JPS648443B2 - - Google Patents

Info

Publication number
JPS648443B2
JPS648443B2 JP62215849A JP21584987A JPS648443B2 JP S648443 B2 JPS648443 B2 JP S648443B2 JP 62215849 A JP62215849 A JP 62215849A JP 21584987 A JP21584987 A JP 21584987A JP S648443 B2 JPS648443 B2 JP S648443B2
Authority
JP
Japan
Prior art keywords
sintered body
electrode
electroless plating
nonlinear resistance
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP62215849A
Other languages
Japanese (ja)
Other versions
JPS63153805A (en
Inventor
Susumu Myabayashi
Tsuyoshi Kaji
Nobuyoshi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62215849A priority Critical patent/JPS63153805A/en
Publication of JPS63153805A publication Critical patent/JPS63153805A/en
Publication of JPS648443B2 publication Critical patent/JPS648443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、酸化チタン(TiO2)を主成分とす
る焼結体を用いた電圧非直線性抵抗素子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a voltage nonlinear resistance element using a sintered body containing titanium oxide (TiO 2 ) as a main component.

電圧非直線性抵抗素子は、焼結体に設けた電極
間に加えられる印加電圧によつて抵抗値が非直線
的に変化し、印加電圧がバリスタ電圧を超える範
囲で、抵抗値が急激に減少する特異な性質を有す
る。この特性に着目し、電圧非直線性抵抗素子は
音響機器に関連する小型直流モータのノイズ防
止、リレー接点の保護、カラーテレビブラウン管
回路の放電吸収などの手段として広く利用されて
いる。
A voltage nonlinear resistance element has a resistance value that changes nonlinearly depending on the applied voltage applied between the electrodes provided on the sintered body, and the resistance value rapidly decreases in the range where the applied voltage exceeds the varistor voltage. It has the unique property of Taking note of this characteristic, voltage nonlinear resistance elements are widely used as a means for noise prevention in small DC motors associated with audio equipment, protection of relay contacts, and discharge absorption in color television cathode ray tube circuits.

電圧非直線性抵抗素子は、これを取り付けるべ
き機器の構造、形状等に応じて、例えば第1図に
示すように、平板状に形成された焼結体1の相対
向二面に電極2,3を設け、該電極2,3上にリ
ード線4,5を半田付けする構造としたり、或い
は第2図A,Bに示すように、小形直流モータの
回転軸等を通す孔6を有して円環状に形成された
焼結体7の両面に、共通電極8および分割電極9
a,9b,9cをそれぞれ設け、分割電極9a,
9b,9cを小形直流モータの整流子片等にリー
ド線によつて導通接続する構造となつていた。
Depending on the structure, shape, etc. of the equipment to which the voltage nonlinear resistance element is attached, for example, as shown in FIG. 1, electrodes 2, 3, and lead wires 4 and 5 are soldered onto the electrodes 2 and 3, or as shown in FIGS. A common electrode 8 and divided electrodes 9 are provided on both sides of the sintered body 7 formed in an annular shape.
a, 9b, and 9c are provided, respectively, and divided electrodes 9a,
9b and 9c are electrically connected to a commutator piece or the like of a small DC motor through lead wires.

ところで、従来の電圧非直線性抵抗素子として
は、酸化錫(SnO2)系、酸化鉄(Fe2O3)系、
シリコンカーバイト(SiC)系等のものが知られ
ている。このうちSnO2系、Fe2O3系のものは焼
結体自体は直線性抵抗体で、これに特別の電極を
付与することにより、焼結体と電極との間に電位
障壁を形成し、これによつてバリスタ特性を得て
いる。またSiC系のものは、SiC粒子間の接触面
でバリスタ特性を得ているので、特に電極を選ば
ない。
By the way, conventional voltage nonlinear resistance elements include tin oxide (SnO 2 )-based, iron oxide (Fe 2 O 3 )-based,
Silicon carbide (SiC)-based materials are known. Among these, the sintered body of the SnO 2- based and Fe 2 O 3- based ones is a linear resistor, and by adding a special electrode to it, a potential barrier is formed between the sintered body and the electrode. , thereby obtaining varistor characteristics. In addition, SiC-based materials have varistor properties at the contact surfaces between SiC particles, so any electrodes are not particularly important.

