JPS647087B2 - - Google Patents

Info

Publication number
JPS647087B2
JPS647087B2 JP10871381A JP10871381A JPS647087B2 JP S647087 B2 JPS647087 B2 JP S647087B2 JP 10871381 A JP10871381 A JP 10871381A JP 10871381 A JP10871381 A JP 10871381A JP S647087 B2 JPS647087 B2 JP S647087B2
Authority
JP
Japan
Prior art keywords
polymerization
titanium
hours
catalyst
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10871381A
Other languages
Japanese (ja)
Other versions
JPS5811509A (en
Inventor
Nobuyuki Kuroda
Tooru Nakamura
Yutaka Shikatani
Kazuo Matsura
Mitsuharu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP10871381A priority Critical patent/JPS5811509A/en
Priority to GB08219717A priority patent/GB2103631A/en
Priority to CA000406851A priority patent/CA1185747A/en
Priority to DE19823226159 priority patent/DE3226159C2/en
Priority to FR8212064A priority patent/FR2509314B1/en
Publication of JPS5811509A publication Critical patent/JPS5811509A/en
Publication of JPS647087B2 publication Critical patent/JPS647087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は新規な重合触媒によるポリオレフイン
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyolefin using a novel polymerization catalyst.

従来この種の技術分野においては、特公昭39−
12105号公報によりハロゲン化マグネシウムにチ
タン化合物などの遷移金属化合物を担持させた触
媒が知られており、さらにベルギー特許第742112
号によりハロゲン化マグネシウムと四塩化チタン
とを共粉砕した触媒が知られている。
Conventionally, in this type of technical field, the
A catalyst in which a transition metal compound such as a titanium compound is supported on magnesium halide is known from Publication No. 12105, and further Belgian Patent No. 742112
A catalyst made by co-pulverizing magnesium halide and titanium tetrachloride is known.

しかしながらポリオレフインの製造上、触媒活
性はできるだけ高いことが望ましく、この観点か
らみると特公昭39−12105号公報記載の方法では
重合活性はまだ低く、ベルギー特許第742112号の
方法では重合活性は相当程度高くなつているがな
お改良が望まれる。
However, in the production of polyolefins, it is desirable for the catalyst activity to be as high as possible, and from this point of view, the method described in Japanese Patent Publication No. 39-12105 has a still low polymerization activity, while the method described in Belgian Patent No. 742112 has a fairly high polymerization activity. Although the cost has increased, improvements are still desired.

また、ドイツ特許第2137872号では、ハロゲン
化マグネシウム、四塩化チタンおよびアルミナな
どを共粉砕することにより実質的にハロゲン化マ
グネシウムの使用量を減らしているが、生産性の
尺度とも言える固体当りの活性の著しい増加は認
められず、さらに高活性な触媒が望まれる。
Furthermore, in German Patent No. 2137872, the amount of magnesium halide used is substantially reduced by co-pulverizing magnesium halide, titanium tetrachloride, alumina, etc., but the activity per solid, which is a measure of productivity, No significant increase was observed, and a catalyst with even higher activity is desired.

また、ポリオレフインの製造上生成ポリマーの
かさ比重はできるだけ高いことが生産性およびス
ラリーハンドリングの面から望ましい。この観点
からみると前記特公昭39−12105号公報記載の方
法では生成ポリマーのかさ比重は低くかつ重合活
性も満足すべき状態ではなく、またベルギー特許
第742112号の方法では重合活性は高いが生成ポリ
マーのかさ比重は低いという欠点があり改良が望
まれる。
Further, in the production of polyolefin, it is desirable that the bulk specific gravity of the polymer produced be as high as possible from the viewpoint of productivity and slurry handling. From this point of view, the method described in Japanese Patent Publication No. 39-12105 has a low bulk specific gravity and unsatisfactory polymerization activity, while the method described in Belgian Patent No. 742112 has a high polymerization activity but does not produce a polymer. There is a drawback that the bulk specific gravity of the polymer is low, and improvement is desired.

本発明は、上記の欠点を改良し、重合活性が高
くかつかさ比重の高いポリマーを高収率で得るこ
とができ、かつ連続重合をきわめて容易に実施で
きる新規な重合触媒の製造方法ならびに該重合触
媒によるオレフインの重合、または共重合方法に
関するものであり、重合活性はきわめて高いため
重合時のモノマー分圧も低く、さらに生成ポリマ
ーのかさ比重が高いため、生産性を向上させるこ
とができ、また重合終了後の生成ポリマー中の触
媒残査量はきわめて少量となり、したがつてポリ
オレフイン製造プロセスにおいて触媒除去工程が
省略できるためポリマー処理工程が簡素化され、
全体としてきわめて経済的なポリオレフインの製
造方法を提供するものである。
The present invention improves the above-mentioned drawbacks, provides a method for producing a novel polymerization catalyst that can obtain a polymer with high polymerization activity and high bulk specific gravity in high yield, and allows continuous polymerization to be carried out extremely easily, as well as a method for producing the polymerization catalyst. This method relates to catalytic polymerization or copolymerization of olefins, and because the polymerization activity is extremely high, the monomer partial pressure during polymerization is low, and the bulk specific gravity of the resulting polymer is high, making it possible to improve productivity. The amount of catalyst remaining in the resulting polymer after polymerization is extremely small, so the catalyst removal step can be omitted in the polyolefin manufacturing process, simplifying the polymer treatment process.
The present invention provides a method for producing polyolefins that is overall extremely economical.

本発明の方法では、得られるポリマーのかさ比
重が大きいため、単位重合反応器当りのポリマー
生成量が多い。
In the method of the present invention, since the bulk specific gravity of the obtained polymer is large, the amount of polymer produced per unit polymerization reactor is large.

さらに、本発明の長所をあげれば、生成ポリマ
ーの粒径の観点からみてかさ比重が高いにもかか
わらず、粗大粒子および50μ以下の微粒子が少な
いため、連続重合反応が容易になり、かつポリマ
ー処理工程における遠心分離、および粉体輸送な
どのポリマー粒子の取り扱いが容易になることで
ある。
Furthermore, the advantages of the present invention are that although the bulk specific gravity of the produced polymer is high in terms of particle size, there are few coarse particles and fine particles of 50μ or less, so continuous polymerization reaction is facilitated, and polymer processing is possible. This facilitates the handling of polymer particles, such as centrifugation and powder transportation in the process.

本発明の他の利点としては、本発明の触媒を用
いて得られるポリエチレンは前記したようにかさ
比重が大きく、また所望のメルトインデツクスの
ポリマーを得るためには従来の方法に比べ水素濃
度が少なくて済み、したがつて重合時の全圧も比
較的小さくすることができ、経済的、生産性に及
ぼす効果も大きいことをあげることができる。
Another advantage of the present invention is that the polyethylene obtained using the catalyst of the present invention has a large bulk specific gravity as described above, and that the hydrogen concentration is required to obtain a polymer with a desired melt index compared to conventional methods. Therefore, the total pressure during polymerization can be made relatively small, and the effects on economy and productivity are also large.

加えて本発明の触媒を用いてエチレンの重合を
行なつた場合、時間によるエチレン吸収速度の減
少が少ないことから、少ない触媒量で長時間重合
を行なえることも利点としてあげることができ
る。
In addition, when ethylene is polymerized using the catalyst of the present invention, an advantage is that the ethylene absorption rate decreases little with time, so that polymerization can be carried out for a long time with a small amount of catalyst.

さらに、本発明の触媒を用いて得られるポリマ
ーは分子量分布がきわめて狭く、ヘキサン抽出量
が少ないなど低重合物の副生が非常に少ないこと
も特徴である。したがつて、例えばフイルムグレ
ードなどでは耐ブロツキング性に優れているなど
良好な品質の製品を得ることができる。
Furthermore, the polymer obtained using the catalyst of the present invention has an extremely narrow molecular weight distribution and is characterized by extremely low by-products of low polymers, such as a small amount of hexane extraction. Therefore, it is possible to obtain a product of good quality, such as film grade, which has excellent blocking resistance.

本発明の触媒は、これらの多くの特徴を備え、
かつ前記の先行技術の欠点を改良した新規な触媒
系を提供するものであり、本発明の触媒を用いる
ことによりこれらの諸点を容易に達成できること
は驚くべきことと言わねばならない。
The catalyst of the present invention has many of these characteristics,
Moreover, the present invention provides a novel catalyst system that improves the drawbacks of the prior art described above, and it must be said that it is surprising that these points can be easily achieved by using the catalyst of the present invention.

