KR102255823B1 - High-strength steel having excellent formability and high yield ratio and method for manufacturing same - Google Patents

High-strength steel having excellent formability and high yield ratio and method for manufacturing same Download PDF

Info

Publication number
KR102255823B1
KR102255823B1 KR1020190164280A KR20190164280A KR102255823B1 KR 102255823 B1 KR102255823 B1 KR 102255823B1 KR 1020190164280 A KR1020190164280 A KR 1020190164280A KR 20190164280 A KR20190164280 A KR 20190164280A KR 102255823 B1 KR102255823 B1 KR 102255823B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
cooling
rolled steel
hot
Prior art date
Application number
KR1020190164280A
Other languages
Korean (ko)
Inventor
류주현
송태진
안연상
서창효
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020190164280A priority Critical patent/KR102255823B1/en
Application granted granted Critical
Publication of KR102255823B1 publication Critical patent/KR102255823B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

Provided are a steel sheet having a high yield ratio and improved formability and a manufacturing method thereof. The steel sheet having a high yield ratio and improved formability comprises, by wt%, C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.2% or less (including 0%), Mo: 0.5% or less (excluding 0%), and the remainder of Fe and inevitable impurities, satisfies the following relational expression 1, and has a microstructure containing 95% or more of ferrite and the remainder of pearlite. The aspect ratio of the ferrite phase is 0.3 or more and 0.75 or less. In the microstructure, Ti, Nb, V, and Mo-based fine precipitates having an average size of 50 nm or less are distributed in an amount of 10^12 or more per square meter.

Description

성형성이 우수한 고항복비형 강판 및 그 제조방법{HIGH-STRENGTH STEEL HAVING EXCELLENT FORMABILITY AND HIGH YIELD RATIO AND METHOD FOR MANUFACTURING SAME}High-yielding ratio steel sheet with excellent formability and its manufacturing method {HIGH-STRENGTH STEEL HAVING EXCELLENT FORMABILITY AND HIGH YIELD RATIO AND METHOD FOR MANUFACTURING SAME}

본 발명은 고강도강 및 그 제조방법에 관한 것으로, 보다 상세하게는 높은 항복비와 성형성이 우수한 고강도강 및 그 제조방법에 관한 것이다.The present invention relates to a high-strength steel and a method of manufacturing the same, and more particularly, to a high-strength steel having high yield ratio and excellent formability, and a method of manufacturing the same.

최근 각종 환경 규제 및 에너지 사용 규제에 의해 연비향상이나 내구성 향상을 위하여 고강도 강판의 사용이 요구되고 있다. 특히, 최근 자동차의 충격 안정성 규제가 확대되면서 차체의 내충격성 향상을 위해 멤버(member), 시트레일(seat rail) 및 필라(pillar) 등의 구조 부재에 항복강도가 우수한 고강도강이 채용되고 있다. 구조부재는 인장강도 대비 항복강도, 즉, 항복비(항복강도/인장강도)가 높을수록 충격에너지 흡수에 유리한 특징을 가지고 있다. 그러나 일반적으로 강판의 강도가 증가할수록 연신율이 감소하여 성형가공성이 저하되는 문제점이 발생하므로, 고항복비와 성형성이 동시에 향상된 재료의 개발이 요구되고 있는 실정이다.In recent years, according to various environmental regulations and energy use regulations, the use of high-strength steel sheets is required to improve fuel efficiency or durability. In particular, as the impact stability regulation of automobiles has recently expanded, high-strength steel having excellent yield strength has been adopted for structural members such as members, seat rails, and pillars in order to improve the impact resistance of the vehicle body. Structural members have the advantage of absorbing impact energy as the yield strength compared to the tensile strength, that is, the yield ratio (yield strength/tensile strength) is higher. However, in general, as the strength of the steel sheet increases, the elongation decreases, resulting in a problem in that the forming processability decreases, so that the development of a material with improved high yield ratio and formability at the same time is required.

항복강도를 높이기 위한 대표적인 제조방법으로는 연속소둔 시 수냉각을 이용하는 것이다. 즉 소둔공정에서 균열시킨 후 물에 침적하여 템퍼링을 시킴으로써 미세조직이 마르텐사이트를 템퍼링한 템퍼드 마르텐사이트 조직을 가지는 강판을 제조할 수 있다. 종래기술로서, 특허문헌 1을 들 수 있다. 상기 특허문헌 1에는 탄소 0.18%이상의 강재를 연속소둔 후 상온까지 수냉하고, 이어, 120~300℃의 온도로1~15분간의 과시효 처리를 베풀어, 마르텐사이트 체적율이 80~97% 이상의 마르텐사이트 강재를 개발하는 것이다. 이와 같이 수냉후 템퍼링 방식에 의한 초고강도강을 제조할 경우 항복비는 매우 높으나 폭방향, 길이방향의 온도편차에 의해 코일의 형상품질이 열화하는 문제가 발생한다. 따라서 롤포밍 가공시 부위에 따른 재질불량, 작업성 저하등의 문제가 발생한다.A typical manufacturing method to increase the yield strength is to use water cooling during continuous annealing. That is, a steel sheet having a tempered martensite structure in which the microstructure is tempered with martensite can be manufactured by cracking in the annealing process and then immersing in water for tempering. As a conventional technique, patent document 1 is mentioned. In Patent Document 1, a steel material having 0.18% or more of carbon is continuously annealed and then water-cooled to room temperature, followed by overaging treatment for 1 to 15 minutes at a temperature of 120 to 300°C, so that the martensite volume ratio is 80 to 97% or more. It is to develop site steel. In the case of manufacturing ultra-high strength steel by the tempering method after water cooling as described above, the yield ratio is very high, but there is a problem that the shape quality of the coil is deteriorated due to temperature variations in the width and length directions. Therefore, problems such as material defects and workability decrease depending on the part occur during roll forming processing.

상기 고장력 강판에서 가공성을 향상시킨 종래기술로는 특허문헌 2에 개시된 발명을 들 수 있다. 상기 특허문헌 2는 마르텐사이트를 주체로 하는 복합조직으로 이루어진 강판으로서, 가공성을 향상시키기 위해 조직 내부에 입경 1~100nm의 미세 석출 구리 입자를 분산시킨 고장력 강판의 제조방법을 제시하고 있다. 그러나 특허문헌 2는 양호한 미세 Cu 입자를 석출시키기 위하여 Cu 함량을 2~5%로 과다하게 첨가함으로써 Cu에 기인한 적열 취성이 발생할 수 있으며, 또한 제조비용이 과다하게 상승하는 문제점이 있다. The invention disclosed in Patent Document 2 is mentioned as a prior art for improving workability in the high-tensile steel sheet. Patent Document 2 is a steel sheet composed of a composite structure mainly composed of martensite, and proposes a method of manufacturing a high-tensile steel sheet in which fine precipitated copper particles having a particle diameter of 1 to 100 nm are dispersed inside the structure in order to improve workability. However, Patent Document 2 has a problem in that red heat embrittlement due to Cu may occur by excessively adding Cu content to 2 to 5% in order to precipitate good fine Cu particles, and the manufacturing cost may be excessively increased.

한편 특허문헌 3은 페라이트(ferrite)를 기지조직으로 하여, 퍼얼라이트(pearlite) 2~10면적%를 포함하는 미세조직을 가지며, 주로 Nb, Ti, V 등과 같은 탄,질화물 형성원소의 첨가를 통한 석출 강화 및 결정립 미세화에 의해 강도를 향상시킨 강판을 제시하고 있다. 상기 특허문헌 3은 낮은 제조원가 대비 높은 강도를 쉽게 얻을 수 있다는 장점을 가지고 있으나, 미세 석출물에 의해 재결정온도가 급격히 상승하게 됨으로써, 충분한 재결정을 일으켜 연성을 확보하기 위해서는 고온소둔을 실시하여야 한다는 단점이 있다. 또한, 페라이트 기지에 탄, 질화물을 석출시켜 강화하는 기존의 석출강화강은 600MPa급 이상의 고강도 강을 얻기 곤란하다는 문제점이 있다.On the other hand, Patent Document 3 uses ferrite as a matrix structure, has a microstructure including 2 to 10 area% pearlite, mainly through the addition of carbon and nitride forming elements such as Nb, Ti, V, etc. A steel plate with improved strength by precipitation strengthening and grain refinement is proposed. Patent Document 3 has the advantage that high strength can be easily obtained compared to a low manufacturing cost, but the recrystallization temperature rises rapidly due to fine precipitates, so that sufficient recrystallization occurs and there is a disadvantage that high temperature annealing must be performed in order to secure ductility. . In addition, there is a problem in that it is difficult to obtain a high strength steel of 600 MPa or higher in the existing precipitation-reinforced steel that is strengthened by depositing carbon and nitride on a ferrite matrix.

