JPS647135B2 - - Google Patents

Info

Publication number
JPS647135B2
JPS647135B2 JP5199984A JP5199984A JPS647135B2 JP S647135 B2 JPS647135 B2 JP S647135B2 JP 5199984 A JP5199984 A JP 5199984A JP 5199984 A JP5199984 A JP 5199984A JP S647135 B2 JPS647135 B2 JP S647135B2
Authority
JP
Japan
Prior art keywords
less
temperature
hot
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5199984A
Other languages
Japanese (ja)
Other versions
JPS60197818A (en
Inventor
Kazutoshi Kunishige
Yasuo Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5199984A priority Critical patent/JPS60197818A/en
Publication of JPS60197818A publication Critical patent/JPS60197818A/en
Publication of JPS647135B2 publication Critical patent/JPS647135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、強度が高く、かつ低温靭性の極め
て優れたNi含有鋼熱延鋼帯を、熱延のままでコ
スト安く製造する方法に関するものである。 <産業上の利用分野> 近年、益々増加の一途をたどつているエチレン
プラントや石炭液化プラント等の化学工業用装置
類には、−100℃を下廻る温度での使用にも十分耐
え得るだけの低温用鋼が要求されており、これま
で、例えばASTM規格、A203のGradeD又はE
に該当する3.5%Ni鋼が多用されていた。 ところが、最近になつて、上記各装置の大型化
傾向が目立ちはじめてきたことから、使用される
鋼材の厚肉化や高強度化の要求が強くなつてお
り、その対処法が盛んに検討されるようになつて
きた。 <従来技術> そこで、本出願人は、上述のような状況の中に
あつて、例えば50mmを越える極厚部材としても高
い強度と優れた低温靭性を確保し得る、特定の成
分組成と熱処理との組合せで得られるNi含有強
靭鋼を開発し、特開昭53―95120号として先に提
案したが、今日まで良好な使用実績があげられて
いる。 ところで、従来、上記特開昭53―95120号とし
て提案したものを含めて、この種の低温用Ni含
有鋼板は、一般に厚板圧延工場にて製造されてき
たものであり、熱延工場での検討はほとんどなさ
れていない。更にこの厚板を熱処理して製造され
るのが普通であつた。なぜなら、熱間圧延のまま
では、所望の高強度と低温靭性を実現できなかつ
たからである。そして、板厚が厚くなるほど、十
分に管理された熱処理を必要としていたのであ
る。 <発明の目的> このようなことから、本発明者等は、上述の如
き低温用Ni含有鋼鋼板製造工程における熱処理
を省略し、熱延工場にて、熱延のままにて例え
4.5mm厚以上の厚肉鋼板にあつても脆性破面遷移
温度が−100℃を十分に下廻るとともに、引張り
強度:50Kgf/mm2程度以上を有する熱延鋼帯鋼材
を得るべく、鋼組成や熱間圧延条件等について
様々な観点からの検討を加えた結果、以下に示さ
れる如き知見を得たのである。 <知見事項> 化学成分組成を特定のものに調整したNi含有
鋼を使用し、これに特定条件の制御圧延と制御冷
却とを施した後、通常の熱延鋼帯の製造法として
は思いもよらないような著しく低い温度域で巻取
りを実施すると、微細粒のフエライトと、均一に
分散した微細粒硬質第2相(微細なパーライトや
ベイナイトが主体)から成る組織が得られ、熱延
のままでも、高強度と優れた低温靭性とを兼ね備
えたNi含有鋼熱延鋼帯が得られること。 <発明の構成> この発明は、上記知見に基づいてなされたもの
であり、 C:0.02〜0.15%(以下、成分割合をを表わす
%は重量%とする)、 Si:0.7%以下、Mn:0.3〜1.5%、 S:0.01%以下、Ni:1.5〜3.9%、 So.A:0.01〜0.10% を含有するとともに、必要により更に、 Nb:0.05%以下、V:0.10%以下、 Ti:0.15%以下、Cu:0.5%以下、 Cr:0.5%以下、Mo:0.3%以下、 Ca:0.0100%以下 のうちの1種以上をも含み、 残部:Fe及び他の不可避不純物 から成る成分組成の鋼に、 1100℃以下での累積圧下率:70%以上、 仕上げ温度:850〜650℃、 の熱間圧延を施した後、直ちに5℃/sec以上の
冷却速度で急冷し、550〜250℃の温度域にて巻取
ることにより、高強度で、かつ低温靭性の優れた
Ni含有鋼熱延鋼帯をコスト安く製造する点に特
徴を有するものである。 次いで、この発明の方法において、鋼の組成成
分量、及び熱延・巻取り条件を前記の如くに数値
限定した理由を説明する。 A 組成成分 (a) C C成分は、鋼の強度を向上する作用を有してい
るが、その含有量が0.02%未満では所望の強度を
確保することができず、他方0.15%を越えて含有
させると、溶接部の低温靭性が大きく劣化するこ
とから、C含有量を0.02〜0.15%と定めた。 (b) Si Si成分には、微量の添加によつても鋼の強度を
上昇する効果があるが、0.7%を越えて含有させ
ると靭性の低下を生じることとなるので、Si含有
量は0.7%以下と定めた。 (c) Mn Mn成分には、鋼の強度と靭性の双方を向上す
る作用を有しているが、その含有量が0.3%未満
では前記作用に所望の効果が得られず、他方1.5
%を越えて含有させると溶接性が劣化することか
ら、Mn含有量を0.3〜1.5%と定めた。 (d) S Sは、Mnと結合してA系介在物を生じ、靭性
及び延性を低下するので可及的に少ない方が好ま
しい不純物元素であるが、経済性を考えてS含有
量の上限を0.015%と定めた。しかしながら、好
ましくは0.003%以下に制限するのが良い。 (e) Ni Ni成分は、鋼の強度と靭性を確保するために
欠かせない元素である。そして、その含有量が
1.5%未満では、例えばエチレンプラントの構造
部材等に必要とされる−100℃程度の温度に耐え
るだけの低温靭性の確保ができず、他方、3.9%
を越えて含有させることは徒に鋼材価格を上昇さ
せるだけで、それに見合つた特性向上効果がもた
らされないことから、Ni含有量は1.5〜3.9%と定
めた。 (f) So.A So.A成分は、鋼の脱酸のために必要な
元素であり、十分な脱酸効果を確保するためには
0.01%以上を含有させる必要がある。一方、0.10
%を越えて含有させると、その効果が飽和するだ
けでなく、靭性に悪影響を及ぼすようになるの
で、Sol.Al含有量を0.01〜0.10%と定めた。 (g) Nb,V,Ti,Cu,Cr,Mo及びCa これらの成分には、鋼の強度上昇作用や、靭性
及び延性の改善作用があるので、必要により1種
以上添加含有せしめられるものであるが、以下、
個々の元素についてその添加量を制限した理由を
説明する。 Nb,V及びTi これらの成分は、それぞれ析出硬化により大幅
な強度上昇効果を呈するものであるが、Nb含有
量が0.05%を、V含有量が0.10%を、そしてTi含
有量が0.15%をそれぞれ越えてもその効果が飽和
してしまうことから、Nb含有量は0.05%以下、
V含有量は0.10%以下、Ti含有量は0.15%以下と
それぞれ定めた。 Cu,Cr及びMo これらの成分も、鋼の強度を上昇するために有
効な元素であるが、Cu含有量が0.5%を越えると
その効果が飽和することになり、Cr含有量が0.5
%を越えるとやはりその効果が飽和することにな
り、そしてMo含有量が0.3%を越えてもその効果
