KR20040003317A - API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent - Google Patents

API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent Download PDF

Info

Publication number
KR20040003317A
KR20040003317A KR1020020037982A KR20020037982A KR20040003317A KR 20040003317 A KR20040003317 A KR 20040003317A KR 1020020037982 A KR1020020037982 A KR 1020020037982A KR 20020037982 A KR20020037982 A KR 20020037982A KR 20040003317 A KR20040003317 A KR 20040003317A
Authority
KR
South Korea
Prior art keywords
slab
temperature
finishing
api
steel sheet
Prior art date
Application number
KR1020020037982A
Other languages
Korean (ko)
Inventor
전금주
최판수
최석찬
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020037982A priority Critical patent/KR20040003317A/en
Publication of KR20040003317A publication Critical patent/KR20040003317A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing high strength API-X80 hot rolled steel plate having superior ductile fracture ratio which is used in intense cold area such as Siberia and Alaska and secures increase of strength and toughness at low temperature at the same time is provided. CONSTITUTION: In a manufacturing method of strip for pipe comprising processes of manufacturing a slab by refining molten steel comprising 0.06 to 0.09 wt.% of C, 1.30 to 1.50 wt.% of Mn, 0.15 to 0.30 wt.% of Si, 0.016 wt.% or less of P, 0.003 wt.% or less of S, 0.040 to 0.060 wt.% of Nb, 0.02 to 0.04 wt.% of V, 0.2 to 0.40 wt.% of Mo and a balance of Fe and inevitable impurities; heat treating the manufactured slab in a heating furnace; rough rolling the heat treated slab in a rough rolling mill; finish rolling the rough rolled strip in a finish rolling mill; and cooling the finish rolled strip, the method for manufacturing high strength API-X80 hot rolled strip having superior ductile fracture ratio is characterized in that the refining process includes gas injection and vacuum degassing treatment processes, a heating time of the slab in the heating furnace is 210 to 300 min, a slab delivery temperature in the heating furnace is 1,120 to 1,180 deg.C, roughing delivery temperature is 880 to 920 deg.C, and finish delivery temperature is 780 to 820 deg.C.

Description

연성파면율이 우수한 고 강도 에이피아이-엑스80 열연강판 제조방법{API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent}API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent

본 발명은 연성파면율(Ductile fracture ratio)이 우수한 고 강도 API-X80 열연강판 제조방법 에 관한 것으로서, 더욱 상세하게는, 극한지(시베리아, 알라스카등) 등에서 사용하기에 적합하도록 하기 위해서 강의 일반적인 성질인 강도상승에 따른 취성 증가를 방지하여 항복강도 552mpa이상을 유지하는 열연강판인 연성파면율이 우수한 고 강도 API-X80 라인 파이프용 강판 제조방법에 관한 것이다.The present invention relates to a method for producing a high strength API-X80 hot rolled steel sheet having an excellent ductile fracture ratio, and more particularly, the general properties of the steel in order to be suitable for use in the cold (Siberia, Alaska, etc.) The present invention relates to a method for manufacturing a high strength API-X80 line pipe sheet having excellent ductility, which is a hot rolled steel sheet having a yield strength of 552 mpa or more by preventing brittleness due to an increase in phosphorus strength.

일반적으로 석유 및 천연가스 수송관으로 사용되는 라인 파이프용 소재인 API (American Petroleum Institue)재는 미국석유협회에서 제정한 규격으로 라인 파이프용으로는 API-B부터 API-X80까지 총10개 규격이 있으며, API용 열연강판은 열간 압연 공정에서 코일의 형태로 출하 된 후 강관사에서 조관기를 이용하여 도 2와 같이 전기저항용접 또는 잠호용접 타입으로 용접하여 파이프 형태로 제작한 다음, 그 파이프를 12미터 정도로 절단하여 국제적으로 요구하는 규격과 고객사에서 요구하는 용도대로 인장시험 및 충격시험 등을 실시하여 합격되면, 최종적으로 고객사에게 인도되어 극한지의 지상과 지하에 매설되어 사용된다.API (American Petroleum Institue), a line pipe material used for oil and natural gas pipes, is a standard established by the American Petroleum Association. There are a total of 10 standards for line pipes from API-B to API-X80. The hot rolled steel sheet for API is shipped in the form of a coil in the hot rolling process, and then manufactured in the form of a pipe by welding the electric resistance welding or latent welding type as shown in FIG. After cutting to the extent that it is passed through the tensile test and the impact test according to the internationally required standard and the use required by the customer, it is finally delivered to the customer and used in the ground and underground of the extreme ground.

상기와 같은 석유 및 천연가스를 수송하는 파이프는 수송의 경제성을 추구하기 위해 점점 소재의 고 강도화를 요구하는 추세이며, 특히 석유자원의 고갈로 인해 극한지(시베리아, 알라스카 등)에서의 유전개발이 많아져 여기서의 원활한 수송을 위해 과거에는 API-X60이 주종을 이루고 있었으나, 최근에는 API-X70이 주종을 이루는 추세에 있다.Pipes for transporting oil and natural gas as described above are increasingly required to increase the strength of materials in order to pursue the economics of transportation, and in particular, oil field development in extreme regions (Siberia, Alaska, etc.) due to exhaustion of petroleum resources. In recent years, API-X60 has been the dominant model for smooth transportation, but recently API-X70 is the dominant model.

한편 후판(Plate)은 주로 4단 가역식 압연기 및 가속냉각(Accelerated cooling)에 의해 제조되는 비교적 두꺼운 열간 압연강판(6~150mm)을 말하며, 가공열처리(TMCP, Thermo Mechanical Control Process)에 의해 API-X80까지 개발된 것으로 보고되어 있다. 그러나 열연강재의 경우 API-X80은 개발단계에 이르고 있으며, 머지않아 상업생산이 가능할 것으로 판단된다.On the other hand, Plate is a relatively thick hot rolled steel sheet (6 ~ 150mm) manufactured mainly by four-stage reversible rolling mill and accelerated cooling, and it is API- by Thermomechanical Control Process (TMCP). It is reported to have been developed up to X80. However, in the case of hot rolled steel, API-X80 is in the development stage, and commercial production will be possible soon.