しかしながら、上述の従来の電圧非直線性抵抗
素子は、電極の形成や焼結体の成形などの製造上
の困難性を伴い、価格が高くなること、非直線性
の経時的劣化を招き易いこと、さらにはバリスタ
電圧が高く、低電圧用の小形直流モータのノイズ
防止等の用途に適さないこと等の欠点がある。
However, the above-mentioned conventional voltage nonlinear resistance element has manufacturing difficulties such as electrode formation and sintered compact molding, which increases the price and tends to cause deterioration of nonlinearity over time. Moreover, the varistor voltage is high, making it unsuitable for applications such as noise prevention in small, low-voltage DC motors.

このような従来の欠点を改善するものとして、
酸化チタン(TiO2)を主成分とし、これに半導
体元素(アンチモン、ニオブ、タンタル等)の酸
化物と酸化ビズマスを微量添加して焼結した酸化
チタン系の電圧非直線性抵抗素子が提案されたい
る。この酸化チタン系の電圧非直線性抵抗素子
は、焼結体自身が第3図の曲線L1で示すような
優れた電圧非直線性を示し、かつバリスタ電圧
VTも低く、焼結体自身の電圧非直線性に着目す
る限りは、小形直流モータのノイズ防止などのよ
うに、低電圧の用途に最適である。
In order to improve these conventional drawbacks,
A titanium oxide-based voltage nonlinear resistance element has been proposed, which is made of titanium oxide (TiO 2 ) as its main component, with trace amounts of oxides of semiconductor elements (antimony, niobium, tantalum, etc.) and bismuth oxide added and sintered. I want to. This titanium oxide-based voltage nonlinear resistance element has a sintered body itself that exhibits excellent voltage nonlinearity as shown by curve L1 in Figure 3, and a varistor voltage
V T is also low, so as long as we pay attention to the voltage nonlinearity of the sintered body itself, it is ideal for low voltage applications such as noise prevention in small DC motors.

ところが、焼結体と電極との間の接触が非オー
ム性接触になると、焼結体と電極との間に第3図
の曲線L2のような整流特性が生じるため、電極
間における電圧非直線性が曲線L1と、曲線L2
を合成した曲線L3のような鈍化した特性となり、
曲線L1で示す焼結体自身の優れた電圧非直線性
を有効に利用できないという欠点を生じる。
However, when the contact between the sintered body and the electrode becomes non-ohmic, a rectification characteristic as shown in curve L2 in Figure 3 occurs between the sintered body and the electrode, and the voltage non-stable between the electrodes. The linearity becomes a blunt characteristic like the curve L 3 which is a combination of the curve L 1 and the curve L 2 ,
This results in the disadvantage that the excellent voltage nonlinearity of the sintered body itself, shown by the curve L1 , cannot be effectively utilized.

そこで本発明は、酸化チタン系の電圧非直線性
抵抗素子において、焼結体自身の持つ優れたバリ
スタ特性を充分に発揮しえ、しかも焼結体に対す
る接着力が強く、耐食性に富み、材料コストの安
価な電極構造を有する電圧非直線性抵抗素子を、
焼結体素地を傷めることなく、高精度のパターン
で、容易に製造し得る製造方法を提供することを
目的とする。
Therefore, the present invention provides a titanium oxide-based voltage nonlinear resistance element that can fully utilize the excellent varistor properties of the sintered body itself, has strong adhesive strength to the sintered body, is highly corrosion resistant, and has low material cost. A voltage nonlinear resistance element with an inexpensive electrode structure of
It is an object of the present invention to provide a manufacturing method that can easily produce a highly accurate pattern without damaging the sintered body base.

上記目的を達成するため、本発明は、酸化チタ
ンを主成分とする焼結体にニツケルを主成分とす
るオーム性接触電極を有する電圧非直線性抵抗素
子を製造する方法において、前記焼結体の略全表
面にニツケルを主成分とする無電解メツキを施す
工程と、前記無電解メツキの表面の電極形成領域
にエツチングレジストを塗布して電極パターンを
特定する工程と、前記エツチングレジストを塗布
した領域以外の無電解メツキをエツチング除去す
る工程と、前記エツチングレジストを除去する工
程と、前記焼結体に残つている無電解メツキをオ
ーム性接触電極化する熱処理工程とよりなること
を特徴とする。
In order to achieve the above object, the present invention provides a method for manufacturing a voltage nonlinear resistance element having an ohmic contact electrode mainly composed of nickel on a sintered body mainly composed of titanium oxide. a step of applying electroless plating containing nickel as a main component to substantially the entire surface of the electrode, a step of applying an etching resist to the electrode formation area on the surface of the electroless plating to specify an electrode pattern, and a step of applying the etching resist. It is characterized by comprising a step of etching away the electroless plating outside the area, a step of removing the etching resist, and a heat treatment step of converting the electroless plating remaining on the sintered body into an ohmic contact electrode. .

