JPS6331354Y2 - - Google Patents
Info
- Publication number
- JPS6331354Y2 JPS6331354Y2 JP1522679U JP1522679U JPS6331354Y2 JP S6331354 Y2 JPS6331354 Y2 JP S6331354Y2 JP 1522679 U JP1522679 U JP 1522679U JP 1522679 U JP1522679 U JP 1522679U JP S6331354 Y2 JPS6331354 Y2 JP S6331354Y2
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- sintered body
- voltage
- resistance element
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
- Motor Or Generator Current Collectors (AREA)
Description
【考案の詳細な説明】
本考案は電圧非直線性抵抗素子に係り、更に詳
しくは電圧非直線性抵抗素子の電極配設構造に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage non-linear resistance element, and more particularly to an electrode arrangement structure of a voltage non-linear resistance element.
電圧非直線性抵抗素子はバリスタとも呼ばれ、
印加電圧によつて抵抗値が非直線的に変化し、印
加電圧がその素子の持つバリスタ電圧(制限電
圧)を超える範囲で、抵抗値が激減する特異な性
質を有する。このような特異な性質に着目し、電
圧非直線性抵抗素子は、音響機器に関連する小形
直流モータのノイズ防止、リレー接点の保護、半
導体素子の静電気に対する保護、カラーテレビブ
ラウン管回路の放電吸収などの手段として広く利
用されている。 Voltage nonlinear resistance elements are also called varistors.
It has a unique property that the resistance value changes non-linearly depending on the applied voltage, and the resistance value sharply decreases in the range where the applied voltage exceeds the varistor voltage (limiting voltage) of the element. Focusing on these unique properties, voltage nonlinear resistance elements are used to prevent noise in small DC motors related to audio equipment, protect relay contacts, protect semiconductor devices from static electricity, and absorb discharge in color television cathode ray tube circuits. It is widely used as a means of
本考案は、上述のような利用分野の内で、特に
小形直流モータのノイズ防止用として好適な電圧
非直線性抵抗素子に関する。 The present invention relates to a voltage nonlinear resistance element suitable for use in the above-mentioned fields of application, particularly for noise prevention in small DC motors.
一般に小形直流モータは整流子片や、刷子の幅
が小さく、電機子コイル電流の時間的変化の割合
が大きく、リアクタンス電圧が大きくなることも
あつて、刷子が整流子片間を移動する瞬間に、整
流子面と刷子との間に火花が発生する。この火花
はスバイク状のノイズ電圧の発生原因となり、ま
た整流子と刷子の摩耗を生じ、モータとしての寿
命を短縮する傾向を生じる。前述のノイズ電圧は
両極性の電圧で、その波高値が電源電圧の数十倍
にもなり、音響機器に悪影響を及ぼすものである
から、除去しなければならない。 In general, small DC motors have small widths of commutator pieces and brushes, the rate of change in armature coil current over time is large, and the reactance voltage becomes large. , sparks occur between the commutator surface and the brush. This spark causes a spark-like noise voltage and also causes wear of the commutator and brushes, which tends to shorten the life of the motor. The above-mentioned noise voltage is a bipolar voltage whose peak value is several tens of times higher than the power supply voltage, and has an adverse effect on audio equipment, so it must be removed.
そのようなノイズ防止手段として電圧非直線性
抵抗素子が使用され、ノイズ電圧が、バリスタ電
圧を超える範囲で、これを短絡に吸収するもので
ある。 A voltage non-linear resistance element is used as such a noise prevention means, and absorbs the noise voltage into a short circuit in the range in which it exceeds the varistor voltage.