그러나 강은 일반적으로 강도가 상승하면 인성(Toughness)이 감소하고, 특히 온도가 감소함에 따라 충격인성이 급격히 저하되는 저온 취성 영역을 띠게 되어 극한지용으로 사용되는 API-X80용 열연강판은 하기 표 1과 같은 고 강도 및 저온 충격인성을 요구하고 있음으로 그에 따라 API-X80에 요구하는 만족하는 기계적 성질 및 충격인성을 동시에 만족하는 열연강판의 제조방법이 필요하게 되었다.However, steel generally has a low temperature brittle region where toughness decreases as strength increases, and particularly impact toughness decreases rapidly as temperature decreases. Thus, hot-rolled steel sheets for API-X80 used for extreme paper are shown in Table 1 below. Since high strength and low temperature impact toughness are required, a method of manufacturing a hot rolled steel sheet satisfying both mechanical properties and impact toughness required for API-X80 is required.

항복강도(Yield strength)Yield strength 인장강도(Tensile strength)Tensile strength 충격흡수에너지(CVN,+10℃)Impact absorption energy (CVN, +10 ℃) 연성파면율(DWTT,+10℃Ductility Rate (DWTT, + 10 ℃) ≥552mpa≥552mpa ≥621mpa≥621mpa 최소41j평균54jMinimum 41 j Average 54 j 최소50%평균60%Minimum 50% Average 60%

종래의 라인 파이프용 열연강판 제조방법(특허출원 제1998-58744호)은, 중량%로, C: 0.09%이하, Si: 0.25%이하, Mn: 1.65%이하, P: 0.020%이하, S: 0.010%이하, Mo:0.10-0.50%, Nb: 0.010∼0.055%, V: 0.010∼0.055%, C당량: 0.43%이하[C당량= C+Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15], 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강을 사상압연의 출측온도가 830℃이상이 되는 조건으로 열간 압연한 다음, 550-650℃까지 15-45℃/초의 냉각속도로 냉각한 후, 권취하는 방법으로 이루어지나 이는 정련 및 가열로에서의 가열방법과 압연기(조 압연, 사상압연)에서의 압연온도 등이 적절치 않아 본 발명에서 요구하는 연성파면율이 우수한 고 강도 API-X80 열연강판을 생산할 수 없는 문제점이 있었다.The conventional method for manufacturing hot rolled steel sheet for line pipes (Patent Application No. 1998-58744) is, by weight, C: 0.09% or less, Si: 0.25% or less, Mn: 1.65% or less, P: 0.020% or less, S: 0.010% or less, Mo: 0.10-0.50%, Nb: 0.010 to 0.055%, V: 0.010 to 0.055%, C equivalent: 0.43% or less [C equivalent = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15], balance Fe and other unavoidable impurities, hot-rolled steel under conditions such that the exit temperature of finishing rolling is 830 ° C or higher, and then cooled to 550-650 ° C for 15-45 ° C / sec. After cooling at a speed, it is a method of winding up, but this method is not suitable for heating in refining and heating furnaces and rolling temperature in rolling mills (crude rolling, finishing rolling), etc. There was a problem that can not produce API-X80 hot rolled steel sheet.

또 다른 종래의 파이프용 열연강판 제조방법은, 중량%로, C: 0.07-0.09%, Si:0.20-0.50%, Mn: 1.40-1.60%, P:0.025%이하, S:0.005%이하, Sol-Al:0.015~0.050%, Cr:0.05~0.15%, Mo:0.03~0.07%, Nb:0.035~0.045%, V:0.040~0.050%, Ti: 0.005~0.015%, N:20~70ppm, 나머지 Fe 및 기타 불가피한 불순물을 이루어지는 슬라브를 1100∼1200℃의 온도에서 가열한 후, 사상압연개시온도 850±20℃, 압하 율:62±2%, 사상압연 마무리온도:700±20℃의 조건에서 열간 압연한 다음, 540±20℃의 온도구간까지 7±3℃/sec의 냉각속도로 냉각하여 된 것으로써, 이는 응력제거 열처리 보증 API-X65급 라인 파이프용 강판으로 본 발명에서 요구하는 강도를 맞추지 못하는 문제점이 있다.Another conventional method for producing a hot rolled steel sheet for pipe, in weight%, C: 0.07-0.09%, Si: 0.20-0.50%, Mn: 1.40-1.60%, P: 0.025% or less, S: 0.005% or less, Sol -Al: 0.015 ~ 0.050%, Cr: 0.05 ~ 0.15%, Mo: 0.03 ~ 0.07%, Nb: 0.035 ~ 0.045%, V: 0.040 ~ 0.050%, Ti: 0.005 ~ 0.015%, N: 20 ~ 70ppm, rest After heating the slab of Fe and other unavoidable impurities at a temperature of 1100 to 1200 ° C, hot rolling is performed under conditions of finishing rolling start temperature 850 ± 20 ° C, rolling reduction rate: 62 ± 2%, finishing rolling temperature: 700 ± 20 ° C. After rolling, it was cooled down to a cooling rate of 7 ± 3 ℃ / sec up to a temperature range of 540 ± 20 ℃, which is a stress relief heat treatment guarantee API-X65 grade steel pipe for line pipe, which does not meet the strength required by the present invention. There is a problem.

본 발명은 상기와 같은 문제점을 해소하기 위하여 본 발명한 것으로서, 그 목적은 Fe에 C, Mn, Si, P, S와 석출강화 원소인 Nb, V을 함유하고, 변태강화 원소인 Mo을 첨가 통상의 용강을 정련하는 과정에서 가스 인젝션+진공 탈 가스처리, 연주공정에서 슬라브 표면의 전면 스카핑 작업을 실시하며, 적정온도의 조 압연, 사상압연, 런 아웃 테이블에서 전단 급속 냉각, 권취방법으로 강도상승 및 저온인성을 동시에 확보할 수 있는 연성파면율이 우수한 고 강도 API-X80 열연강판 제조방법을 제공함에 있다.The present invention has been made in order to solve the above problems, the object is to contain C, Mn, Si, P, S and precipitation hardening elements Nb, V in Fe, and to add Mo, a transformation hardening element In the process of refining molten steel, gas injection + vacuum degassing, and the entire surface of the slab are performed during the refining process. It is to provide a high strength API-X80 hot rolled steel sheet manufacturing method excellent in the ductility wave rate that can secure the rise and low temperature toughness at the same time.