が飽和することとなることから、Cu及びCr含有
量はそれぞれ0.5%以下、Mo含有量は0.3%以下
と定めた。 Ca Ca成分は、介在物形態制御作用によつて靭性
及び延性を向上させる有効な元素であるが、
0.0100%を越えて含有させると鋼中介在物量が増
加し、かえつて靭性及び延性を劣化することとな
るので、Ca含有量を0.0100%と定めた。 なお、不純物元素としてのPについては、この
発明の方法では特に制限する必要がないが、でき
れば極力少なくする方が好ましい。特に、この発
明の方法で得られた鋼材を、その後熱処理して使
用するような場合には、P含有量を十分に抑制す
るのが良い。 B 熱延・巻取り条件 (a) 1100℃以下での累積圧下率 1100℃以下での累積圧下率が70%を下廻ると、
オーステナイトの細粒化があまり進行せず、目的
とする細粒組織が実現できないので、所望の低温
靭性が得難い。従つて、1100℃以下の温度域で70
%以上の累積圧下率を確保することと定めた。 (b) 熱延仕上げ温度 熱延仕上げ温度が850℃を越えると、やはりオ
ーステナイトの細粒化が進行しないので目的とす
る細粒組織が得られず、他方、650℃を下廻る温
度域では鋼の熱間変形抵抗が高くなつて、実用上
熱間圧延が不可能に近いため、熱延仕上げ温度を
850〜650℃と定めた。なお、熱延仕上げ温度が
700℃以下になるとフエライト変態後加工を受け
るようになるが、この発明の条件通りの急冷及び
低温巻取りを行えば、フエライト粒が粗大化する
ことなく、むしろ良好な低温靭性を得ることがで
きる(後述する第1図からも、このことは明白で
ある)。 (c) 冷却速度 熱間圧延終了後の冷却速度が5℃/secよりも
遅くなると、鋼材組織が粗大なフエライト・パー
ライト組織となり、そのパーライトの分布も帯状
となつて良好な低温靭性が得られない。特に、こ
の発明の方法で対象とするNi含有鋼のようにフ
エライト地の靭性が大幅に改善されている鋼にお
いては、クラツクを発生しやすい箇所である硬質
第2相(フエライト以外のパーライトやベイナイ
ト等)の分布状況が靭性に与える影響は極めて大
きいようである。従つて、熱間圧延終了後の冷却
速度を5℃/sec以上と定めた。 (d) 巻取り温度 巻取り温度が550℃よりも高いと、熱間圧延終
了後の冷却速度が5℃/sec以上であつたとして
も、やはり粗大なフエライト・パーライト組織と
なり、しかもそのパーライトの分布も帯状となつ
て良好な低温靭性が得られなくなる。一方、冷却
速度が5℃/sec以上の急冷で、250℃よりも低い
温度で巻取ると、マルテンサイト組織が混入して
きて、やはり靭性が劣化する。従つて、巻取り温
度を550〜250℃を定めたが、好ましくは500〜250
℃の温度域で巻取ることが推奨される。 第1図は、本発明方法の対象鋼であるところ
の、0.06%C―0.22%Si―0.65%Mn―0.005%P
―0.001%S―3.54%Ni―0.038%Al―0.0040%N
鋼の強靭性に及ぼす熱延仕上げ温度と巻取り温度
との影響を示すグラフであり、熱延加熱温度はい
ずれも1200℃であつて、仕上げ板厚が9mm、熱延
後巻取り間の冷却速度は全て5〜35℃/secの範
囲に入つているものについて調べたものである。 第1図からも、Ni含有鋼に、本発明の熱延,
冷却及び巻取り条件件を適用した場合にのみ高強
度と優れた低温靭性を兼備せしめ得ることがわか
る。 次に、この発明を実施例により比較例と対比し
ながら具体的に説明する。 <実施例> まず、通常の方法によつて第1表に示される如
き成分組成の鋼A〜Lを溶製した。 次いで、これらの各鋼を第2表に示される条件
で熱間圧延し、巻取りを行つて厚さ:9mmの熱延
厚鋼帯を製造した。 このようにして得られた各熱延鋼帯から試験片
を切り出し、その機械性質を調べたところ、同じ
く第2表に示される如き結果が得られた。 第2表に示される結果からも明らかなように、
本発明における条件を満足する方法で得られた熱
延鋼帯は全て、熱間圧延のままで高強度と優れた
低温靭性を示すのに対して、1100℃以下での圧下
量が少ない試験番号1の方法によつて得られた熱
延鋼帯はシヤルピー衝撃特性が悪く、熱間圧延後
の冷却速度の遅い試験番号2の方法によつて得ら
れた熱延鋼帯や、Ni含有量の低い鋼を素材と
The present invention relates to a method for manufacturing a Ni-containing hot-rolled steel strip having high strength and extremely excellent low-temperature toughness as hot-rolled at a low cost. <Industrial Application Fields> Chemical industry equipment such as ethylene plants and coal liquefaction plants, which have been increasing in number in recent years, are equipped with equipment that can withstand use at temperatures below -100°C. For example, ASTM standard A203 Grade D or E steel is required.
3.5% Ni steel, which corresponds to the above, was frequently used. However, recently, there has been a noticeable trend toward larger sizes of the above-mentioned devices, and there is a growing demand for thicker and stronger steel materials, and ways to deal with this are being actively investigated. It has become like that. <Prior Art> Therefore, under the above-mentioned circumstances, the applicant has developed a specific component composition and heat treatment that can ensure high strength and excellent low-temperature toughness even for extremely thick members exceeding, for example, 50 mm. We developed a strong Ni-containing steel obtained by combining the above and proposed it earlier as JP-A No. 53-95120, and it has had good results in use to date. By the way, this type of low-temperature Ni-containing steel sheets, including the one proposed in JP-A No. 53-95120 mentioned above, have generally been manufactured at plate rolling mills, and have not been manufactured at hot rolling mills. There has been little consideration. Furthermore, it was common to heat-treat this thick plate to manufacture it. This is because the desired high strength and low-temperature toughness could not be achieved with hot rolling. The thicker the plate, the more it required well-controlled heat treatment. <Purpose of the Invention> For this reason, the present inventors omitted the heat treatment in the manufacturing process of low-temperature Ni-containing steel sheets as described above, and produced a hot-rolled steel sheet at a hot-rolling factory.