次に、電圧非直線性抵抗素子を使用した小形直
流モータおよび従来の電圧非直線性抵抗素子を第
1図、第2図を参照して説明する。第1図は電圧
非直線性抵抗素子1を被着した小形直流モータの
断面図を示すもので、2は電機子コイル、3は回
転軸、4は整流子、5a,5bは刷子、6a,6
bは界磁である。電圧非直線性抵抗素子1は、電
機子コイル2と整流子4との間に軸上に嵌着さ
れ、後述する如く、電極を整流子に接続して設け
られる。 Next, a small DC motor using a voltage non-linear resistance element and a conventional voltage non-linear resistance element will be explained with reference to FIGS. 1 and 2. FIG. 1 shows a cross-sectional view of a small DC motor equipped with a voltage nonlinear resistance element 1, in which 2 is an armature coil, 3 is a rotating shaft, 4 is a commutator, 5a, 5b are brushes, 6a, 6
b is a magnetic field. The voltage nonlinear resistance element 1 is fitted on the shaft between the armature coil 2 and the commutator 4, and is provided with electrodes connected to the commutator, as will be described later.
第2図A,Bは従来の電圧非直線性抵抗素子の
平面図および下面図をそれぞれ示している。この
従来例は、整流子4の片数が3個である場合に対
応する電極構造の電圧非直線性抵抗素子を示すも
ので、中心部に取付孔7を有する円板状の焼結体
8の片面に、3個の電極9a,9b,9cをギヤ
ツプg1を介して3等配する共に、裏面の各電極9
a,9b,9cと対向する位置に、、それぞれ電
極9d,9e,9fを形成し、電極9aと9e、
9bと9f、9cと9dを、それぞれリード線1
0a,10b,10cで接続し、各電極9a,9
b,9cにそれぞれ外部との接続用リード線10
d,10e,10fを半田付け等により取り付け
て成るものである。 FIGS. 2A and 2B show a top view and a bottom view, respectively, of a conventional voltage nonlinear resistance element. This conventional example shows a voltage nonlinear resistance element with an electrode structure corresponding to a commutator 4 having three pieces, and is a disk-shaped sintered body 8 having a mounting hole 7 in the center. Three electrodes 9a, 9b, 9c are equally distributed on one side of the
Electrodes 9d, 9e, and 9f are formed at positions facing electrodes a, 9b, and 9c, respectively, and electrodes 9a and 9e,
Connect 9b and 9f, 9c and 9d to lead wire 1, respectively.
0a, 10b, 10c, each electrode 9a, 9
Lead wires 10 for connection to the outside are connected to b and 9c, respectively.
d, 10e, and 10f are attached by soldering or the like.
この電圧非直線性抵抗素子は、第3図に示すよ
うに、各リード線10d,10e,10fを整流
子4の各整流子片4a,4b,4cにそれぞれ接
続すると、電極9a−9d、9b−9e、9c−
9f間の各バリスタ層イ,ロ,ハが三角結線され
たものとなる。なお2a,2b,2cは電機子コ
イルであり、この例では三角結線されているもの
について示しているが、星形結線とされる場合も
ある。 As shown in FIG. 3, this voltage nonlinear resistance element is constructed by connecting the lead wires 10d, 10e, 10f to the commutator pieces 4a, 4b, 4c of the commutator 4, respectively. -9e, 9c-
The varistor layers A, B, and C between 9F are triangularly connected. Note that 2a, 2b, and 2c are armature coils, and in this example, they are shown as having triangular connections, but they may also be connected in a star shape.