도 1은 본 발명에 따른 열연강판을 제조하기 위한 압연공정 개략도,1 is a schematic diagram of a rolling process for manufacturing a hot rolled steel sheet according to the present invention;

도 2a 및 도 2b는 본 발명에 의해 제조된 강판을 이용하여 파이프를 만드는 용접방법을 나타낸 사시도,Figure 2a and 2b is a perspective view showing a welding method for making a pipe using a steel sheet produced by the present invention,

도 3은 본 발연에 따른 정련과정에서 가스 인젝션+진공 탈가스처리와 연주공정을 나타낸 개략도,Figure 3 is a schematic diagram showing a gas injection + vacuum degassing and playing process in the refining process according to the present smoke,

도 4는 본 발명에 따른 사상압연이 끝난 강판을 런 아웃테이블에서 냉각하는 과정을 설명하기 위한 개략도,Figure 4 is a schematic diagram for explaining the process of cooling the finishing rolling finished steel sheet in a run out table according to the present invention,

도 5는 본 발명에 의해 제조된 강판의 낙중균열시험을 통해 연성파면율을 나타낸 비교사진,Figure 5 is a comparison picture showing the ductile fracture rate through the drop crack test of the steel sheet prepared by the present invention,

도 6은 본 발명에 의해 제조된 강판의 조직을 나타낸 비교사진.Figure 6 is a comparison picture showing the structure of the steel sheet produced by the present invention.

상기 목적을 달성하기 위해 본 발명의 연성파면율이 우수한 고 강도 API-X80 열연강판 제조방법, C: 0.06~0.09wt%, Mn: 1.30~1.50wt%, Si: 0.15~0.30wt%, P: 0.016wt% 이하, S: 0.003wt%이하, Nb: 0.040~0.060wt%, V: 0.02~0.04wt%, Mo: 0.2~0.40wt%, 나머지는 Fe 및 불가피한 불순물로 이루어진 용강을 정련처리하여 슬라브를 만들고, 그 만들어진 슬라브를 가열로에서 가열처리하며, 그를 조 압연, 사상압연, 냉각의 과정을 순차적으로 실시하여 된 강판 제조방법에 있어서,In order to achieve the above object, a high strength API-X80 hot rolled steel sheet manufacturing method having excellent ductility of the present invention, C: 0.06 to 0.09 wt%, Mn: 1.30 to 1.50 wt%, Si: 0.15 to 0.30 wt%, P: 0.016wt% or less, S: 0.003wt% or less, Nb: 0.040 ~ 0.060wt%, V: 0.02 ~ 0.04wt%, Mo: 0.2 ~ 0.40wt%, the rest is slab by refining molten steel composed of Fe and unavoidable impurities In the manufacturing method of the steel sheet which is made, and the slab made by the heat treatment in a heating furnace, subjected to the process of rough rolling, finishing rolling, cooling sequentially

상기 정련처리는 가스 인젝션+진공 탈가스 처리하고, 상기 가열로에서의 슬라브 가열시간은 210~300분, 가열로에서의 슬라브 추출온도는 1120~1180℃이며, 상기 조 압연은 마무리온도를 880~920℃이고, 상기 사상압연은 마무리온도를 780~820℃로 하여서 된 것이다.The refining treatment is a gas injection + vacuum degassing treatment, the slab heating time in the furnace is 210 ~ 300 minutes, the slab extraction temperature in the furnace is 1120 ~ 1180 ℃, the crude rolling is finishing temperature of 880 ~ It is 920 degreeC, and the finishing rolling is the finishing temperature of 780-820 degreeC.

상기 슬라브를 가열로에 공급할 때에는, 슬라브 표면을 전면 스카핑 처리하고, 상기 사상압연이 끝난 강판의 냉각은, 냉각수를 이용한 급속 냉각이고, 그 급속 냉각은 런 아웃 테이블에서의 전단냉각하며, 상기 사상압연이 끝난 강판은 권취가 이루어지고, 그 권취온도는 560~620℃이다.When supplying the slab to the heating furnace, the entire surface of the slab is subjected to the entire scarfing process, and the finishing of the finishing rolled steel sheet is rapid cooling using cooling water, and the rapid cooling is shear cooling at the runout table, and the finishing The rolled steel sheet is wound, and the winding temperature is 560 to 620 ° C.

이하, 본 발명에 따른 성분범위의 한정이유 및 압연의 각 조건들에 대하여 구체적으로 설명하면 다음과 같다.Hereinafter, the specific reasons for the limitation of the component range and the rolling conditions according to the present invention will be described in detail.

탄소(C)는 함량이 0.06wt% 이하일 경우 제2상의 조직 분율(Pearlite Friction)이 저하하여 강도가 저하되고, 0.09wt% 이상일 경우 강재 내부에 펄라이트(Pearlite)가 많아져 강도증가 효과는 있으나 크랙 요인(Crack Source)을 증가시켜 충격 인성과 용접성을 해치게 되므로 0.06 ~ 0.09% 이내로 제한하는 것이 바람직하다.If the content of carbon (C) is less than 0.06wt%, the strength of the second phase is lowered by lowering the fraction of tissue (Pearlite Friction), and if it is more than 0.09wt%, pearlite is increased inside the steel, thereby increasing the strength but causing cracking. It is desirable to limit it within 0.06 to 0.09% because it increases the impact (Crack Source) to damage the impact toughness and weldability.

규소(Si)는 제강 공정에서 탈산제로 유효하며, 강화기구는 고용강화이며 고용되어 있는 원소와 철(Fe)간의 격자변형(Lattice Distortion)에 의해 고용강화가 일어나는 것으로 알려져 있다. 따라서 0.15wt% 이하 첨가되면 고용강화에 의한 인장강도가 급격히 감소하는 문제점이 있고, 0.30wt% 이상 첨가되는 경우에는 탄소(C)이동을 빠르게 하여 펄라이트 형성을 촉진하여 충격전이특성이 급격하게 저하되는 문제점이 있다. 그러므로 0.15~0.30wt%로 규제하는 것이 충격인성 및 인장강도측면에서 바람직하다.Silicon (Si) is effective as a deoxidizer in the steelmaking process, and the reinforcing mechanism is solid solution strengthening, and it is known that solid solution strengthening is caused by lattice distortion between the element and iron (Fe). Therefore, when 0.15wt% or less is added, there is a problem that the tensile strength due to solid solution strengthens sharply, and when 0.30wt% or more is added, carbon (C) is accelerated to promote pearlite formation, thereby rapidly decreasing impact transition characteristics. There is a problem. Therefore, it is desirable to regulate 0.15 ~ 0.30wt% in terms of impact toughness and tensile strength.