すなわち、本発明は、例えば第1図、第2図に
示す構造の電圧非直線性抵抗素子において、酸化
チタンを主成分とし、これに半導体元素(アンチ
モン、ニオブ、タンタル等)の酸化物と酸化ビス
マスを微量添加した焼結体に、通常の電極を付与
すると、電極が非オーム性接触となり、焼結体自
身の持つている優れたバリスタ特性を充分に発揮
できないので、電極としてオーム性接触電極を付
与し、焼結体自身の持つバリスタ特性を充分に発
揮させるものである。
That is, the present invention provides a voltage nonlinear resistance element having the structure shown in FIGS. 1 and 2, for example, in which titanium oxide is the main component and oxides of semiconductor elements (antimony, niobium, tantalum, etc.) and If a normal electrode is applied to a sintered body containing a small amount of bismuth, the electrode will become a non-ohmic contact and the excellent varistor properties of the sintered body itself cannot be fully demonstrated, so an ohmic contact electrode is used as the electrode. This gives the sintered body sufficient varistor properties.

オーム性接触電極としては、In−Ga合金によ
るものも考えられる。しかしIn−Ga合金は非常
に高価で量産に適さない。またIn−Ga合金を焼
結体につけるには、こすり付けるか又は超音波ろ
う付けをしなければならず、焼結体に対する電極
の接着力が弱く、電極剥離などの事故も生じ易
い。更にIn−Ga合金は融点が低く、リード線の
ハンダ付時等に多くの問題点を生じる。
The ohmic contact electrode may also be made of an In-Ga alloy. However, In-Ga alloy is very expensive and not suitable for mass production. Furthermore, in order to attach the In-Ga alloy to the sintered body, rubbing or ultrasonic brazing must be performed, and the adhesion of the electrode to the sintered body is weak and accidents such as electrode peeling are likely to occur. Furthermore, the In--Ga alloy has a low melting point, which causes many problems when soldering lead wires.

そこで本発明においては、酸化チタンを主成分
とする焼結体に、オーム性接触電極を設けるにあ
たつて、無電解メツキを採用し、焼結体にニツケ
ルを主成分とするオーム性接触電極を設ける。
Therefore, in the present invention, when providing an ohmic contact electrode on a sintered body mainly composed of titanium oxide, electroless plating is used to provide an ohmic contact electrode mainly composed of nickel on the sintered body. will be established.

ニツケルを主成分とするオーム性接触電極は、
従来のIN−Ga合金によるものに比べて著しく安
価であり、量産性の富むものである。従つて、本
発明によれば、焼結体と電極との間の接着力が非
常に大きく、電極の界面剥離などを生じ難く、し
かも経時的劣化も小さく、高信頼度かつ安価な酸
化チタン系の電圧非直線性抵抗素子を製造でき
る。
Ohmic contact electrodes whose main component is nickel.
It is significantly cheaper than conventional IN-Ga alloys and is highly suitable for mass production. Therefore, according to the present invention, the adhesion between the sintered body and the electrode is very high, the interface peeling of the electrode is difficult to occur, the deterioration over time is small, and the highly reliable and inexpensive titanium oxide-based material is used. voltage nonlinear resistance elements can be manufactured.

次に第4図a1〜a4およびb1〜b4を参照し、本発
明に係る電圧非直線性抵抗素子の製造方法を具体
的に説明する。この実施例は、第2図A,Bに示
した分割電極構造を有する酸化チタン系の電圧非
直線性抵抗素子を得る場合の具体例を示している
が、他の形状、構造のものにも同様に適用するこ
とができる。
Next, with reference to FIGS. 4 a 1 to a 4 and b 1 to b 4 , a method for manufacturing a voltage nonlinear resistance element according to the present invention will be specifically described. This example shows a specific example of obtaining a titanium oxide-based voltage nonlinear resistance element having the split electrode structure shown in FIGS. 2A and B, but other shapes and structures may also be used. The same can be applied.