따라서 상술한 문제점을 해결하여, 높은 항복비와 성형성을 나타내면서도 초고강도를 나타낼 수 있는 강재가 요구되고 있는 실정이다.Therefore, by solving the above-described problems, there is a demand for a steel material capable of exhibiting ultra-high strength while exhibiting high yield ratio and formability.

일본 공개특허 JP1992-289120 호Japanese Patent Application Publication No. JP1992-289120 일본 공개특허 JP2005-264176호Japanese Patent Application Publication No. JP2005-264176 한국 공개특허 KR2015-0073844호Korean Patent Application Publication No. KR2015-0073844

본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 항복비가 0.8이상이고 성형성을 평가하는 지수로서 연신율이 10%이상이며, 강도가 980MPa 이상인 고강도강 및 그 제조방법을 제공함에 목적이 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a high-strength steel having a yield ratio of 0.8 or more, an elongation of 10% or more and a strength of 980 MPa or more as an index for evaluating formability, and a method of manufacturing the same.

본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The subject of the present invention is not limited to the above description. Those of ordinary skill in the art to which the present invention pertains will not have any difficulty in understanding the additional subject of the present invention from the general details of the present specification.

본 발명의 일측면은, One aspect of the present invention,

중량%로 C: 0.04~0.15%, Si: 0.5%이하, Mn: 0.5~2.0%, Ti: 0.2% 이하(0% 포함), Nb: 0.1% 이하(0% 포함), V: 0.2% 이하(0% 포함), Mo: 0.5%이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하며, C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.2% or less (Including 0%), Mo: 0.5% or less (excluding 0%), the balance contains Fe and inevitable impurities, and satisfies the following relational formula 1,

95%이상의 페라이트와 잔부 펄라이트를 포함하는 미세조직을 가지며, It has a microstructure containing 95% or more of ferrite and the balance pearlite,

상기 페라이트 상의 형상비(Aspect ratio)가 0.3이상 0.75이하이며, The aspect ratio of the ferrite phase is 0.3 or more and 0.75 or less,

상기 미세조직내에는 평균 크기 50nm이하의 Ti, Nb, V, Mo계 미세석출물이 1 제곱미터당 1012개 이상으로 분포되어 있는 성형성이 우수한 고항복비형 강판에 관한 것이다. It relates to a high-yield-ratio steel sheet having excellent formability in which 10 12 or more Ti, Nb, V, Mo-based microprecipitates having an average size of 50 nm or less are distributed per square meter in the microstructure.

[관계식 1][Relationship 1]

21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 821[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8

(여기서, [Ti], [Nb], [V], [Mo]는 해당 원소의 중량%를 의미한다.)(Here, [Ti], [Nb], [V], and [Mo] mean the weight percent of the element.)

본 발명의 강판은 그 일면에 아연계 도금층이 형성된 도금강판 일 수 있다. The steel sheet of the present invention may be a plated steel sheet having a zinc-based plating layer formed on one side thereof.

또한 본 발명의 다른 측면은, In addition, another aspect of the present invention,

중량%로 C: 0.04~0.15%, Si: 0.5%이하, Mn: 0.5~2.0%, Ti: 0.2% 이하(0% 포함), Nb: 0.1% 이하(0% 포함), V: 0.2% 이하(0% 포함), Mo: 0.5%이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고 상기 관계식 1을 만족하는 강 슬라브를 제조하는 공정;C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.2% or less (Including 0%), Mo: 0.5% or less (excluding 0%), a process of producing a steel slab containing the balance Fe and inevitable impurities and satisfying the above relational formula 1;

상기 강 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연함으로써 열연강판을 제조하는 공정;Manufacturing a hot-rolled steel sheet by hot rolling the steel slab so that the temperature at the outlet side of the finish rolling is Ar 3 to Ar 3 +50°C;

상기 열연강판을 400~700℃에서 권취후 0.1℃/s 이하의 평균 냉각속도로 상온까지 냉각하는 공정; 및A step of cooling the hot-rolled steel sheet to room temperature at an average cooling rate of 0.1°C/s or less after winding at 400 to 700°C; And

상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연한 후, 이를 700~790℃의 온도 범위에서 연속소둔하는 공정;을 포함하는 성형성이 우수한 고항복비형 강판 제조방법에 관한 것이다. It relates to a method for manufacturing a high-yield-ratio steel sheet having excellent formability, including a step of cold rolling the cooled hot-rolled steel sheet at a reduction ratio of 40 to 70%, and then continuously annealing it at a temperature range of 700 to 790°C.

본 발명에서는 상기 연속소둔된 냉연강판을 620~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 공정; 및 상기 1차 냉각된 냉연강판을 300~580℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 공정;을 추가로 포함함이 바람직하다. In the present invention, the process of first cooling the continuously annealed cold-rolled steel sheet to 620 to 700°C at a cooling rate of 1 to 10°C/sec; And a step of secondary cooling the first cooled cold-rolled steel sheet at a cooling rate of 5 to 20°C/sec to 300 to 580°C.

상기 2차 냉각하는 공정 이후, 온도를 일정하게 유지하면서 과시효시키는 단계를 더 포함할 수 있다.After the secondary cooling process, the step of overaging while maintaining a constant temperature may be further included.

상기 과시효된 냉연강판을 430~490℃의 온도범위에서 용융아연도금 처리한후, 이후 필요에 따라 합금화 열처리를 행하고, 100℃이하의 온도까지 5℃/s 이상의 평균 냉각속도로 냉각할 수 있다.The overaged cold-rolled steel sheet is hot-dip galvanized in a temperature range of 430 to 490°C, then alloying heat treatment is performed as necessary, and then cooled to a temperature of 100°C or less at an average cooling rate of 5°C/s or more. .

상기 냉각된 냉연강판에 2% 미만의 조질압연을 수행할 수 있다. Temper rolling of less than 2% may be performed on the cooled cold-rolled steel sheet.

상술한 바와 같은 구성의 본 발명에 따르면, 첫째, 980MPa 이상의 높은 인장강도를 갖는 강재를 제조할 수 있으며, 둘째, 항복비가 0.8이상이며, 연신율이 10%이상의 고강도 강판을 제조할 수 있다. According to the present invention having the configuration as described above, first, a steel material having a high tensile strength of 980 MPa or more can be manufactured, and second, a high-strength steel sheet having a yield ratio of 0.8 or more and an elongation of 10% or more can be manufactured.

이러한 강판은 자동차용 구조부재로서 충돌 안전성을 요구하는 부품에 사용될 수 있다.Such a steel plate can be used for parts requiring collision safety as structural members for automobiles.

도 1은 본 발명의 발명예 3에 따른 미세 조직을 나타낸 사진이다.
도 2는 본 발명의 발명예 3에 따른 미세 석출물을 나타낸 사진이다.
1 is a photograph showing a microstructure according to Inventive Example 3 of the present invention.
2 is a photograph showing fine precipitates according to Inventive Example 3 of the present invention.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명자는 성분 및 소둔 조업조건이 특정한 관계를 만족할 때 목표로 하는 인장물성과 미세조직을 구현할 수 있음을 실험을 통해 확인하고 본 발명을 완성하게 되었다. The present inventor confirmed through an experiment that the target tensile properties and microstructure can be realized when the components and the annealing operation conditions satisfy a specific relationship, and the present invention was completed.

구체적으로, 본 발명의 일실시예에 따른 고강도강은, 중량%로 C: 0.04~0.15%, Si: 0.5%이하, Mn: 0.5~2.0%, Ti: 0.2% 이하, Nb: 0.1% 이하, V: 0.2% 이하, Mo: 0.5%이하 잔부 Fe 및 불가피한 불순물을 포함하며, 상기 관계식 1을 만족한다. Specifically, the high-strength steel according to an embodiment of the present invention, by weight% C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less, Nb: 0.1% or less, V: 0.2% or less, Mo: 0.5% or less The balance Fe and inevitable impurities are included, and the above relational expression 1 is satisfied.

이하에서는 본 발명의 강판 조성성분 및 그 함량 제한 이유에 대해 설명하며, 여기에서, "%"는 달리 언급한 바가 없다면 "중량%"를 의미한다. Hereinafter, the steel sheet composition of the present invention and the reason for limiting the content thereof will be described. Herein, "%" means "% by weight" unless otherwise stated.