망간(Mn)은 고용강화 원소로써 오스테나이트(Austenite)에서 페라이트로의 상 변태를 지연시켜 침상 페라이트(Acicular Ferrite)를 조장함으로써 강도와 인성을 동시에 향상시킬 수 있는 원소로서 첨가량의 증가와 함께 결정 입은 미세해진다. 따라서 1.30wt% 이하이면 고강도 확보가 곤란하고, 1.50wt% 이상 첨가하면 용접성을 해칠 뿐만 아니라 P,S 등과 같이 두께 중심부에 편석 되어 띠형 구조(Banded Structure)를 조장하여 충격인성을 해치는 문제점이 있다. 그러므로 1.30~1.50wt%로 규제하는 것이 바람직하다.Manganese (Mn) is a solid solution strengthening element that delays the phase transformation from austenite to ferrite and promotes acicular ferrite, thereby improving strength and toughness. It becomes fine. Therefore, if it is less than 1.30wt%, it is difficult to secure high strength, and if it is added to more than 1.50wt%, not only the weldability is impaired, but also segregation is performed in the center of thickness such as P, S, etc., thereby promoting the banded structure to damage the impact toughness. Therefore, it is desirable to regulate 1.30 ~ 1.50wt%.

인(P)은 Mn,S(MnS,FeS)등과 함께 대표적인 중심 편석 원소로써 연주시 중심부 및 입계(Grain Boundary)에 Fe3P Type으로 편석되어, 충격인성을 크게 저해시키는 불순물로서, 내부 품질 열화 및 충격천이온도를 상승시켜 충격인성을 크게 해치는 원소이므로 제강 조업 기술이 허용하는 한 최대한으로 제한하는 것이 바람직 하나 극 저린강 제조시 제조원가 및 처리시간이 길어지므로 본 발명에서는 최대 0.016wt% 이하로 제한한다.Phosphorus (P) together with Mn, S (MnS, FeS) is a representative center segregation element, which is segregated into Fe3P type in the center and grain boundary when playing, which impairs impact toughness greatly. Since it is an element that greatly impairs the impact toughness by increasing the transition temperature, it is preferable to limit it to the maximum as permitted by the steelmaking operation technology. However, in the present invention, the manufacturing cost and processing time are increased when the ultra low-lining steel is manufactured.

황(S)은 FeS, MnS등 타입으로 편석되어, 열간 압연시 압연방향으로 길게 연신되어 강판물성의 이방성을 조장할 뿐만 아니라, 연주시 표면 크랙, 내부 크랙 및 중심 편석의 유발로 충격 인성을 대폭 열화 시키므로 노외 정련 및 2차 정련시 완전하게 제거하는 바람직하나, 제강 공정상 불가하므로 0.003wt% 이하로 최소화하는 것이 바람직하다.Sulfur (S) is segregated into FeS, MnS, etc. type, stretches in the rolling direction during hot rolling to promote anisotropy of steel sheet properties, and greatly increases impact toughness by causing surface cracks, internal cracks, and center segregation during performance. Deterioration of the furnace is preferable to completely remove during the refining and secondary refining, but it is desirable to minimize to 0.003wt% or less because it is impossible in the steelmaking process.

니오븀(Nb) 및 바나늄(V)은 석출강화 원소인 Ti보다 비교적 낮은 온도(600~1000℃)인 오스테나이트 및 페라이트(Ferrite)상 내에서 Nb.V(C,N) Type으로 석출하여 초기 오스테나이트 입 성장 및 재결정을 억제하고, 또한 미세 결정영역을 확대하여 누적 압하율을 증대함으로써 조직 미세화를 통한 인장강도 상승 및 충격인성을 향상시키는 원소로서, 강도 상향효과는 Nb이 V보다 큰 것으로 알려져 있다. 본 발명에서는 주로 고온에서 석출되어 석출물이 조대해질 경우 강도 및 충격인성을 동시에 떨어뜨리게 되는 Ti는 첨가하지 않았고, Nb함량은 과대 첨가시 강도의 증가폭은 감소하는 반면, 연성 및 인성이 크게 감소하고, 과소 첨가시 강도 상승효과가 적어지므로 0.040~0.060wt% 로 제한하는 것이 바람직하다,Niobium (Nb) and vananium (V) are initially precipitated as Nb.V (C, N) type in austenite and ferrite phases (600 ~ 1000 ℃), which are relatively lower than Ti, which is a precipitation strengthening element. It is known that Nb is greater than V as the element that suppresses austenite grain growth and recrystallization, and also increases the cumulative reduction rate by expanding the microcrystalline region to increase tensile strength and impact toughness through microstructure. have. In the present invention, mainly precipitated at a high temperature, when the precipitate is coarse, Ti is not added at the same time to decrease the strength and impact toughness, Nb content is greatly reduced, while the increase in strength when excessively added, the ductility and toughness is greatly reduced, When under-added, the strength increase effect is less, so it is preferable to limit it to 0.040 ~ 0.060wt%.

또한 V은 석출에 따른 강도증가효과 가장 적은 원소로 알려져 있으며, 그러한 이유 때문에 통상 Nb함량에 비해 낮게 관리하고 있다, V함량은 0.04wt% 초과시 용접부 연성 및 인성을 떨어지고, 0.02%이하 첨가시 강도상승효과가 없어지므로 0.02~0.04wt% 이내로 제한하는 것이 바람직하다.In addition, V is known to have the least strength increase effect due to precipitation, and for that reason, it is usually managed lower than the Nb content. When the V content exceeds 0.04 wt%, the weld ductility and toughness decreases and the strength increases when added below 0.02%. Since the effect is lost, it is preferable to limit the content to 0.02 to 0.04 wt%.