まず、酸化チタン(TiO2)を主成分とし、こ
れに酸化ニオブ(Nb2O5)と酸化ビスマス
(Bi2O3)を微量添加した組成物を1380℃の温度
で焼成して、孔6を有する円環状の焼結体7を作
成した後、第4図a1,b1に示すように、この焼結
体7の全表面に、ニツケルを主成分とする無電解
メツキを施す。ニツケルの無電解メツキに当つて
は、焼結体7を塩化錫溶液と塩化パラジウム溶液
に浸漬して、電極形成領域10a〜10dを活性
化した後、塩化ニツケル、次亜燐酸ナトリウム、
クエン酸ナトリウムからなるメツキ溶液に浸漬
し、80〜90℃の温度でニツケル−燐の無電解メツ
キを施す。
First, a composition containing titanium oxide (TiO 2 ) as the main component, to which small amounts of niobium oxide (Nb 2 O 5 ) and bismuth oxide (Bi 2 O 3 ) were added, was fired at a temperature of 1380°C to form holes 6. After creating an annular sintered body 7 having the following properties, the entire surface of this sintered body 7 is electroless plated with nickel as the main component, as shown in FIG. 4 a 1 and b 1 . For electroless plating of nickel, the sintered body 7 is immersed in a tin chloride solution and a palladium chloride solution to activate the electrode forming regions 10a to 10d, and then nickel chloride, sodium hypophosphite,
It is immersed in a plating solution consisting of sodium citrate and subjected to nickel-phosphorus electroless plating at a temperature of 80 to 90°C.

次に第4図a2,b2に示すように、無電解メツキ
の表面の、電極形成領域10a〜10dに、エツ
チングレジスト11a〜11dをスクリーン印刷
法等の手段によつて塗布し、これによつて電極パ
ターンを特定する。エツチングレジスト11a〜
11dとしては、プロートコート(商品名)が有
効である。
Next, as shown in FIG. 4 a 2 and b 2 , etching resists 11 a to 11 d are applied to the electrode forming regions 10 a to 10 d on the surface of the electroless plating by means such as screen printing, and Thus, the electrode pattern is specified. Etching resist 11a~
Protocoat (trade name) is effective as 11d.

次に、この焼結体7をエツチング液に浸漬し、
エツチングレジスト11a〜11dを塗布した領
域以外の無電解メツキをエツチング除去する。エ
ツチング液としては、酢酸、硝酸およびアセトン
を1:1:1の割合で混ぜたものを使用し、約40
℃の温度条件でエツチング処理する。これにより
第4図a3,b3に示すように、焼結体7の電極形成
領域10a〜10dに、電極8、分割電極9a,
9b,9cとなる無電解メツキ層およびエツチン
グレジスト11a〜11dを有するものが得られ
る。
Next, this sintered body 7 is immersed in an etching solution,
The electroless plating in areas other than those coated with the etching resists 11a to 11d is removed by etching. As the etching solution, use a mixture of acetic acid, nitric acid, and acetone in a ratio of 1:1:1.
Etching treatment is performed at a temperature of ℃. As a result, as shown in FIG. 4 a 3 and b 3 , the electrode 8, the divided electrode 9a,
A layer having electroless plating layers 9b and 9c and etching resists 11a to 11d is obtained.

次に、アルカリ性溶液または有機溶剤などを用
いてエツチングレジスト11a〜11dを除去
し、第4図a4,b4に示すすように、焼結体7の両
面にニツケルを主成分とする電極8、分割電極9
a〜9cを有するものが得られる。次に、これを
300℃前後の温度で熱処理することにより、安定
したオーム性接触の電極8、分割電極9a〜9c
を有する電圧非直線性抵抗素子が得られる。
Next, the etching resists 11a to 11d are removed using an alkaline solution or an organic solvent, and as shown in FIG. , divided electrode 9
Those having a to 9c are obtained. Then do this
Electrodes 8 and split electrodes 9a to 9c with stable ohmic contact are formed by heat treatment at a temperature of around 300°C.
A voltage nonlinear resistance element having a voltage nonlinearity is obtained.

このようにして得られたオーム性接触電極8,
9a〜9cは、焼結体7に対する接着力が非常に
強く、しかも耐食性に優れたものとなる。また、
In−Ga合金を使用したものに比較して、電極材
料費が遥かに安価で、量産的である。
The ohmic contact electrode 8 thus obtained,
9a to 9c have very strong adhesion to the sintered body 7 and excellent corrosion resistance. Also,
Compared to those using In-Ga alloy, electrode material costs are much lower and mass production is possible.

また、焼結体の略全面に無電解メツキを施した
後、無電解メツキの表面にエツチングレジストを
塗布して電極パターンを特定する製造工程を経る
ことにより、焼結体の素地を傷めることがない。
In addition, by applying electroless plating to almost the entire surface of the sintered body and then applying an etching resist to the surface of the electroless plating to specify the electrode pattern, there is no possibility of damaging the base of the sintered body. do not have.