上述のように、電極を焼結体の両面に形成した
ものは、バリスタとして作用する焼結体の領域
が、焼結体の片面にのみ電極を形成したものに比
べて大きくとれるという利点がある。しかしなが
ら、第2図に示した従来のものは、表面と裏面の
電極をリード線10a,10b,10cにより接
続する構造であり、作業性が悪く、生産能率が悪
い。また外部接続用リード線10d,10e,1
0f以外に電極間接続用リード線10a,10
b,10cが存在するため、リード線数が多くな
り、構造的に複雑化し、機器への装着が容易でな
く、しかも信頼性がそれだけ乏しいものとなる。 As mentioned above, the advantage of having electrodes formed on both sides of the sintered body is that the area of the sintered body that acts as a varistor can be larger than when electrodes are formed only on one side of the sintered body. . However, the conventional device shown in FIG. 2 has a structure in which the electrodes on the front and back surfaces are connected by lead wires 10a, 10b, and 10c, resulting in poor workability and poor production efficiency. Also, external connection lead wires 10d, 10e, 1
In addition to 0f, lead wires 10a, 10 for connecting between electrodes
Because of the presence of wires b and 10c, the number of lead wires increases, the structure becomes complicated, it is not easy to attach to equipment, and the reliability is correspondingly poor.
本考案は、上述する欠点を除去し、電極間接続
用のリード線が不要で、生産性に富み、機器への
装着が容易で、しかも電極面積を増大させ、エネ
ルギー耐量を大きくできるようにした電圧非直線
性抵抗素子を提供することを目的とする。 The present invention eliminates the above-mentioned drawbacks, eliminates the need for lead wires for connection between electrodes, is highly productive, is easy to attach to equipment, and also increases the electrode area and increases the energy withstand capacity. An object of the present invention is to provide a voltage nonlinear resistance element.
上記目的を達成するため、本考案は、焼結体の
表面及び裏面に、それぞれギヤツプを介して隔て
られた複数の電極を形成して成る電圧非直線性抵
抗素子において、前記焼結体は酸化チタン系焼結
体で構成し、該焼結体の前記ギヤツプ内の周辺部
に切欠部を有し、該切欠部に形成された導電層に
より、表面側の電極の一つと、該表面側電極と前
記ギヤツプを介して隣り合う他の表面電極に対向
する裏面側電極とを電気的に接続したことを特徴
とする。 In order to achieve the above object, the present invention provides a voltage nonlinear resistance element in which a plurality of electrodes are formed on the front and back surfaces of a sintered body, each separated by a gap, in which the sintered body is oxidized. The sintered body is made of a titanium-based sintered body, has a notch in the periphery of the gap, and a conductive layer formed in the notch connects one of the surface-side electrodes to the surface-side electrode. and a back side electrode facing another adjacent front side electrode are electrically connected to each other via the gap.
以下実施例たる添付図面を参照し、本考案の内
容を具体的に説明する。第4図は本考案に係る電
圧非直線性抵抗素子の平面図、第5図は同じくそ
の斜視図を示している。この実施例に示す電圧非
直線性抵抗素子も前述と同様に整流子片が3個で
ある3極の小形直流モータのノイズ防止用として
構成されたものである。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples. FIG. 4 is a plan view of the voltage nonlinear resistance element according to the present invention, and FIG. 5 is a perspective view thereof. The voltage nonlinear resistance element shown in this embodiment is also configured to prevent noise in a small three-pole DC motor having three commutator pieces, as described above.
8は中心に取付孔7を有して、円環状に形成さ
れた焼結体である。この焼結体8として、従来は
粒子間の接触面でバリスタ特性を得るシリコンカ
ーバイト(Sic)系のものや、焼結体自身は直線
性抵抗体であるが、これに付与される電極との接
触状態によつてバリスタ特性を得る酸化錫
(SnO2)系もしくは酸化鉄(Fe2O3)系のものが
使用されていたが、本考案においては、焼結体自
身がバリスタ特性を有する酸化チタン(TiO2)
系のものによつて構成する。酸化チタン系焼結体
は、低電圧範囲で優れたバリスタ特性を示し、小
型直流モータ用として最も適しているからであ
る。 8 is a sintered body formed in an annular shape with a mounting hole 7 in the center. Conventionally, this sintered body 8 is made of silicon carbide (Sic), which obtains varistor properties at the contact surface between particles, or the sintered body itself is a linear resistor, but the electrodes attached to it are Tin oxide (SnO 2 )-based or iron oxide (Fe 2 O 3 )-based materials have been used, but in this invention, the sintered body itself has varistor characteristics. Titanium oxide (TiO 2 )
It is composed of things related to the system. This is because titanium oxide-based sintered bodies exhibit excellent varistor characteristics in a low voltage range and are most suitable for use in small DC motors.