In order to obtain a hot-rolled steel strip that has a brittle fracture surface transition temperature well below -100℃ even when it is a thick steel plate with a thickness of 4.5 mm or more, and a tensile strength of about 50 Kgf/mm 2 or more, we have developed a steel composition. As a result of examining the hot rolling conditions and hot rolling conditions from various viewpoints, the following findings were obtained. <Findings> Using Ni-containing steel whose chemical composition has been adjusted to a specific one, and subjecting it to controlled rolling and controlled cooling under specific conditions, this method is unimaginable as a manufacturing method for ordinary hot-rolled steel strip. If the coiling is carried out at a significantly low temperature range that does not cause the hot rolling, a structure consisting of fine grained ferrite and a uniformly dispersed fine grained hard second phase (mainly fine pearlite and bainite) will be obtained. It is possible to obtain a Ni-containing hot-rolled steel strip that has both high strength and excellent low-temperature toughness even as it is. <Structure of the Invention> This invention was made based on the above findings, and includes: C: 0.02 to 0.15% (hereinafter, % representing the component ratio is expressed as weight %), Si: 0.7% or less, Mn: 0.3-1.5%, S: 0.01% or less, Ni: 1.5-3.9%, So. Contains A: 0.01 to 0.10%, and further contains Nb: 0.05% or less, V: 0.10% or less, Ti: 0.15% or less, Cu: 0.5% or less, Cr: 0.5% or less, Mo: 0.3% or less. , Ca: 0.0100% or less, and the balance: Fe and other unavoidable impurities. Cumulative reduction rate at 1100℃ or less: 70% or more, Finishing temperature: 850~ After hot rolling at 650°C, it is immediately quenched at a cooling rate of 5°C/sec or higher, and coiled in a temperature range of 550 to 250°C, resulting in high strength and excellent low-temperature toughness.
This method is characterized by the fact that it produces Ni-containing hot-rolled steel strip at a low cost. Next, in the method of the present invention, the reason for numerically limiting the amount of the steel composition and the hot rolling/coiling conditions as described above will be explained. A Compositional component (a) C The C component has the effect of improving the strength of steel, but if its content is less than 0.02%, the desired strength cannot be secured, while if it exceeds 0.15% Since C content greatly deteriorates the low-temperature toughness of the weld zone, the C content was set at 0.02 to 0.15%. (b) Si The Si component has the effect of increasing the strength of steel even when added in a small amount, but if it is added in excess of 0.7%, toughness will decrease, so the Si content should be 0.7%. % or less. (c) Mn The Mn component has the effect of improving both the strength and toughness of steel, but if its content is less than 0.3%, the desired effect cannot be obtained;
Since weldability deteriorates if the Mn content exceeds 0.3% to 1.5%. (d) S S is an impurity element that combines with Mn to form A-based inclusions and reduces toughness and ductility, so it is preferable to minimize the S content as much as possible. was set at 0.015%. However, it is preferably limited to 0.003% or less. (e) Ni Ni is an essential element for ensuring the strength and toughness of steel. And its content is
