot-rolled sheet with a thickness of 11 (s).

次に本発明における鋼の成分範囲の限定理由について説
明する。
Next, the reason for limiting the range of steel components in the present invention will be explained.

C:Cは低温変態量の増加を通じて強度の上昇をもたら
すものであるが、C量が多すぎると低温変態量が多すぎ
て大中な低温鞠性の劣化を生ずる。
C: C brings about an increase in strength through an increase in the amount of low-temperature transformation, but if the amount of C is too large, the amount of low-temperature transformation is too large, causing a severe deterioration of low-temperature ballability.

従って50kof/桝以上の高強度を得るために下限を
0.02%とし、上限は低温鰯性の劣化を考慮して0.
15%とする。Si:Siは固溶体強化を通じて強度上
昇に有効であるが、上限は溶接性の劣化を考慮して0.
60%とする。
Therefore, in order to obtain a high strength of 50 kof/mau or higher, the lower limit is set to 0.02%, and the upper limit is set to 0.02% in consideration of the deterioration of the properties of sardines at low temperatures.
It shall be 15%. Si: Si is effective in increasing strength through solid solution strengthening, but the upper limit is set at 0.00000000000000000000000000000000000000000000000000000000 level in consideration of deterioration of weldability.
It shall be 60%.

Mn:Mnは固溶体強化及び低温変態強化を遍じて強度
上昇に有効であるが、下限は所定の高強度を得るために
0.5%とし、上限はやはり溶接性の劣化を考慮して2
.20%とする。S:SはMnと結合して非金属介在物
を生成して圧延直角方向のシャルピーのシェルフェネル
ギーの低下を生ずるものである。
Mn: Mn is effective in increasing strength through both solid solution strengthening and low-temperature transformation strengthening, but the lower limit is set at 0.5% in order to obtain the specified high strength, and the upper limit is set at 2% in consideration of deterioration in weldability.
.. It shall be 20%. S: S combines with Mn to form nonmetallic inclusions, resulting in a decrease in Charpy shell phenergy in the direction perpendicular to rolling.

従って可及的に少なくすることが望ましいが、経済性の
点から上限を0.010%とする。Sol釘:Sol山
は脱酸剤として有効であるが、脱酸の効果は0.10%
で飽和するので上限は0.10%とする。
Therefore, it is desirable to reduce it as much as possible, but from the economic point of view, the upper limit is set at 0.010%. Sol nail: Sol mountain is effective as a deoxidizing agent, but the deoxidizing effect is 0.10%
Therefore, the upper limit is set to 0.10%.

V:Vは本発明において特に重要な元素である。V: V is a particularly important element in the present invention.

一般に低合金鋼におけるV添加の目的はV(CN)によ
る析出強化作用を利用することにあるが、厚肉熱延高張
力鋼帯においては大きな析出腕化を生ずる。
Generally, the purpose of adding V in low alloy steel is to utilize the precipitation strengthening effect of V(CN), but this causes large precipitation arms in thick hot rolled high tensile strength steel strip.

本発明でのV添加の目的は後述の圧延条件と冷却条件と
の組合せにより級粒強化作用と低温変態強化作用を利用
して良好な低温級性を確保しつ)強度上昇を狙うことに
ある。従って下限は上記作用が期待される0.10%と
し、上限はその効果が飽和する0.30%とする。Cu
,Ni,Cr,Mo:Mnと同じ作用を有する。
The purpose of adding V in the present invention is to aim for an increase in strength while ensuring good low-temperature grade properties by utilizing the grain strengthening effect and low-temperature transformation strengthening effect by combining the rolling conditions and cooling conditions described below. . Therefore, the lower limit is set at 0.10% at which the above effect is expected, and the upper limit is set at 0.30% at which the effect is saturated. Cu
, Ni, Cr, Mo: has the same effect as Mn.

しかし多すぎるとその効果は飽和し、かつ経済的に不利
を生ずる上、溶接性が劣化するなどの欠点も有するので
好ましくはない。従って上限は各々0.5%とする。C
a:CaはA系介在物、B系介在物の減少作用により、
圧延直角方向のシェルフェネルギーの向上を生ずるもの
である。
However, if the amount is too large, the effect will be saturated and it will be economically disadvantageous, as well as having disadvantages such as deterioration of weldability, which is not preferable. Therefore, the upper limit is set at 0.5% for each. C
a: Ca is due to the reduction effect of A-based inclusions and B-based inclusions,
This results in an improvement in shell phenergy in the direction perpendicular to rolling.