以下に本発明を具体的に説明する。すなわち、
本発明は、 (1) ジハロゲン化マグネシウム、 (2) 一般式Me(OR)oXz-o(ここで、MeはAl,
B、P、Mg、Zn、Ca、Feから選ばれる元素。
Rは炭素数1〜24の炭化水素残基を、Xはハロ
ゲン原子を示す。zはMeの原子価を表わし、
nは0<n≦zである)で表わされる化合物、 (3) 一般式R′mSi(OR″)oX4-no(ここでR′,
R″は炭素数1〜24の炭化水素残基を、Xはハ
ロゲン原子を示す。m,nは0<m<4,0<
n<4,0<n+m≦4である)で表わされる
化合物および (4) チタン化合物またはチタン化合物及びバナジ
ウム化合物 を反応させて得られる物質を固体触媒成分とし、
該固体触媒成分と有機アルミニウム化合物とを触
媒として、オレフインを重合あるいは共重合して
ポリオレフインを製造する方法に存する。
The present invention will be specifically explained below. That is,
The present invention comprises (1) magnesium dihalide, (2) general formula Me(OR) o X zo (where Me is Al,
Element selected from B, P, Mg, Zn, Ca, and Fe.
R represents a hydrocarbon residue having 1 to 24 carbon atoms, and X represents a halogen atom. z represents the valence of Me,
n is 0<n≦z), (3) General formula R′mSi(OR″) o X 4-no (where R′,
R″ represents a hydrocarbon residue having 1 to 24 carbon atoms, and X represents a halogen atom. m and n are 0<m<4,0<
n<4,0<n+m≦4) and (4) a substance obtained by reacting a titanium compound or a titanium compound and a vanadium compound as a solid catalyst component,
The method consists in producing a polyolefin by polymerizing or copolymerizing an olefin using the solid catalyst component and an organoaluminum compound as a catalyst.

本発明に使用されるジハロゲン化マグネシウム
としては実質的に無水のものが用いられ、フツ化
マグネシウム、塩化マグネシウム、臭化マグネシ
ウム、ヨウ化マグネシウムがあげられるがとくに
塩化マグネシウムが好ましい。
The magnesium dihalide used in the present invention is substantially anhydrous and includes magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide, with magnesium chloride being particularly preferred.

本発明で使用される一般式Me(OR)oXz-o(ここ
でMe、z、nおよびRは前記定義のとおりであ
る)で表わされる化合物としてはたとえば、
NaOR、Mg(OR)2、Mg(OR)X、Ca(OR)2
Zn(OR)2、Zn(OR)X、Cd(OR)2、Al(OR)3
Al(OR)2X、B(OR)3、B(OR)2X、Ga(OR)3
Ge(OR)4、Sn(OR)4、P(OR)5、Cr(OR)2、Mn
(OR)2、Fe(OR)2、Fe(OR)3、Co(OR)2、Ni
(OR)2などの各種化合物をあげることができ、さ
らに好ましい具体例としては、NaOC2H5
NaOC4H9、Mg(OCH32、Mg(OC2H52、Mg
(OC6H52、Ca(OC2H52、Zn(OC2H52、Zn
(OC2H5)Cl、Al(OCH33、Al(OC2H53、Al
(OC2H52Cl、Al(OC3H73、Al(OC4H93、Al
(OC6H53、B(OC2H53、B(OC2H52Cl、P
(OC2H53、P(OC6H53、Fe(OC4H9)などの化
合物をあげることができる。
Examples of the compound represented by the general formula Me(OR) o X zo (where Me, z, n and R are as defined above) used in the present invention include:
NaOR, Mg(OR) 2 , Mg(OR)X, Ca(OR) 2 ,
Zn(OR) 2 , Zn(OR)X, Cd(OR) 2 , Al(OR) 3 ,
Al(OR) 2 X, B(OR) 3 , B(OR) 2 X, Ga(OR) 3 ,
Ge(OR) 4 , Sn(OR) 4 , P(OR) 5 , Cr(OR) 2 , Mn
(OR) 2 , Fe(OR) 2 , Fe(OR) 3 , Co(OR) 2 , Ni
Various compounds such as (OR) 2 can be mentioned, and more preferred specific examples include NaOC 2 H 5 ,
NaOC4H9 , Mg ( OCH3 ) 2 , Mg( OC2H5 ) 2 , Mg
(OC 6 H 5 ) 2 , Ca (OC 2 H 5 ) 2 , Zn (OC 2 H 5 ) 2 , Zn
( OC2H5 )Cl, Al ( OCH3 ) 3 , Al ( OC2H5 ) 3 , Al
( OC2H5 ) 2Cl , Al ( OC3H7 ) 3 , Al( OC4H9 ) 3 , Al
(OC 6 H 5 ) 3 , B(OC 2 H 5 ) 3 , B(OC 2 H 5 ) 2 Cl, P
Examples include compounds such as (OC 2 H 5 ) 3 , P(OC 6 H 5 ) 3 and Fe(OC 4 H 9 ).

本発明においては、特に一般式Mg(OR)o
X2-o、Al(OR)oX3-oおよびB(OR)oX3-oで表わ
される化合物が好ましい。また、Rとしては炭素
数1〜4のアルキル基およびフエニル基が特に好
ましい。
In the present invention, in particular, the general formula Mg(OR) o
Compounds represented by X 2-o , Al(OR) o X 3-o and B(OR) o X 3-o are preferred. Moreover, as R, an alkyl group having 1 to 4 carbon atoms and a phenyl group are particularly preferable.

本発明において使用される一般式R′mSi(OR″)
oX4-no(ここでR′,R″は炭素数1〜24のアルキ
ル基、アリール基、アラルキル基等の炭化水素残
基を、Xはハロゲン原子を示す。m,nは0<m
<4,0<n<4,0<n+m≦4である)で表
わされる化合物としては、 モノメチルトリメトキシシラン、モノメチルト
リエトキシシラン、モノメチルトリn―ブトキシ
シラン、モノメチルトリsec―ブトキシシラン、
モノメチルトリイソプロポキシシラン、モノメチ
ルトリペントキシシラン、モノメチルトリオクト
キシシラン、モノメチルトリステアロキシシラ
ン、モノメチルトリフエノキシシラン、ジメチル
ジメトキシシラン、ジメチルジエトキシシラン、
ジメチルジイソプロポキシシラン、ジメチルジフ
エノキシシラン、トリメチルモノメトキシシラ
ン、トリメチルモノエトキシシラン、トリメチル
モノイソプロポキシシラン、トリメチルモノフエ
ノキシシラン、モノメチルジメトキシモノクロロ
シラン、モノメチルジエトキシモノクロロシラ
ン、モノメチルモノエトキシジクロロシラン、モ
ノメチルジエトキシモノクロロシラン、モノメチ
ルジエトキシモノブロモシラン、モノメチルジフ
エノキシモノクロロシラン、ジメチルモノエトキ
シモノクロロシラン、モノエチルトリメトキシシ
ラン、モノエチルトリエトキシシラン、モノエチ
ルトリイソプロポキシシラン、モノエチルトリフ
エノキシシラン、ジエチルジメトキシシラン、ジ
エチルジエトキシシラン、ジエチルジフエノキシ
シラン、トリエチルモノメトキシシラン、トリエ
チルモノエトキシシラン、トリエチルモノフエノ
キシシラン、モノエチルジメトキシモノクロロシ
ラン、モノエチルジエトキシモノクロロシラン、
モノエチルジフエノキシモノクロロシラン、モノ
イソプロピルトリメトキシシラン、モノn―ブチ
ルトリメトキシシラン、モノ―nブチルトリエト
キシシラン、モノsec―ブチルトリエトキシシラ
ン、モノフエニルトリエトキシシラン、ジフエニ
ルジエトキシシラン、ジフエニルモノエトキシモ
ノクロロシランを挙げることができる。
General formula R′mSi(OR″) used in the present invention
o _ _ <m
<4,0<n<4,0<n+m≦4), monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltri-n-butoxysilane, monomethyltrisec-butoxysilane,
Monomethyltriisopropoxysilane, monomethyltripentoxysilane, monomethyltrioctoxysilane, monomethyltristearoxysilane, monomethyltriphenoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane,
Dimethyldiisopropoxysilane, dimethyldiphenoxysilane, trimethylmonomethoxysilane, trimethylmonoethoxysilane, trimethylmonoisopropoxysilane, trimethylmonophenoxysilane, monomethyldimethoxymonochlorosilane, monomethyldiethoxymonochlorosilane, monomethylmonoethoxydichlorosilane , monomethyldiethoxymonochlorosilane, monomethyldiethoxymonobromosilane, monomethyldiphenoxymonochlorosilane, dimethylmonoethoxymonochlorosilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, monoethyltriisopropoxysilane, monoethyltriphenoxy Silane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldiphenoxysilane, triethylmonomethoxysilane, triethylmonoethoxysilane, triethylmonophenoxysilane, monoethyldimethoxymonochlorosilane, monoethyldiethoxymonochlorosilane,
Monoethyldiphenoxymonochlorosilane, monoisopropyltrimethoxysilane, mono-n-butyltrimethoxysilane, mono-n-butyltriethoxysilane, mono-sec-butyltriethoxysilane, monophenyltriethoxysilane, diphenyldiethoxysilane, diphenyltriethoxysilane Enylmonoethoxymonochlorosilane may be mentioned.