If it is less than 1.5%, it will not be possible to ensure low-temperature toughness sufficient to withstand temperatures of around -100°C, which is required for structural members of ethylene plants, etc.; on the other hand, if it is 3.9%
The Ni content was set at 1.5 to 3.9% because Ni content in excess of 1.5% would only increase the price of the steel material and would not result in commensurate property improvement effects. (f) So. A So. Component A is an element necessary for deoxidizing steel, and in order to ensure sufficient deoxidizing effect, it is necessary to deoxidize steel.
It is necessary to contain 0.01% or more. On the other hand, 0.10
If the Sol.Al content exceeds 0.01% to 0.10%, the effect not only becomes saturated but also has a negative effect on toughness. Therefore, the Sol.Al content was set at 0.01 to 0.10%. (g) Nb, V, Ti, Cu, Cr, Mo, and Ca These ingredients have the effect of increasing the strength of steel and improving toughness and ductility, so one or more of these ingredients may be added if necessary. There is, but below:
The reason for limiting the amount of each element added will be explained. Nb, V, and Ti These components each exhibit a significant strength-increasing effect through precipitation hardening, but Nb content is 0.05%, V content is 0.10%, and Ti content is 0.15%. The Nb content should be 0.05% or less, as the effect will be saturated even if it exceeds each.
The V content was determined to be 0.10% or less, and the Ti content was determined to be 0.15% or less. Cu, Cr, and Mo These components are also effective elements for increasing the strength of steel, but if the Cu content exceeds 0.5%, the effect will be saturated, and if the Cr content exceeds 0.5%, the effect will be saturated.
%, the effect will be saturated, and even if the Mo content exceeds 0.3%, the effect will also be saturated. Therefore, the Cu and Cr contents should be 0.5% or less, and the Mo content has been set at 0.3% or less. Ca Ca component is an effective element that improves toughness and ductility by controlling inclusion morphology.
If the Ca content exceeds 0.0100%, the amount of inclusions in the steel will increase, and the toughness and ductility will deteriorate, so the Ca content was set at 0.0100%. Note that although there is no need to particularly limit P as an impurity element in the method of the present invention, it is preferable to reduce it as much as possible. In particular, when the steel material obtained by the method of the present invention is used after being heat treated, it is preferable to sufficiently suppress the P content. B. Hot rolling/coiling conditions (a) Cumulative rolling reduction at temperatures below 1100℃ If the cumulative rolling reduction at temperatures below 1100℃ falls below 70%,
Since the grain refinement of austenite does not proceed much and the desired fine grain structure cannot be achieved, it is difficult to obtain the desired low temperature toughness. Therefore, in the temperature range below 1100℃, 70
% or more. (b) Hot-rolling finishing temperature If the hot-rolling finishing temperature exceeds 850°C, austenite grain refinement will not proceed, making it impossible to obtain the desired fine-grained structure. On the other hand, in the temperature range below 650°C, steel As the hot deformation resistance of
The temperature was set at 850-650℃. In addition, the hot rolling finishing temperature is