しかし添加量が多すぎると鋼中のC系介在物が多くなり
、逆にシェルフェネルギーの低下を生ずる。従って上限
を10瓜血とする。本発明方法は上記のような組成の銅
を用いて、次に述べる熱延を行なうことを特徴とするも
ので、熱間圧延の加工率を1100℃以下で70%以上
とする理由は、これより少なし、圧下量ではオーステナ
ィトの紬粒化があまり進行せず圧延後の急冷により腕化
を生ずる粗大なべィナィト組織が混入し易いためである
However, if the amount added is too large, the number of C-based inclusions in the steel increases, which conversely causes a decrease in shell phenergy. Therefore, the upper limit is set to 10 melon blood. The method of the present invention is characterized by hot rolling as described below using copper having the above-mentioned composition. This is because, if the amount of rolling is smaller, the pongee graining of austenite does not proceed much, and coarse bainite structures that form arms due to rapid cooling after rolling are likely to be mixed in.

また圧延終了温度の上限を850℃としたのは、これよ
り高温で仕上げると微細粒ポリゴナルフェラィトの混入
が少なくなり、やはり粗大なべィナィト組織が多量に混
入するためである。また下限を680qoとするのはこ
れより低温で仕上げると多量のフェライトを加工して集
合組織にもとずく異方性が大きくなるばかりか轍性を劣
化させるためである。また圧延後5〜10ぴ0/sの急
冷を行ない500〜300q0間で巻取るが冷却速度の
上限は100℃/sであり、その限定理由は5℃/sよ
り徐袷あるいは500℃より高温で巻取るとV添加の目
的である細粒強化作用と低温変態強化作用が利用できな
くなるばかりでなく、V(CN)の二次析出腕化を生ず
る可能性が大きいためであり、又冷却速度が100℃/
sを超えると冷却途上でのフェライトの変態が著しく抑
制されてベイナイト組織が極めて多くなりやはり靭性が
劣化するためである。又300q0より低い温度で巻取
ると巻取後の徐冷による自己焼戻し作用がなくなり、や
はり大きい腕化を生ずるためである。次に本発明の熱延
シミュレーション実験例を示す。第1表に示す化学組成
の銅を用いて第2表に示す条件で熱間圧延を実施し、そ
の結果得た機械的特性を第3表に示す。
Further, the upper limit of the rolling finishing temperature is set to 850° C. because finishing at a higher temperature reduces the amount of fine-grained polygonal ferrite mixed in, but also causes a large amount of coarse bainite structure to be mixed in. The lower limit is set to 680 qo because finishing at a lower temperature than this will process a large amount of ferrite, which will not only increase the anisotropy based on the texture but also deteriorate the rutting property. In addition, after rolling, it is rapidly cooled at a rate of 5 to 10 p0/s and coiled at a rate of 500 to 300 q0, but the upper limit of the cooling rate is 100°C/s. This is because, if the winding is carried out, not only will the fine grain strengthening effect and low-temperature transformation strengthening effect, which are the purpose of V addition, become unavailable, but there is also a high possibility that secondary precipitation arms of V(CN) will occur. is 100℃/
This is because, if it exceeds s, the transformation of ferrite during cooling is significantly suppressed, and the bainite structure becomes extremely large, which also deteriorates the toughness. In addition, if the material is wound at a temperature lower than 300q0, the self-tempering effect due to slow cooling after winding is lost, resulting in large arms. Next, an example of a hot rolling simulation experiment of the present invention will be shown. Hot rolling was carried out using copper having the chemical composition shown in Table 1 under the conditions shown in Table 2, and the resulting mechanical properties are shown in Table 3.

【11はNb鋼であり、本発明に属する圧延、冷却条件
では粗大なべィナィト組織が混合して低温籾性が良くな
い。
[11] is a Nb steel, and under the rolling and cooling conditions according to the present invention, a coarse bainite structure is mixed and the low-temperature grainability is not good.