·C: 0.04~0.15%C: 0.04 to 0.15%

강중 탄소(C)는 고용강화를 위해 첨가되는 매우 중요한 원소이다. 또한 탄소는 석출원소와 결합하여 미세 탄화물을 생성함으로써 강도에 기여한다. 하지만 그 양이 0.15%를 초과하면 상기의 원인 및 경화능의 증가로 냉각중 마르텐사이트가 형성되어 강도가 급격히 증가하여 연신율의 감소를 초래하여 본 발명이 목표로하는 연신율의 확보가 불가능하다. 또한 용접성이 열위하여 고객사 부품가공시 용접결함이 발생한다. 반면에 탄소함량이 0.04% 미만으로 낮아지면 원하는 강도를 확보하기 매우 어렵기 때문에 그 함량을 0.04~0.15%로 제한함이 바람직하다. 보다 바람직하게는, 0.6~0.13% 범위로 제한하는 것이다. Carbon (C) in steel is a very important element added for solid solution strengthening. In addition, carbon contributes to the strength by bonding with the precipitated element to form fine carbides. However, if the amount exceeds 0.15%, martensite is formed during cooling due to the above causes and an increase in hardenability, resulting in a sharp increase in strength, resulting in a decrease in elongation, and thus it is impossible to secure the elongation targeted by the present invention. In addition, due to poor weldability, welding defects occur when processing customer parts. On the other hand, if the carbon content is lower than 0.04%, it is very difficult to secure the desired strength, so it is preferable to limit the content to 0.04 to 0.15%. More preferably, it is limited to the range of 0.6 to 0.13%.

·Si: 0.5% 이하(0%는 제외) Si: 0.5% or less (excluding 0%)

상기 Si은 페라이트 안정화 원소로서 냉각중 페라이트 변태를 촉진하여 본 발명이 목표로하는 페라이트의 분율 확보에 유리한 원소이다. 또한 고용강화능이 좋아 페라이트의 강도를 높이는데 효과적이며, 강판의 연성을 저하시키지 않으면서 강도를 확보할 수 있는 유용한 원소이다. 하지만, 0.5%를 초과하게 되면 고용강화의 효과가 커져 연신율의 감소가 나타나고, 표면 스케일결함을 유발하여 도금 표면품질이 열위되며, 또한 화성 처리성을 떨어뜨리기 때문에 첨가량을 0.5% 이하로 제한함이 바람직하다. Si is a ferrite stabilizing element and is an element advantageous in securing a ferrite fraction targeted by the present invention by promoting ferrite transformation during cooling. In addition, it is effective in increasing the strength of ferrite because of its good solid solution strengthening ability, and is a useful element capable of securing strength without deteriorating the ductility of the steel sheet. However, if it exceeds 0.5%, the effect of solid solution strengthening increases, resulting in a decrease in elongation, causing surface scale defects, resulting in inferior plating surface quality, and also limiting the amount of addition to 0.5% or less because it degrades chemical conversion treatment. desirable.

·Mn: 0.5~2.0%Mn: 0.5~2.0%

망간(Mn)은 강중 황을 완전히 MnS로 석출시켜 FeS의 생성에 의한 열간취성을 방지함과 더불어 강을 고용강화시키는 원소이다. 그 함량이 0.5% 미만이면 본 발명에서 목표로 하는 강도 확보에 어려움이 있으며, 반면, 2.0%를 초과하게 되면 용접성, 열간압연성 등의 문제가 발생될 가능성이 높고, 동시에 경화능을 증가시켜 마르텐사이트를 보다 용이하게 형성시킬 수 있어 연신율의 감소를 가져올 수 있다. 또한 조직 내 Mn-Band(Mn 산화물의 띠)가 형성되어 가공크랙 및 판파단 발생 위험이 높아지는 문제가 있으며, 소둔시 Mn 산화물이 표면에 용출되어 도금성을 크게 저해하는 문제가 있다. 따라서, 본 발명에서는 Mn의 함량을 0.5~2.0%로 제한함이 바람작하며, 보다 바람직하게는, 0.8~1.8% 범위로 제한하는 것이다.Manganese (Mn) is an element that prevents hot embrittlement due to the formation of FeS by completely depositing sulfur in the steel as MnS and solid-solution strengthening of steel. If the content is less than 0.5%, it is difficult to secure the target strength in the present invention. On the other hand, if it exceeds 2.0%, there is a high possibility that problems such as weldability and hot rollability may occur, and at the same time, the hardenability is increased to Since the site can be formed more easily, the elongation can be reduced. In addition, there is a problem that Mn-Band (band of Mn oxide) is formed in the structure, thereby increasing the risk of processing cracks and plate breakage, and there is a problem that Mn oxide is eluted on the surface during annealing, which greatly impairs plating properties. Therefore, in the present invention, it is desirable to limit the content of Mn to 0.5 to 2.0%, and more preferably, to limit to 0.8 to 1.8%.

·Ti: 0.2% 이하Ti: 0.2% or less

Ti은 미세 탄화물 형성원소로써 항복강도 및 인장강도의 확보에 기여한다. 또한, Ti은 질화물 형성원소로써 강중 N를 TiN으로 석출시켜 AlN 석출을 억제하는 효과가 있어 연주시 크랙이 발생할 위험성을 저감시키는 장점이 있다. 그러나 Ti 함량이 0.2%를 초과하면 조대한 탄화물이 석출되고, 강중 탄소량 저감에 의하여 강도 및 연신율의 감소가 이루어질 수 있으며, 연주시 노즐 막힘을 야기할 수 있다. 따라서 본 발명에서는 Ti 함량을 0.2% 이하로 제한함이 바람직하다. 보다 바람직하게는, 0.15% 이하로 제한하는 것이다. Ti is a fine carbide forming element and contributes to securing yield strength and tensile strength. In addition, Ti, as a nitride forming element, has an effect of inhibiting AlN precipitation by depositing N in the steel as TiN, thereby reducing the risk of cracking during playing. However, when the Ti content exceeds 0.2%, coarse carbides are precipitated, the strength and elongation may be reduced by reducing the amount of carbon in the steel, and nozzle clogging may occur during playing. Therefore, in the present invention, it is preferable to limit the Ti content to 0.2% or less. More preferably, it is limited to 0.15% or less.

·Nb: 0.1% 이하Nb: 0.1% or less

Nb은 오스테나이트 입계에 편석되어 소둔열처리시 오스테나이트 결정립의 조대화를 억제하고, 미세한 탄화물을 형성하여 강도 증가에 기여하는 원소이다. 그러나 Nb 함량이 0.1%를 초과하면 조대한 탄화물이 석출되고, 강중 탄소량 저감에 의하여 강도 및 연신율의 감소가 이루어질 수 있으며, 제조원가가 상승하는 문제점이 있다. 따라서 본 발명에서는 Nb 함량을 0.1% 이하로 제한함이 바람직하다. 보다 바람직하게는, 0.08% 이하로 제한하는 것이다. Nb is an element that segregates at the austenite grain boundary, suppresses coarsening of austenite grains during annealing heat treatment, and forms fine carbides, contributing to the increase in strength. However, when the Nb content exceeds 0.1%, coarse carbides are precipitated, strength and elongation may be reduced by reducing the amount of carbon in the steel, and manufacturing cost may increase. Therefore, in the present invention, it is preferable to limit the Nb content to 0.1% or less. More preferably, it is limited to 0.08% or less.

·V: 0.2% 이하V: 0.2% or less

바나듐(V)은 탄소 또는 질소와 반응하여 탄·질화물을 형성하는 원소로써, 저온에서 미세한 석출물을 형성시켜 강의 항복강도를 증가시키는 중요한 역할을 하는 원소이다. 그러나 V 함량이 0.2%를 초과하면 조대한 탄화물이 석출되고, 강중 탄소량 저감에 의하여 강도 및 연신율의 감소가 이루어질 수 있으며, 제조원가가 상승하는 문제점이 있다. 따라서 본 발명에서는 Nb 함량을 0.1% 이하로 제한함이 바람직하다. 보다 바람직하게는, 0.08% 이하로 제한하는 것이다. Vanadium (V) is an element that reacts with carbon or nitrogen to form carbon-nitrides, and is an element that plays an important role in increasing the yield strength of steel by forming fine precipitates at low temperatures. However, when the V content exceeds 0.2%, coarse carbides are precipitated, strength and elongation may be reduced by reducing the amount of carbon in the steel, and manufacturing cost may increase. Therefore, in the present invention, it is preferable to limit the Nb content to 0.1% or less. More preferably, it is limited to 0.08% or less.