しかもエツチングレジストはスクリーン印刷法
などにより高精度のパターンで容易に塗布するこ
とができるから、複雑な電極パターンであつて
も、高精度で容易に形成することができる。
Furthermore, since the etching resist can be easily applied in a highly accurate pattern using a screen printing method or the like, even a complicated electrode pattern can be easily formed with high accuracy.

なお、安定したオーム性接触電極を得るために
は、ニツケル98〜80重量%、燐2〜20重量%から
なる電極を付与することが必要であるが、ニツケ
ルと燐の組成割合は、メツキ溶液の水素イオン濃
度(PH)によつて制御され、PH10以上の溶液では
燐の割合が2重量%以下、PH2以下では燐の割合
が20重量%以上になる。従つて良好なオーム性接
触電極を得るために、メツキ溶液の水素イオン濃
度PHを、PH=2〜10の範囲に設定する必要があ
る。
In addition, in order to obtain a stable ohmic contact electrode, it is necessary to provide an electrode consisting of 98 to 80% by weight of nickel and 2 to 20% by weight of phosphorus, but the composition ratio of nickel and phosphorus is It is controlled by the hydrogen ion concentration (PH) of the solution, and in solutions with a pH of 10 or higher, the proportion of phosphorus is 2% by weight or less, and in solutions with a pH of 2 or less, the proportion of phosphorus is 20% by weight or more. Therefore, in order to obtain a good ohmic contact electrode, it is necessary to set the hydrogen ion concentration PH of the plating solution in the range of PH=2 to 10.

以上述べたように、本発明は、酸化チタンを主
成分とする焼結体にニツケルを主成分とするオー
ム性接触電極を有する電圧非直線性抵抗素子を製
造する方法において、前記焼結体の略全表面にニ
ツケルを主成分とする無電解メツキを施す工程
と、前記無電解メツキの表面の電極形成領域にエ
ツチングレジストを塗布して電極パターンを特定
する工程と、前記エツチングレジストを塗布した
領域以外の無電解メツキをエツチング除去する工
程と、前記エツチングレジストを除去する工程
と、前記焼結体に残つている無電解メツキをオー
ム性接触電極化する熱処理工程とよりなることを
特徴とするから、次のような効果が得られる。
As described above, the present invention provides a method for manufacturing a voltage nonlinear resistance element having an ohmic contact electrode mainly composed of nickel on a sintered body mainly composed of titanium oxide. A step of applying electroless plating mainly composed of nickel to almost the entire surface, a step of applying an etching resist to the electrode formation area on the surface of the electroless plating to specify an electrode pattern, and a step of applying the etching resist to the area where the etching resist is applied. The present invention is characterized by comprising a step of etching away electroless plating other than the above, a step of removing the etching resist, and a heat treatment step of converting the electroless plating remaining on the sintered body into an ohmic contact electrode. , the following effects can be obtained.

(a) 焼結体自身の有する電圧非直線性を充分に発
揮させることができ、しかも、焼結体とオーム
性接触電極との間の接着力が非常に強く、電極
剥離などが生じにくく、更に、経時劣化の小さ
い、耐食性に優れた電極を有する電圧非直線性
抵抗素子を、量産性よく製造できる。
(a) The voltage nonlinearity of the sintered body itself can be fully utilized, and the adhesive force between the sintered body and the ohmic contact electrode is extremely strong, making it difficult for electrode peeling to occur. Furthermore, a voltage nonlinear resistance element having electrodes with excellent corrosion resistance and less deterioration over time can be manufactured with good mass productivity.

(b) 焼結体の略全面に無電解メツキを施した後、
無電解メツキの表面にエツチングレジストを塗
布して電極パターンを特定する製造工程を経る
ことにより、エツチングレジストによつて焼結
体の素地を傷めることがない。
(b) After applying electroless plating to almost the entire surface of the sintered body,
By going through the manufacturing process of applying an etching resist to the surface of the electroless plating to specify the electrode pattern, the base of the sintered body is not damaged by the etching resist.