몰리브덴(Mo)은 아래의 Ar3 온도 회귀식과 같이 오스테나이트 영역에서 초석 페라이트(Ferrite)가 석출되는 온도인 Ar3 온도를 하향시켜 페라이트 변태의 열적 구동력(Thermodynamic Driving Force)을 증대시키고, 핵 생성율(Nucleation Rate)은 증가시키며, 기 생성된 핵의 성장은 억제하여 조직을 미세화(Grain Size)하고, 저온 권취에 따른 침상 페라이트(Acicular Ferrite)를 생성하여 인장강도 및 저온인성을 동시에 향상키는 가장 유효한 원소이다. Mo함량은 과대 첨가시 강의 경화능(Hardenability)을 크게 증가시켜 인성을 떨어뜨리고, 과소 첨가시 저온 조직인 침상 페라이트 형성이 불안정하므로 0.2~0.4%로 관리하는 것이 바람직하다. 몰리브덴 첨가강의 Ar3 온도 회귀식은 아래와 같다.Molybdenum (Mo) increases the thermal dynamic driving force of the ferrite transformation and decreases the nucleation rate by lowering the Ar3 temperature, which is the temperature at which the ferrite is deposited in the austenite region, as shown in the following Ar3 temperature regression equation. ) Is the most effective element to increase the tensile strength and low temperature toughness by inhibiting the growth of pre-generated nuclei and miniaturizing tissue (Grain Size) and generating acicular ferrite due to cold winding. . Mo content is greatly increased by hardenability (Hardenability) of the steel when excessively added to decrease the toughness, and when under-added it is preferable to manage at 0.2 ~ 0.4% because needle-like ferrite formation, which is a low-temperature structure is unstable. The Ar3 temperature regression equation of molybdenum-added steel is as follows.

Ar3(℃)= 910℃ - 310[C]- 80[Mn]-20[Cu]- 20[Cr]- 20[Ni]- 80[Mo]Ar 3 (° C) = 910 ° C-310 [C]-80 [Mn]-20 [Cu]-20 [Cr]-20 [Ni]-80 [Mo]

 본 발명은 상기한 화학성분을 가지는 고 장력 라인 파이프용 강재의 충격 인성확보를 위해 우선 제강 공정에서 내부 품질 및 표면 품질 확보를 위해 [그림3]과 같이 출강 중 래들(Ladle) 내에서 톱 슬래그(Top Slag)를 형성시킨 후 용강과 톱 슬래그의 반응을 위한 강 교반(Bubbling)을 실시하는 가스 인젝션(Gas Injection)에 의해 탈류 조업 및 대형 개재물을 제어하고, RH(진공 탈가스) 처리에 의해 소행 개재물 및 강 중 기체(H,O)를 배출시키는 제어가 필요하며, 이후 연주공정에서 슬라브(SLAB) 표층에 발생되는 미세 크랙 및 핀 홀(Pin Hole) 등 미세 결함을 제거하기 위해 슬라브 전면 스카핑(Scarfing)을 실시한다.In order to secure the impact toughness of the steel for high tension line pipes having the above chemical composition, the present invention provides the first slag in the ladle as shown in [Fig. 3] to secure the internal quality and the surface quality in the steelmaking process. After the formation of the top slag, the degassing operation and the large inclusions are controlled by gas injection, which carries out steel agitation for the reaction between the molten steel and the top slag, and is carried out by the RH (vacuum degassing) treatment. It is necessary to control the discharge of gas (H, O) in the inclusions and steels, and the slab front side scarfing in order to remove fine defects such as fine cracks and pin holes generated in the slab surface layer during the performance process. Carry out Scarfing.

열연공정에서는 가열로 내에서 재 가열하는 온도를 고온으로 설정하면 오스테나이트(Austenite)의 조대화에 따른 충격 인성이 저하되는 문제가 있고, 저온으로 가열하면 NbC등 석출물의 불완전한 재고용으로 인해 강도가 저하되므로, 추출 온도를 1120 ~ 1180℃ 이내로 유지하는 것이 바람직하며, 또 재로 시간이 너무 짧으면 슬라브의 숙열도 부족에 따른 재질, 충격 인성 편차, 통판 불량을 유발하고,너무 길면 오스테나이트(Austenite)의 조대화, 스케일(Scale)량 등의 증가 및 생산성 감소를 유발하게 되므로 210~300분으로 이내로 제한하는 것이 바람직하다.In the hot rolling process, when the temperature of reheating in the furnace is set to a high temperature, impact toughness due to coarsening of austenite decreases, and when heated to a low temperature, the strength decreases due to incomplete re-use of precipitates such as NbC. Therefore, it is desirable to maintain the extraction temperature within 1120 ~ 1180 ℃, and if the ash time is too short, it causes the material, impact toughness deviation, mailing failure due to the lack of aging of the slab, if too long, the austenite It is preferable to limit the amount to within 210 to 300 minutes because it causes an increase in the amount of dialogue, scale, and the like, and a decrease in productivity.

조압연에서 마무리 온도(RDT: Roughing Delivery Temperature)는 R2 패스(4Hi-가역식 압연기로 Pass횟수는 5회)시 일어나는 동적 재결정을 억제하고, 조 압연 영역에서의 누적 압하율을 증대하면 인장강도 및 저온인성이 향상되므로 가급적 저온으로 하는 것이 바람직하다. 하지만 너무 낮으면 사상압연 마무리 온도(FDT; Finishing Delivery Temperature)의 확보가 곤란하므로 880~920℃ 이내로 관리하는 것이 바람직하다. 일반적으로 조압연에서의 동적 재결정을 나타내는 식은 아래의 Zener-Hollomon parameter로 나타내는데, 조 압연 온도를 하향시킬수록 동적 재결정량이 감소함을 알 수 있다.Roughing Delivery Temperature (RDT) in rough rolling suppresses the dynamic recrystallization that occurs during R2 pass (5 passes with a 4Hi-reversible rolling mill), and increases the tensile strength and Since low-temperature toughness improves, it is preferable to set it as low temperature as possible. However, if it is too low, it is difficult to secure Finishing Delivery Temperature (FDT), so it is desirable to manage the temperature within 880 to 920 ° C. In general, the equation for dynamic recrystallization in rough rolling is represented by the Zener-Hollomon parameter below. It can be seen that the dynamic recrystallization decreases as the crude rolling temperature is lowered.