又■,‘31,‘4’,{51は同じV鋼であるが、本
発明に属する■,【51では高強度とすぐれた低温級性
が得られ、さらに■〜{IQは本発明に属するV含有鋼
であり、すべて所期の良好な特性が得られている。なお
、冷却速度の著しく遠い比較(11)はベイナイト組織
が極めて多くなり、強度は高いが籾性は劣化が非常に大
きい。第 1 表 化学組成 (wt多) 第 2 表 熱延条件く仕上板厚11側)第3表 機
械的性質
In addition, ■, '31, '4', and {51 are the same V steels, but ■ and [51, which belong to the present invention, have high strength and excellent low-temperature resistance, and All V-containing steels have the expected good properties. In addition, in comparison (11) where the cooling rate is significantly lower, there is an extremely large amount of bainite structure, and although the strength is high, the grain quality is greatly deteriorated. Table 1 Chemical composition (wt) Table 2 Hot rolling conditions (finished plate thickness 11 side) Table 3 Mechanical properties

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はV鋼(0.08%C−1.5%Mn−0.1
3%V)とN均綱(0.07%C−1.6%Mn−0.
04%Nb)を用いて、機械的性質に及ぼす巻取温度の
影響を熱延シミュレーション実験により調査した結果を
示す図表である。
The attached drawing shows V steel (0.08%C-1.5%Mn-0.1
3%V) and N uniform wire (0.07%C-1.6%Mn-0.
4% Nb) is a chart showing the results of a hot rolling simulation experiment investigating the influence of coiling temperature on mechanical properties.

Claims (1)

【特許請求の範囲】 1 C0.02〜0.15%、Si0.60%以下、M
n0.50〜2.20%、S0.010%以下、sol
Al0.10%以下、V0.10〜0.30%、残部F
e及び不純物よりなる鋼を1100℃以下で70%以上
の加工率で圧下し、850〜680℃で圧延を終了し、
その後5〜100℃/sの急冷を行ない、500〜30
0℃で巻取ることを特徴とする低温靭性のすぐれた厚肉
熱延高張力鋼帯の製造方法。 2 C0.02〜0.15%、Si0.60%以下、M
n0.50〜2.20%、S0.010%以下、sol
Al0.10%以下、V0.10〜0.30%、および
Cu0.50%以下、Ni0.50%以下、Cr0.5
0%以下、Mo0.50%以下のうちの1種又は2種以
上、残部Fe及び不純物よりなる鋼を1100℃以下で
70%以上の加工率で圧下し、850〜680℃で圧延
を終了し、その後5〜100℃/sの急冷を行ない50
0〜300℃で巻取ることを特徴とする低温靭性のすぐ
れた厚肉熱延高張力鋼帯の製造方法。 3 C0.02〜0.15%、Si0.60%以下、M
n0.50〜2.20%、S0.010%以下、sol
Al0.10%以下、V0.10〜0.30%、Ca1
00ppm以下、残部Fe及び不純物よりなる鋼を11
00℃以下で70%以上の加工率で圧下し、850〜6
80℃で圧延を終了し、その後5〜100℃/sの急冷
を行ない500〜300℃で巻取ることを特徴とする低
温靭性のすぐれた厚肉熱延高張力鋼帯の製造方法。 4 C0.02〜0.15%、Si0.60%以下、M
n0.50〜2.20%、S0.010%以下、sol
Al0.10%以下、V0.10〜0.30%、および
Cu0.5%以下、Ni0.5%以下、Cr0.5%以
下、Mo0.5%以下のうちの1種又は2種以上、並び
にCa100ppm以下、残部Fe及び不純物よりなる
鋼を1100℃以下で70%以上の加工率で圧下し、8
50〜680℃で圧延を終了し、その後5〜100℃/
sの急冷を行ない500〜300℃で巻取ることを特徴
とする低温靭性のすぐれた厚肉熱延高張力鋼帯の製造方
法。
[Claims] 1 C0.02 to 0.15%, Si 0.60% or less, M
n0.50-2.20%, S0.010% or less, sol
Al 0.10% or less, V 0.10-0.30%, balance F
The steel consisting of e and impurities is rolled down at a working rate of 70% or more at 1100°C or less, and the rolling is finished at 850 to 680°C,
After that, rapid cooling was performed at 5 to 100°C/s, and 500 to 30°C
A method for producing a thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness, characterized by winding at 0°C. 2 C0.02-0.15%, Si0.60% or less, M
n0.50-2.20%, S0.010% or less, sol
Al 0.10% or less, V 0.10-0.30%, Cu 0.50% or less, Ni 0.50% or less, Cr 0.5
Steel consisting of one or more of 0% or less, Mo 0.50% or less, the balance Fe and impurities is rolled at a working rate of 70% or more at 1100°C or less, and the rolling is finished at 850 to 680°C. , then rapidly cooled at 5 to 100°C/s to 50°C.
A method for producing a thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness, characterized by winding at 0 to 300°C. 3 C0.02-0.15%, Si0.60% or less, M
n0.50-2.20%, S0.010% or less, sol
Al 0.10% or less, V 0.10-0.30%, Ca1
11.00ppm or less, steel with the balance Fe and impurities
Reducing at a processing rate of 70% or more at 00℃ or less,
A method for producing a thick hot-rolled high-strength steel strip with excellent low-temperature toughness, characterized in that rolling is completed at 80°C, followed by rapid cooling at 5 to 100°C/s and coiling at 500 to 300°C. 4 C0.02-0.15%, Si0.60% or less, M
n0.50-2.20%, S0.010% or less, sol
Al 0.10% or less, V 0.10 to 0.30%, and one or more of Cu 0.5% or less, Ni 0.5% or less, Cr 0.5% or less, Mo 0.5% or less, and Steel consisting of 100 ppm of Ca or less, the balance Fe and impurities is rolled down at a working rate of 70% or more at 1100°C or less, and 8
Finish rolling at 50~680℃, then 5~100℃/
A method for producing a thick hot-rolled high-strength steel strip with excellent low-temperature toughness, the method comprising rapidly cooling the steel strip at a temperature of 500 to 300°C.
JP10330580A 1980-07-28 1980-07-28 Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness Expired JPS6026808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10330580A JPS6026808B2 (en) 1980-07-28 1980-07-28 Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10330580A JPS6026808B2 (en) 1980-07-28 1980-07-28 Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPS5729528A JPS5729528A (en) 1982-02-17
JPS6026808B2 true JPS6026808B2 (en) 1985-06-26