11a,11b,11cは焼結体8の表面に、
それぞれギヤツプを介して3等配された扇形の電
極、11d,11e,11fは各電極11a,1
1b,11cに対応する裏面にそれぞれ形成され
た同形の扇形の電極である。これらの電極11
a,11b,11c、11d,11e,11fは
銀合金ペースト印刷法などによつて形成される。
各電極の間に位置するギヤツプ内の外周部には、
表、裏面に達する切欠部12a,12b,12c
が凹設され、該切欠部12a,12b,12cの
それぞれの内面には、導電層13a,13b,1
3cが形成されている。これらの導電層13a,
13b,13cは、それぞれ表面側と裏面側の電
極である11cと11d、11aと11e、11
bと11fを、各表面電極11a,11b,11
cの外周近傍で切欠部13a,13b,13cの
端縁に接するように形成された部分aと、裏面側
電極11d,11e,11fの外周近傍で切欠部
13a,13b,13cの、反対側の端縁に接す
るように形成された部分bと介して互いに接続す
るものである。 11a, 11b, 11c are on the surface of the sintered body 8,
The fan-shaped electrodes 11d, 11e, and 11f are arranged at three equal intervals through gaps, respectively, and the electrodes 11a, 1
These are fan-shaped electrodes of the same shape formed on the back surfaces corresponding to 1b and 11c. These electrodes 11
A, 11b, 11c, 11d, 11e, and 11f are formed by a silver alloy paste printing method or the like.
At the outer periphery of the gap located between each electrode,
Notches 12a, 12b, 12c reaching the front and back surfaces
are recessed, and conductive layers 13a, 13b, 1
3c is formed. These conductive layers 13a,
13b and 13c are front and back side electrodes 11c and 11d, 11a and 11e, and 11
b and 11f, each surface electrode 11a, 11b, 11
A portion a formed so as to be in contact with the edges of the notches 13a, 13b, 13c near the outer periphery of c, and a portion a formed on the opposite side of the notches 13a, 13b, 13c near the outer periphery of the back side electrodes 11d, 11e, 11f. They are connected to each other via a portion b formed so as to be in contact with the edge.
一方、、導電層13a,13b,13cと電極
11a,11b,11cとのそれぞれの間には、
非電極形成面たるギヤツプg1,g2,g3が形成され
ている。また裏面側の電極11d,11e,11
fにも、突出部bを設けた端縁とは反対側の端縁
と、導電層13a,13b,13cとの間に、同
様のギヤツプが形成されている。 On the other hand, between the conductive layers 13a, 13b, 13c and the electrodes 11a, 11b, 11c,
Gaps g 1 , g 2 , and g 3 are formed as non-electrode formation surfaces. Also, the electrodes 11d, 11e, 11 on the back side
A similar gap is also formed between the edge opposite to the edge provided with the protrusion b and the conductive layers 13a, 13b, and 13c.
すなわち、この実施例では表面側の電極と裏面
側の電極たる11aと11e、11bと11fお
よび11cと11dがそれぞれ一つの電極を構成
し、電極11a,11eと電極11b,11fと
の間、電極11b,11fと電極11c,11d
との間および電極11c,11dと電極11a,
11eとの間には、互いに対向する表面および裏
面側の電極である11bと11c、11cと11
fおよび11aと11dの、それぞれの間の焼結
体厚みによるバリスタ層が得られることとなる。
したがつて、電極11a,11b,11cまたは
11d,11e,11fにリード線10d,10
e,10fをそれぞれ接続し、該リード線10
d,10e,10fの他端を小形直流モータの整
流子片4a,4b,4cにそれぞれ接続した場
合、第3図に示すように、各バリスタ層イ,ロ,
ハを三角結線した回路構成となる。 That is, in this embodiment, the front side electrodes and the back side electrodes 11a and 11e, 11b and 11f, and 11c and 11d each constitute one electrode, and between the electrodes 11a and 11e and the electrodes 11b and 11f, 11b, 11f and electrodes 11c, 11d
and between the electrodes 11c, 11d and the electrode 11a,
11e, there are electrodes 11b and 11c, 11c and 11, which are opposite to each other on the front and back sides.