Z = εexp(Qd/RT)Z = εexp (Qd / RT)

ε=변형속도ε = strain rate

Qd=변형활성화 에너지Qd = Strain Activation Energy

R=기체상수R = gas constant

T=온도T = temperature

사상압연의 마무리온도(FDT)는 고온 작업시 오스테나이트(Austenite)의 조대화가 발생하고 가속 냉각시에 경화능의 증가를 방지하며, 오스테나이트(Austenite)의 미 재결정 영역에서의 압연 량 증가에 따른 조직 미세화를 위해서 초석 페라이트가 석출되는 온도인 Ar3(약 800℃) 바로 위의 온도에서 압연하는 것이 바람직하나 공정능력을 감안하여 780~820℃로 관리하는 것이 바람직하다.Finishing temperature of finishing rolling (FDT) prevents increase of austenite coarsening during high temperature operation and prevents increase of hardenability during accelerated cooling, and increases the rolling amount in the unrecrystallized region of austenite. It is preferable to roll at a temperature just above Ar 3 (about 800 ° C.), which is the temperature at which the cornerstone ferrite is precipitated, for the microstructure according to the present invention.

권취온도(CT)는 열연강판의 최종 조직을 결정하여 인장 및 충격인성에 지대한 영향을 미치는 중요 제어 인자로 너무 높으면 변태강화효과가 감소하고, 너무 낮으면 석출강화효과 감소 및 텔레스코프(Telescope), 느슨 권취 등의 권취 형상이 불량하게 되므로 560~620℃ 이내로 제한하는 것이 바람직하다.The coiling temperature (CT) is an important control factor that determines the final structure of the hot rolled steel sheet and has a great influence on the tensile and impact toughness. If it is too high, the transformation hardening effect is decreased, and if it is too low, the precipitation hardening effect is reduced, and the telescope, Since winding shapes, such as loose winding, will become bad, it is preferable to limit to within 560-620 degreeC.

런 아웃 테이블(ROT: RUN OUT TABLE)은 도 4와 같이 냉각설비(Laminar Flow)의 각 냉각노즐로부터 냉각수를 이용하여 강제 수냉 처리하는 과정으로, 그 냉각패턴은 전단냉각(냉각설비의 냉각노즐 #1∼#5), 후단냉각(냉각설비의 냉각노즐 #12∼#17), 순차 냉각(Step Cooling) 등의 패턴을 통하여 상분 율, 미세 조직의 크기와 형태를 정밀하게 제어함으로써 원하는 재질을 얻을 수 있으나, 과냉도의 증가 및 결정 입 성장의 억제를 통한 결정 입 미세화를 위해 전단냉각을 실시하는 것이 바람직하다.RUN OUT TABLE (ROT) is a process of forcibly water-cooling by using cooling water from each cooling nozzle of a laminar flow as shown in FIG. 4, and the cooling pattern is shear cooling (cooling nozzle # of cooling equipment #). 1 ~ # 5), post-cooling (cooling nozzles # 12 ~ # 17 of cooling equipment), step cooling, etc., to precisely control the phase ratio and the size and shape of the microstructure to obtain the desired material. However, it is preferable to perform shear cooling to refine the grains by increasing the degree of subcooling and suppressing grain grain growth.

이하 본 발명의 실시 예를 들어 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described.

(실시 예)(Example)

 본 발명의 실시 예는 중량%로 C:0.073%, Mn:1.46%, Si:0.20%, P:0.014%, S:0.002%, Nb:0.050%, V:0.031%, Mo:0.29%의 함량을 가지게 하여, 본 발명의 성분 설계 기준을 만족하는 조성이 되도록 한 후, 예비처리 공정에서 용선 탈인 및 용선 탈황 처리를 하고 핫 메탈율(Hot metal ratio) 97%로 전로 취련을 거친 후 저P,S강 및 개재물 저감을 위해 망간 메탈을 사용하고, 중 탈류 및 슬래그 컷팅(Slag Cuting)을 실시하였다.Example of the present invention by weight of C: 0.073%, Mn: 1.46%, Si: 0.20%, P: 0.014%, S: 0.002%, Nb: 0.050%, V: 0.031%, Mo: 0.29% In order to have a composition that satisfies the component design criteria of the present invention, after the molten iron dephosphorization and molten iron desulfurization in the pretreatment process and the converter is blown at a hot metal ratio of 97% low P, Manganese metal was used to reduce the S steel and inclusions, and heavy dehydration and slag cut were performed.

2차 정련에서는 교반(Bubbling)장에서 대형 개재물의 부상 분리를 위해 가스 인젝션(Gas Injection)를 32분간 사용하였고, 진공 탈가스장에서는 소형 개재물 부상분리 및 기체가스(H.O)를 충분히 배출하기 위해 진공탈가스를 25분간 처리하였다.In the secondary refining, gas injection was used for 32 minutes to separate the floating of large inclusions in the bubbling field, and in the vacuum degassing plant, vacuum was used to fully discharge the small inclusion floating and gas gas (HO). Degassing was treated for 25 minutes.

상기 용강을 연주공정에서 T/D온도를 1551℃로 관리하고, 주조속도를 0.90M/min 속도로 주조하면서, 2차 냉각존에서 에어 미스트(Air mist)를 이용하여 완냉을 실시하였다. 또한 슬라브(Slab)를 CCR(Cold Charge Rolling)처리하여, 표면 미세 크랙 및 표층 개재물를 제거하기 위해 스카핑을 실시하였다.The molten steel was controlled at a temperature of 1551 ° C. in the casting process and cast at a rate of 0.90 M / min, while complete cooling was performed using air mist in a secondary cooling zone. Slab was also subjected to cold charge rolling (CCR), which was then scarfed to remove surface microcracks and surface inclusions.

이후, 가열로에 장입하여 재로 시간을 260분으로 하고, 추출온도를 1150℃로 하여 추출한 후, 조 압연 공정에서 마무리 온도(RDT)는 900℃로 유지하게 압연하였으며, 사상압연공정에서의 마무리온도(FDT)는 795℃의 저온을 유지할 수 있도록 압연하였으며, 사상압연 종료 후 냉각 패턴은 결정 입의 조대화 방지를 위해 냉각설비의 물 분사노즐 #2,#3,#4,#5,#6,#7을 이용하여 전단에서 급속 냉각을 실시하였고, 권취 온도는 침상 조직(Acicular Ferrite)의 형성을 위해 580℃로 유지하여 제조하였다.Subsequently, it was charged into a furnace to extract ash at a time of 260 minutes and an extraction temperature of 1150 ° C., followed by rolling to maintain a finishing temperature (RDT) of 900 ° C. in the rough rolling process, and finishing temperature in the finishing rolling process. (FDT) was rolled to maintain a low temperature of 795 ℃, and after finishing finishing the cooling pattern, water spray nozzles # 2, # 3, # 4, # 5, # 6 of cooling equipment to prevent coarsening of crystal grains. Rapid cooling was conducted at the front end using, # 7, and the winding temperature was maintained at 580 ° C. for the formation of acicular ferrite.