·Mo: 0.5% 이하Mo: 0.5% or less

몰리브덴(Mo)은 탄화물을 형성하는 원소로서, Ti, Nb, V 등의 탄·질화물 형성원소와 복합첨가 시 석출물의 크기를 미세하게 유지하여 항복강도 및 인장강도를 향상시키는 역할을 한다. 또한 몰리브덴(Mo)은 오스테나이트가 펄라이트로 변태되는 것을 지연시킴과 동시에 페라이트의 미세화 및 강도 향상을 위해 첨가하는 원소이다. 이러한 Mo는 강의 경화능을 향상시켜 마르텐사이트를 결정입계(grainboundary)에 미세하게 형성시켜 항복비 제어가 가능한 장점이 있다. 다만, 고가의 원소로서 그 함량이 높아질수록 제조상 불리해지는 문제가 있으므로, 그 함량이 적절히 제어하는 것이 바람직하다. 상술한 효과를 얻기 위하여 최대 0.5%로 첨가하는 것이 바람직하며, 만일 상기 Mo의 함량이 0.5%를 초과하게 되면 합금원가의 급격한 상승을 초래하여 경제성이 떨어지고, 지나친 결정립 미세화 효과와 고용강화 효과로 인해 오히려 강의 연성이 저하되는 문제가 있다. 보다 바람작하게는, 0.3% 이하로 제한하는 것이다. Molybdenum (Mo) is an element that forms carbides, and plays a role of improving yield strength and tensile strength by maintaining fine size of precipitates when added in combination with carbon-nitride forming elements such as Ti, Nb, and V. In addition, molybdenum (Mo) is an element added to delay the transformation of austenite into pearlite and to improve the fineness and strength of ferrite. Such Mo has the advantage of improving the hardenability of the steel to finely form martensite at grain boundaries, thereby controlling the yield ratio. However, as an expensive element, the higher the content, the more disadvantageous in manufacturing it is, so it is preferable that the content is appropriately controlled. In order to obtain the above-described effect, it is preferable to add at most 0.5%.If the Mo content exceeds 0.5%, it causes a sharp increase in alloy cost, resulting in poor economic efficiency, and due to excessive grain refining effect and solid solution strengthening effect. Rather, there is a problem that the ductility of the steel is deteriorated. More preferably, it is limited to 0.3% or less.

·관계식 1·Relationship 1

본 발명에서는 하기 관계식 1을 만족하도록 Ti, Nb, V 및 Mo를 함유할 것이 필요하다. In the present invention, it is necessary to contain Ti, Nb, V and Mo so as to satisfy the following relational formula 1.

[관계식 1][Relationship 1]

21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 821[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8

(여기서, [Ti], [Nb], [V], [Mo]는 해당 원소의 중량%를 의미한다.)(Here, [Ti], [Nb], [V], and [Mo] mean the weight percent of the element.)

상기의 관계식 1은 강 중에 미세석출물을 제어하기 위해 필요한 석출 원소간의 관계를 규정한 것이다. Ti, Nb 및 V은 탄화물을 생성하는 원소로 널리 알려져 있으며, 다량 첨가할 경우 미세석출물의 개수가 증가하여 항복강도 및 인장강도의 증가에 기여하나, 강판의 제조원가가 상승하는 문제점이 있다. 석출물은 미세한 사이즈로 다량 분포하고 있을 때 석출강화 효과가 증가하지만, 연신율의 감소가 나타나므로 고항복비의 고성형 강판을 제조함에 있어서 석출원소의 함량을 제한해 줄 필요가 있다. 상기 관계식은 원소별로 원자량을 고려한 atomic 분율 관계식으로, 관계식의 좌변은 첨가된 석출원소의 총합을 의미하며, 우변은 본 발명에서 목표로 하는 최소 연신율 10%를 달성하기위해 최대로 첨가될 수 있는 석출 원소의 총합을 의미한다.The above relational expression 1 defines the relationship between the precipitated elements necessary to control fine precipitates in the steel. Ti, Nb, and V are widely known as elements that generate carbides, and when a large amount is added, the number of fine precipitates increases, contributing to an increase in yield strength and tensile strength, but there is a problem that the manufacturing cost of the steel sheet increases. When the precipitate is distributed in a large amount in a fine size, the precipitation strengthening effect increases, but since the elongation decreases, it is necessary to limit the content of precipitation elements in manufacturing a high-formed steel sheet with a high yield ratio. The above relation is an atomic fraction relation that considers the atomic weight of each element, the left side of the relational expression means the sum of the added precipitation elements, and the right side is the precipitation that can be added to the maximum to achieve the minimum elongation of 10% target in the present invention. It means the sum of the elements.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from the raw material or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone of ordinary skill in the manufacturing process, all the contents are not specifically mentioned in the present specification.

다음으로, 본 발명의 성형성이 우수한 고항복비형 강판은 고항복비를 만족하면서도 연성과 같은 가공성을 향상시키기 위해서 상기 합금 조성에 더하여, 하기와 같은 미세조직 및 상분율 제어 조건을 만족할 필요가 있다. Next, the high yield ratio steel sheet having excellent formability of the present invention needs to satisfy the following microstructure and phase fraction control conditions in addition to the alloy composition in order to improve workability such as ductility while satisfying the high yield ratio.

구체적으로, 본 발명의 강판은 95%이상의 페라이트와 잔부 마르텐사이트, 펄라이트 및 베이나이트 중 1종이상을 포함하는 미세조직을 가진다. 페라이트는 연질의 조직으로 강판의 연성에 기여하며, 본 발명에서와 같이 페라이트와 미세 석출물만으로 980MPa급 강도를 구현하는 경우, 페라이트의 분율이 95% 이상에서 목표로 하는 연신율 10%의 확보가 가능하다. 또한 최종 소둔강판에서 페라이트의 결정 형상은 길쭉한 형상을 갖고 있어야 목표로 하는 강도의 확보가 가능하다.Specifically, the steel sheet of the present invention has a microstructure including at least 95% of ferrite and at least one of martensite, pearlite, and bainite. Ferrite is a soft structure that contributes to the ductility of the steel sheet, and when 980 MPa class strength is achieved with only ferrite and fine precipitates as in the present invention, it is possible to secure a target elongation of 10% when the fraction of ferrite is 95% or more. . In addition, in the final annealed steel sheet, the crystal shape of ferrite must have an elongated shape to secure the target strength.

또한 본 발명에서는 상기 페라이트 상의 형상비(Aspect ratio: 결정립 단축을 장축으로 나눈 값)가 0.3 이상 0.75 이하인 것이 바람직하다. 본 발명에서 페라이트의 형상은 페라이트 결정립의 장축을 단축으로 나눈 형상비가 0.3 미만인 경우 페라이트가 상대적으로 재결정이 충분하지 않아 연신율의 확보가 어려우며, 0.75를 초과하는 경우 페라이트의 재결정이 과분하여 목표로 하는 강도의 확보가 어렵다. In the present invention, it is preferable that the aspect ratio of the ferrite phase (Aspect ratio: a value obtained by dividing the short axis of crystal grains by the major axis) is 0.3 or more and 0.75 or less. In the present invention, the shape of ferrite is difficult to secure elongation due to relatively insufficient recrystallization of ferrite when the aspect ratio obtained by dividing the long axis of the ferrite grain by the short axis is less than 0.3, and when it exceeds 0.75, the recrystallization of ferrite is excessive and the target strength Is difficult to secure.

또한 본 발명의 강판의 미세조직내에는 평균 크기 50nm이하의 Ti, Nb, V, Mo계 미세석출물이 1 제곱미터당 1012개 이상으로 분포되어 있다. 석출물은 사이즈가 작을수록, 밀도가 높을수록 강도에 기여하는 바가 크다. 그러므로 미세석출물이 1제곱미터당 1012개 미만인 경우 또는 평균 크기가 50nm를 초과하면 목표로 하는 강도의 확보가 어렵다. In addition, within the microstructure of the steel sheet of the present invention, 10 12 or more Ti, Nb, V, and Mo-based microprecipitates having an average size of 50 nm or less are distributed per square meter. The smaller the size of the precipitate and the higher the density, the larger the bar contributes to the strength. Therefore, when the number of fine precipitates is less than 10 12 per square meter or the average size exceeds 50 nm, it is difficult to secure the target strength.

다음으로, 본 발명의 성형성이 우수한 고항복비형 강판의 제조방법에 대하여 설명한다.Next, a method of manufacturing a steel sheet having a high yield ratio excellent in formability according to the present invention will be described.

본 발명의 강판 제조방법은, 상술한 강 조성성분을 갖는 강 슬라브를 제조하는 공정; 상기 강 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연함으로써 열연강판을 제조하는 공정; 상기 열연강판을 400~700℃에서 권취한 후, 냉각하는 공정; 및 상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연한 후, 이를 700~790℃의 온도 범위에서 연속소둔하는 공정;을 포함한다. The method for manufacturing a steel sheet of the present invention includes a process of manufacturing a steel slab having the above-described steel composition component; Manufacturing a hot-rolled steel sheet by hot rolling the steel slab so that the temperature at the outlet side of the finish rolling is Ar 3 to Ar 3 +50°C; A step of cooling the hot-rolled steel sheet after winding it at 400 to 700°C; And a step of cold-rolling the cooled hot-rolled steel sheet at a reduction ratio of 40 to 70%, followed by continuous annealing at a temperature range of 700 to 790°C.