A varistor layer having a thickness of the sintered body between f and 11a and 11d is obtained.
Therefore, the lead wires 10d, 10 are connected to the electrodes 11a, 11b, 11c or 11d, 11e, 11f.
e and 10f, respectively, and the lead wire 10
When the other ends of d, 10e, and 10f are connected to the commutator pieces 4a, 4b, and 4c of a small DC motor, respectively, as shown in FIG.
The circuit configuration is triangularly connected.
前述の切欠部12a,12b,12c内に導電
層13a,13b,13cを形成する場合、第6
図に示すように、切欠部を有する酸化チタン
(TiO2)系の焼結体8に対し、それれぞれ表、裏
電極を印刷塗布すると同時に、先端部に導電剤1
4を付着させた治具15を、各切欠部12a,1
2b,12cに嵌合することにより、該治具15
で焼結体8の押えて、導電層形成の役目を果させ
ることができ、、電極形成作業も極めて容易に行
なうことができる。 When forming the conductive layers 13a, 13b, 13c in the above-mentioned notches 12a, 12b, 12c, the sixth
As shown in the figure, a front and back electrode is printed and coated on a titanium oxide (TiO 2 )-based sintered body 8 having a notch, and at the same time, a conductive agent 1 is applied to the tip.
4 attached to the jig 15, each of the notches 12a, 1
2b and 12c, the jig 15
The sintered body 8 can be held down to form a conductive layer, and the electrode forming operation can be performed extremely easily.
焼結体自体がバリスタ特性を示す酸化チタン系
の電圧非直線性抵抗素子においては、エネルギー
耐量が電極面積に依存し、電極面積が小さくなる
とエネルギー耐量も小さくなり、耐電圧特性等が
低下するものであるが、本考案においては、前述
の如く、焼結体8の両面側の電極を切欠部12
a,12b,12cを通して導通させ、電極面積
を増大させてあるから、エネルギー耐量が大きく
なり、耐電圧特性が向上する。 In titanium oxide-based voltage nonlinear resistance elements where the sintered body itself exhibits varistor characteristics, the energy withstand capacity depends on the electrode area, and as the electrode area becomes smaller, the energy withstand capacity also decreases and the withstand voltage characteristics etc. decrease. However, in the present invention, as described above, the electrodes on both sides of the sintered body 8 are connected to the notches 12.
Since conduction is made through a, 12b, and 12c to increase the electrode area, the energy withstand capacity is increased and the withstand voltage characteristics are improved.
しかも、切欠部12a,12b,12cは、電
極11a,11b,11cまたは11d,11
e,11fを隔てるギヤツプ内に形成してあるの
で、切欠部12a,12b,12cがあることに
よつて、電極11a,11b,11cまたは11
d,11e,11fの面積が縮小されることがな
い。このため、切欠部12a,12b,12cの
存在にも拘わらず、エネルギー耐量の高い耐電圧
特性の優れた電圧非直線性抵抗素子が得られる。 Moreover, the notches 12a, 12b, 12c are the electrodes 11a, 11b, 11c or 11d, 11
Since the notches 12a, 12b, 12c are formed in the gap separating the electrodes 11a, 11b, 11c or 11f,
The areas of d, 11e, and 11f are not reduced. Therefore, despite the presence of the notches 12a, 12b, and 12c, a voltage nonlinear resistance element with high energy tolerance and excellent withstand voltage characteristics can be obtained.