本発明に使用されるチタン化合物および/また
はバナジウム化合物としては、チタンおよび/ま
たはバナジウムのハロゲン化物、アルコキシハロ
ゲン化物、アルコキシド、ハロゲン化酸化物等を
挙げることができる。チタン化合物としては4価
のチタン化合物と3価のチタン化合物が好適であ
り、4価のチタン化合物としては具体的には一般
式Ti(OR)oX4-o(ここでRは炭素数1〜24のアル
キル基、アリール基またはアラルキル基を示し、
Xはハロゲン原子を示す。nは0≦n≦4であ
る。)で示されるものが好ましく、四塩化チタン、
四臭化チタン、四ヨウ化チタン、モノメトキシト
リクロロチタン、ジメトキシジクロロチタン、ト
リメトキシモノクロロチタン、テトラメトキシチ
タン、モノエトキシトリクロロチタン、ジエトキ
シジクロロチタン、トリエトキシモノクロロチタ
ン、テトラエトキシチタン、セノイソプロポキシ
トリクロロチタン、ジイソプロポキシジクロロチ
タン、トリイソプロポキシモノクロロチタン、テ
トライソプロポキシチタン、モノブトキシトリク
ロロチタン、ジブトキシジクロロチタン、モノベ
ントキシトリクロロチタン、モノフエノキシトリ
クロロチタン、ジフエノキシジクロロチタン、ト
リフエノキシモノクロロチタン、テトラフエノキ
シチタン等を挙げることができる。3価のチタン
化合物としては、四塩化チタン、四臭化チタン等
の四ハロゲン化チタンを水素、アルミニウム、チ
タンあるいは周期律表〜族金属の有機金属化
合物により還元して得られる三ハロゲン化チタン
が挙げられる。また一般式Ti(OR)nX4-n(ここで
Rは炭素数1〜24のアルキル基、アリール基また
はアラルキル基を示し、Xはハロゲン原子を示
す。mは0<m<4である。)で示される4価の
ハロゲン化アルコキシチタンを周期律表〜族
金属の有機金属化合物により還元して得られる3
価のチタン化合物が挙げられる。バナジウム化合
物としては、四塩化バナジウム、四臭化バナジウ
ム、四ヨウ化バナジウム、テトラエトキシバナジ
ウムの如き4価のバナジウム化合物、オキシ三塩
化バナジウム、エトキシジクロルバナジル、トリ
エトキシバナジル、トリブトキシバナジルの如き
5価のバナジウム化合物、三塩化バナジウム、バ
ナジウムトリエトキシドの如き3価のバナジウム
化合物が挙げられる。
Examples of the titanium compound and/or vanadium compound used in the present invention include halides, alkoxy halides, alkoxides, and halogenated oxides of titanium and/or vanadium. Preferred titanium compounds are tetravalent titanium compounds and trivalent titanium compounds, and specific examples of tetravalent titanium compounds include the general formula Ti(OR) o X 4-o (where R is 1 carbon number) ~24 alkyl, aryl or aralkyl groups;
X represents a halogen atom. n is 0≦n≦4. ) is preferable, titanium tetrachloride,
Titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium, senoisopropoxy Trichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monobenxytrichlorotitanium, monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxytitanium Examples include cymonochlorotitanium and tetraphenoxytitanium. Examples of trivalent titanium compounds include titanium trihalides obtained by reducing titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide with hydrogen, aluminum, titanium, or organometallic compounds of group metals of the periodic table. Can be mentioned. Also, the general formula Ti(OR ) n 3 obtained by reducing tetravalent alkoxy titanium halide represented by
Examples include titanium compounds with high valence. Examples of vanadium compounds include tetravalent vanadium compounds such as vanadium tetrachloride, vanadium tetrabromide, vanadium tetraiodide, and tetraethoxyvanadium; Examples include trivalent vanadium compounds such as trivalent vanadium compounds, vanadium trichloride, and vanadium triethoxide.

本発明においては、4価のチタン化合物が最も
好ましい。
In the present invention, tetravalent titanium compounds are most preferred.

本発明をさらに効果的にするために、チタン化
合物とバナジウム化合物を併用することも、しば
しば行なわれる。このときのV/Tiモル比は
2/1〜0.01/1の範囲が好ましい。
In order to make the present invention even more effective, titanium compounds and vanadium compounds are often used in combination. The V/Ti molar ratio at this time is preferably in the range of 2/1 to 0.01/1.

本発明における(1)ハロゲン化マグネシウム、(2)
一般式Me(OR)oXz-oで表わされる化合物、(3)一
般式R′mSi(OR″)oX4-noで表わされる化合物お
よび(4)チタン化合物および/またはバナジウム化
合物を反応させて、本発明の固体触媒成分を得る
方法としては特に制限はなく、不活性溶媒の存在
下あるいは不存在下に温度20〜400℃、好ましく
は50〜300℃の加熱下に、通常、5分〜20時間接
触させることにより反応させる方法、共粉砕処理
により反応させる方法、あるいはこれらの方法を
適宜組み合わせることにより反応させてもよい。
成分(1)〜(4)の反応順序についても特に制限はな
く、4成分を同時に反応させてもよく、3成分を
反応させた後、他の1成分を反応させてもよく、
また2成分を反応させた後、他の2成分を反応さ
せてもよく、2成分を反応させた後、次の1成分
を反応させ、次いで残りの1成分を反応させても
よい。
(1) Magnesium halide in the present invention, (2)
A compound represented by the general formula Me(OR) o X zo , (3) a compound represented by the general formula R′mSi(OR ) o The method for obtaining the solid catalyst component of the present invention is not particularly limited, and is usually heated at a temperature of 20 to 400°C, preferably 50 to 300°C, in the presence or absence of an inert solvent. The reaction may be carried out by contacting for minutes to 20 hours, by co-pulverization, or by an appropriate combination of these methods.
There is no particular restriction on the reaction order of components (1) to (4), and the four components may be reacted at the same time, or after the three components are reacted, another component may be reacted.
Moreover, after reacting two components, other two components may be reacted, or after reacting two components, the next one component may be reacted, and then the remaining one component may be reacted.

このとき使用する不活性溶媒は特に制限される
ものではなく、通常チグラー型触媒を不活性化し
ない炭化水素化合物および/またはそれらの誘導
体を使用することができる。これらの具体例とし
ては、プロパン、ブタン、ペンタン、ヘキサン、
ヘプタン、オクタン、ベンゼン、トルエン、キシ
レン、シクロヘキサン等の各種脂肪族飽和炭化水
素、芳香族炭化水素、脂環族炭化水素、およびエ
タノール、ジエチルエーテル、テトラヒドロフラ
ン、酢酸エチル、安息香酸エチル等のアルコール
類、エーテル類、エステル類などを挙げることが
できる。
The inert solvent used at this time is not particularly limited, and hydrocarbon compounds and/or derivatives thereof that do not normally inactivate the Ziegler type catalyst can be used. Specific examples of these include propane, butane, pentane, hexane,
Various aliphatic saturated hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons such as heptane, octane, benzene, toluene, xylene, and cyclohexane, and alcohols such as ethanol, diethyl ether, tetrahydrofuran, ethyl acetate, and ethyl benzoate; Examples include ethers and esters.