먼저, 본 발명에서는 상술한 강 조성성분을 갖는 강 슬라브를 제조한 후, 이를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연함으로써 열연강판을 제조한다. First, in the present invention, after preparing a steel slab having the above-described steel composition, the hot-rolled steel sheet is manufactured by hot rolling it so that the temperature at the outlet side of the finish rolling is Ar 3 to Ar 3 +50°C.

본 발명에서는 열갑압연시 출구측 온도, 더 자세하게는 마무리 압연기의 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연함이 바람직하다. 만일 출구측 온도가 Ar3 미만일 경우에는 열간 변형 저항이 급격히 증가될 가능성이 높고 또한 열연코일의 상(top), 하(tail)부 및 가장자리가 단상영역으로 되어 면내 이방성의 증가 및 성형성이 열화될 수 있다. 반면에, Ar3+50℃를 초과하게 되면 너무 두꺼운 산화 스케일이 발생할 뿐만 아니라, 강판의 미세조직이 조대화될 가능성이 높다.In the present invention, it is preferable that hot rolling is performed so that the outlet temperature during hot rolling, more specifically, the outlet temperature of the finish rolling mill is Ar 3 to Ar 3 +50°C. If the outlet side temperature is less than Ar 3 , the hot deformation resistance is likely to increase rapidly, and the top, tail and edges of the hot rolled coil become single-phase regions, increasing in-plane anisotropy and deteriorating formability. Can be. On the other hand, when Ar 3 exceeds +50° C., not only too thick oxidized scale occurs, but there is a high possibility that the microstructure of the steel sheet becomes coarse.

이어, 본 발명에서는 상기 열연강판을 400~700℃에서 권취후 0.1℃/s 이하의 평균 냉각속도로 상온까지 냉각한다. Subsequently, in the present invention, the hot-rolled steel sheet is wound at 400 to 700° C. and then cooled to room temperature at an average cooling rate of 0.1° C./s or less.

본 발명에서는 열간압연이 종료된 후, 권취시에는 400~700℃의 온도 범위 내를 유지하는 것이 바람직하다. 권취온도가 400℃ 미만인 경우 과다한 마르텐사이트 또는 베이나이트가 생성되어 열연강판의 과다한 강도 상승을 초래함으로써 냉간압연시 부하로 인한 형상불량 등의 제조상의 문제가 발생할 수 있다. 반면, 700℃를 초과하게 되면 표면 스케일의 증가로 산세성이 열화되므로, 상술한 권취온도로 제한하는 것이 바람직하다. 이어, 본 발명에서는 권취된 열연강판을 냉각된다. In the present invention, after the hot rolling is completed, it is preferable to maintain a temperature range of 400 to 700° C. during winding. When the coiling temperature is less than 400°C, excessive martensite or bainite is generated, causing excessive strength increase of the hot-rolled steel sheet, and thus manufacturing problems such as shape defects due to load during cold rolling may occur. On the other hand, if it exceeds 700°C, the pickling property is deteriorated due to an increase in surface scale, so it is preferable to limit it to the above-described winding temperature. Subsequently, in the present invention, the wound hot-rolled steel sheet is cooled.

그리고 본 발명에서는 상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연한 후, 이를 700~790℃의 온도 범위에서 연속소둔한다.And in the present invention, after cold-rolling the cooled hot-rolled steel sheet at a reduction ratio of 40 to 70%, it is continuously annealed at a temperature range of 700 to 790°C.

열연강판은 산세를 거쳐 냉간압연 과정을 거치게 된다. 상기 냉간압연 시, 40~70%의 압하율로 압연하는 것이 바람직하다. 압하율이 40% 미만인 경우는 재결정 구동력이 약화되어 양호한 재결정립을 얻는데 문제가 발생할 소지가 크며 형상교정이 매우 어렵다. 반면 압하율이 70%를 초과하면 강판 에지(edge)부의 크랙이 발생할 가능성이 높고, 압연하중이 급격히 증가할 수 있다. The hot rolled steel sheet is subjected to a cold rolling process after pickling. During the cold rolling, it is preferable to roll at a reduction ratio of 40 to 70%. If the reduction ratio is less than 40%, the driving force for recrystallization is weakened, which is likely to cause problems in obtaining good recrystallized grains, and shape correction is very difficult. On the other hand, when the reduction ratio exceeds 70%, the possibility of cracking at the edge of the steel sheet is high, and the rolling load may increase rapidly.

그리고 상기 냉연강판은 연속소둔 과정을 거치면서 본 발명에서 목적하는 미세조직의 기반을 마련하게 된다.In addition, the cold-rolled steel sheet undergoes a continuous annealing process to provide the basis for the microstructure desired in the present invention.

이때 700℃ 이상 790℃ 이하의 온도구간에서 연속소둔을 수행하는 것이 바람직하다. 소둔온도가 700℃ 미만일 경우 페라이트의 재결정이 충분히 이루어지지 않아 연신율의 확보가 어렵다. 반면 소둔온도가 790℃를 초과할 경우에는 페라이트의 재결정이 과분하고, 페라이트 결정립 및 석출물이 조대화 되어 목표로 하는 강도의 확보가 곤란할 수 있다. At this time, it is preferable to perform continuous annealing at a temperature range of 700°C or more and 790°C or less. If the annealing temperature is less than 700°C, it is difficult to secure the elongation because the ferrite is not sufficiently recrystallized. On the other hand, when the annealing temperature exceeds 790°C, recrystallization of ferrite is excessive, and ferrite grains and precipitates become coarse, so it may be difficult to secure a target strength.

후속하여, 본 발명의 제조방법은, 상기 연속소둔된 냉연강판을 620~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 공정; 및 상기 1차 냉각된 냉연강판을 300~580℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 공정;을 추가로 포함함이 바람직하다. Subsequently, the manufacturing method of the present invention comprises a step of first cooling the continuously annealed cold-rolled steel sheet to 620 to 700°C at a cooling rate of 1 to 10°C/sec; And a step of secondary cooling the first cooled cold-rolled steel sheet at a cooling rate of 5 to 20°C/sec to 300 to 580°C.

연속 소둔 이후에는, 강판을 650~700℃까지 1~10℃/s의 냉각속도로 1차 냉각한다. 이러한 1차 냉각 단계는 후속하는 2차 급냉각에 앞서 서냉을 실시함으로써, 급냉구간에서 급격한 온도 하락에 의한 판형상의 열위를 억제하는 측면이 있다. After continuous annealing, the steel sheet is first cooled to 650 to 700°C at a cooling rate of 1 to 10°C/s. This first cooling step has an aspect of suppressing the heat level of the plate shape due to a sudden temperature drop in the rapid cooling section by performing slow cooling prior to the subsequent second rapid cooling.

1차 냉각 이후 2차 냉각은 5~20℃/s의 냉각속도로 300℃ 이상 580℃ 이하의 온도까지 냉각하게 된다. 이때 제조하고자 하는 강판의 폭 및 두께에 따라 급냉 냉각속도 및 온도를 다르게 실시하여 최적의 판 형상을 확보할 수 있다. 만일 냉각온도가 300℃ 미만인 경우 강판의 폭방향 또는 길이방향으로 냉각편차가 발생하여 판형상이 열위해질 가능성이 있다. After the first cooling, the second cooling is performed at a cooling rate of 5 to 20°C/s to a temperature of 300°C or more and 580°C or less. At this time, the optimum plate shape can be secured by varying the rapid cooling rate and temperature according to the width and thickness of the steel plate to be manufactured. If the cooling temperature is less than 300℃, there is a possibility that a cooling deviation occurs in the width direction or the length direction of the steel plate and the plate shape is deteriorated.

본 발명은 상기 2차 냉각하는 공정 이후, 온도를 일정하게 유지하면서 과시효시키는 공정을 추가로 포함할 수 있다. 이러한 과시효 처리를 함으로써, 코일의 폭방향, 길이방향 일정한 열처리를 함으로써 최적의 형상 확보가 가능하다.The present invention may further include a process of overaging while maintaining a constant temperature after the secondary cooling process. By performing such an overaging treatment, it is possible to secure an optimum shape by performing constant heat treatment in the width direction and the length direction of the coil.