상기와 같이 제조된 발명재와 비교재에 대하여 각각 기계적 성질 및 충격인성을 평가하였는데 충격인성은 충격시험(Charpy Impact Test)와 낙중 균열 시험(DWTT: Drop Weight Tear Test )으로 실시하였다.The mechanical properties and impact toughness of the invention and the comparative material prepared as described above were evaluated, respectively, and the impact toughness was carried out by the impact test (Charpy Impact Test) and the drop weight tear test (DWTT).

평가결과는 하기 표 2 ~ 표 4에 나타내었는데 발명재의 경우 비교재 API-X70성분계에서 첨가한 Ti 및 Ni를 미 첨가하여 경제적 성분 설계이면서 인장 강도 및충격 인성이 규격을 만족하고, 비교재 대비 우수함을 알 수 있다.The evaluation results are shown in Tables 2 to 4 below. In the case of the invention, it is economical design with no addition of Ti and Ni added in the API-X70 component, and the tensile strength and impact toughness satisfies the specifications and are superior to those of the comparative material. It can be seen.

하기 표 5는 낙중 균열 시험(DWTT) 시험의 천이곡선을 나타내고 있는데, 비교재의 경우 -35℃부근에서 급격한 취성 천이(DBTT) 곡선을 나타내지만 발명재의 경우 -50℃ 부근에서도 양호한 연성 파면율을 나타내고 있다.Table 5 below shows the transition curve of the drop crack test (DWTT) test, but the comparative material shows a sudden brittle transition (DBTT) curve near -35 ℃, but in the case of the invention material exhibits a good ductile fracture rate in the vicinity of -50 ℃ have.

도 5 및 도 6은 발명재와 비교재의 광학 현미경에 의한 조직 사진(X100)을 나타내고 있는데 발명재와 비교재 공히 침상 페라이트(Acicular Ferrite)를 기지조직으로 하고 있으며, 페라이트 그레인 사이즈(Ferite Grain Size,수치가 클수록 미세함))의 경우 발명재가 12.5로 비교재 12.0대비 미세하며, 발명재의 경우 띠형 구조(Banded Structure)가 전혀 없는 우수한 조직 특성을 가지고 있음을 알 수 있다. 이러한 우수한 미세 조직(Micro structure)으로 인하여 발명재의 인장강도 및 저온 충격 인성은 비교재 대비 우수한 것을 알 수 있다.5 and 6 show the structure photograph (X100) by the optical microscope of the invention material and the comparative material. The invention material and the comparative material have acicular ferrite as the base structure, and the ferrite grain size (Ferite Grain Size, The larger the value, the finer)), the invention material is 12.5, which is finer than the comparative material 12.0, and in the case of the invention material, there is no banded structure at all. Due to such excellent microstructure, the tensile strength and low temperature impact toughness of the inventive material can be seen to be superior to those of the comparative material.

이상과 같은 본 발명은 Fe에 C, Mn, Si, P, S와 석출강화 원소인 Nb, V을 함유하고, 변태강화 원소인 Mo을 첨가한 통상의 용강을 정련 과정에서 가스 인젝션+진공 탈가스처리하고, 연주공정에서 슬라브 표면의 전면 스카핑 작업을 실시하며, 가열로에서의 슬라브 가열시간은 210~300분, 가열로에서의 슬라브 추출온도는 1120~1180℃하고, 조 압연 마무리 온도를 880~920℃로 유지하고, 사상압연 마무리온도는 780~820℃로 유지하며, 압연종료 후 런 아웃 테이블에서 전단 급속냉각을실시하고, 권취 온도를 560~620℃로 유지하는 방법으로 강도 상승 및 저온인성을 동시에 확보할 수 있는 연성파면율(DWTT)이 우수한 고강도 API-X80 열연강판을 제조할 수 있는 효과가 있다.The present invention as described above is a gas injection + vacuum degassing during the refining process of a conventional molten steel containing C, Mn, Si, P, S and Fe, Nb, V, precipitated reinforcement elements, and Mo, a transformation reinforcement element. The slab heating time is 210 ~ 300 minutes in the furnace, the slab extraction temperature in the furnace is 1120 ~ 1180 ℃, and the rough rolling finish temperature is 880. It is maintained at ~ 920 ℃, finishing rolling temperature is maintained at 780 ~ 820 ℃, shear rapid cooling on the run-out table after the end of rolling, and the strength increase and low temperature by maintaining the winding temperature at 560 ~ 620 ℃ There is an effect that can produce a high strength API-X80 hot rolled steel sheet excellent in the ductile wavefront ratio (DWTT) that can secure toughness at the same time.

Claims (4)