ハロゲン化マグネシウムと一般式Me(OR)o
XZ-oで表わされる化合物との混合割合は、一般
式Me(OR)oXz-oで表わされる化合物の量が余り
にも少なすぎてもまた逆にあまりにも多すぎても
重合活性は低下する傾向にありMg/Meモル比
が1/0.001〜1/20、好ましくは1/0.01〜
1/1の範囲であり、最も好ましくは1/0.05〜
1/0.5の範囲が高活性の触媒の製造のために望
ましい。
Magnesium halide and general formula Me(OR) o
The mixing ratio with the compound represented by X Zo is such that if the amount of the compound represented by the general formula Me(OR) o Yes, Mg/Me molar ratio is 1/0.001 to 1/20, preferably 1/0.01 to
The range is 1/1, most preferably 1/0.05~
A range of 1/0.5 is desirable for the production of highly active catalysts.

本発明において、一般式R′mSi(OR″)oX4-no
で表わされる化合物の使用量は余り多すぎてもま
た少なすぎても添加効果は望めず、通常ハロゲン
化マグネシウム100gに対して0.1〜50g、好まし
くは0.5〜10gの範囲内である。
In the present invention, the general formula R′mSi(OR″) o X 4-no
If the amount of the compound represented by is used is too large or too small, no effect can be expected, and it is usually in the range of 0.1 to 50 g, preferably 0.5 to 10 g, per 100 g of magnesium halide.

また、チタン化合物および/またはバナジウム
化合物の量は生成固体触媒成分中に含まれるチタ
ンおよび/またはバナジウムが0.5〜20重量%の
範囲内になるように調節するのが最も好ましく、
バランスの良いチタンおよび/またはバナジウム
当りの活性、固体当りの活性を得るためには1〜
10重量%の範囲がとくに望ましい。
Further, the amount of the titanium compound and/or vanadium compound is most preferably adjusted so that the titanium and/or vanadium contained in the produced solid catalyst component is within the range of 0.5 to 20% by weight.
1 to 1 to obtain a well-balanced activity per titanium and/or vanadium, and activity per solid.
A range of 10% by weight is particularly desirable.

共粉砕に用いる装置はとくに限定はされない
が、通常ボールミル、振動ミル、ロツドミル、衝
撃ミルなどが使用されその粉砕方式に応じての混
合順序、粉砕時間、粉砕温度などの条件は特に限
定されるものではなく当業者にとつて容易に定め
られるものである。通常0℃〜200℃、好ましく
は20℃〜100℃の温度で0.5時間〜30時間共粉砕す
ることが望ましい。もちろん共粉砕操作は不活性
ガス雰囲気中で行なうべきであり、また湿気はで
きる限り避けるべきである。
The equipment used for co-pulverization is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used, and conditions such as mixing order, grinding time, and grinding temperature are particularly limited depending on the grinding method. rather, it can be easily determined by a person skilled in the art. It is desirable to co-mill at a temperature of usually 0°C to 200°C, preferably 20°C to 100°C for 0.5 to 30 hours. Of course, the co-grinding operation should be carried out in an inert gas atmosphere and moisture should be avoided as much as possible.

本発明に用いる有機金属化合物としては、チグ
ラー触媒の一成分として知られている周期律表第
〜族の有機金属化合物を使用できるがとくに
有機アルミニウム化合物および有機亜鉛化合物が
好ましい。具体的な例としては一般式R3Al、
R2AlX、RAlX2、R2AlOR、RAl(OR)Xおよび
R3Al2X3の有機アルミニウム化合物(ただしRは
炭素数1〜20のアルキル基またはアリール基、X
はハロゲン原子を示し、Rは同一でもまた異なつ
てもよい)または一般式R2Zo(ただしRは炭素数
1〜20のアルキル基であり二者同一でもまた異な
つていてもよい)の有機亜鉛化合物で示されるも
ので、トリエチルアルミニウム、トリイソプロピ
ルアルミニウム、トリイソブチルアルミニウム、
トリsec―ブチルアルミニウム、トリtert―ブチ
ルアルミニウム、トリヘキシルアルミニウム、ト
リオクチルアルミニウム、ジエチルアルミニウム
クロリド、ジイソプロピルアルミニウムクロリ
ド、エチルアルミニウムセスキクロリド、ジエチ
ル亜鉛およびこれらの混合物等があげられる。ま
た、これらの有機金属化合物と共に、安息香酸エ
チル、o―またはp―トルイル酸エチル、p―ア
ニス酸エチル等の有機カルボン酸エステルを併用
して用いることもできる。有機金属化合物の使用
量はとくに制限はないが通常チタン化合物およ
び/またはバナジウム化合物に対して0.1〜
1000mol倍使用することができる。
As the organometallic compound used in the present invention, organometallic compounds of groups 1 to 10 of the periodic table, which are known as components of Ziegler's catalyst, can be used, but organoaluminum compounds and organozinc compounds are particularly preferred. Specific examples include the general formula R 3 Al,
R 2 AlX, RAlX 2 , R 2 AlOR, RAl(OR)X and
R 3 Al 2 X 3 organoaluminum compound (R is an alkyl group or aryl group having 1 to 20 carbon atoms,
represents a halogen atom, and R may be the same or different) or of the general formula R 2 Z o (however, R is an alkyl group having 1 to 20 carbon atoms and may be the same or different) Organozinc compounds such as triethylaluminum, triisopropylaluminum, triisobutylaluminum,
Examples include tri-sec-butylaluminum, tri-tert-butylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, diisopropylaluminum chloride, ethylaluminum sesquichloride, diethylzinc, and mixtures thereof. In addition, organic carboxylic acid esters such as ethyl benzoate, o- or p-ethyl toluate, and p-ethyl anisate can also be used in combination with these organometallic compounds. There is no particular restriction on the amount of organometallic compound used, but it is usually 0.1 to 0.1 to titanium compound and/or vanadium compound.
Can be used 1000mol times.

また、本発明においては本発明の固体触媒成分
に前記の一般式R2AlX、RAlX2、RAl(OR)X
またはR3Al2X3で表わされるハロゲン含有有機ア
ルミニウム化合物と反応させた後、使用すること
も好ましく行われる。この時のハロゲン含有有機
アルミニウム化合物の使用量は、ハロゲン含有有
機アルミニウム化合物:チタン化合物および/ま
たはバナジウム化合物のモル比が1:0.01〜100
であり、好ましくは1:0.3〜50である。またこ
のときの反応方法としては特に制限はなく、例え
ば不活性炭化水素の存在下に反応させてもよい
し、あるいは溶媒の不存在下に共粉砕処理により
反応させてもよい。反応温度としては0〜100℃
の範囲が好ましく、また反応時間としては5分〜
10時間が好ましい。
In addition, in the present invention, the solid catalyst component of the present invention has the general formula R 2 AlX, RAlX 2 , RAl(OR)X
Alternatively, it is also preferably used after reacting with a halogen-containing organoaluminum compound represented by R 3 Al 2 X 3 . The amount of the halogen-containing organoaluminum compound used at this time is such that the molar ratio of the halogen-containing organoaluminum compound:titanium compound and/or vanadium compound is 1:0.01 to 100.
and preferably 1:0.3-50. The reaction method at this time is not particularly limited; for example, the reaction may be carried out in the presence of an inert hydrocarbon, or the reaction may be carried out by co-pulverization in the absence of a solvent. The reaction temperature is 0 to 100℃
The reaction time is preferably from 5 minutes to
10 hours is preferred.

このように、本発明の固体触媒成分にハロゲン
含有有機アルミニウムを反応させて得られる固体
物質を触媒成分として用いると、触媒活性が向上
するとともに、生成ポリマーの分子量分布がより
狭いものが得られる。この場合、この触媒成分と
組み合わせる有機金属化合物としては、前記の如
く各種の化合物が適用されるが、特に好ましいの
は一般式R3Alで表わされる有機アルミニウム化
合物である。
As described above, when the solid substance obtained by reacting the solid catalyst component of the present invention with a halogen-containing organoaluminum is used as the catalyst component, the catalyst activity is improved and the resulting polymer has a narrower molecular weight distribution. In this case, as the organometallic compound to be combined with this catalyst component, various compounds can be used as described above, but particularly preferred is an organoaluminum compound represented by the general formula R 3 Al.