본 발명에서는 상기 과시효 처리가 종료된 이후에는, 연신율 0.1~2.0% 범위에서 스킨패스압연을 수행할 수 있다. 통상적으로 스킨패스압연하는 경우 인장강도의 증가는 거의 없이 적어도 50MPa이상의 항복강도 상승이 일어난다. 연신율이 0.1% 미만이면 형상의 제어가 어렵고, 2.0% 이상일 경우 고연신 작업에 의해 조업성이 크게 불안정해지므로 상술한 범위로 제한하는 것이 바람직하다.In the present invention, after the overaging treatment is completed, skin pass rolling may be performed in the range of 0.1 to 2.0% elongation. Typically, in the case of skin pass rolling, a yield strength increase of at least 50 MPa occurs without an increase in tensile strength. If the elongation is less than 0.1%, it is difficult to control the shape, and if the elongation is less than 2.0%, it is preferable to limit it to the above-described range because the operability is greatly unstable due to high drawing operation.

나아가, 본 발명에서는 상기 과시효된 냉연강판을 430~490℃의 온도범위에서 용융아연도금 처리한후, 이후 필요에 따라 합금화 열처리를 행하고, 100℃이하의 온도까지 5℃/s 이상의 평균 냉각속도로 냉각하는 공정을 추가로 포함할 수 있다. Further, in the present invention, after hot-dip galvanizing treatment of the overaged cold-rolled steel sheet in a temperature range of 430 to 490°C, then alloying heat treatment is performed as necessary, and an average cooling rate of 5°C/s or more up to a temperature of 100°C or less. It may further include a step of cooling with.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

강종Steel grade CC SiSi MnMn TiTi NbNb VV MoMo 관계식1Relation 1 비교강1Comparative Steel 1 0.030.03 0.070.07 1.41.4 0.110.11 0.0150.015 0.0450.045 0.10.1 4.44.4 발명강1Invention Lesson 1 0.080.08 00 1.51.5 0.10.1 0.050.05 0.10.1 0.20.2 6.76.7 발명강2Invention Lesson 2 0.080.08 00 1.51.5 0.10.1 0.050.05 00 0.20.2 4.74.7 발명강3Invention Lesson 3 0.080.08 00 1.51.5 0.10.1 00 0.10.1 0.20.2 6.16.1 발명강4Invention Lesson 4 0.080.08 00 1.51.5 0.10.1 00 00 0.20.2 4.14.1 발명강5Invention Lesson 5 0.080.08 00 1.51.5 0.140.14 00 00 0.30.3 5.95.9 비교강2Comparative lecture 2 0.080.08 00 1.51.5 0.10.1 00 0.10.1 0.40.4 8.18.1

*표 1에서 함량의 단위는 중량%이고, 잔여 성분은 Fe 및 불가피한 불순물임. * In Table 1, the unit of content is% by weight, and the remaining components are Fe and unavoidable impurities.

상기 표 1과 같이 조성성분을 갖는 강 슬라브를 진공용해하고, 가열로에서 재가열온도 1200℃ 온도로 1시간 가열하고, 열간압연을 실시한 후 권취하였다. 이때, 열간압연 작업시 FDT 880~920℃ 온도범위에서 열간압연을 종료하였으며, 권취온도(CT)는 650℃로 제어하였다. As shown in Table 1, a steel slab having a composition component was vacuum-melted, heated in a heating furnace at a reheating temperature of 1200° C. for 1 hour, hot-rolled, and then wound. At this time, during the hot rolling operation, the hot rolling was terminated in the temperature range of FDT 880 to 920°C, and the coiling temperature (CT) was controlled at 650°C.

이후, 열간압연한 강판을 이용하여 산세를 실시하고 냉간압하율을 45%로 하여 냉간압연을 실시하였다. 냉간압연된 강판은 표 2의 소둔조건으로 연속소둔(SS) 하였으며, 1차 서냉 및 2차 급냉하였다. 이때, 상기 1차 서냉(SCS)시 냉각종료온도를 650℃로, 그리고 냉각속도를 3℃/s로 하였으며, 2차 급냉(RCS) 시 냉각종료온도를 450℃로, 그리고 냉각속도를 10℃/s로 설정하였다. 이후, 최종적으로 2차 냉각된 냉연강판은 0.1%의 압하율로 스킨패스 압연처리되었다. Thereafter, pickling was performed using a hot-rolled steel sheet, and cold rolling was performed with a cold rolling reduction ratio of 45%. The cold-rolled steel sheet was subjected to continuous annealing (SS) under the annealing conditions shown in Table 2, and the first slow cooling and the second rapid cooling were performed. At this time, the cooling end temperature was set to 650°C and the cooling rate was set to 3°C/s in the first slow cooling (SCS), and the cooling end temperature was set to 450°C in the second rapid cooling (RCS), and the cooling rate was set to 10°C. It was set to /s. Thereafter, the cold-rolled steel sheet, which was finally cooled secondarily, was subjected to skin pass rolling at a reduction ratio of 0.1%.

이후, 상기와 같이 제조된 냉연강판의 JIS 5호 인장시험편을 제작하여 강판의 물성을 측정하였으며, 그 결과를 하기 표 2에 나타내었다. 구체적인 측정방법은 다음과 같다. 소둔열처리된 강판에 대하여 압연방향과 수직인 방향으로 JIS 5호 사이즈의 시편을 채취하여 strain rate 0.01/초로 인장시험을 실시하였으며, 시험결과로서 항복강도(YS), 인장강도(TS), 항복강도비(YR, YS/TS) 및 연신율(El)을 나타내었다.Thereafter, a JIS No. 5 tensile test piece of the cold-rolled steel sheet prepared as described above was prepared to measure the physical properties of the steel sheet, and the results are shown in Table 2 below. The specific measurement method is as follows. A specimen of JIS No. 5 size was taken in the direction perpendicular to the rolling direction of the annealed heat-treated steel sheet, and a tensile test was conducted at a strain rate of 0.01/sec.The test results were yield strength (YS), tensile strength (TS), and yield strength. The ratio (YR, YS/TS) and elongation (El) were shown.

그리고 이때, 각각 제조된 냉연강판의 미세조직으로서 페라이트의 분율과 aspect ratio, 그리고 미세석출물의 밀도 및 평균 크기를 측정하여 하기 표 2에 또한 나타내었다. 상기 페라이트 상분율 및 aspect ratio는 SEM을 통하여 측정하였으며, 미세석출물의 밀도 및 평균 크기는 TEM을 활용하여 측정하였다. 구체적인 측정방법은 다음과 같다. 소둔열처리된 강판의 TD면(transverse direction)에 대하여 나이탈 에칭후 3000배율로 SEM을 통하여 도면 2와 같이 관찰하고, 관찰되어진 페라이트상의 결정립에 대하여 장축과 단축경을 측정하여 aspect ratio 값을 도출하였다. 페라이트상은 SEM을 통하여 다른 조직과의 구분이 가능하나, 보다 정확하게는 EBSD 및 XRD 상분석을 통해서 100% 분율을 차지함을 재확인 하였다. 미세석출물은 TEM 관찰을 위하여 thin foil을 제작하여 30000배율로 도면 1과 같이 관찰한 후, 이미지에서 관찰되는 평균면적당 미세석출물의 개수 및 사이즈를 하기 표 2에 나타내었다.And at this time, the fraction and aspect ratio of ferrite, and the density and average size of the fine precipitates were measured as the microstructure of each manufactured cold-rolled steel sheet, and are also shown in Table 2 below. The ferrite phase fraction and aspect ratio were measured through SEM, and the density and average size of the fine precipitates were measured using TEM. The specific measurement method is as follows. After nital etching on the TD surface (transverse direction) of the annealed heat-treated steel sheet, the aspect ratio was derived by measuring the long axis and the short axis diameter of the observed ferrite crystal grains through SEM at 3000 magnification as shown in Fig.2. . The ferrite phase can be distinguished from other tissues through SEM, but more precisely, it was reconfirmed that it occupies 100% fraction through EBSD and XRD phase analysis. For the microprecipitates, a thin foil was prepared for TEM observation and observed at a magnification of 30000 as shown in FIG.