C 0.06~0.09wt%, Mn 1.30~1.50wt%, Si 0.15~0.30wt%, P 0.016wt% 이하, S 0.003wt%이하, Nb 0.040~0.060wt%, V 0.02~0.04wt%, Mo 0.2~0.40wt%, 나머지는 Fe 및 불가피한 불순물로 이루어진 용강을 정련처리하여 슬라브를 만들고, 그 만들어진 슬라브를 가열로에서 가열처리하고, 그를 조 압연, 사상압연, 냉각의 과정을 순차적으로 실시하여 된 파이프용 강판 제조방법에 있어서,C 0.06 ~ 0.09wt%, Mn 1.30 ~ 1.50wt%, Si 0.15 ~ 0.30wt%, P 0.016wt% or less, S 0.003wt% or less, Nb 0.040 ~ 0.060wt%, V 0.02 ~ 0.04wt%, Mo 0.2 ~ 0.40wt%, the remainder is made of slab by refining molten steel composed of Fe and unavoidable impurities, and the slabs are heat-treated in a heating furnace, followed by rough rolling, finishing rolling, and cooling for pipes. In the steel sheet manufacturing method, 상기 정련처리는, 가스 인젝션+진공 탈가스 처리하고, 상기 가열로에서의 슬라브 가열시간은 210~300분, 가열로에서의 슬라브 추출온도는 1120~1180℃이며, 상기 조 압연은 마무리온도를 880~920℃이고, 상기 사상압연은 마무리온도를 780~820℃로 하여서 됨을 특징으로 하는 연성파면율이 우수한 고강도 API-X80 열연강판 제조방법.The refining treatment is a gas injection + vacuum degassing treatment, the slab heating time in the heating furnace is 210 ~ 300 minutes, the slab extraction temperature in the heating furnace is 1120 ~ 1180 ℃, the crude rolling is a finishing temperature of 880 ~ 920 ℃, the finishing rolling is a high strength API-X80 hot rolled steel sheet manufacturing method having excellent ductility, characterized in that the finishing temperature is set to 780 ~ 820 ℃. 제1항에 있어서, 상기 슬라브를 가열로에 공급할 때에는, 슬라브 표면을 전면 스카핑 처리하여 공급함을 특징으로 하는 연성파면율이 우수한 고강도 API-X80 열연강판 제조방법.The method according to claim 1, wherein when the slab is supplied to the heating furnace, the slab surface is subjected to the entire scarfing process. 제1항에 있어서, 상기 사상압연이 끝난 강판의 냉각은, 냉각수를 이용한 급속 냉각이고, 그 급속 냉각은 런 아웃 테이블에서의 전단냉각 임을 특징으로 하는 연성파면율이 우수한 고강도 API-X80 열연강판 제조방법.The high strength API-X80 hot rolled steel sheet having excellent ductility rate according to claim 1, wherein the finishing of the finishing-rolled steel sheet is rapid cooling using cooling water, and the rapid cooling is shear cooling at a runout table. Way. 제1항에 있어서, 상기 사상압연이 끝난 강판은 권취가 이루어지고, 그 권취온도는 560~620℃ 임을 특징으로 하는 연성파면율이 우수한 고강도 API-X80 열연강판 제조방법.The method of claim 1, wherein the finishing-rolled steel sheet is wound, and the winding temperature is 560 ~ 620 ℃ excellent high ductility API-X80 hot rolled steel sheet manufacturing method.
KR1020020037982A 2002-07-02 2002-07-02 API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent KR20040003317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020037982A KR20040003317A (en) 2002-07-02 2002-07-02 API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020037982A KR20040003317A (en) 2002-07-02 2002-07-02 API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent

Publications (1)

Publication Number Publication Date
KR20040003317A true KR20040003317A (en) 2004-01-13

Family

ID=37314337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020037982A KR20040003317A (en) 2002-07-02 2002-07-02 API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent

Country Status (1)

Country Link
KR (1) KR20040003317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005215546B2 (en) * 2004-02-25 2008-05-15 Samsung Electronics Co., Ltd Method of testing open services gateway initiative service platform and test tool using the method
KR100887077B1 (en) * 2007-08-29 2009-03-04 주식회사 포스코 The method of api material work maintaining constant heat
KR101149121B1 (en) * 2009-07-24 2012-05-25 현대제철 주식회사 High strength hot rolled steel sheet and the method of producing the same
CN112676341A (en) * 2020-12-03 2021-04-20 攀钢集团攀枝花钢铁研究院有限公司 Hot rolling method of low-carbon steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729528A (en) * 1980-07-28 1982-02-17 Sumitomo Metal Ind Ltd Preparation of thick hot rolled high tension steel belt having excellent low temperature toughness
JPH07316650A (en) * 1994-05-23 1995-12-05 Kawasaki Steel Corp Production of high strength hot rolled steel plate with low yield ratio
JP2002155343A (en) * 2000-11-15 2002-05-31 Nkk Corp High tensile strength hot-rolled steel strip for line pipe and its manufacturing method
KR100564883B1 (en) * 2001-11-13 2006-03-30 주식회사 포스코 Manufacturing method of hot coil for usage as a line pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729528A (en) * 1980-07-28 1982-02-17 Sumitomo Metal Ind Ltd Preparation of thick hot rolled high tension steel belt having excellent low temperature toughness
JPH07316650A (en) * 1994-05-23 1995-12-05 Kawasaki Steel Corp Production of high strength hot rolled steel plate with low yield ratio
JP2002155343A (en) * 2000-11-15 2002-05-31 Nkk Corp High tensile strength hot-rolled steel strip for line pipe and its manufacturing method
KR100564883B1 (en) * 2001-11-13 2006-03-30 주식회사 포스코 Manufacturing method of hot coil for usage as a line pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005215546B2 (en) * 2004-02-25 2008-05-15 Samsung Electronics Co., Ltd Method of testing open services gateway initiative service platform and test tool using the method
KR100887077B1 (en) * 2007-08-29 2009-03-04 주식회사 포스코 The method of api material work maintaining constant heat
KR101149121B1 (en) * 2009-07-24 2012-05-25 현대제철 주식회사 High strength hot rolled steel sheet and the method of producing the same
CN112676341A (en) * 2020-12-03 2021-04-20 攀钢集团攀枝花钢铁研究院有限公司 Hot rolling method of low-carbon steel

Similar Documents

Publication Publication Date Title
KR100851189B1 (en) Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
JP5195469B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
US8110292B2 (en) High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
KR100815717B1 (en) High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
JP5533024B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
KR100951296B1 (en) Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
JP5553093B2 (en) Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
KR100843844B1 (en) Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
JPH09143570A (en) Production of high tensile strength steel plate having extremely fine structure
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
JP7164718B2 (en) Structural Steel Having Excellent Low Yield Ratio and Low Temperature Toughness, and Method for Producing Same
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
KR20040003317A (en) API-X80 hot steel plate manufacturing method for ductile fracture ratio excellent
KR101858857B1 (en) High-strength hot-rolled steel plate having high dwtt toughness at low temperature, and method for manufacturing the same
KR102352647B1 (en) Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR100306149B1 (en) Method for manufacturing hot rolled steel sheets with high tensile strength higher than 80kg/mm¬2
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR101647226B1 (en) Steel plate having excellent fracture resistance and yield ratio, and method for manufacturing the same
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
KR102366990B1 (en) Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application