JPS648058B2 - - Google Patents

Info

Publication number
JPS648058B2
JPS648058B2 JP56203117A JP20311781A JPS648058B2 JP S648058 B2 JPS648058 B2 JP S648058B2 JP 56203117 A JP56203117 A JP 56203117A JP 20311781 A JP20311781 A JP 20311781A JP S648058 B2 JPS648058 B2 JP S648058B2
Authority
JP
Japan
Prior art keywords
metal powder
fibers
fiber
sintered
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56203117A
Other languages
English (en)
Other versions
JPS58104102A (ja
Inventor
Noryuki Kyosei
Magozo Hamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP56203117A priority Critical patent/JPS58104102A/ja
Publication of JPS58104102A publication Critical patent/JPS58104102A/ja
Publication of JPS648058B2 publication Critical patent/JPS648058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、繊維強化多孔質複合材料の製造方
法に関し、とくに、炭素繊維で補強された多孔質
焼結体における炭素繊維の分散を均一にするとと
もに、すべての方向に配向することにより、製品
の機械的強度を等方性にするものである。
一般に、短繊維、あるいはウイスカーと金属粉
末を混合、熱間押し出し、またはロール圧延によ
つて繊維を整列させると同時に結合する方法や連
続繊維では電着法、鋳造法などが知られている。
この種の複合材料の繊維による補強効果に関し
ては、ケリー(Kelly)の提唱する式が知られて
おり、複合材料の強度を大きくするには、強度の
大きい繊維を用い、繊維のアスペクト比を大きく
とり、また、含有体積分率を高くすること、さら
に、多孔質焼結体と繊維との界面せん断強度を向
上させることが有効であるとされている。しか
し、実際には、ケリーの単繊維補強のFRPの強
度式には考慮されていない繊維の分散、配向(方
向性)、ぬれ性などの因子が複合材料の強度に重
大な影響を与えるので、製造に当つてはこれらの
特性についても十分に検当する必要がある。
そこで、従来から繊維強化複合材料の製造方法
として各種の方法が提案され、たとえば、繊維の
外周に金属粉末をバインダーで固めたものを平行
に、または直交させて並べて焼結によつて拡散接
合した板状体を、繊維が種々の面内角度となるよ
うに積層させる方法、繊維と金属粉末を混合し
て、熱間押出し、または型ロール圧延によつて繊
維を整列させると同時に結合させる方法、繊維の
束の間に金属粉末を抜気と振動とによつてつめて
行き、これを焼結する方法等があるが、これらの
方法では、繊維の配向が何れも一方向もしくは面
内の2方向であるか、等方性を考慮していないた
め、すべての方向に強化された等方性の複合材料
が得られないという問題がある。
また、金属粉末用補強部材としては、炭素繊維
が、金属繊維やガラス繊維などの無機繊維に比べ
て強度、市場性(入手性)から最もすぐれている
が(炭素繊維の引張強さ280〜350Kg/mm2)、炭素
繊維を金属粉末(たとえば青銅)に混合すると、
両者の比重が、炭素繊維は1.8gr/cm3であるの
に対し、青銅は8.8gr/cm3であることから、こ
の比重差により繊維同士が集合して絡み付き球状
や束状となつて、金属粉末との分散が著しく不均
一となるため(毛球現象)、複合材料の強度低下
を来たす原因となつている。
この発明は、上記の問題を解決するためになさ
れたものであり、この発明の目的は、繊維を均一
に分散して、すべての方向に配向させることが可
能となる繊維強化多孔質複合材料の製造方法を提
供することにあり、また、この発明の目的は、す
べての方向で高い強度が得られる繊維強化多孔質
複合材料の製造方法を提供することにある。
すなわち、この発明は、図示する実施例のよう
に、金属粉末12の中に、銅、ニツケル、アルミ
ニウムなどの金属皮膜を施した炭素繊維10を無
加圧、またはこれに近い状態で埋設もしくは混入
し、これを仮焼結して、金属粉末12と炭素繊維
10とを拡散接合させた予備焼結体14を作り、
次いで、該予備焼結体14を細粒状に細断して混
ぜ合わせ、この細粒体15を常温で加圧成形し、
該加圧成形体18を再び焼結し、繊維の配向を等
方性とすることを特徴とする繊維強化多孔質複合
材料の製造方法に係る。
この発明においては、複合材料のマトリツクス
は、多孔質焼結体であり、一般に知られている銅
系または鉄系の焼結用金属粉末を使用する。
また、複合材料の補強部材は、炭素繊維を使用
するが、炭素繊維は金属とのぬれ性が悪く、その
まま焼結すると、多孔質焼結体との界面せん断強
度が低下する。そこで、この発明では、炭素繊維