강종Steel grade SS
(℃)
SS
(℃)
YS
(MPa)
YS
(MPa)
TS
(MPa)
TS
(MPa)
YRYR El(%)El(%) 페라이트ferrite 미세 석출물Fine precipitate 비고Remark
분율(%)Fraction (%) 형상비Aspect ratio 밀도(/m2)Density (/m 2 ) 평균크기
(nm)
Average size
(nm)
비교강1Comparative Steel 1 750750 990990 982982 1.011.01 88 100100 0.710.71 1013 10 13 1515 비교예1Comparative Example 1 발명강1Invention Lesson 1 750750 10451045 10721072 0.970.97 1010 100100 0.650.65 1014 10 14 1212 발명예1Invention Example 1 발명강2Invention Lesson 2 750750 966966 10011001 0.970.97 1111 100100 0.690.69 1013 10 13 1111 발명예2Invention Example 2 발명강3Invention Lesson 3 750750 10611061 10801080 0.980.98 1010 100100 0.590.59 1014 10 14 99 발명예3Invention Example 3 발명강4Invention Lesson 4 750750 991991 10161016 0.980.98 1010 100100 0.570.57 1015 10 15 1616 발명예4Invention Example 4 발명강5Invention Lesson 5 750750 11231123 11181118 1.001.00 1010 100100 0.450.45 1014 10 14 1010 발명예5Inventive Example 5 비교강2Comparative lecture 2 750750 11001100 10921092 1.011.01 88 100100 0.190.19 1014 10 14 2121 비교예2Comparative Example 2 비교강1Comparative Steel 1 800800 867867 869869 1.001.00 99 100100 0.780.78 1015 10 15 3131 비교예3Comparative Example 3 발명강1Invention Lesson 1 800800 820820 916916 0.900.90 99 100100 0.760.76 1014 10 14 1010 비교예4Comparative Example 4 발명강2Invention Lesson 2 800800 824824 882882 0.930.93 1111 100100 0.810.81 1015 10 15 99 비교예5Comparative Example 5 발명강3Invention Lesson 3 800800 854854 935935 0.910.91 1010 100100 0.850.85 1015 10 15 1515 비교예6Comparative Example 6 발명강4Invention Lesson 4 800800 832832 870870 0.960.96 99 100100 0.770.77 1014 10 14 1212 비교예7Comparative Example 7 발명강5Invention Lesson 5 800800 898898 953953 0.940.94 99 100100 0.760.76 1013 10 13 1717 비교예8Comparative Example 8 비교강2Comparative lecture 2 800800 844844 978978 0.860.86 99 100100 0.790.79 1014 10 14 99 비교예9Comparative Example 9 비교강1Comparative Steel 1 850850 620620 661661 0.940.94 1414 100100 0.810.81 1015 10 15 1111 비교예10Comparative Example 10 발명강1Invention Lesson 1 850850 561561 684684 0.820.82 1616 100100 0.820.82 1014 10 14 1717 비교예11Comparative Example 11 발명강2Invention Lesson 2 850850 577577 654654 0.880.88 1515 100100 0.840.84 1015 10 15 1212 비교예12Comparative Example 12 발명강3Invention Lesson 3 850850 583583 699699 0.830.83 1313 100100 0.810.81 1015 10 15 55 비교예13Comparative Example 13 발명강4Invention Lesson 4 850850 573573 653653 0.880.88 1515 100100 0.790.79 1014 10 14 88 비교예14Comparative Example 14 발명강5Invention Lesson 5 850850 620620 711711 0.870.87 1515 100100 0.770.77 1013 10 13 99 비교예15Comparative Example 15 비교강2Comparative lecture 2 850850 566566 766766 0.740.74 1212 100100 0.860.86 1014 10 14 1717 비교예16Comparative Example 16 비교강1Comparative Steel 1 900900 512512 545545 0.940.94 2424 100100 0.870.87 1015 10 15 1212 비교예17Comparative Example 17 발명강1Invention Lesson 1 900900 503503 615615 0.820.82 2525 100100 0.910.91 1014 10 14 1717 비교예18Comparative Example 18 발명강2Invention Lesson 2 900900 548548 600600 0.910.91 2424 100100 0.840.84 1015 10 15 1616 비교예19Comparative Example 19 발명강3Invention Lesson 3 900900 536536 624624 0.860.86 2424 100100 0.880.88 1014 10 14 1919 비교예20Comparative Example 20 발명강4Invention Lesson 4 900900 554554 600600 0.920.92 2525 100100 0.890.89 1014 10 14 2121 비교예21Comparative Example 21 발명강5Invention Lesson 5 900900 555555 633633 0.880.88 2424 100100 0.910.91 1014 10 14 2222 비교예22Comparative Example 22 비교강2Comparative lecture 2 900900 437437 670670 0.650.65 2323 100100 0.840.84 1015 10 15 1717 비교예23Comparative Example 23

표 1-2에 나타난 바와 같이, 본 발명의 조성 범위 및 소둔조건을 만족하는 발명예 1~5의 경우 모두 본 발명이 요구하는 물성을 만족함을 확인할 수 있다. As shown in Table 1-2, in the case of Inventive Examples 1 to 5 satisfying the composition range and annealing conditions of the present invention, it can be seen that all of the physical properties required by the present invention are satisfied.

도 1은 본 발명의 발명예 3에 따른 미세 조직을 나타낸 사진이며, 도 2는 본 발명의 발명예 3에 따른 미세 석출물을 나타낸 사진이다.1 is a photograph showing a microstructure according to Inventive Example 3 of the present invention, and FIG. 2 is a photograph showing a fine precipitate according to Inventive Example 3 of the present invention.

이에 반하여, 비교강 1은 본 발명의 C 조성 범위를 만족하지 않는 경우이며, 비교강 2는 본 발명의 조성 관계식 1의 수치값을 만족하지 않는 경우이다. 표 2에 나타난 바와 같이, 이러한 비교강들을 이용하는 경우 비록 본 발명에서 기술하는 소둔조건을 만족하다 하더라도, 비교예 1, 2, 3, 9, 11, 16, 17 및 23과 같이 목표로 하는 인장물성의 확보가 불가능함을 알 수있다. On the other hand, Comparative Steel 1 is a case where the C composition range of the present invention is not satisfied, and Comparative Steel 2 is a case where the numerical value of the composition relational formula 1 of the present invention is not satisfied. As shown in Table 2, when using these comparative steels, even if the annealing conditions described in the present invention are satisfied, target tensile properties as in Comparative Examples 1, 2, 3, 9, 11, 16, 17 and 23 It can be seen that it is impossible to secure.

또한, 본 발명의 조성 범위 및 관계식 1을 만족하더라도 소둔조건을 만족하지 않는 비교예 4~8, 11~15 및 18~22의 경우 목표로 하는 물성의 확보가 어렵다. 예컨데 해당 실시예의 경우 소둔온도가 790℃를 초과하여 페라이트의 재결정이 과한결과 aspect ratio가 0.75를 초과하여 인장강도 980MPa를 만족하지 못하였다. In addition, in the case of Comparative Examples 4 to 8, 11 to 15, and 18 to 22, which do not satisfy the annealing condition even if the composition range of the present invention and the relational expression 1 are satisfied, it is difficult to secure the target physical properties. For example, in the case of this example, the annealing temperature exceeded 790°C and the recrystallization of ferrite was excessive. As a result, the aspect ratio exceeded 0.75, and thus the tensile strength was not satisfied with 980 MPa.

본 발명은 상기 구현 예 및 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현 예 및 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해 해야만 한다.The present invention is not limited to the above embodiments and embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains other It will be appreciated that it can be implemented in a specific form. Therefore, it should be understood that the implementation examples and embodiments described above are illustrative in all respects and are not limiting.

Claims (7)