When the temperature is below 700°C, it undergoes processing after ferrite transformation, but if the quenching and low-temperature winding are carried out according to the conditions of this invention, the ferrite grains will not become coarse, and rather good low-temperature toughness can be obtained. (This is also clear from FIG. 1, which will be described later). (c) Cooling rate When the cooling rate after hot rolling is slower than 5℃/sec, the steel structure becomes a coarse ferrite/pearlite structure, and the pearlite distribution becomes band-like, resulting in good low-temperature toughness. do not have. In particular, in steels where the toughness of the ferrite base has been greatly improved, such as the Ni-containing steel targeted by the method of this invention, the hard second phase (pearlite and bainite other than ferrite), which is prone to cracking, is etc.) appears to have an extremely large influence on toughness. Therefore, the cooling rate after hot rolling was determined to be 5° C./sec or more. (d) Coiling temperature If the coiling temperature is higher than 550°C, even if the cooling rate after hot rolling is 5°C/sec or more, a coarse ferrite/pearlite structure will result, and the pearlite will deteriorate. The distribution also becomes band-like, making it impossible to obtain good low-temperature toughness. On the other hand, if the material is rapidly cooled at a cooling rate of 5° C./sec or more and is wound at a temperature lower than 250° C., martensitic structure will be mixed in and the toughness will deteriorate as well. Therefore, the winding temperature was set at 550 to 250°C, but preferably 500 to 250°C.
It is recommended to wind in the temperature range of °C. Figure 1 shows 0.06%C-0.22%Si-0.65%Mn-0.005%P, which is the target steel for the method of the present invention.
-0.001%S-3.54%Ni-0.038%Al-0.0040%N
This is a graph showing the influence of hot rolling finishing temperature and coiling temperature on the toughness of steel, where the hot rolling heating temperature is 1200°C in both cases, the finishing plate thickness is 9 mm, and the cooling between coiling after hot rolling. All speeds were investigated within the range of 5 to 35°C/sec. From FIG. 1, it can be seen that the hot rolled steel of the present invention
It can be seen that high strength and excellent low temperature toughness can be combined only when cooling and winding conditions are applied. Next, the present invention will be specifically explained using examples and comparing with comparative examples. <Example> First, steels A to L having the compositions shown in Table 1 were produced by a conventional method. Next, each of these steels was hot rolled under the conditions shown in Table 2 and coiled to produce hot rolled thick steel strips having a thickness of 9 mm. Test pieces were cut out from each of the hot-rolled steel strips obtained in this way and their mechanical properties were examined, and the results shown in Table 2 were also obtained. As is clear from the results shown in Table 2,
All hot-rolled steel strips obtained by the method that satisfies the conditions of the present invention show high strength and excellent low-temperature toughness as hot-rolled, whereas test numbers with a small reduction at 1100°C or less The hot-rolled steel strip obtained by method 1 has poor sharpy impact properties, and the hot-rolled steel strip obtained by test number 2, which has a slow cooling rate after hot rolling, has poor Ni content. Made of low steel material