第7図、第8図は本考案に係る電圧非直線性抵
抗素子の他の実施例における平面図および斜視図
を示している。この実施例の特徴は、円環状に形
成された焼結体8の内周部に切欠部12′a〜1
2′c設けたことで、表面と裏面の電極を接続す
る導電層13′a〜13′cを、該切欠部12′a
〜12′cの表面に形成してある。この実施例の
場合も、第4図、第5図に示すものと同等の優れ
た効果が得られることは言うまでもない。 7 and 8 show a plan view and a perspective view of another embodiment of the voltage nonlinear resistance element according to the present invention. The feature of this embodiment is that cutouts 12'a to 12'a to 12' are formed on the inner circumference of the sintered body 8 formed in an annular shape.
2'c, the conductive layers 13'a to 13'c connecting the front and back electrodes can be connected to the notch 12'a.
It is formed on the surface of ~12'c. It goes without saying that this embodiment also provides excellent effects similar to those shown in FIGS. 4 and 5.
以上詳説したように、本考案は、焼結体の表面
及び裏面に、、それぞれギヤツプを介して隔てら
れた複数の電極を形成して成る電圧非直線性抵抗
素子において、前記焼結体は酸化チタン系円環状
焼結体で構成し、該焼結体の前記ギヤツプ内の周
辺部に切欠部を有し、該切欠部に形成された導電
層により、表面側の電極の一つと、該表面側電極
と前記ギヤツプを介して隣り合う他の表面電極に
対向する裏面側電極とを電気的に接続したことを
特徴とするから、電極間接続用のリード線が不要
で、従来の表面側電極と裏面側電極とをリード線
によつて接続するものに比べ、機器への装着が容
易で、しかも電極面積を可及的に増大させ、エネ
ルギー耐量を大きくできるようにした高信頼度の
電圧非直線性抵抗素子を提供することができる。
なお、本考案において、電極数は、表面側、裏面
側にそれぞれ2個以上形成するものであればよ
い。さらに小形直流モータに限らず他の機器に使
用し得ることは勿論である。 As explained in detail above, the present invention provides a voltage nonlinear resistance element in which a plurality of electrodes are formed on the front and back surfaces of a sintered body, each separated by a gap, in which the sintered body is oxidized. It is composed of a titanium-based annular sintered body, and has a notch in the periphery of the gap in the sintered body, and a conductive layer formed in the notch connects one of the electrodes on the surface side to the surface. Since the side electrode is electrically connected to the back side electrode facing the other adjacent front side electrode through the gap, there is no need for a lead wire for connection between the electrodes, and the conventional front side electrode is not required. This is a highly reliable voltage non-conductor that is easier to install in equipment than the one that connects the back side electrode with a lead wire, and also increases the electrode area as much as possible and increases the energy withstand capacity. A linear resistance element can be provided.
In the present invention, the number of electrodes may be two or more as long as they are formed on each of the front side and the back side. Furthermore, it goes without saying that it can be used not only for small DC motors but also for other devices.
第1図は電圧非直線性抵抗素子を装着した小形
直流モータの概略的な構造を示す断面図、第2図
A,Bは従来の電圧非直線性抵抗素子の平面図お
よび断面図、第3図は、第2図の電圧非直線性抵
抗素子を使用した小形直流モータの回路図、第4
図および第5図は本考案に係る電圧非直線性抵抗
素子の平面図および斜視図、第6図は同じくその
製造方法を説明する図、第7図、第8図は本考案
に係る電圧非直線性抵抗素子の他の実施例におけ
る平面図および斜視図をそれぞれ示している。
8……焼結体、11a〜11f……電極、12
a〜12c,12′a〜12′c……切欠部、13
a〜13c,13′a〜13′c……導電層。
Fig. 1 is a cross-sectional view showing the schematic structure of a small DC motor equipped with a voltage non-linear resistance element, Figs. 2 A and B are a plan view and a sectional view of a conventional voltage non-linear resistance element, and Fig. 3 The figure shows a circuit diagram of a small DC motor using the voltage nonlinear resistance element shown in Figure 2, and Figure 4.