の外周に銅、ニツケル、アルミニウムなどの金属
皮膜をメツキ等によつて被覆させたものを使用す
る。
この金属皮膜を施した炭素繊維は、連続繊維
(長繊維)、または不連続繊維(短繊維)として使
用する。
上記の金属粉末と炭素繊維とを使用して、この
発明の多孔質複合材料を製造する場合の工程につ
いて、図面を参照して説明する。
第1図は、連続状の炭素繊維を使用する場合の
製造工程を示す。
まず、同図aに示すように、ステンレスまたは
グラフアイト、セラミツクス製の容器11の中に
金属皮膜を施した炭素繊維10を一方向に整列さ
せて並べた複数の層の間に、金属粉末12を無加
圧の状態で入れて、該炭素繊維10を金属粉末1
2の中に埋設する。容器11に蓋13を被せて上
方から軽く押圧するか、あるいは容器11を振動
させながら蓋13を軽く押圧してもよい。
次に、上記の容器11を還元性雰囲気の炉に入
れて加熱し、金属粉末12を仮焼結して炭素繊維
10と拡散接合させ、同図bに示す予備焼結体1
4を作る。
次いで、上記予備焼結体14を多角形状に細断
して、同図cに示すような細粒体15とする。
続いて、上記細粒体15を同図dに示すように
容器16に入れて混ぜ合わす。
このように、炭素繊維10を一定の体積をもつ
細粒体15として混合することにより、炭素繊維
10と金属粉末12との比重差が実質上消失する
から、それぞれを単独で混合するときの比重差に
起因する毛球現象が防止され、炭素繊維10が均
一にマトリツクス中に分散することになる。
また、炭素繊維10の金属皮膜と金属粉末12
とを焼結により拡散接合させたのちに、細粒体1
5に細断して混合するから、炭素繊維10には直
接機械的外力が加わることがなく、金属粉末12
との混合時に擦れ合つて外周の金属皮膜が剥離す
るようなこともなくなる。
次に、混和された細粒体15を同図eに示すよ
うに、成形型17に入れて常温で所定の形状に加
圧成形する。予備焼結体14の金属粉末12は無
加圧またはこれに近い状態で焼結されているか
ら、細粒体15の内部には空孔が形成されてい
る。このため、細粒体15の常温での加圧成形に
は何らの支障はない。
上記の加圧成形体18(同図f)を再び還元性
雰囲気の炉で焼結するとこの発明の等方性繊維強
化多孔質複合材料が得られる。
上記のように、この発明では、炭素繊維10と
金属粉末12とを予備的に焼結したのち細断して
細粒体15としたものを、金属粉末の各粒子とみ
なして混和したのち加圧成形するものであるか
ら、炭素繊維10の分散が均一となるだけでな
く、すべての方向に配向させることなる。
上記の製造工程では、連続状の炭素繊維を1方
向に整列させた場合について説明したが、炭素繊
維を直交する方向もしくは斜交する方向に2方向
に整列させることもできる。
また、不連続状の短い炭素繊維を使用する場合
は、該炭素繊維を所定の混合割合で金属粉末中に
埋設して、前記と同様の工程により製造すればよ
い。
次に、この発明の実施例について説明する。使
用材料は次の通りである。
(1) 炭素繊維 銅メツキプリプレグ(素線径8μm、銅メツ
キの厚さ半径11.9μm、メツキ線径32μm) (2) 金属粉末 青銅粉(錫10%、100メツシユ) 上記の炭素繊維の混合体積分率は約5%となる
ようにして、円形容器内の金属粉末中に埋設し、
弱還元性雰囲気中で、780℃の温度で20分間加熱
して仮焼結した。次いで、この予備焼結体を約
1.5〜2mm3の立方体に細断し、この細粒体に
5ton/cm2の成形圧を加えて外径20mm×内径10mm×
長さ20mmの円筒体に加圧成形し、この円筒体を弱
還元性雰囲気中で、780℃の温度で20分間加熱し
て本焼結した。
上記の繊維強化多孔質複合材料と同一の条件で
炭素繊維を含有しない多孔質焼結体を作り、両者
の圧環試験を行なつた結果、平均圧環値は前者で
は65.4Kg/mm2であるのに対し、後者では39.7g/
mm2であり、この発明によれば約60%高い強度が得
られることが判る。
なお、複合材料の強度に影響する炭素繊維のア
スペクト比と含有体積分率については、予備焼結
体の細粒体のサイズを適宜選定することにより、
制御することができる。
第2図および第3図は、この発明の応用例であ
り、予備焼結体を一体の形状、大きさの細粒体と
したものを組立てて積層しユニツトブロツク材を
形成して、構造部材として利用できるようにした
ものである。
第2図は、炭素繊維10が一方向に整列した細
粒体15(同図bにその一個を示す)を、同図a
に示すように、等方性配向になるよう規則的に積
み重ねて圧縮成形後、本焼結したものであり、第
3図は、炭素繊維10が直交する2方向に整列し
た細粒体15(同図bにその一個を示す)を同図
aに示すように規則的に積み重ねて本焼結したも
のである。
以上説明したように、この発明は、金属皮膜を
施した炭素繊維と金属粉末とを仮焼結して細粒体
に細断し、この細粒体を混ぜ合わせたのち、加圧
成形して本焼結する構成としている。したがつ
て、この発明によれば、従来の複合材料において
課題とされていた繊維の分散、配向、ぬれ性の不
良による強度低下の欠点をすべて解消することが
可能となり、すべての方向に高い強度をもつ繊維
強化多孔質複合材料が得られる効果がある。
【図面の簡単な説明】
第1図は、この発明の製造工程の実施例を示す
系統図、第2図および第3図は、それぞれこの発
明を応用した積層ユニツトブロツク材を示す斜視
図である。 図中、10は炭素繊維、12は金属粉末、14
は予備焼結体、15は細粒体、18は加圧成形体
である。