(c) エツチングレジストはスクリーン印刷法など
により高精度のパターンで容易に塗布すること
ができるから、複雑な電極パターンであつて
も、高精度で容易に形成することができる。
(c) Etching resist can be easily applied in a highly accurate pattern by screen printing or the like, so even complex electrode patterns can be easily formed with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電圧非直線性抵抗素子の基本的構造を
示す正面図、第2図A,Bは他の例における正面
図および背面図、第3図は酸化チタンを主成分と
する焼結体を用いて電圧非直線性抵抗素子を構成
するときの問題点を説明するバリスタ特性図、第
4図a1〜a4は本発明に係る製造方法を説明する
図、第4図b1〜b4は第4図a1〜a4のD1−D1〜D4
−D4線上における各断面図である。 7……焼結体、8……電極、9a,9b,9c
……分割電極。
Figure 1 is a front view showing the basic structure of a voltage nonlinear resistance element, Figures 2A and B are front and rear views of other examples, and Figure 3 is a sintered body mainly composed of titanium oxide. Varistor characteristic diagrams illustrating problems when configuring a voltage nonlinear resistance element using varistor characteristics, Figures 4 a 1 to a 4 are diagrams illustrating the manufacturing method according to the present invention, and Figures 4 b 1 to b 4 is D 1 −D 1 to D 4 in Figure 4 a 1 to a 4
-D It is each cross-sectional view on the 4th line. 7... Sintered body, 8... Electrode, 9a, 9b, 9c
...Divided electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化チタンを主成分とする焼結体にニツケル
を主成分とするオーム性接触電極を有する電圧非
直線性抵抗素子を製造する方法において、前記焼
結体の略全表面にニツケルを主成分とする無電解
メツキを施す工程と、前記無電解メツキの表面の
電極形成領域にエツチングレジストを塗布して電
極パターンを特定する工程と、前記エツチングレ
ジストを塗布した領域以外の無電解メツキをエツ
チング除去する工程と、前記エツチングレジスト
を除去する工程と、前記焼結体に残つている無電
解メツキをオーム性接触電極化する熱処理工程と
よりなることを特徴とする電圧非直線性抵抗素子
の製造方法。
1. In a method for manufacturing a voltage nonlinear resistance element having an ohmic contact electrode mainly composed of nickel on a sintered body mainly composed of titanium oxide, substantially the entire surface of the sintered body is coated with nickel as the main component. a step of applying an etching resist to the electrode formation area on the surface of the electroless plating to specify an electrode pattern; and a step of etching away the electroless plating other than the area to which the etching resist has been applied. A method for manufacturing a voltage nonlinear resistance element, comprising: a step of removing the etching resist; and a heat treatment step of converting the electroless plating remaining on the sintered body into an ohmic contact electrode.
JP62215849A 1987-08-29 1987-08-29 Manufacture of voltage nonlinear resistance element Granted JPS63153805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62215849A JPS63153805A (en) 1987-08-29 1987-08-29 Manufacture of voltage nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62215849A JPS63153805A (en) 1987-08-29 1987-08-29 Manufacture of voltage nonlinear resistance element

Publications (2)

Publication Number Publication Date
JPS63153805A JPS63153805A (en) 1988-06-27
JPS648443B2 true JPS648443B2 (en) 1989-02-14

Family

ID=16679291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62215849A Granted JPS63153805A (en) 1987-08-29 1987-08-29 Manufacture of voltage nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS63153805A (en)

Also Published As

Publication number Publication date
JPS63153805A (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US4316171A (en) Non-linear resistance elements and method for manufacturing same
US4460622A (en) Electroconductive paste to be baked on ceramic bodies to provide capacitors, varistors or the like
US3310718A (en) Impedance element with alloy connector
JPS648443B2 (en)
JPS637004B2 (en)
JPS5874030A (en) Electronic part, conductive film composition and method of producing same
GB2044531A (en) Non-linear resistance elements and method for manufacturing same
JPS6322444B2 (en)
JPH0514363B2 (en)
JPS6343876B2 (en)
JP2560495B2 (en) Method for manufacturing zinc oxide voltage nonlinear resistance element
JPH01226116A (en) Voltage-dependent non-linear resistor element
JPS60142503A (en) Varistor
JPH01289220A (en) Manufacture of voltage-dependent nonlinear resistance element
JP2649545B2 (en) Electrode formation method of zinc oxide type varistor
JPH01289213A (en) Manufacture of voltage-dependent nonlinear resistance element
JPH0370361B2 (en)
KR100426158B1 (en) Silver-containing stubbing paste for attaching ceramic PTC thermistors
JPS5858717A (en) Electronic part
JPS6331354Y2 (en)
JPH01289208A (en) Manufacture of voltage-dependent nonlinear resistance element
JP2649544B2 (en) Zinc oxide varistor
JPH0510802B2 (en)
JPH04211101A (en) Voltage nonlinear resistor element
JPS6392002A (en) Varistor