5 and 5 are a plan view and a perspective view of a voltage nonlinear resistance element according to the present invention, FIG. 6 is a diagram illustrating the manufacturing method thereof, and FIGS. 3A and 3B respectively show a plan view and a perspective view of another example of a linear resistance element. 8... Sintered body, 11a to 11f... Electrode, 12
a to 12c, 12'a to 12'c...notch, 13
a to 13c, 13'a to 13'c... conductive layers.
Claims (1)
介して隔てられた複数の電極を形成して成る電圧
非直線性抵抗素子において、前記焼結体は酸化チ
タン系焼結体で構成し、該焼結体の前記ギヤツプ
内の周辺部に切欠部を有し、該切欠部に形成され
た導電層により、表面側の電極の一つと、該表面
側電極と前記ギヤツプを介して隣り合う他の表面
電極に対向する裏面側電極とを電気的に接続して
成ることを特徴とする電圧非直線性抵抗素子。 In a voltage nonlinear resistance element comprising a plurality of electrodes separated by gaps on the front and back surfaces of a sintered body, the sintered body is made of a titanium oxide based sintered body, and the sintered body is made of a titanium oxide based sintered body, and The body has a cutout in the periphery of the gap, and a conductive layer formed in the cutout allows one of the surface-side electrodes to be connected to the other surface adjacent to the surface-side electrode via the gap. A voltage nonlinear resistance element characterized by electrically connecting an electrode and an electrode on the back side opposite to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1522679U JPS6331354Y2 (en) | 1979-02-08 | 1979-02-08 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1522679U JPS6331354Y2 (en) | 1979-02-08 | 1979-02-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55114983U JPS55114983U (en) | 1980-08-13 |
JPS6331354Y2 true JPS6331354Y2 (en) | 1988-08-22 |
Family
ID=28836552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1522679U Expired JPS6331354Y2 (en) | 1979-02-08 | 1979-02-08 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6331354Y2 (en) |
-
1979
- 1979-02-08 JP JP1522679U patent/JPS6331354Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55114983U (en) | 1980-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5816602B2 (en) | Voltage nonlinear resistance element | |
WO1988009556A1 (en) | Surge absorbing device | |
JPS6331354Y2 (en) | ||
JPS6331355Y2 (en) | ||
JPH0119363Y2 (en) | ||
JPS5855589Y2 (en) | Voltage nonlinear resistance element | |
JPS6343876B2 (en) | ||
GB2044531A (en) | Non-linear resistance elements and method for manufacturing same | |
JPH0338802Y2 (en) | ||
JPS5919364Y2 (en) | barista | |
JPS5819835Y2 (en) | Voltage nonlinear resistance element | |
JP3286855B2 (en) | Manufacturing method of chip type PTC thermistor | |
JPS6015275Y2 (en) | Composite thick film varistor | |
JP3065426B2 (en) | Noise prevention commutator | |
JPH01289213A (en) | Manufacture of voltage-dependent nonlinear resistance element | |
JPH02148804A (en) | Ringlike varistor | |
JPS593559Y2 (en) | surge absorber | |
JPS6015277Y2 (en) | thick film varistor | |
JPS607904B2 (en) | Voltage nonlinear resistance element | |
JPS6130440Y2 (en) | ||
JPH0214162Y2 (en) | ||
JPH0717252Y2 (en) | Commutator for small DC 3-pole motor with varistor | |
JPH0113361Y2 (en) | ||
JPS595601A (en) | Multipolar voltage nonlinear resistor | |
JPS6032753Y2 (en) | surge absorber |