本発明の触媒を使用してのオレフインの重合は
スラリー重合、溶液重合または気相重合にて行う
ことができ、特に気相重合に好適に用いることが
できる。重合反応は通常のチグラー型触媒による
オレフイン重合反応と同様にして行なわれる。す
なわち反応はすべて実質的に酸素、水などを絶つ
た状態で不活性炭化水素の存在下、あるいは不存
在下で行なわれる。オレフインの重合条件は温度
は20ないし120℃、好ましくは50ないし100℃であ
り、圧力は常圧ないし70Kg/cm2、好ましくは2な
いし60Kg/cm2である。分子量の調節は重合温度、
触媒のモル比などの重合条件を変えることによつ
てもある程度調節できるが重合系中に水素を添加
することにより効果的に行なわれる。もちろん、
本発明の触媒を用いて、水素濃度、重合温度など
重合条件の異なつた2段階ないしそれ以上の多段
階の重合反応も何ら支障なく実施できる。
Olefin polymerization using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization, or gas phase polymerization, and it can be particularly preferably used for gas phase polymerization. The polymerization reaction is carried out in the same manner as an ordinary olefin polymerization reaction using a Ziegler type catalyst. That is, all reactions are carried out in the presence or absence of inert hydrocarbons, substantially deprived of oxygen, water, and the like. The polymerization conditions for olefin are a temperature of 20 to 120°C, preferably 50 to 100°C, and a pressure of normal pressure to 70 kg/cm 2 , preferably 2 to 60 kg/cm 2 . Molecular weight can be adjusted by polymerization temperature,
Although it can be controlled to some extent by changing polymerization conditions such as the molar ratio of catalysts, it is effectively achieved by adding hydrogen to the polymerization system. of course,
Using the catalyst of the present invention, two-stage or more multi-stage polymerization reactions with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any problems.

本発明の方法はチグラー触媒で重合できるすべ
てのオレフインの重合に適用可能であり、特に炭
素数2〜12のα―オレフインが好ましく、たとえ
ばエチレン、プロピレン、1―ブテン、ヘキセン
―1、4―メチルペンテン―1、オクテン―1な
どのα―オレフイン類の単独重合およびエチレン
とプロピレン、エチレンと1―ブテン、エチレン
とヘキセン―1、エチレンと4―メチルペンテン
―1、エチレンとオクテン―1、プロピレンと1
―ブテンの共重合およびエチレンと他の2種類以
上のα―オレフインとの共重合などに好適に使用
される。
The method of the present invention is applicable to the polymerization of all olefins that can be polymerized with Ziegler's catalyst, and α-olefins having 2 to 12 carbon atoms are particularly preferred, such as ethylene, propylene, 1-butene, hexene-1,4-methyl Homopolymerization of α-olefins such as pentene-1 and octene-1, ethylene and propylene, ethylene and 1-butene, ethylene and hexene-1, ethylene and 4-methylpentene-1, ethylene and octene-1, propylene and 1
- It is suitably used for copolymerization of butene and copolymerization of ethylene and two or more other α-olefins.

また、ポリオレフインの改質を目的とする場合
のジエンとの共重合も好ましく行われる。この時
使用されるジエン化合物の例としてはブタジエ
ン、1,4―ヘキサジエン、エチリデンノルボル
ネン、ジシクロペンタジエン等を挙げることがで
きる。
Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time include butadiene, 1,4-hexadiene, ethylidenenorbornene, dicyclopentadiene, and the like.

以下に実施例をのべるが、これらは本発明を実
施するための説明用のものであつて本発明はこれ
らに制限されるものではない。
Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto.

実施例 1 (a) 固体触媒成分の製造 1/2インチ直径を有するステンレススチール製
ボールが25コ入つた内容積400mlのステンレスス
チール製ポツトに市販の無水塩化マグネシウム10
g、アルミニウムトリエトキシド2.3g、および
四塩化チタン2.5gを入れ窒素雰囲気下、室温で
16時間ボールミリングを行なつた。ついでモノメ
チルトリエトキシシラン2.5gを加え、さらに16
時間ボールミリングを行なつた。ボールミリング
後、得られた固体触媒成分1gには36mgのチタン
が含まれていた。
Example 1 (a) Preparation of solid catalyst component Commercially available anhydrous magnesium chloride 10 was placed in a 400 ml stainless steel pot containing 25 1/2 inch diameter stainless steel balls.
g, aluminum triethoxide, 2.3 g, and titanium tetrachloride, 2.5 g, under a nitrogen atmosphere at room temperature.
Ball milling was carried out for 16 hours. Next, add 2.5g of monomethyltriethoxysilane and add 16g of monomethyltriethoxysilane.
Time ball milling was performed. After ball milling, 1 g of the solid catalyst component obtained contained 36 mg of titanium.

(b) 重合 気相重合装置としてはステンレス製オートクレ
ーブを用い、ブロワー、流量調節器および乾式サ
イクロンでループをつくり、オートクレーブはジ
ヤケツトに温水を流すことにより温度を調節し
た。
(b) Polymerization A stainless steel autoclave was used as the gas phase polymerization apparatus, a loop was created with a blower, a flow controller, and a dry cyclone, and the temperature of the autoclave was adjusted by flowing hot water through the jacket.

80℃に調節したオートクレーブに上記固体触媒
成分を50mg/hr、およびトリエチルアルミニウム
を5mmol/hrの速度で供給し、また、オートク
レーブ気相中のブテン―1/エチレン比(モル
比)を0.27に、さらに水素を全圧の15%となるよ
うに調整しながら各々のガスを供給し、かつブロ
ワーにより系内のガスを循環させて全圧を10Kg/
cm2・Gに保つようにして重合を行なつた。生成し
たエチレン共重合体はかさ比重0.37、メルトイン
デツクス(MI)1.1、密度0.9202であつた。
The above solid catalyst component was fed into the autoclave adjusted to 80°C at a rate of 50 mg/hr and triethylaluminum at a rate of 5 mmol/hr, and the butene-1/ethylene ratio (molar ratio) in the gas phase of the autoclave was set to 0.27. Furthermore, each gas was supplied while adjusting the hydrogen to 15% of the total pressure, and the gas in the system was circulated using a blower to reduce the total pressure to 10 kg/kg.
Polymerization was carried out while maintaining the temperature at cm 2 ·G. The produced ethylene copolymer had a bulk specific gravity of 0.37, a melt index (MI) of 1.1, and a density of 0.9202.

また触媒活性は528000g共重合体/gTiときわ
めて高活性であつた。
The catalyst activity was extremely high at 528,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを解放
し、内部の点検を行なつたが内壁および撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

この共重合体をASTM―D1238―65Tの方法に
より、190℃、荷重2.16Kgで測定したメルトイン
デツクスMI2.16と荷重10Kgで測定したメルトイン
デツクスMI10との比で表わされるF.R.値(F.R.
=MI10/MI2.16)は7.1であり、分子量分布はき
わめて狭いものであつた。
This copolymer has a FR value (FR
=MI 10 /MI 2.16 ) was 7.1, and the molecular weight distribution was extremely narrow.

また、この共重合体のフイルムを沸騰ヘキサン
中で10時間抽出したところ、ヘキサン抽出量は
1.1wt%であり、きわめて抽出分が少なかつた。
Furthermore, when a film of this copolymer was extracted in boiling hexane for 10 hours, the amount of hexane extracted was
It was 1.1wt%, and the extractable content was extremely small.

比較例 1 実施例1においてモノメチルトリエトキシシラ
ン2.5gを加えないことを除いては実施例1と同
様の操作で固体触媒成分を合成した。固体触媒成
分1g中には45mgのチタンが含まれていた。
Comparative Example 1 A solid catalyst component was synthesized in the same manner as in Example 1 except that 2.5 g of monomethyltriethoxysilane was not added. 45 mg of titanium was contained in 1 g of the solid catalyst component.

上記固体触媒成分を50mg/hrでフイードする以
外は実施例1と同様の操作で連続気相重合を行な
つた。生成したエチレン共重合体は、かさ比重
0.34、密度0.9201、メルトインデツクス1.1であつ
た。
Continuous gas phase polymerization was carried out in the same manner as in Example 1 except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity
0.34, density 0.9201, and melt index 1.1.

また触媒活性は315000g共重合体/gTiであつ
た。
The catalyst activity was 315,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを解放
し、内部の点検を行なつたが内壁および撹拌機に
若干のポリマーが付着していた。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but some polymer had adhered to the inner walls and the stirrer.