【表】 (注1) 「比」は「比較鋼」を示す。
(注2) ※印は、本発明の条件から外れて
いることを示す。
[Table] (Note 1) “Ratio” indicates “comparison steel”.
(Note 2) * indicates that the conditions are outside the conditions of the present invention.

【表】 (注) ※印は、本発明の条件から外れている
ことを示す。
した試験番号3の方法によつて得られた熱延鋼帯
は、ともに強度並びにシヤルピー衝撃特性に劣つ
ていることがわかる。 もちろん、この発明の方法によつて得られる熱
延鋼帯は、熱延のままで使用して十分に満足し得
る効果を得ることができるものであるが、該熱延
鋼帯を素材として、これに焼入れ焼戻し、或いは
焼準し処理を施して使用しても良いことはもちろ
んである。 <総括的な効果> 上述のように、この発明によれば、熱間圧延の
ままで、強度が高く、かつ優れた低温靭性を兼備
したNi含有鋼帯板材を、コスト安く、安定して
製造することができ、エチレンプラントや石炭液
化プラント等の化学工業装置の素材に使用して優
れた性能を発揮するなど、産業上有用な効果がも
たらされるのである。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
It can be seen that the hot rolled steel strip obtained by the method of Test No. 3 was inferior in both strength and Charpy impact properties. Of course, the hot-rolled steel strip obtained by the method of the present invention can be used as it is as hot-rolled to obtain fully satisfactory effects, but if the hot-rolled steel strip is used as a raw material, Of course, it may be used after being subjected to quenching and tempering or normalizing treatment. <Overall Effects> As described above, according to the present invention, it is possible to stably produce Ni-containing steel strips that have high strength and excellent low-temperature toughness as hot-rolled at low cost. It can be used as a material for chemical industrial equipment such as ethylene plants and coal liquefaction plants, and exhibits excellent performance, resulting in industrially useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ni含有鋼の強靭性に及ぼす熱延仕
上げ温度と巻取り温度との影響を示すグラフであ
る。
FIG. 1 is a graph showing the influence of hot rolling finishing temperature and coiling temperature on the toughness of Ni-containing steel.