Family

ID=14350510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10330580A Expired JPS6026808B2 (en) 1980-07-28 1980-07-28 Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS6026808B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136717A (en) * 1982-02-05 1983-08-13 Sumitomo Metal Ind Ltd Manufacture of high tensile hot rolled steel strip containing vanadium
JPH0320407A (en) * 1989-06-19 1991-01-29 Kobe Steel Ltd Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JP2532787B2 (en) * 1991-12-20 1996-09-11 松下電器産業株式会社 Heating cooker
KR100564883B1 (en) * 2001-11-13 2006-03-30 주식회사 포스코 Manufacturing method of hot coil for usage as a line pipe
KR100452303B1 (en) * 2002-06-21 2004-10-08 주식회사 포스코 Manufacturing method of high-tension steel for line pipe having excellent tenacity at low temperature
KR20040003317A (en) * 2002-07-02 2004-01-13 주식회사 포스코 API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent

Also Published As

Publication number Publication date
JPS5729528A (en) 1982-02-17

Similar Documents

Publication Publication Date Title
CN110073018A (en) Low yielding ratio rectangular steel tube hot rolled steel plate and its manufacturing method and low yielding ratio rectangular steel tube and its manufacturing method
JP2007023339A (en) High tension hot-rolled steel sheet and its manufacturing method
CN115003839A (en) Steel sheet and method for producing same
JP3347151B2 (en) Manufacturing method of low yield ratio cold rolled high strength steel sheet with excellent corrosion resistance
JP6988836B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
JP3401427B2 (en) High-strength steel sheet with excellent impact resistance
JP2003321727A (en) Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JPS60258410A (en) Manufacture of thick high tensile strength steel sheet superior in weldability and low temperature toughness
JPS6026808B2 (en) Method for manufacturing thick-walled hot-rolled high-strength steel strip with excellent low-temperature toughness
JP2870830B2 (en) Method for producing high tensile strength and high toughness steel sheet excellent in HIC resistance
JPS648685B2 (en)
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP3337246B2 (en) Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction
JP3538990B2 (en) High-strength hot-rolled steel sheet excellent in impact resistance and method for producing the same
JP4691855B2 (en) High yield ratio type high-tensile hot-rolled steel sheet excellent in corrosion resistance, elongation and stretch flangeability, and method for producing the same
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
RU2810463C1 (en) Method for producing high-strength hot-rolled steel
JP3144572B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent corrosion resistance
JP2905306B2 (en) Method of manufacturing thick steel plate with small difference in mechanical properties in the thickness direction
JP4002315B2 (en) High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
JPH04168217A (en) Manufacture of high toughness and high tensile strength hot rolled steel sheet excellent in uniformity
JPS58136717A (en) Manufacture of high tensile hot rolled steel strip containing vanadium
JPS61130454A (en) High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPH0941035A (en) Production of low yield ratio hot rolled steel sheet excellent in toughness