また、この共重合体のF.R.値は8.3であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は4.0wt%であつた。
The FR value of this copolymer was 8.3, and when the film was extracted in boiling hexane for 10 hours, the amount of hexane extracted was 4.0 wt%.

実施例 2 磁気誘導撹拌機付き300c.c.三ツ口フラスコに、
エタノール10ml、無水塩化マグネシウム20g、ト
リエトキシボロン4.6g、およびモノメチルトリ
エトキシシラン6gを加え、還流下で3時間反応
させた。反応終了後、n―ヘキサン150mlを加え
沈殿を生じせしめ、ついで静置したのち上澄液を
除去し、200℃で真空乾燥を行ない白色の乾燥粉
末を得た。
Example 2 In a 300c.c. three-necked flask with a magnetic induction stirrer,
10 ml of ethanol, 20 g of anhydrous magnesium chloride, 4.6 g of triethoxyboron, and 6 g of monomethyltriethoxysilane were added, and the mixture was reacted under reflux for 3 hours. After the reaction was completed, 150 ml of n-hexane was added to form a precipitate, and after the mixture was allowed to stand, the supernatant liquid was removed and vacuum drying was performed at 200°C to obtain a white dry powder.

1/2インチ直径を有するステンレススチール製
ボールが25コ入つた内容積400mlのステンレスス
チール製ポツトに上記白色粉末12g、および四塩
化チタン2.3gを入れ窒素雰囲気下、室温で16時
間ボールミリングを行なつた。ボールミリング後
得られた固体触媒成分1gには38mgのチタンが含
まれていた。
12 g of the above white powder and 2.3 g of titanium tetrachloride were placed in a stainless steel pot with an internal volume of 400 ml containing 25 stainless steel balls with a diameter of 1/2 inch, and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours. Summer. 1 g of the solid catalyst component obtained after ball milling contained 38 mg of titanium.

上記固体触媒成分を50mg/hrでフイードする以
外は実施例1と同様の操作で連続気相重合を行な
つた。生成したエチレン共重合体は、かさ比重
0.34、密度0.9215、メルトインデツクス1.1であつ
た。また触媒活性は386000g共重合体/gTiとき
わめて高活性であつた。
Continuous gas phase polymerization was carried out in the same manner as in Example 1 except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity
0.34, density 0.9215, and melt index 1.1. The catalyst activity was extremely high at 386,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを開放
し、内部の点検を行なつたが内壁および撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は7.3であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は1.2wt%であり、きわめて
抽出分が少なかつた。
Furthermore, the FR value of this copolymer was 7.3, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.2 wt%, which was an extremely small amount.

実施例 3 実施例1に記したボールミルポツトに無水塩化
マグネシウム10g、ジエトキシマグネシウム3.1
g、モノメチルジエトキシモノクロロシラン2.1
g、および四塩化チタン2.5gを入れ窒素雰囲気
下、室温で16時間ボールミリングを行なつた。ボ
ールミリング後得られた固体触媒成分1gには34
mgのチタンが含まれていた。
Example 3 Into the ball mill pot described in Example 1, 10 g of anhydrous magnesium chloride and 3.1 g of diethoxymagnesium were added.
g, monomethyldiethoxymonochlorosilane 2.1
g and 2.5 g of titanium tetrachloride were added, and ball milling was performed at room temperature for 16 hours under a nitrogen atmosphere. 1 g of solid catalyst component obtained after ball milling contains 34
Contains mg of titanium.

上記固体触媒成分を50mg/hrでフイードする以
外は実施例1と同様の操作で連続気相重合を行な
つた。生成したエチレン共重合体は、かさ比重
0.37、密度0.9199、メルトインデツクス1.1であつ
た。
Continuous gas phase polymerization was carried out in the same manner as in Example 1 except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity
0.37, density 0.9199, and melt index 1.1.

また触媒活性は517000g共重合体/gTiときわ
めて高活性であつた。
Moreover, the catalyst activity was extremely high at 517,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを解放
し、内部の点検を行なつたが内壁および撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は7.3であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は1.4wt%であり、きわめて
抽出分が少なかつた。
Furthermore, the FR value of this copolymer was 7.3, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.4 wt%, which was an extremely small amount.

実施例 4 実施例1に記したボールミルポツトに無水塩化
マグネシウム10g、トリエトキシ隣(P(OEt)3
2.1g、および四塩化チタン2.5gを入れ窒素雰囲
気下、室温で16時間ボールミリングを行なつた。
ついでモノフエニルトリエトキシシラン2.5gを
加えさらに5時間ボールミリングを行なつた。ボ
ールミリング後得られた固体触媒成分1gには38
mgのチタンが含まれていた。
Example 4 Into the ball mill pot described in Example 1, 10 g of anhydrous magnesium chloride was added next to triethoxy (P(OEt) 3 ).
2.1 g of titanium tetrachloride and 2.5 g of titanium tetrachloride were added, and ball milling was performed at room temperature for 16 hours under a nitrogen atmosphere.
Then, 2.5 g of monophenyltriethoxysilane was added and ball milling was carried out for an additional 5 hours. 1 g of solid catalyst component obtained after ball milling contains 38
Contains mg of titanium.

上記固体触媒成分を50mg/hrでフイードする以
外は実施例1と同様の操作で連続気相重合を行な
つた。生成したエチレン共重合体は、かさ比重
0.40、密度0.9208、メルトインデツクス0.92であ
つた。
Continuous gas phase polymerization was carried out in the same manner as in Example 1 except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity
0.40, density 0.9208, and melt index 0.92.

また触媒活性は436000g共重合体/gTiときわ
めて高活性であつた。
Moreover, the catalyst activity was extremely high at 436,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを開放
し、内部の点検を行なつたが内壁および撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は7.3であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は1.3wt%であり、きわめて
抽出分が少なかつた。
Furthermore, the FR value of this copolymer was 7.3, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.3 wt%, which was an extremely small amount.

実施例 5 実施例1に記したボールミルポツトに無水塩化
マグネシウム10g、ジエトキシ亜鉛3.5g、およ
びジイソプロポキシジクロロチタン2.8gを入れ
窒素雰囲気下、室温16時間ボールミリングを行な
つた。ついでモノエチルトリエトキシシラン2.4
gを加えさらに5時間ボールミリングを行なつ
た。ボールミリング後得られた固体触媒成分1g
には30mgのチタンが含まれていた。
Example 5 10 g of anhydrous magnesium chloride, 3.5 g of diethoxyzinc, and 2.8 g of diisopropoxydichlorotitanium were placed in the ball mill pot described in Example 1, and ball milling was carried out at room temperature for 16 hours under a nitrogen atmosphere. Then monoethyltriethoxysilane 2.4
g was added thereto and ball milling was continued for an additional 5 hours. 1 g of solid catalyst component obtained after ball milling
contained 30mg of titanium.

上記固体触媒成分を50mg/hrでフイードする以
外は実施例1と同様の操作で連続気相重合を行な
つた。生成したエチレン共重合体は、かさ比重
0.38、密度0.9203、メルトインデツクス1.2であつ
た。
Continuous gas phase polymerization was carried out in the same manner as in Example 1 except that the solid catalyst component was fed at a rate of 50 mg/hr. The produced ethylene copolymer has a bulk specific gravity
0.38, density 0.9203, and melt index 1.2.

また触媒活性は378000g共重合体/gTiときわ
めて高活性であつた。
The catalyst activity was extremely high at 378,000 g copolymer/g Ti.

10時間の連続運転ののちオートクレーブを開放
し、内部の点検を行なつたが内壁および撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は7.3であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は1.5wt%であり、きわめて
抽出分が少なかつた。
Furthermore, the FR value of this copolymer was 7.3, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.5 wt%, which was an extremely small amount.