Claims (1)

【特許請求の範囲】 1 重量割合にて C:0.02〜0.15%、 Si:0.7%以下、 Mn:0.3〜1.5%、 S:0.015%以下、 Ni:1.5〜3.9%、 So.A:0.01〜0.10%、 残部:Fe及び他の不可避不純物 から成る成分組成の鋼に、 1100℃以下での累積圧下率:70%以上、 仕上げ温度:850〜650℃ の熱間圧延を施した後、直ちに5℃/sec以上の
冷却速度で急冷し、550〜250℃の温度域にて巻取
ることを特徴とする、低温Ni含有鋼熱延鋼帯の
製造方法。 2 重量割合にて、 C:0.02〜0.15%、 Si:0.7%以下、 Mn:0.3〜1.5%、 S:0.015%以下、 Ni:1.5〜3.9%、 So.A:0.01〜0.10% を含有するとともに、更に、 Nb:0.05%以下、 V:0.10%以下、 Ti:0.15%以下、 Cu:0.5%以下、 Cr:0.5%以下、 Mo:0.3%以下、 Ca:0.0100%以下 のうちの1種以上をも含み、 残部:Fe及び他の不可避不純物 から成る成分組成の鋼に、 1100℃以下での累積圧下率:70%以上、 仕上げ温度:850〜650℃、 の熱間圧延を施した後、直ちに5℃/sec以上の
冷却速度で急冷し、550〜250℃の温度域にて巻取
ることを特徴とする、低温Ni含有鋼熱延鋼帯の
製造方法。
[Claims] 1. C: 0.02 to 0.15%, Si: 0.7% or less, Mn: 0.3 to 1.5%, S: 0.015% or less, Ni: 1.5 to 3.9%, So. Steel with a chemical composition consisting of A: 0.01~0.10%, balance: Fe and other unavoidable impurities, is subjected to hot rolling at a temperature of 1100°C or less, a cumulative reduction rate of 70% or more, and a finishing temperature of 850~650°C. A method for producing a hot-rolled steel strip containing low-temperature Ni, the method comprising immediately quenching at a cooling rate of 5° C./sec or more and coiling in a temperature range of 550 to 250° C. 2 In terms of weight percentage, C: 0.02 to 0.15%, Si: 0.7% or less, Mn: 0.3 to 1.5%, S: 0.015% or less, Ni: 1.5 to 3.9%, So. Contains A: 0.01 to 0.10%, and further contains Nb: 0.05% or less, V: 0.10% or less, Ti: 0.15% or less, Cu: 0.5% or less, Cr: 0.5% or less, Mo: 0.3% or less, Ca. : Contains one or more of the following: 0.0100% or less, the remainder: Fe and other unavoidable impurities, Cumulative reduction rate at 1100℃ or less: 70% or more, Finishing temperature: 850-650℃ , after hot rolling, immediately quenching at a cooling rate of 5°C/sec or more, and coiling in a temperature range of 550 to 250°C. Method.
JP5199984A 1984-03-16 1984-03-16 Manufacture of hot rolled ni steel strip for low temperature use Granted JPS60197818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199984A JPS60197818A (en) 1984-03-16 1984-03-16 Manufacture of hot rolled ni steel strip for low temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199984A JPS60197818A (en) 1984-03-16 1984-03-16 Manufacture of hot rolled ni steel strip for low temperature use

Publications (2)

Publication Number Publication Date
JPS60197818A JPS60197818A (en) 1985-10-07
JPS647135B2 true JPS647135B2 (en) 1989-02-07

Family

ID=12902539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199984A Granted JPS60197818A (en) 1984-03-16 1984-03-16 Manufacture of hot rolled ni steel strip for low temperature use

Country Status (1)

Country Link
JP (1) JPS60197818A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624821A (en) * 1985-06-28 1987-01-10 Kawasaki Steel Corp Manufacture of steel sheet for low temperature use
JP6610352B2 (en) * 2016-03-11 2019-11-27 日本製鉄株式会社 Low temperature nickel-containing steel sheet with excellent tensile strength and toughness and method for producing the same

Also Published As

Publication number Publication date
JPS60197818A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
CN113166897B (en) Ultra-high strength steel having excellent cold workability and SSC resistance and method for manufacturing the same
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH07188834A (en) High strength steel sheet having high ductility and its production
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
KR102255823B1 (en) High-strength steel having excellent formability and high yield ratio and method for manufacturing same
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
EP0535238A1 (en) High-strength steel sheet for forming and production thereof
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JP3337246B2 (en) Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction
JPS647135B2 (en)
KR0146798B1 (en) Method for manufacturing ferritic stainless steel
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
EP4357476A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
TWI841339B (en) Steel plate and method for manufacturing the same
JP7367896B1 (en) Steel plate and its manufacturing method
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
JP2919642B2 (en) Manufacturing method of high carbon steel for tempering with excellent toughness and fatigue resistance