Claims (1)

    【特許請求の範囲】
  1. 1 金属粉末の中に、銅、ニツケル、アルミニウ
    ムなどの金属皮膜を施した炭素繊維を無加圧また
    はこれに近い状態で埋設もしくは混入し、これを
    仮焼結して、金属粉末と炭素繊維とを拡散接合さ
    せた予備焼結体を作り、次いで、該予備焼結体を
    細粒状に細断して混ぜ合わせ、この細粒体を常温
    で加圧成形し、該加圧成形体を再び焼結し、繊維
    の配向を等方性とすることを特徴とする繊維強化
    多孔質複合材料の製造方法。
JP56203117A 1981-12-16 1981-12-16 繊維強化多孔質複合材料の製造方法 Granted JPS58104102A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56203117A JPS58104102A (ja) 1981-12-16 1981-12-16 繊維強化多孔質複合材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56203117A JPS58104102A (ja) 1981-12-16 1981-12-16 繊維強化多孔質複合材料の製造方法

Publications (2)

Publication Number Publication Date
JPS58104102A JPS58104102A (ja) 1983-06-21
JPS648058B2 true JPS648058B2 (ja) 1989-02-13

Family

ID=16468676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56203117A Granted JPS58104102A (ja) 1981-12-16 1981-12-16 繊維強化多孔質複合材料の製造方法

Country Status (1)

Country Link
JP (1) JPS58104102A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570513A (zh) * 2019-01-15 2019-04-05 中南大学 一种多孔金属粉末的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076015B2 (ja) * 1989-01-20 1995-01-25 東海カーボン株式会社 ウイスカー強化Al系金属複合材の製造方法
CN113084326A (zh) * 2019-12-23 2021-07-09 宝山钢铁股份有限公司 一种金属基复合材料及其制备方法
CN114101676B (zh) * 2022-01-25 2022-04-29 西部宝德科技股份有限公司 一种蒙乃尔滤管的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109570513A (zh) * 2019-01-15 2019-04-05 中南大学 一种多孔金属粉末的制备方法
CN109570513B (zh) * 2019-01-15 2021-08-06 中南大学 一种多孔金属粉末的制备方法

Also Published As

Publication number Publication date
JPS58104102A (ja) 1983-06-21

Similar Documents

Publication Publication Date Title
US4818633A (en) Fibre-reinforced metal matrix composites
US20160012935A1 (en) Feedstocks for additive manufacturing and methods for their preparation and use
US5588477A (en) Method of making metal matrix composite
JPS6174804A (ja) ブロックの成形方法及びブロックの成形装置
US3887365A (en) Process for making sheets with parallel pores of uniform size
JPS648058B2 (ja)
JP2001073062A (ja) 非晶質軟磁性合金粉末成形体の製造方法
US20200001499A1 (en) Composite housing of ceramic and plastic and method for manufacturing the same
JPH0344432A (ja) 繊維強化金属複合材料の製造方法
JPH02194132A (ja) 金属基複合材料の製造方法
JPH11256202A (ja) 非晶質軟磁性合金粉末成形体の製造方法
JP2713225B2 (ja) マイクロボール材を用いた金属成形方法と金属被覆方法
JPS5943835A (ja) SiCウイスカ−によるFRMの製造法
JP2940325B2 (ja) Frm用プリフォームの製造方法
JPH1129831A (ja) 金属基複合材用プリフォーム及びその製造方法
JPS61127836A (ja) チタン酸カリウム繊維強化金属材料の製造方法
JPS6131369A (ja) 多孔体およびその製造方法
JPS6266929A (ja) 金属基複合材の製造法
JP3792839B2 (ja) 造粒物及び摩擦材の製造方法
JPH09263857A (ja) Frm用プリフォームの製造方法
JPS58167160A (ja) 繊維強化金属複合材料の製法
JPS61250131A (ja) 複合部材の製造法
JP2953012B2 (ja) 成形用型
JPS6011261A (ja) セラミツクス焼結体の製造方法
JPH01111828A (ja) 複合材料製造用短繊維成形体の製造方法