実施例 6 2のステンレススチール製誘導撹拌機付きオ
ートクレーブを窒素置換しヘキサン1000mlを入
れ、トリエチルアルミニウム1ミリモルおよび実
施例1で得られた固体触媒成分10mgを加え撹拌し
ながら90℃に昇温した。ヘキサンの蒸気圧で系は
2Kg/cm2・Gになるが水素を全圧が4.8Kg/cm2
Gになるまで張り込み、ついでエチレンを全圧が
10Kg/cm2・Gになるまで張り込んで重合を開始し
オートクレーブの圧力を10Kg/cm2・Gに保持する
ようにして1時間重合を行なつた。重合終了後重
合体スラリーをビーカーに移し、ヘキサンを減圧
除去し、メルトインデツクス1.3、密度0.9631、
かさ比重0.36の白色ポリエチレン198gを得た。
触媒活性は105800gポリエチレン/gTi.hr.C2H4
圧、3800gポリエチレン/g固体.hr.C2H4圧で
あつた。
The stainless steel autoclave equipped with an induction stirrer prepared in Example 6 2 was purged with nitrogen, 1000 ml of hexane was added thereto, 1 mmol of triethylaluminum and 10 mg of the solid catalyst component obtained in Example 1 were added, and the temperature was raised to 90° C. with stirring. The vapor pressure of hexane is 2 Kg/cm 2 G, but the total pressure of hydrogen is 4.8 Kg/cm 2 G.
Pump it up until it reaches G, then add ethylene to the full pressure.
Polymerization was started by charging the autoclave to 10 kg/cm 2 ·G, and polymerization was carried out for 1 hour while maintaining the autoclave pressure at 10 kg/cm 2 ·G. After polymerization, the polymer slurry was transferred to a beaker, hexane was removed under reduced pressure, and the melt index was 1.3, the density was 0.9631,
198 g of white polyethylene with a bulk specific gravity of 0.36 was obtained.
Catalyst activity is 105800g polyethylene/gTi.hr.C 2 H 4
pressure, 3800g polyethylene/g solids. It was hr.C 2 H 4 pressure.

また得られたポリエチレンのF.R.値は8.2であ
り、比較例2に比べて分子量分布はきわめて狭
く、ヘキサン抽出量は0.20wt%であつた。
The FR value of the obtained polyethylene was 8.2, the molecular weight distribution was extremely narrow compared to Comparative Example 2, and the hexane extraction amount was 0.20 wt%.

比較例 2 比較例1で使用した固体触媒成分10mgを使用し
実施例6と同様の操作で1時間重合を行ないメル
トインデツクス1.7、密度0.9635、かさ比重0.30の
白色ポリエチレン145gを得た。触媒活性は61970
gポリエチレン/gTi.hr.C2H4圧、2790gポリエ
チレン/g固体.hr.C2H4圧であつた。
Comparative Example 2 Using 10 mg of the solid catalyst component used in Comparative Example 1, polymerization was carried out for 1 hour in the same manner as in Example 6 to obtain 145 g of white polyethylene having a melt index of 1.7, a density of 0.9635, and a bulk specific gravity of 0.30. Catalytic activity is 61970
g polyethylene/g Ti.hr.C 2 H 4 pressure, 2790 g polyethylene/g solid. It was hr.C 2 H 4 pressure.

また得られたポリエチレンのF.R.値は9.3であ
り、ヘキサン抽出量は1.2wt%であつた。
The FR value of the obtained polyethylene was 9.3, and the hexane extraction amount was 1.2 wt%.

実施例 7 実施例1において、四塩化チタン2.5gに代え
てモノブトキシトリクロロチタン3.0gを用いた
ことを除いては、実施例1と同様な操作で触媒成
分を合成し、固体粉末1gに37mgのチタンを含有
する固体粉末を得た。
Example 7 A catalyst component was synthesized in the same manner as in Example 1, except that 3.0 g of monobutoxytrichlorotitanium was used in place of 2.5 g of titanium tetrachloride, and 37 mg was added to 1 g of solid powder. A solid powder containing titanium was obtained.

上記の固体粉末を使用し、実施例1と同様の操
作で気相重合を行なつた。
Gas phase polymerization was carried out in the same manner as in Example 1 using the above solid powder.

生成したエチレン共重合体は、かさ比重0.39、
密度0.9209、メルトインデツクス1.0であつた。
The produced ethylene copolymer has a bulk specific gravity of 0.39,
The density was 0.9209 and the melt index was 1.0.

また触媒活性は468000g共重合体/gTiときわ
めて高活性であつた。
Furthermore, the catalyst activity was extremely high at 468,000 g copolymer/g Ti.

10時間の連続運転の後、オートクレーブを開放
し、内部の点検を行なつたが、内壁及び撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は、7.2であり、
フイルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は、1.1wt%であり、きわめ
て抽出分が少なかつた。
In addition, the FR value of this copolymer is 7.2,
When the film was extracted in boiling hexane for 10 hours, the amount of hexane extracted was 1.1 wt%, which was an extremely small amount.

実施例 8 実施例1において四塩化チタン2.5gに代えて、
四塩化チタン2.8g及びトリエトキシバナジル1.8
gを用いたことを除いては実施例1と同様な操作
で合成し、固体粉末1gに33mgのチタン及び21mg
のバナジウムを含有する固体粉末を得た。
Example 8 In place of 2.5 g of titanium tetrachloride in Example 1,
2.8g titanium tetrachloride and 1.8g triethoxyvanadyl
33 mg of titanium and 21 mg of titanium were added to 1 g of solid powder.
A solid powder containing vanadium was obtained.

上記固体粉末を使用し実施例1と同様の操作で
気相重合を行なつた。
Gas phase polymerization was carried out in the same manner as in Example 1 using the above solid powder.

生成したエチレン共重合体はかさ比重0.42、密
度0.9214、メルトインデツクス1.1であつた。
The produced ethylene copolymer had a bulk specific gravity of 0.42, a density of 0.9214, and a melt index of 1.1.

また触媒活性は475000g共重合体/gTiときわ
めて高活性であつた。
The catalyst activity was extremely high at 475,000 g copolymer/g Ti.

10時間の連続運転の後、オートクレーブを開放
し、内部の点検を行なつたが、内壁及び撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は、7.0であり、
フイルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は、1.0wt%であり、きわめ
て抽出分が少なかつた。
In addition, the FR value of this copolymer is 7.0,
When the film was extracted in boiling hexane for 10 hours, the amount of hexane extracted was 1.0 wt%, which was an extremely small amount.

実施例 9 実施例1においてアルミニウムトリエトキシド
2.3gに代えて、Ca(OC2H522.5gを用いたこと
を除いては実施例1と同様の操作で触媒成分を合
成し、固体粉末1gに36mgのチタンを含有する固
体粉末を得た。
Example 9 Aluminum triethoxide in Example 1
A catalyst component was synthesized in the same manner as in Example 1 except that 2.5 g of Ca(OC 2 H 5 ) 2 was used instead of 2.3 g, and a solid powder containing 36 mg of titanium per 1 g of solid powder was obtained. I got it.

上記固体粉末を使用し実施例1と同様の操作で
気相重合を行なつた。
Gas phase polymerization was carried out in the same manner as in Example 1 using the above solid powder.

生成したエチレン共重合体は、かさ比重0.38、
密度0.9203、メルトインデツクス1.2であつた。
The produced ethylene copolymer has a bulk specific gravity of 0.38,
The density was 0.9203 and the melt index was 1.2.

また触媒活性は503000g共重合体/gTiときわ
めて高活性であつた。
Furthermore, the catalyst activity was extremely high at 503,000 g copolymer/g Ti.

10時間の連続運転の後、オートクレーブを開放
し、内部の点検を行なつたが、内壁及び撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は7.1であり、フ
イルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は、1.2wt%であり、きわめ
て抽出分が少なかつた。
Furthermore, the FR value of this copolymer was 7.1, and when the film was extracted in boiling hexane for 10 hours, the hexane extraction amount was 1.2 wt%, which was an extremely small amount.

実施例 10 実施例1においてアルミニウムトリエトキシド
2.3gに代えて、Fe(OC4H933.5gを用いたこと
を除いては実施例1と同様の操作で触媒成分を合
成し、固体粉末1gに35mgのチタンを含有する固
体粉末を得た。
Example 10 Aluminum triethoxide in Example 1
A catalyst component was synthesized in the same manner as in Example 1 except that 3.5 g of Fe(OC 4 H 9 ) 3 was used instead of 2.3 g, and a solid powder containing 35 mg of titanium per 1 g of solid powder was obtained. I got it.

上記固体粉末を使用し実施例1と同様の操作で
気相重合を行ない、生成したエチレン共重合体
は、かさ比重0.37、密度0.9221、メルトインデツ
クス1.0であつた。
Using the above solid powder, gas phase polymerization was carried out in the same manner as in Example 1, and the resulting ethylene copolymer had a bulk specific gravity of 0.37, a density of 0.9221, and a melt index of 1.0.

また触媒活性は496000g共重合体/gTiときわ
めて高活性であつた。
Furthermore, the catalyst activity was extremely high at 496,000 g copolymer/g Ti.

10時間の連続運転の後、オートクレーブを開放
し、内部の点検を行なつたが、内壁及び撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

また、この共重合体のF.R.値は、7.2であり、
フイルムを沸騰ヘキサン中で10時間抽出したとこ
ろ、ヘキサン抽出量は、1.1wt%であり、きわめ
て抽出分が少なかつた。
In addition, the FR value of this copolymer is 7.2,
When the film was extracted in boiling hexane for 10 hours, the amount of hexane extracted was 1.1 wt%, which was an extremely small amount.

実施例 11 実施例1で記した装置により以下の気相重合を
行なつた。60℃に調製したオートクレーブに実施
例1で得られた固体粉末(A)80mg/hr及びトリエチ
ルアルミニウム5mmol/hrの速度で供給し、ま
た、オートクレーブ中にプロピレンを供給し、ブ
ロワーにより系内のガスを循環させて全圧7Kg/
cm2で重合を行なつた。生成したポリプロピレン
は、かさ比重0.43であつた。また、触媒活性は、
182000gポリプロピレン/gTiであつた。
Example 11 The following gas phase polymerization was carried out using the apparatus described in Example 1. The solid powder (A) obtained in Example 1 was fed into an autoclave prepared at 60°C at a rate of 80 mg/hr and triethyl aluminum at a rate of 5 mmol/hr. Propylene was also fed into the autoclave, and the gas in the system was removed using a blower. is circulated to a total pressure of 7Kg/
Polymerization was carried out in cm 2 . The polypropylene produced had a bulk specific gravity of 0.43. In addition, the catalytic activity is
It was 182000g polypropylene/gTi.

10時間の連続運転の後、オートクレーブを開放
し、内部の点検を行なつたが、内壁及び撹拌機に
は全くポリマーは付着しておらず、きれいであつ
た。
After 10 hours of continuous operation, the autoclave was opened and the interior was inspected, but the inner walls and stirrer were clean with no polymer attached at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明野オレフイン重合における触
媒調製の一例を示すフローチヤート図である。
FIG. 1 is a flow chart showing an example of catalyst preparation in olefin polymerization of the present invention.

Claims (1)

【特許請求の範囲】 1 固体触媒成分と有機アルミニウム化合物とを
触媒としてオレフインを重合あるいは共重合する
方法において、該固体触媒成分が (1) ジハロゲン化マグネシウム、 (2) 一般式Me(OR)oXZ-o(ここで、MeはAl、
B、P、Mg、Zn、Ca、Feから選ばれる元素。
Rは炭素数1〜24の炭化水素残基を、Xはハロ
ゲン原子を示す。zは、Meの原子価を表わし、
nは0<n≦zである)で表わされる化合物、 (3) 一般式R′mSi(OR″)oX4-no(ここでR′,
R″は炭素数1〜24の炭化水素残基を、Xはハ
ロゲン原子を示す。m,nは0<m<4,0<
n<4,0<m+n≦4である)で表わされる
化合物及び (4) チタン化合物またはチタン化合物及びバナジ
ウム化合物 を反応させて得られる物質からなることを特徴と
するポリオレフインの製造方法。
[Claims] 1. A method of polymerizing or copolymerizing olefin using a solid catalyst component and an organoaluminum compound as a catalyst, wherein the solid catalyst component is (1) magnesium dihalide, (2) general formula Me(OR) o X Zo (where Me is Al,
Element selected from B, P, Mg, Zn, Ca, and Fe.
R represents a hydrocarbon residue having 1 to 24 carbon atoms, and X represents a halogen atom. z represents the valence of Me,
n is 0<n≦z), (3) General formula R′mSi(OR″) o X 4-no (where R′,
R″ represents a hydrocarbon residue having 1 to 24 carbon atoms, and X represents a halogen atom. m and n are 0<m<4,0<
A method for producing a polyolefin, comprising: a compound represented by n<4, 0<m+n≦4; and (4) a substance obtained by reacting a titanium compound or a titanium compound and a vanadium compound.
JP10871381A 1981-07-11 1981-07-11 Preparation of polyolefin Granted JPS5811509A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10871381A JPS5811509A (en) 1981-07-11 1981-07-11 Preparation of polyolefin
GB08219717A GB2103631A (en) 1981-07-11 1982-07-07 A process for polyolefins production catalyst components therefor
CA000406851A CA1185747A (en) 1981-07-11 1982-07-08 Process for polyolefins production
DE19823226159 DE3226159C2 (en) 1981-07-11 1982-07-09 Catalyst and process for making polyolefins
FR8212064A FR2509314B1 (en) 1981-07-11 1982-07-09 PROCESS FOR THE PRODUCTION OF POLYOLEFINS BY IMPLEMENTING A CATALYST BASED ON AN ORGANO-METAL COMPOUND

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10871381A JPS5811509A (en) 1981-07-11 1981-07-11 Preparation of polyolefin

Publications (2)

Publication Number Publication Date
JPS5811509A JPS5811509A (en) 1983-01-22
JPS647087B2 true JPS647087B2 (en) 1989-02-07

Family

ID=14491700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10871381A Granted JPS5811509A (en) 1981-07-11 1981-07-11 Preparation of polyolefin

Country Status (5)

Country Link
JP (1) JPS5811509A (en)
CA (1) CA1185747A (en)
DE (1) DE3226159C2 (en)
FR (1) FR2509314B1 (en)
GB (1) GB2103631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1190681B (en) * 1982-02-12 1988-02-24 Montedison Spa COMPONENTS AND CATALYSTS FOR THE POLYMERIZATION OF OLEFINE
JPS5930803A (en) * 1982-08-11 1984-02-18 Nippon Oil Co Ltd Preparation of polyolefin
CA1219996A (en) * 1982-11-10 1987-03-31 Kazuo Matsuura Process for preparing polyolefins
JPS59120602A (en) * 1982-12-27 1984-07-12 Nippon Oil Co Ltd Production of polyolefin
US4525555A (en) * 1983-01-14 1985-06-25 Nippon Oil Company, Limited Process for preparing polyolefins
JP2530621B2 (en) * 1986-08-04 1996-09-04 三菱化学株式会社 Olefin polymerization catalyst
JP2721997B2 (en) * 1989-07-03 1998-03-04 東燃株式会社 Catalyst component for olefin polymerization
KR100334160B1 (en) * 1998-07-18 2002-06-20 유현식 Process for preparing supported catalyst for ethylene polymerization and ethylene / α-olefin copolymerization

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137194B2 (en) * 1973-03-20 1976-10-14
JPS565404B2 (en) * 1975-02-14 1981-02-04
JPS5695909A (en) * 1979-12-28 1981-08-03 Nippon Oil Co Ltd Preparation of polyolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus

Also Published As

Publication number Publication date
CA1185747A (en) 1985-04-16
DE3226159C2 (en) 1994-02-24
JPS5811509A (en) 1983-01-22
DE3226159A1 (en) 1983-02-03
FR2509314B1 (en) 1985-11-22
GB2103631A (en) 1983-02-23
FR2509314A1 (en) 1983-01-14

Similar Documents

Publication Publication Date Title
JPS6411651B2 (en)
US4507448A (en) Process for the production of polyolefins
JPS647087B2 (en)
JPS647086B2 (en)
JPH0134447B2 (en)
GB2133020A (en) Polymerising olefins with an improved Ziegler catalyst
JPS647085B2 (en)
JPS648642B2 (en)
JPS6412289B2 (en)
US4537938A (en) Process for preparing polyolefins
JPH0480926B2 (en)
JPS6410529B2 (en)
JPH0149282B2 (en)
JPS5812889B2 (en) Polyethylene material
JPS6412285B2 (en)
JPS6412287B2 (en)
GB2134911A (en) Process of producing polyolefins and catalysts therefor
JPS6412288B2 (en)
JPH0354125B2 (en)
JPH0429683B2 (en)
JPH0149165B2 (en)
JPS5812885B2 (en) Polyolefin Inno Seizouhouhou
JPS64964B2 (en)
JPH0118930B2 (en)
JPS647605B2 (en)