중량%로 C: 0.04~0.15%, Si: 0.5%이하, Mn: 0.5~2.0%, Ti: 0.2% 이하(0% 포함), Nb: 0.1% 이하(0% 포함), V: 0.2% 이하(0% 포함), Mo: 0.5%이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하며,
95면적%이상의 페라이트와 잔부 펄라이트를 포함하는 미세조직을 가지며,
상기 페라이트 상의 형상비(Aspect ratio)가 0.3 이상 0.75 이하이며,
상기 미세조직내에는 평균 크기 50nm이하의 Ti, Nb, V, Mo계 미세석출물이 1 제곱미터당 1012개 이상으로 분포되어 있는 성형성이 우수한 고항복비형 강판.
[관계식 1]
21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8
(여기서, [Ti], [Nb], [V], [Mo]는 해당 원소의 중량%를 의미한다.)
C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.2% or less (Including 0%), Mo: 0.5% or less (excluding 0%), the balance contains Fe and inevitable impurities, and satisfies the following relational formula 1,
It has a microstructure containing 95 area% or more of ferrite and the balance pearlite,
The aspect ratio of the ferrite phase is 0.3 or more and 0.75 or less,
A high-yield-ratio steel sheet having excellent formability in which 10 12 or more Ti, Nb, V, Mo-based microprecipitates having an average size of 50 nm or less are distributed in the microstructure.
[Relationship 1]
21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8
(Here, [Ti], [Nb], [V], and [Mo] mean the weight percent of the corresponding element.)
제 1항에 있어서, 상기 강판은 그 일면에 아연계 도금층이 형성된 도금강판 인 것을 특징으로 하는 성형성이 우수한 고항복비형 강판.
The high yield ratio steel sheet according to claim 1, wherein the steel sheet is a plated steel sheet having a zinc-based plating layer formed on one surface thereof.
중량%로 C: 0.04~0.15%, Si: 0.5%이하, Mn: 0.5~2.0%, Ti: 0.2% 이하(0% 포함), Nb: 0.1% 이하(0% 포함), V: 0.2% 이하(0% 포함), Mo: 0.5%이하(0% 제외), 잔부 Fe 및 불가피한 불순물을 포함하고 하기 관계식 1을 만족하는 강 슬라브를 제조하는 공정;
상기 강 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연함으로써 열연강판을 제조하는 공정;
상기 열연강판을 400~700℃에서 권취후 0.1℃/s 이하의 평균 냉각속도로 상온까지 냉각하는 공정; 및
상기 냉각된 열연강판을 40~70%의 압하율로 냉간압연한 후, 이를 700~790℃의 온도 범위에서 연속소둔하는 공정;을 포함하는 성형성이 우수한 고항복비형 강판 제조방법.
[관계식 1]
21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8
(여기서, [Ti], [Nb], [V], [Mo]는 해당 원소의 중량%를 의미한다.)
C: 0.04 to 0.15%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ti: 0.2% or less (including 0%), Nb: 0.1% or less (including 0%), V: 0.2% or less (Including 0%), Mo: 0.5% or less (excluding 0%), the balance of Fe and the process of producing a steel slab that satisfies the following relational formula 1 including inevitable impurities;
Manufacturing a hot-rolled steel sheet by hot rolling the steel slab so that the temperature at the outlet side of the finish rolling is Ar 3 to Ar 3 +50°C;
A step of cooling the hot-rolled steel sheet to room temperature at an average cooling rate of 0.1°C/s or less after winding at 400 to 700°C; And
After cold-rolling the cooled hot-rolled steel sheet at a reduction ratio of 40 to 70%, a process of continuously annealing it at a temperature range of 700 to 790°C.
[Relationship 1]
21[Ti] + 11[Nb] + 20[V] + 10[Mo] ≤ 8
(Here, [Ti], [Nb], [V], and [Mo] mean the weight percent of the element.)
제 3항에 있어서, 상기 연속소둔된 냉연강판을 620~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 공정; 및 상기 1차 냉각된 냉연강판을 300~580℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 공정;을 추가로 포함하는 것을 특징으로 하는 성형성이 우수한 고항복비형 강판 제조방법.
The method of claim 3, further comprising: first cooling the continuously annealed cold-rolled steel sheet to 620 to 700°C at a cooling rate of 1 to 10°C/second; And a step of secondary cooling the first cooled cold-rolled steel sheet to 300 to 580 °C at a cooling rate of 5 to 20 °C/sec.
제 4항에 있어서, 상기 2차 냉각하는 공정 이후, 온도를 일정하게 유지하면서 과시효시키는 단계를 더 포함하는 것을 특징으로 하는 성형성이 우수한 고항복비형 강판 제조방법.
The method of claim 4, further comprising the step of overaging while maintaining a constant temperature after the secondary cooling process.
제 5항에 있어서, 상기 과시효된 냉연강판을 430~490℃의 온도범위에서 용융아연도금 처리한후, 이후 필요에 따라 합금화 열처리를 행하고, 100℃이하의 온도까지 5℃/s 이상의 평균 냉각속도로 냉각하는 것을 특징으로 하는 성형성이 우수한 고항복비형 강판 제조방법.
The method of claim 5, wherein the overaged cold-rolled steel sheet is hot-dip galvanized in a temperature range of 430 to 490°C, then alloying heat treatment is performed as needed, and an average cooling of 5°C/s or more to a temperature of 100°C or less. High yield ratio steel sheet manufacturing method having excellent formability, characterized in that cooling at a speed.
제 5항에 있어서, 상기 과시효된 냉연강판에 2% 미만의 조질압연을 수행하는 것을 특징으로 하는 성형성이 우수한 고항복비형 강판 제조방법.
The method of claim 5, wherein temper rolling of less than 2% is performed on the overaged cold-rolled steel sheet.
KR1020190164280A 2019-12-11 2019-12-11 High-strength steel having excellent formability and high yield ratio and method for manufacturing same KR102255823B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190164280A KR102255823B1 (en) 2019-12-11 2019-12-11 High-strength steel having excellent formability and high yield ratio and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190164280A KR102255823B1 (en) 2019-12-11 2019-12-11 High-strength steel having excellent formability and high yield ratio and method for manufacturing same

Publications (1)

Publication Number Publication Date
KR102255823B1 true KR102255823B1 (en) 2021-05-26

Family

ID=76137307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190164280A KR102255823B1 (en) 2019-12-11 2019-12-11 High-strength steel having excellent formability and high yield ratio and method for manufacturing same

Country Status (1)

Country Link
KR (1) KR102255823B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196889A (en) * 2021-11-29 2022-03-18 湖南华菱涟源钢铁有限公司 Hot-rolled steel sheet material, method for producing same and product
WO2023068763A1 (en) * 2021-10-19 2023-04-27 주식회사 포스코 Eco-friendly steel sheet having high strength and high formability, and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289120A (en) 1990-12-29 1992-10-14 Nkk Corp Production of ultrahigh strength cold rolled steel sheet excellent in formability and strip shape
JP2002053931A (en) * 2000-05-31 2002-02-19 Kawasaki Steel Corp Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
JP2005264176A (en) 2004-03-16 2005-09-29 Jfe Steel Kk High-strength steel having adequate workability and manufacturing method therefor
JP2006002186A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP2007211279A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
KR20150073844A (en) 2013-12-20 2015-07-01 주식회사 포스코 Precipitation hardening steel sheet having excellent hole expandability and method for manufacturing the same
KR20150075325A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same
KR20190075730A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Low deviation of property by direction precipitatiom hardening steel sheet and manufacturing method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289120A (en) 1990-12-29 1992-10-14 Nkk Corp Production of ultrahigh strength cold rolled steel sheet excellent in formability and strip shape
JP2002053931A (en) * 2000-05-31 2002-02-19 Kawasaki Steel Corp Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
JP2005264176A (en) 2004-03-16 2005-09-29 Jfe Steel Kk High-strength steel having adequate workability and manufacturing method therefor
JP2006002186A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP2007211279A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
KR20150073844A (en) 2013-12-20 2015-07-01 주식회사 포스코 Precipitation hardening steel sheet having excellent hole expandability and method for manufacturing the same
KR20150075325A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excelent impact property and method for manufacturing the same
KR20190075730A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Low deviation of property by direction precipitatiom hardening steel sheet and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068763A1 (en) * 2021-10-19 2023-04-27 주식회사 포스코 Eco-friendly steel sheet having high strength and high formability, and method for manufacturing same
CN114196889A (en) * 2021-11-29 2022-03-18 湖南华菱涟源钢铁有限公司 Hot-rolled steel sheet material, method for producing same and product

Similar Documents

Publication Publication Date Title
KR102153197B1 (en) Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
KR101630975B1 (en) High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same
US11345984B2 (en) High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
KR102109265B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for the same
KR102469278B1 (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
KR102255823B1 (en) High-strength steel having excellent formability and high yield ratio and method for manufacturing same
KR101166995B1 (en) Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
KR102468051B1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
US20210071278A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same
KR102379444B1 (en) Steel sheet having excellent formability and strain hardening rate and method for manufacturing thereof
KR102440772B1 (en) High strength steel sheet having excellent workability and manufacturing method for the same
KR102245228B1 (en) Steel sheet having excellent uniform elongation and strain hardening rate and method for manufacturing thereof
KR102645525B1 (en) High-strength steel sheet having excellent formability and method for manufacturing thereof
KR101079383B1 (en) The precipitation hardening cold rolled steel sheet having excellent yeild strength and ductility and method for manufacturing the same
KR20230087773A (en) Steel sheet having excellent strength and ductility, and manufacturing method thereof
KR20230094376A (en) High strength and high formability steel sheet having excellent spot weldability, and method for manufacturing the same
KR20230066166A (en) Steel sheet having excellent crashworthiness and formability, and method for manufacturing thereof
KR20230004237A (en) Cold-rolled steel sheet and method of manufacturing the same
KR20230055740A (en) Eco-friendly steel sheet having high strength and high formability, and method for manufacturing the same
KR100957966B1 (en) High Tension Multiphase Cold-Rolled Steel Sheet, Hot-Dip Coated Steel Sheet having Excellent Deep-Drawability and Elongation Property and Manufacturing Method Thereof
KR20210080664A (en) Steel sheet having excellent ductility and workablity, and method for manufacturing thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant