JPH0149165B2 - - Google Patents

Info

Publication number
JPH0149165B2
JPH0149165B2 JP19611382A JP19611382A JPH0149165B2 JP H0149165 B2 JPH0149165 B2 JP H0149165B2 JP 19611382 A JP19611382 A JP 19611382A JP 19611382 A JP19611382 A JP 19611382A JP H0149165 B2 JPH0149165 B2 JP H0149165B2
Authority
JP
Japan
Prior art keywords
component
general formula
polymerization
carbon atoms
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19611382A
Other languages
Japanese (ja)
Other versions
JPS5986607A (en
Inventor
Kazuo Matsura
Takeichi Shiraishi
Mitsuo Okamoto
Nobuyuki Kuroda
Mitsuharu Myoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP19611382A priority Critical patent/JPS5986607A/en
Priority to CA000440272A priority patent/CA1219996A/en
Priority to GB08329764A priority patent/GB2133020B/en
Priority to DE19833340754 priority patent/DE3340754A1/en
Priority to FR8317941A priority patent/FR2535724B1/en
Publication of JPS5986607A publication Critical patent/JPS5986607A/en
Publication of JPH0149165B2 publication Critical patent/JPH0149165B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な觊媒を甚いお、高掻性にα−オ
レフむンを立䜓芏則性よく重合たたは共重合する
方法に関する。 α−オレフむンの高立䜓芏則性重合觊媒ずし
お、埓来よりチタンハロゲン化物ず有機アルミニ
りム化合物からなる觊媒が知られおいる。しか
し、この觊媒系を甚いた重合では高立䜓芏則性の
重合䜓は埗られるものの觊媒掻性が䜎いため生成
重合䜓䞭の觊媒残枣を陀去する必芁がある。 近幎、觊媒の掻性を改善するための倚くの提案
がなされおきおいる。これらの提案によれば
MgCl2などの無機固䜓担䜓に四塩化チタンを担持
させた觊媒成分を甚いた堎合に高掻性觊媒ずなる
こずが瀺されおいる。 しかしながら、ポリオレフむンの補造䞊、觊媒
掻性はできるだけ倧きいこずが奜たしく、なお䞀
局高掻性な觊媒が望たれおいた。たた、重合䜓䞭
のアタクチツク郚分の生成量ができるだけ少ない
こずも重芁である。 たたこれらの公知技術においおは、埗られる重
合䜓の平均粒埄は比范的小さく、粒埄分垃も抂し
お広いため埮粒子状粉末郚分が倚く、生産性およ
びスラリヌハンドリングの面から改良が匷く望た
れおいた。さらに、これらのポリマヌを成圢加工
するさいにも粉塵の発生、成圢時の胜率の䜎䞋等
の問題を生ずるため、前述したかさ比重の増倧、
埮粒子状粉分末郚分の枛少が匷く望たれおいた。
さらに、近幎芁求の高た぀おいるペレツト化工皋
を省略し、粉䜓ポリマヌをそのたた加工機にかけ
るためにはただただ改良が必芁ずされおいる。 本発明者らは特願昭56−42528号においおかか
る重合䜓の粒子性状に関する改良技術を提案しお
いるが、該觊媒系を甚いおプロピレンの重合を行
な぀た堎合は立䜓芏則性の䜎い重合䜓しか埗られ
ずたた重合掻性の点からもより䞀局の改良が望た
れた。 本発明者らは、これらの点に぀いお鋭意研究し
た結果、ここに新芏な觊媒を芋いだしたものであ
る。すなわち、本発明は新芏な觊媒を甚いお、き
わめお高掻性に高立䜓芏則性のポリオレフむンを
補造する方法に関するものであり、本発明の觊媒
を甚いるこずにより、重合時のモノマヌ分圧は䜎
く、か぀短時間の重合で生成重合䜓䞭の觊媒残枣
量はきわめお少量ずなり、したが぀おポリオレフ
むン補造プロセスにおいお觊媒陀去工皋が省略で
き、か぀生成重合䜓䞭のアタクチツク郚分の生成
量もきわめお少ないなどの倚くの効果が埗られ
る。 さらに、本発明者らは、埗られるポリマヌのか
さ比重が高く、平均粒埄が倧きく、か぀粒埄分垃
が狭く、ポリマヌの埮粒子状郚分が著しく少ない
重合䜓を埗るこずを目的ずしお鋭意研究の結果、
本発明に到達したものである。 本発明の方法を甚いるこずにより、平均粒埄が
倧きく、粒床分垃が狭く、埮粒子状郚分が少ない
立䜓芏則性のよいポリオレフむンが高掻性に埗ら
れ、たた生成ポリオレフむンのかさ比重は高い
等、重合操䜜䞊非垞に有利ずなり、さらにペレツ
トずしお甚いる堎合はもちろんのこず粉䜓状のた
たでも成圢加工に䟛するこずができ、成圢加工時
のトラブルも少なく、きわめお有利にポリオレフ
むンを補造するこずができる。 本発明はこれらの倚くの特城を備え、か぀前蚘
の先行技術の欠点を改良した新芏な觊媒系を提䟛
するものであり、本発明の觊媒を甚いるこずによ
りこれらの諞点を容易に達成できるこずは驚くべ
きこずず蚀わねばならない。 以䞋に本発明を具䜓的に説明する。すなわち、
本発明は [](1) ケむ玠酞化物およびたたはアルミニり
ム酞化物、 (2) ゞハロゲン化マグネシりム以䞋ハロゲン
化マグネシりムず略蚘するず䞀般匏Me
ORoXz-oここでMeは、MgたたはAlを
瀺す。は炭玠数〜24の炭化氎玠残基を、
はハロゲン原子を瀺す。は、Meの原子
䟡を衚わし、は≊である。で衚
わされる化合物ずの反応生成物、 (3) 䞀般匏
The present invention relates to a method for highly active polymerization or copolymerization of α-olefins with good stereoregularity using a novel catalyst. Catalysts comprising titanium halides and organoaluminum compounds have been known as highly stereoregular polymerization catalysts for α-olefins. However, in polymerization using this catalyst system, although a highly stereoregular polymer can be obtained, the catalyst activity is low, so it is necessary to remove catalyst residues from the produced polymer. In recent years, many proposals have been made to improve the activity of catalysts. According to these proposals
It has been shown that a highly active catalyst can be obtained by using a catalyst component in which titanium tetrachloride is supported on an inorganic solid support such as MgCl 2 . However, in the production of polyolefins, it is preferable that the catalyst activity be as high as possible, and catalysts with even higher activity have been desired. It is also important that the amount of atactic moieties formed in the polymer be as small as possible. In addition, in these known techniques, the average particle size of the resulting polymer is relatively small and the particle size distribution is generally wide, so there is a large proportion of fine powder particles, and improvements have been strongly desired from the viewpoint of productivity and slurry handling. . Furthermore, when molding these polymers, problems such as generation of dust and reduction in efficiency during molding occur, so the above-mentioned increase in bulk specific gravity,
It was strongly desired to reduce the particulate powder fraction.
Furthermore, improvements are still needed in order to omit the pelletizing step, which has been in increasing demand in recent years, and to directly apply the powdered polymer to a processing machine. The present inventors have proposed a technique for improving the particle properties of such polymers in Japanese Patent Application No. 56-42528, but when propylene is polymerized using this catalyst system, polymers with low stereoregularity Only coalescence was obtained, and further improvement was desired from the point of view of polymerization activity. As a result of intensive research on these points, the present inventors have discovered a novel catalyst here. That is, the present invention relates to a method for producing extremely highly active and highly stereoregular polyolefin using a novel catalyst. By using the catalyst of the present invention, the monomer partial pressure during polymerization is low and With short polymerization, the amount of catalyst residue in the produced polymer is extremely small, so the catalyst removal step can be omitted in the polyolefin manufacturing process, and the amount of attic moieties produced in the produced polymer is also extremely small. Effects can be obtained. Furthermore, the present inventors have conducted extensive research with the aim of obtaining a polymer that has a high bulk specific gravity, a large average particle size, a narrow particle size distribution, and a significantly reduced amount of fine particles. ,
This has led to the present invention. By using the method of the present invention, a polyolefin with a large average particle size, a narrow particle size distribution, and a good stereoregularity with a small particulate portion can be obtained with high activity, and the bulk specific gravity of the produced polyolefin is high. Furthermore, it can be used not only as pellets but also as a powder and can be subjected to molding, causing fewer troubles during molding, making it possible to produce polyolefins extremely advantageously. The present invention provides a novel catalyst system that has many of these features and improves on the drawbacks of the prior art described above, and it is surprising that these points can be easily achieved by using the catalyst of the present invention. I have to say it's the right thing to do. The present invention will be specifically explained below. That is,
The present invention [](1) silicon oxide and/or aluminum oxide, (2) magnesium dihalide (hereinafter abbreviated as magnesium halide) and the general formula Me
(OR) o X zo (Here, Me represents B, Mg or Al. R represents a hydrocarbon residue having 1 to 24 carbon atoms,
X represents a halogen atom. z represents the valence of Me, and n satisfies 0<n≩z. ) reaction product with a compound represented by (3) general formula

【匏】ここでR1、 R2、R3は炭玠数〜24の炭化氎玠残基たた
はアルコキシ基を瀺し、R4は炭玠数〜24
の炭化氎玠残基を瀺す。は≊≊30であ
るで衚わされる化合物、および (4) 䞀般匏TiORnX4-nここでは炭玠数
〜20のアルキル基、アリヌル基たたはアラル
キル基を瀺し、はハロゲン原子を瀺す。
は≊≊である。で衚わされるチタン
化合物以䞋チタン化合物ず略蚘するを盞
互に接觊し、反応させお埗られる固䜓觊媒成
分、 [] 䞀般匏
[Formula] (where R 1 , R 2 , and R 3 represent a hydrocarbon residue or an alkoxy group having 1 to 24 carbon atoms, and R 4 represents a carbon number of 1 to 24
The hydrocarbon residue of n is 1≩n≩30), and (4) a compound represented by the general formula Ti(OR) n X 4-n (where R is 1 carbon number
-20 alkyl, aryl or aralkyl groups, and X represents a halogen atom. m
is 0≩m≩4. ) A solid catalyst component obtained by contacting titanium compounds (hereinafter abbreviated as titanium compounds) with each other and reacting, [] General formula

【匏】ここでR1、 R2、R3は炭玠数〜24の炭化氎玠残基たたは
アルコキシ基を瀺し、R4は炭玠数〜24の炭
化氎玠残基を瀺す。は≊≊30である。
で衚わされる化合物、および [] 有機アルミニりム化合物以䞋有機金属化
合物ず略蚘する を組み合わせおなる觊媒系により、α−オレフむ
ンを重合、あるいは共重合するこずを特城ずする
ポリオレフむンの補造方法に関する。 本発明においお甚いるケむ玠酞化物ずはシリカ
もしくは、ケむ玠ず呚期埋衚〜族の少なくず
も䞀皮の他の金属ずの耇酞化物である。 本発明においお甚いるアルミニりム酞化物ずは
アルミナもしくはアルミニりムず呚期埋衚〜
族の少なくずも䞀皮の他の金属ずの耇酞化物であ
る。 ケむ玠たたはアルミニりムず呚期埋衚〜族
の少なくずも䞀皮の他の金属の耇酞化物の代衚的
なものずしおはAl2O3・MgO、Al2O3・CaO、
Al2O3・SiO2、Al2O3・MgO・CaO、Al2O3・
MgO・SiO2、Al2O3・CuO、Al2O3・Fe2O3、
Al2O3・NiO、SiO2・MgOなどの倩然たたは合
成の各皮耇酞化物を䟋瀺するこずができる。ここ
で䞊蚘の匏は分子匏ではなく、組成のみを衚わす
ものであ぀お、本発明においお甚いられる耇酞化
物の構造および成分比率は特に限定されるもので
はない。なお、圓然のこずながら、本発明におい
お甚いるケむ玠酞化物およびたたはアルミニり
ム酞化物は少量の氎分を吞着しおいおも差し぀か
えなく、たた少量の䞍玔物を含有しおいおも支障
なく䜿甚できる。 本発明においお䜿甚されるハロゲン化マグネシ
りムずしおは実質的に無氎のものが甚いられ、フ
ツ化マグネシりム、塩化マグネシりム、臭化マグ
ネシりム、およびペり化マグネシりムがあげら
れ、ずくに塩化マグネシりムが奜たしい。 たた本発明においお、これらのハロゲン化マグ
ネシりムはアルコヌル、゚ステル、ケトン、カル
ボン酞、゚ヌテルアミン、ホスフむンなどの電子
䟛䞎䜓で凊理したものであ぀おもよい。 本発明においお䜿甚される䞀般匏MeORo
Xz-oここでMeは、MgたたはAlを瀺す。は
炭玠数〜24の炭化氎玠残基を、はハロゲン原
子を瀺す。はMeの原子䟡を衚わし、は
≊であるで衚わされる化合物ずしおはたず
えば、MgOR2、MgOR、AlOR3、Al
OR2X、OR3、OR2X、などの各皮化
合物をあげるこずができ、さらに奜たしい具䜓的
ずしおは、MgOCH32、MgOC2H52、Mg
OC3H72、AlOCH33、AlOC2H53、Al
OC2H52Cl、AlOC3H73、AlOC4H93、Al
OC6H53、OC2H53、OC2H52Cl、など
の化合物をあげるこずができる。 本発明においおは、特に䞀般匏MgORo
X2-o、AlORoX3-oおよびORoX3-oで衚わ
される化合物が奜たしい。たた、ずしおは炭玠
数〜のアルキル基およびプニル基が特に奜
たしい。 ハロゲン化マグネシりムず䞀般匏MeORo
Xz-oで衚わされる化合物ずの反応方法は特に限
定されるものではなく、䞍掻性炭化氎玠、アルコ
ヌル、゚ヌテル、ケトン、゚ステル類などの有機
溶媒䞭で䞡者を20〜400℃、奜たしくは50〜300℃
の枩床で分〜10時間混合加熱反応させおもよ
く、たた共粉砕凊理により反応させおもよい。 本発明においおは、共粉砕凊理による方法が特
に奜たしい。 共粉砕に甚いる装眮はずくに限定はされない
が、通垞ボヌルミル、振動ミル、ロツドミル、衝
撃ミルなどが䜿甚され、その粉砕方匏に応じお粉
砕枩床、粉砕時間などの条件は圓業者にず぀お容
易に定められるものである。䞀般的には粉砕枩床
は℃〜200℃、奜たしくは20℃〜100℃であり、
粉砕時間は0.5〜50時間、奜たしくは〜30時間
である。もちろんこれらの操䜜は䞍掻性ガス雰囲
気䞭で行うべきであり、たた湿気はできる限り避
けるべきである。 ハロゲン化マグネシりムず䞀般匏MeORo
Xz-oで衚わされる化合物ずの反応割合は、Mg
Meモル比が0.01〜10、奜たしくは
0.01〜の範囲が望たしい。 本発明においお䜿甚される䞀般匏
[Formula] (where R 1 , R 2 , and R 3 represent a hydrocarbon residue having 1 to 24 carbon atoms or an alkoxy group, and R 4 represents a hydrocarbon residue having 1 to 24 carbon atoms. n is 1 ≩n≩30.)
The present invention relates to a method for producing a polyolefin, which comprises polymerizing or copolymerizing an α-olefin using a catalyst system comprising a combination of a compound represented by the formula and an organoaluminum compound (hereinafter abbreviated as an organometallic compound). The silicon oxide used in the present invention is silica or a double oxide of silicon and at least one other metal of groups 1 to 10 of the periodic table. The aluminum oxide used in the present invention is alumina or aluminum and the periodic table ~
It is a double oxide with at least one other metal of the group. Typical double oxides of silicon or aluminum and at least one other metal from Groups ~ of the periodic table include Al 2 O 3 · MgO, Al 2 O 3 · CaO,
Al 2 O 3・SiO 2 , Al 2 O 3・MgO・CaO, Al 2 O 3・
MgO・SiO 2 , Al 2 O 3・CuO, Al 2 O 3・Fe 2 O 3 ,
Various natural or synthetic complex oxides such as Al 2 O 3 ·NiO and SiO 2 ·MgO can be exemplified. Here, the above formula is not a molecular formula but represents only the composition, and the structure and component ratio of the multiple oxide used in the present invention are not particularly limited. It goes without saying that the silicon oxide and/or aluminum oxide used in the present invention may adsorb a small amount of water without any problem, and can be used without any problem even if it contains a small amount of impurities. The magnesium halide used in the present invention is substantially anhydrous and includes magnesium fluoride, magnesium chloride, magnesium bromide, and magnesium iodide, with magnesium chloride being particularly preferred. In the present invention, these magnesium halides may be treated with an electron donor such as alcohol, ester, ketone, carboxylic acid, ether amine, or phosphine. General formula Me(OR) o used in the present invention
X zo (Here, Me represents B, Mg, or Al. R represents a hydrocarbon residue having 1 to 24 carbon atoms, and X represents a halogen atom. z represents the valence of Me, and n represents 0<
Examples of compounds represented by n≩z include Mg(OR) 2 , Mg(OR)X, Al(OR) 3 , Al
( OR ) 2 X, B ( OR) 3 , B (OR) 2 2 , Mg
(OC 3 H 7 ) 2 , Al(OCH 3 ) 3 , Al(OC 2 H 5 ) 3 , Al
( OC2H5 ) 2Cl , Al ( OC3H7 ) 3 , Al( OC4H9 ) 3 , Al
Examples include compounds such as (OC 6 H 5 ) 3 , B(OC 2 H 5 ) 3 and B(OC 2 H 5 ) 2 Cl. In the present invention, in particular, the general formula Mg(OR) o
Compounds represented by X 2-o , Al(OR) o X 3-o and B(OR) o X 3-o are preferred. Moreover, as R, an alkyl group having 1 to 4 carbon atoms and a phenyl group are particularly preferable. Magnesium halide and general formula Me(OR) o
The method of reaction with the compound represented by X zo is not particularly limited; ℃
The mixture and heating reaction may be carried out at a temperature of 5 minutes to 10 hours, or the reaction may be carried out by co-pulverization. In the present invention, a method using co-pulverization is particularly preferred. The equipment used for co-pulverization is not particularly limited, but ball mills, vibration mills, rod mills, impact mills, etc. are usually used, and those skilled in the art can easily determine conditions such as grinding temperature and grinding time depending on the grinding method. It is something that can be done. Generally, the grinding temperature is 0°C to 200°C, preferably 20°C to 100°C,
The grinding time is 0.5 to 50 hours, preferably 1 to 30 hours. Of course, these operations should be carried out in an inert gas atmosphere, and moisture should be avoided as much as possible. Magnesium halide and general formula Me(OR) o
The reaction rate with the compound represented by X zo is Mg:
Me (molar ratio) is 1:0.01 to 10, preferably 1:
A range of 0.01 to 5 is desirable. General formula used in the present invention

【匏】ここでR1、R2、R3は炭 玠数〜24、奜たしくは〜18の炭化氎玠基、ア
ルコキシ基、氎玠たたはハロゲンを瀺し、R4は
炭玠数〜24、奜たしくは〜18の炭化氎玠残基
を瀺す。は≊≊30である。で衚わされる
化合物ずしおは、モノメチルトリメトキシシラ
ン、モノメチルトリ゚トキシシラン、モノメチル
トリ−ブトキシシラン、モノメチルトリsec−
ブトキシシラン、モノメチルトリむ゜プロポキシ
シラン、モノメチルトリペントキシシラン、モノ
メチルトリオクトキシシラン、モノメチルトリス
テアロキシシラン、モノメチルトリプノキシシ
ラン、ゞメチルゞメトキシシラン、ゞメチルゞ゚
トキシシラン、ゞメチルゞむ゜プロポキシシラ
ン、ゞメチルゞプノキシシラン、トリメチルモ
ノメトキシシラン、トリメチルモノ゚トキシシラ
ン、トリメチルモノむ゜プロポキシシラン、トリ
メチルモノプノキシシラン、モノ゚チルトリメ
トキシシラン、モノ゚チルトリ゚トキシシラン、
モノ゚チルトリむ゜プロポキシシラン、モノ゚チ
ルトリプノキシシラン、ゞ゚チルゞメトキシシ
ラン、ゞ゚チルゞ゚トキシシラン、ゞ゚チルゞフ
゚ノキシシラン、トリ゚チルモノメトキシシラ
ン、トリ゚チルモノ゚トキシシラン、トリ゚チル
モノプノキシシラン、モノむ゜プロピルトリメ
トキシシラン、モノ−ブチルトリメトキシシラ
ン、モノ−ブチルトリ゚トキシシラン、モノ
sec−ブチルトリ゚トキシシラン、モノプニル
トリ゚トキシシラン、ゞプニルゞ゚トキシシラ
ン、テトラ゚トキシシラン、テトラむ゜プロポキ
シシランおよび䞊蚘化合物が瞮合しお埗られる繰
り返し単䜍が
[Formula] (where R 1 , R 2 and R 3 represent a hydrocarbon group having 1 to 24 carbon atoms, preferably 1 to 18 carbon atoms, an alkoxy group, hydrogen or a halogen, and R 4 has 1 to 24 carbon atoms, preferably represents a hydrocarbon residue of 1 to 18, n is 1≩n≩30. −
Butoxysilane, monomethyltriisopropoxysilane, monomethyltripentoxysilane, monomethyltrioctoxysilane, monomethyltristearoxysilane, monomethyltriphenoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiisopropoxysilane, dimethyldiphenoxysilane Sisilane, trimethylmonomethoxysilane, trimethylmonoethoxysilane, trimethylmonoisopropoxysilane, trimethylmonophenoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane,
Monoethyltriisopropoxysilane, monoethyltriphenoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldiphenoxysilane, triethylmonomethoxysilane, triethylmonoethoxysilane, triethylmonophenoxysilane, monoisopropyltrimethoxysilane , mono n-butyltrimethoxysilane, mono n-butyltriethoxysilane, mono
The repeating unit obtained by condensing sec-butyltriethoxysilane, monophenyltriethoxysilane, diphenyldiethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the above compounds is

【匏】で衚わされる鎖 状、たたは環状のポリシロキサン類を挙げるこず
ができる。たたこれらの混合物ずしお甚いるこず
もできる。 本発明に䜿甚されるチタン化合物ずしおは䞀般
匏TiORoX4-oここでは炭玠数〜20のアル
キル基、アリヌル基たたはアラルキル基を瀺し、
はハロゲン原子を瀺す。は≊≊であ
るで瀺されるものが甚いられ、四塩化チタン、
四臭化チタン、四ペり化チタン、モノメトキシト
リクロロチタン、ゞメトキシゞクロロチタン、ト
リメトキシモノクロロチタン、テトラメトキシチ
タン、モノ゚トキシトリクロロチタン、ゞ゚トキ
シゞクロロチタン、トリ゚トキシモノクロロチタ
ン、テトラ゚トキシチタン、モノむ゜プロポキシ
トリクロロチタン、ゞむ゜プロポキシゞクロロチ
タン、トリむ゜プロポキシモノクロロチタン、テ
トラむ゜プロポキシチタン、モノブトキシトリク
ロロチタン、ゞブトキシゞクロロチタン、モノペ
ントキシトリクロロチタン、モノプノキシトリ
クロロチタン、ゞプノキシゞクロロチタン、ト
リプノキシモノクロロチタン、テトラプノキ
シチタン等を挙げるこずができる。 本発明に甚いる有機金属化合物ずしおは、チグ
ラヌ觊媒の䞀成分ずしお知られおいる有機アルミ
ニりム化合物が甚いられる。具䜓的な䟋ずしおは
䞀般匏R3Al、R2AlX、RAlX2、R2AlOR、RAl
ORおよびR3Al2X3で衚わされる有機アルミ
ニりム化合物ただしは炭玠数〜20のアルキ
ル基たたはアリヌル基、はハロゲン原子を瀺
し、は同䞀でもたた異な぀おもよい、が奜た
しく、トリ゚チルアルミニりム、トリむ゜プロピ
ルアルミニりム、トリむ゜ブチルアルミニりム、
トリsec−ブチルアルミニりム、トリtert−ブチ
ルアルミニりム、トリヘキシルアルミニりム、ト
リオクチルアルミニりム、ドデシルアルミニり
ム、ゞ゚チルアルミニりムクロリド、ゞむ゜プロ
ピルアルミニりムクロリド、ゞ゚チルアルミニり
ムモノ゚トキシド、゚チルアルミニりムセスキク
ロリド、およびこれらの混合物等があげられる。 本発明においお、有機金属化合物の䜿甚量はず
くに制限されないが通垞遷移金属化合物に察しお
01〜1000モル倍䜿甚するこずができる。たた、こ
れらの有機金属化合物ず共に、安息銙酞、−た
たは−トルむル酞および−アニス酞等の有機
カルボン酞の゚ステルを䜵甚するこずもできる。
本発明においお(1)ケむ玠酞化物およびたたはア
ルミニりム酞化物以䞋、成分〔〕−(1)ず略蚘
する、(2)ハロゲン化マグネシりムず䞀般匏Me
ORoXz-oで衚わされる化合物ずの反応生成物
以䞋、成分〔〕−(2)ず略蚘する、(3)䞀般匏
Chain or cyclic polysiloxanes represented by the formula can be mentioned. It can also be used as a mixture of these. The titanium compound used in the present invention has the general formula Ti (OR) o
X represents a halogen atom. n is 0≩n≩4), titanium tetrachloride,
Titanium tetrabromide, titanium tetraiodide, monomethoxytrichlorotitanium, dimethoxydichlorotitanium, trimethoxymonochlorotitanium, tetramethoxytitanium, monoethoxytrichlorotitanium, diethoxydichlorotitanium, triethoxymonochlorotitanium, tetraethoxytitanium, monoisopropoxy Trichlorotitanium, diisopropoxydichlorotitanium, triisopropoxymonochlorotitanium, tetraisopropoxytitanium, monobutoxytrichlorotitanium, dibutoxydichlorotitanium, monopentoxytrichlorotitanium, monophenoxytrichlorotitanium, diphenoxydichlorotitanium, triphenoxytitanium Examples include cymonochlorotitanium and tetraphenoxytitanium. As the organometallic compound used in the present invention, an organoaluminum compound known as a component of Ziegler's catalyst is used. Specific examples include general formulas R 3 Al, R 2 AlX, RAlX 2 , R 2 AlOR, RAl
(OR) An organoaluminum compound represented by X and R 3 Al 2 are preferred, and triethylaluminum, triisopropylaluminium, triisobutylaluminum,
Examples include trisec-butylaluminum, tritert-butylaluminum, trihexylaluminum, trioctylaluminum, dodecylaluminum, diethylaluminum chloride, diisopropylaluminum chloride, diethylaluminum monoethoxide, ethylaluminum sesquichloride, and mixtures thereof. . In the present invention, the amount of the organometallic compound used is not particularly limited, but is usually
Can be used in 01 to 1000 mol times. Moreover, esters of organic carboxylic acids such as benzoic acid, o- or p-toluic acid, and p-anisic acid can also be used together with these organometallic compounds.
In the present invention, (1) silicon oxide and/or aluminum oxide (hereinafter abbreviated as component []-(1)), (2) magnesium halide and the general formula Me
(OR) Reaction product with the compound represented by o X zo (hereinafter abbreviated as component []-(2)), (3) General formula

【匏】で衚わされる化合物以 䞋、成分〔〕−(3)ず略蚘するおよび(4)チタン
化合物以䞋、成分〔〕−(4)ず略蚘する。を盞
互に接觊し、反応させる順序および接觊方法には
特に制限はない。 接觊順序ずしおは、成分〔〕−(1)ず成分〔〕
−(2)を接觊させた埌、成分〔〕−(3)を接觊させ
぀いで成分〔〕−(4)を接觊させおもよいし、成
分〔〕−(1)ず成分〔〕−(3)を接觊させた埌、成
分〔〕−(2)および成分〔〕−(4)を接觊させおも
よい。 たた接觊方法も特に制限はなく、公知の方法を
採甚するこずができる。すなわち、䞍掻性溶媒の
存圚䞋あるいは䞍存圚䞋に枩床20〜400℃、奜た
しくは50〜300℃の枩床で通垞分〜20時間反応
させる方法、共粉砕凊理による方法、あるいはこ
れらの方法を適宜組み合せるこずにより反応させ
おもよい。 䞍掻性溶媒は特に制限されるものではなく、通
垞チグラヌ型觊媒を䞍掻性化しない炭化氎玠化合
物およびたたはそれらの誘導䜓を䜿甚するこず
ができる。これらの具䜓䟋ずしおは、プロパン、
ブタン、ペンタン、ヘキサン、ヘプタン、オクタ
ン、ベンれン、トル゚ン、キシレン、シクロヘキ
サン等の各皮脂肪族飜和炭化氎玠、芳銙族炭化氎
玠、脂環族炭化氎玠、および゚タノヌル、ゞ゚チ
ル゚ヌテル、テトラヒドロフラン、酢酞゚チル、
安息銙酞゚チル等のアルコヌル類、゚ヌテル類、
゚ステル類などを挙げるこずができる。 共粉砕凊理により反応させる堎合、䜿甚する粉
砕方匏に応じお粉砕枩床、粉砕時間などの条件は
圓業者にず぀お容易に定められるものである。䞀
般的には粉砕枩床は〜200℃、奜たしくは20℃
〜100℃であり、粉砕時間は05〜50時間、奜たし
くは〜30時間である。もちろんこれらの操䜜は
䞍掻性ガス雰囲気䞭で行うべきであり、たた湿気
はできる限り避けるべきである。 本発明においお最も奜たしい、成分〔〕−(1)、
〔〕−(2)、〔〕−(3)および〔〕−(4)の接觊順
序
および接觊方法は以䞋のずおりである。 すなわち、たず成分〔〕−(2)のハロゲン化マ
グネシりムず䞀般匏MeORoXz-oで衚わされる
化合物ずの反応生成物が溶解する溶媒を甚い、該
溶媒䞭で成分〔〕−(1)ず成分〔〕−(2)の反応を
〜300℃、奜たしくは10〜200℃、最も奜たしく
は20〜100℃にお、分〜48時間、奜たしくは
分〜10時間行う。䞊蚘溶媒ずしおはアルコヌル、
テトラヒドロフラン、酢酞゚チルなどが奜たしく
甚いられる。この時の成分〔〕−(1)ず成分〔〕
−(2)の接觊割合は、成分〔〕−(1)に察し成
分〔〕−(2)0.01〜、奜たしくは0.1〜で
ある。反応埌、溶媒を陀去し、成分〔〕−(1)ず
成分〔〕−(2)の接觊生成物を埗る。 次に䞊蚘成分〔〕−(1)ず成分〔〕−(2)の接觊
生成物に成分〔〕−(3)の䞀般匏
The compound represented by [Formula] (hereinafter abbreviated as component []-(3)) and (4) titanium compound (hereinafter abbreviated as component []-(4)) are brought into contact with each other and reacted. There are no particular restrictions on the order and contact method. The contact order is component []-(1) and component []
After contacting -(2), component []-(3) may be brought into contact and then component []-(4) may be brought into contact, or component []-(1) and component []-(3) may be brought into contact with component []-(4). ) may be contacted with component []-(2) and component []-(4). Further, the contact method is not particularly limited, and any known method can be employed. That is, a method of reacting in the presence or absence of an inert solvent at a temperature of 20 to 400°C, preferably 50 to 300°C for usually 5 minutes to 20 hours, a method of co-pulverization, or a method of using these methods as appropriate. The reaction may be carried out by combining them. The inert solvent is not particularly limited, and hydrocarbon compounds and/or derivatives thereof that do not normally inactivate the Ziegler type catalyst can be used. Specific examples of these include propane,
Various aliphatic saturated hydrocarbons such as butane, pentane, hexane, heptane, octane, benzene, toluene, xylene, cyclohexane, aromatic hydrocarbons, alicyclic hydrocarbons, and ethanol, diethyl ether, tetrahydrofuran, ethyl acetate,
Alcohols such as ethyl benzoate, ethers,
Examples include esters. When the reaction is carried out by co-pulverization, those skilled in the art can easily determine conditions such as pulverization temperature and pulverization time depending on the pulverization method used. Generally the grinding temperature is 0-200℃, preferably 20℃
-100°C, and the grinding time is 05-50 hours, preferably 1-30 hours. Of course, these operations should be carried out in an inert gas atmosphere, and moisture should be avoided as much as possible. Most preferred component []-(1) in the present invention,
The order and method of contacting []-(2), []-(3) and []-(4) are as follows. That is, first, a solvent in which the reaction product of component []-(2) magnesium halide and a compound represented by the general formula Me(OR) o X zo is dissolved is used, and component []-(1) is dissolved in the solvent. ) and component []-(2) at 0 to 300°C, preferably 10 to 200°C, most preferably 20 to 100°C, for 1 minute to 48 hours, preferably 2
Do this for minutes to 10 hours. The above solvent includes alcohol,
Tetrahydrofuran, ethyl acetate and the like are preferably used. In this case, component []-(1) and component []
The contact ratio of -(2) is 0.01 to 5 g, preferably 0.1 to 2 g of component []-(2) per 1 g of component []-(1). After the reaction, the solvent is removed to obtain a contact product of component []-(1) and component []-(2). Next, the general formula of component []-(3) is added to the contact product of component []-(1) and component []-(2) above.

【匏】で衚わされる化合物を盎接 に、たたヘキサン、ヘプタン、オクタン、ベンれ
ン、トル゚ン等の䞍掻性溶媒の存圚䞋に枩床20〜
400℃、奜たしくは50〜300℃で分〜20時間行う
こずが望たしい。さらにハロゲン化マグネシり
ム、䞀般匏MeORoXz-oで衚わされる化合物お
よび成分〔〕−(3)を同時に混合、反応させおも
䜕ら支障はない。 成分〔〕−(1)ず成分〔〕−(2)の接觊生成物ず
成分〔〕−(3)の接觊割合は成分〔〕−(1)ず成分
〔〕−(2)の接觊生成物に察しお成分〔〕−
(3)0.01〜、奜たしくは0.1〜である。 次に、䞊蚘成分〔〕−(1)ず成分〔〕−(2)およ
び成分〔〕−(3)の接觊生成物に成分〔〕−(4)の
チタン化合物を盎接に、たたはヘキサン、ヘプタ
ン、オクタン、ベンれン、トル゚ン等の䞍掻性溶
媒の存圚䞋に、枩床20〜300℃、奜たしくは50〜
150℃で分〜10時間、加熱混合を行い、成分
〔〕−(1)ず成分〔〕−(2)および成分〔〕−(3)
の
接觊生成物にチタン化合物を担持させる。奜たし
くは成分〔〕−(1)ず成分〔〕−(2)および成分
〔〕−(3)の接觊生成物に成分〔〕−(4)のチタン
化合物およびたたはバナゞりム化合物を無溶媒
䞋に、枩床20〜300℃、奜たしくは50〜150℃で
分〜10時間、加熱混合を行い、成分〔〕−(1)ず
成分〔〕−(2)および成分〔〕−(3)の接觊生成物
に成分〔〕−(4)のチタン化合物およびたたは
バナゞりム化合物を担持させる。この時、䜿甚す
る成分〔〕−(4)の䜿甚量は生成固䜓成分䞭に含
たれるチタン化合物の量が0.5〜50重量、奜た
しくは〜20重量ずなるよう甚いる。反応終了
埌、未反応のチタン化合物およびたたはバナゞ
りム化合物をチヌグラヌ觊媒に䞍掻性な溶媒で数
回掗浄するこずにより陀去した埌、枛圧䞋で溶媒
を蒞発させ固䜓粉末を埗る。 本発明においお、接觊成分〔〕に甚いる䞀般
匏
The compound represented by [Formula] is added directly or in the presence of an inert solvent such as hexane, heptane, octane, benzene, toluene, etc. at a temperature of 20 to
It is desirable to conduct the reaction at 400°C, preferably 50 to 300°C, for 5 minutes to 20 hours. Furthermore, there is no problem in simultaneously mixing and reacting magnesium halide, a compound represented by the general formula Me(OR) o X zo , and component []-(3). The contact ratio between the contact product of component []-(1) and component []-(2) and the contact ratio of component []-(3) is the contact product of component []-(1) and component []-(2). Ingredients per 1g []-
(3) 0.01 to 5 g, preferably 0.1 to 2 g. Next, the titanium compound of component []-(4) is directly added to the contact product of component []-(1), component []-(2), and component []-(3), or hexane, heptane, etc. , in the presence of an inert solvent such as octane, benzene, toluene, etc., at a temperature of 20-300°C, preferably 50-300°C.
Heat and mix at 150℃ for 5 minutes to 10 hours to prepare component []-(1), component []-(2), and component []-(3).
A titanium compound is supported on the contact product. Preferably, the titanium compound and/or vanadium compound of component []-(4) is added to the contact product of component []-(1), component []-(2), and component []-(3) without a solvent. , at a temperature of 20-300℃, preferably 50-150℃.
Heat mixing is performed for 10 minutes to 10 hours, and the contact products of component []-(1), component []-(2), and component []-(3) are combined with the titanium compound of component []-(4) and/or Or support a vanadium compound. At this time, the amount of component []-(4) used is such that the amount of titanium compound contained in the produced solid component is 0.5 to 50% by weight, preferably 1 to 20% by weight. After completion of the reaction, unreacted titanium compounds and/or vanadium compounds are removed by washing the Ziegler catalyst several times with an inert solvent, and then the solvent is evaporated under reduced pressure to obtain a solid powder. In the present invention, the general formula used for the contact component []

【匏】で衚わされる化合物の䜿 甚量はあたり倚すぎおもたた少なすぎおも添加効
果は望めず、通垞觊媒成分〔〕䞭のチタン化合
物モルに察しお、0.1〜100モル、奜たしくは
0.3〜20モルの範囲内である。 たた、本発明においおは成分〔〕の䞀般匏
If the amount of the compound represented by [Formula] is too large or too small, no effect can be expected, and it is usually 0.1 to 100 mol, preferably 0.1 to 100 mol, per 1 mol of the titanium compound in the catalyst component [].
It is within the range of 0.3 to 20 moles. In addition, in the present invention, the general formula of component []

【匏】で衚わされる化合物を、前 蚘の有機金属化合物ず反応させお䜿甚しおもよ
い。このずきの反応割合は䞀般匏
The compound represented by the formula may be used by reacting with the organometallic compound described above. The reaction rate at this time is the general formula

【匏】有機金属化合物モル 比が500〜の範囲であり、さらに奜
たしくは100〜の範囲である。 䞀般匏
[Formula]: Organometallic compound (molar ratio) is in the range of 1:500 to 1:1, more preferably in the range of 1:100 to 1:2. general formula

【匏】ず有機金属化合物を 反応させお埗られる生成物の䜿甚量は、觊媒成分
〔〕䞭のチタン化合物に察しおSiTiモル比
が0.1〜100の範囲が奜たしく、0.3
〜20の範囲がさらに奜たしい。 本発明の觊媒を䜿甚しおのオレフむンの重合は
スラリヌ重合、溶液重合たたは気盞重合にお行う
こずができる。特に本発明の觊媒は気盞重合に奜
適に甚いるこずができ、重合反応は通垞のチグラ
ヌ型觊媒によるオレフむン重合反応ず同様にしお
行なわれる。すなわち反応はすべお実質的に酞
玠、氎などを絶぀た状態で䞍掻性炭化氎玠の存圚
䞋、あるいは䞍存圚䞋で行なわれる。オレフむン
の重合条件は枩床は20ないし120℃、奜たしくは
50ないし100℃であり、圧力は垞圧ないし70Kg
cm2、奜たしくはないし60Kgcm2である。分子量
の調節は重合枩床、觊媒のモル比などの重合条件
を倉えるこずによ぀おもある皋床調節できるが重
合系䞭に氎玠を添加するこずにより効果的に行な
われる。もちろん、本発明の觊媒を甚いお、単量
䜓の皮類、濃床、氎玠濃床、重合枩床など重合条
件の異な぀た段階ないしそれ以䞊の倚段階の重
合反応も䜕ら支障なく実斜できる。すなわち、ポ
リプロピレン補造プロセスなどにおいお通垞実斜
されおいるいわゆるブロツク共重合䜓の補造にき
わめお奜適に䜿甚できる。 本発明の方法はチグラヌ觊媒で重合できるすべ
おのα−オレフむンの重合に適甚可胜であり、特
に炭玠数〜12のα−オレフむンが奜たしく、た
ずえばプロピレン、ブテン−、ヘキセン−、
−メチルペンテン−などのα−オレフむン類
の単独重合およびα−オレフむンどうしたたはα
−オレフむンず他のオレフむン類ずの共重合およ
び゚チレンず他の皮類以䞊のα−オレフむンず
の共重合などに奜適に䜿甚される。 たた、ポリオレフむンの改質を目的ずする堎合
のゞ゚ンずの共重合も奜たしく行われる。この時
䜿甚されるゞ゚ン化合物の䟋ずしおはブタゞ゚
ン、−ヘキサゞ゚ン、゚チリデンノルボル
ネン、ゞシクロペンタゞ゚ン等を挙げるこずがで
きる。 本発明においおは、特に炭玠数〜のα−オ
レフむン類を立䜓芏則性よく重合たたは共重合さ
せるのに有効に甚いるこずができる。 以䞋に実斜䟋をのべるが、これらは本発明を実
斜するための説明甚のものであ぀お本発明はこれ
らに制限されるものではない。 実斜䟋  (a) 固䜓觊媒成分の補造 1/2むンチ盎埄を有するステンレススチヌル
補ボヌルが25コ入぀た内容積400mlのステンレ
ススチヌル補ポツトに垂販の無氎塩化マグネシ
りム10およびアルミニりムトリ゚トキシド
4.2を入れ窒玠雰囲気䞋、宀枩で16時間、ボ
ヌルミリングを行ない反応生成物を埗た。撹拌
機、および還流冷华噚を぀けたツ口フラスコ
を窒玠眮換し、このツ口フラスコに䞊蚘反応
生成物および600℃で焌成したシリカ富
士デビ゜ン、952を入れ、次いでテト
ラヒドロフラン100mlを加えお、60℃で時間
反応させたのち、120℃で枛圧也燥を行ない、
テトラヒドロフランを陀去した。次に、ヘキサ
ン50mlを加えお撹拌したのちテトラ゚トキシシ
ランをml加えおヘキサン還流䞋で時間反応
させお、固䜓粉末(A)を埗た。 䞊蚘で埗られた固䜓粉末(A)を四塩化チタン30
ml䞭に入れ、120℃で時間反応させ、ヘキサ
ンを甚いおヘキサン䞭に四塩化チタンが怜出さ
れなくなるたで掗浄しお固䜓觊媒成分を埗た。
埗られた固䜓觊媒成分䞭のチタンの含有量
は70mgであ぀た。 (b) 気盞重合 気盞重合装眮ずしおは誘導撹拌機を付けた
のステンレス補オヌトクレヌブを甚いた。 60℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分100mg、トリ゚チルアルミニりム2.5
molおよびプニルトリ゚トキシシラン0.5
molを入れ、党圧が8.5Kgcm2・になるよう
にプロピレンを連続的に䟛絊しお時間重合を
行぀た。 かさ密床0.40、平均粒埄1000Όの球圢のポ
リプロピレンが450生成した。觊媒掻性は
64000ポリプロピレンTiであ぀た。この
ポリプロピレンの沞隰ヘプタンによる抜出残率
は87重量であ぀た。 比范䟋  (a) 固䜓觊媒成分の補造 実斜䟋においお、テトラ゚トキシシランを
添加しないこずを陀いおは実斜䟋ず同様な方
法で觊媒を補造した。埗られた固䜓觊媒成分
䞭のチタンの含有量は35mgであ぀た。 (b) 気盞重合 実斜䟋においお、プニルトリ゚トキシシ
ランを添加しないこずを陀いおは実斜䟋ず同
様の方法で重合を行な぀た。 かさ密床0.35、平均粒埄700Όのポリプロピ
レンが150生成した。觊媒掻性は43000ポリ
プロピレンTiであ぀た。このポリプロピ
レンの沞隰ヘプタンによる抜出残率は40重量
であ぀た。 実斜䟋  (a) 固䜓觊媒成分の補造 実斜䟋に蚘したボヌルミルポツトに垂販の
無氎塩化マグネシりム10およびアルミニりム
トリ゚トキシド4.2を入れ窒玠雰囲気䞋、宀
枩で16時間ボヌルミリングを行ない反応生成物
を埗た。実斜䟋に蚘したツ口フラスコに䞊
蚘反応生成物2.5および600℃で焌成したシリ
カ富士デビ゜ン、9527.5を入れ、次い
でテトラヒドロフラン100mlを加えお、60℃で
時間反応させたのち、120℃で枛圧也燥を行
ない、テトラヒドロフランを陀去した。次に、
ヘキサン50mlを加えお撹拌したのちゞ゚チルゞ
゚トキシシランをml加えおヘキサン還流䞋で
時間反応させお、固䜓粉末(B)を埗た。 䞊蚘で埗られた固䜓粉末(B)を四塩化チタン30
ml䞭に入れ、120℃で時間反応させ、ヘキサ
ンを甚いおヘキサン䞭に四塩化チタンが怜出さ
れなくなるたで掗浄しお固䜓觊媒成分を埗た。
埗られた固䜓觊媒成分䞭のチタンの含有量
は60mgであ぀た。 (b) 気盞重合 実斜䟋で蚘した装眮により以䞋の気盞重合
を行な぀た。 60℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分を100mg、トリ゚チルアルミニりムを2.5
mol、およびプニルトリ゚トキシシランを
0.5mol入れ、党圧が8.5Kgcm2・になるよ
うにプロピレンを連続的に䟛絊しお時間重合
を行な぀た。 かさ密床0.45、平均粒埄900Όの球圢のポリ
プロピレンが430生成した。 たた觊媒掻性は72000ポリプロピレン
Tiであ぀た。 このポリプロピレンの沞隰ヘプタンによる抜
出残率は89重量であ぀た。 実斜䟋  (a) 固䜓觊媒成分の補造 実斜䟋に蚘したボヌルミルポツトに垂販の
無氎塩化マグネシりム10およびマグネシりム
ゞ゚トキシド1.3を入れ窒玠雰囲気䞋、宀枩
で16時間ボヌルミリングを行ない反応生成物を
埗た。実斜䟋に蚘したツ口フラスコに䞊蚘
反応生成物および600℃で焌成したアルミ
ナを入れ、次いでテトラヒドロフラン100
mlを加えお、60℃で時間反応させたのち、
120℃で枛圧也燥を行ない、テトラヒドロフラ
ンを陀去した。次に、ヘキサン50mlを加えお撹
拌したのちテトラ゚トキシシランをml加えお
ヘキサン還流䞋で時間反応させお、固䜓粉末
(C)を埗た。 䞊蚘で埗られた固䜓粉末(C)を四塩化チタン30
ml䞭に入れ、120℃で時間反応させ、ヘキサ
ンを甚いお、ヘキサン䞭に四塩化チタンが怜出
されなくなるたで掗浄しお、固䜓觊媒成分を埗
た。埗られた固䜓觊媒成分䞭のチタンの含
有量は100mgであ぀た。 (b) 気盞重合 実斜䟋で蚘した装眮により以䞋の気盞重合
を行な぀た。 60℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分を100mg、トリ゚チルアルミニりムを2.5
mol、およびテトラ゚トキシシランを0.7
mol入れ、党圧が8.5Kgcm2・になるように
プロピレンを連続的に䟛絊し時間重合を行な
぀た。 かさ密床0.41、平均粒埄950Όの球圢のポリ
プロピレンが500生成した。觊媒掻性は50000
ポリプロピレンTiであり、沞隰ヘプタ
ンによる抜出残率は92重量であ぀た。 実斜䟋  (a) 固䜓觊媒成分の補造 実斜䟋に蚘したボヌルミルポツトに垂販の
無氎塩化マグネシりム10およびアルミニりム
トリ゚トキシド4.2を入れ窒玠雰囲気䞋、宀
枩で16時間ボヌルミリングを行ない反応生成物
を埗た。実斜䟋に蚘したツ口フラスコに䞊
蚘反応生成物および600℃で焌成したアル
ミナを入れ、次いでテトラヒドロフラン
100mlを加えお、60℃で時間反応させたのち、
120℃で枛圧也燥を行ない、テトラヒドロフラ
ンを陀去した。次に、ヘキサン50mlを加えお撹
拌したのちゞ゚チルゞ゚トキシシランをml加
えおヘキサン還流䞋で時間反応させお、固䜓
粉末(D)を埗た。 䞊蚘で埗られた固䜓粉末(D)を四塩化チタン30
ml䞭に入れ、120℃で時間反応させ、ヘキサ
ンを甚いおヘキサン䞭に四塩化チタンが怜出さ
れなくなるたで掗浄しお、固䜓觊媒成分を埗
た。埗られた固䜓觊媒成分䞭のチタンの含
有量は75mgであ぀た。 (b) 気盞重合 実斜䟋で蚘した装眮により以䞋の気盞重合
を行な぀た。 60℃に調節したオヌトクレヌブに䞊蚘固䜓觊
媒成分を100mg、トリ゚チルアルミニりムを2.5
mol、およびゞ゚チルゞ゚トキシシランを
0.5mol入れ、党圧が8.5Kgcm2・になるよ
うにプロピレンを連続的に䟛絊しお時間重合
を行な぀た。 かさ密床0.40、平均粒埄980Όの球圢のポリ
プロピレンが450生成した。 觊媒掻性は60000ポリプロピレンTiで
あり、沞隰ヘプタンによる抜出残率は90重量
であ぀た。 実斜䟋  誘導撹拌機を付けたのステンレススチヌル
補オヌトクレヌブを窒玠眮換しヘキサン1000ml、
トリ゚チルアルミニりムを2.5molおよび実斜
䟋で埗られた固䜓觊媒成分を50mgを入れ、さら
にプニルトリ゚トキシシランを0.25molを加
えお撹拌しながら50℃に昇枩した。次にプロピレ
ンを85Kgcm2・たで匵り蟌んで重合を開始し、
オヌトクレヌブの圧力を8.5Kgcm2・に保持す
るようにしお時間重合を行な぀た。重合終了埌
重合䜓スラリヌをビヌカヌに移し、ヘキサンを枛
圧陀去しお34.4のポリプロピレンを埗た。 このポリプロピレンはかさ密床0.41、平均粒埄
1300Όの球圢粒子であ぀た。觊媒掻性は98000
ポリプロピレンTiであ぀た。たた沞ずう
ヘプタンによる抜出残率は75重量であ぀た。
The amount of the product obtained by reacting [formula] with the organometallic compound is Si:Ti (molar ratio) based on the titanium compound in the catalyst component [].
is preferably in the range of 0.1:1 to 100:1, and 0.3:1
A range of ˜20:1 is more preferred. Olefin polymerization using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization or gas phase polymerization. In particular, the catalyst of the present invention can be suitably used for gas phase polymerization, and the polymerization reaction is carried out in the same manner as an olefin polymerization reaction using a normal Ziegler type catalyst. That is, all reactions are carried out in the presence or absence of inert hydrocarbons, substantially deprived of oxygen, water, and the like. The polymerization conditions for olefin are as follows: temperature is 20 to 120℃, preferably
The temperature is 50 to 100℃, and the pressure is normal pressure to 70Kg/
cm 2 , preferably 2 to 60 Kg/cm 2 . Although the molecular weight can be adjusted to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system. Of course, using the catalyst of the present invention, a two-step or more multi-step polymerization reaction with different polymerization conditions such as monomer type, concentration, hydrogen concentration, polymerization temperature, etc. can be carried out without any problem. That is, it can be used very suitably in the production of so-called block copolymers, which is commonly carried out in polypropylene production processes. The method of the present invention is applicable to the polymerization of all α-olefins that can be polymerized using a Ziegler catalyst, and α-olefins having 3 to 12 carbon atoms are particularly preferred, such as propylene, 1-butene, 1-hexene,
Homopolymerization of α-olefins such as 4-methylpentene-1, and polymerization of α-olefins with each other or α-olefins.
- Suitable for use in copolymerization of olefins with other olefins, copolymerization of ethylene with two or more other α-olefins, etc. Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time include butadiene, 1,4-hexadiene, ethylidenenorbornene, dicyclopentadiene, and the like. In the present invention, it can be particularly effectively used to polymerize or copolymerize α-olefins having 3 to 8 carbon atoms with good stereoregularity. Examples will be described below, but these are for illustrative purposes to carry out the present invention, and the present invention is not limited thereto. Example 1 (a) Preparation of solid catalyst component 10 g of commercially available anhydrous magnesium chloride and aluminum triethoxide were placed in a 400 ml stainless steel pot containing 25 1/2 inch diameter stainless steel balls.
4.2 g was added and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a reaction product. A three-neck flask equipped with a stirrer and a reflux condenser was purged with nitrogen, and 5 g of the above reaction product and 5 g of silica (Fuji Davison, #952) calcined at 600°C were placed in the three-neck flask, and then tetrahydrofuran was added. After adding 100ml and reacting at 60℃ for 2 hours, drying under reduced pressure at 120℃,
Tetrahydrofuran was removed. Next, 50 ml of hexane was added and stirred, and then 1 ml of tetraethoxysilane was added and reacted for 2 hours under refluxing hexane to obtain a solid powder (A). The solid powder (A) obtained above was mixed with titanium tetrachloride 30
ml, reacted at 120°C for 2 hours, and washed with hexane until titanium tetrachloride was no longer detected in hexane to obtain a solid catalyst component.
The content of titanium in 1 g of the obtained solid catalyst component was 70 mg. (b) Gas-phase polymerization The gas-phase polymerization apparatus is a
A stainless steel autoclave was used. 100 mg of the above solid catalyst component and 2.5 m of triethylaluminum were placed in an autoclave adjusted to 60°C.
mol and phenyltriethoxysilane 0.5m
mol, and polymerization was carried out for 8 hours by continuously supplying propylene so that the total pressure was 8.5 Kg/cm 2 ·G. 450 g of spherical polypropylene with a bulk density of 0.40 and an average particle size of 1000 Όm was produced. Catalytic activity is
It was 64000g polypropylene/gTi. The residual percentage of this polypropylene extracted with boiling heptane was 87% by weight. Comparative Example 1 (a) Production of solid catalyst component A catalyst was produced in the same manner as in Example 1 except that tetraethoxysilane was not added. Obtained solid catalyst component 1
The titanium content in g was 35 mg. (b) Gas phase polymerization In Example 1, polymerization was carried out in the same manner as in Example 1 except that phenyltriethoxysilane was not added. 150 g of polypropylene with a bulk density of 0.35 and an average particle size of 700 ÎŒm was produced. The catalyst activity was 43000 g polypropylene/g Ti. The residual rate of extraction of this polypropylene with boiling heptane is 40% by weight.
It was hot. Example 2 (a) Production of solid catalyst component 10 g of commercially available anhydrous magnesium chloride and 4.2 g of aluminum triethoxide were placed in the ball mill pot described in Example 1, and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a reaction product. I got it. 2.5 g of the above reaction product and 7.5 g of silica (Fuji Davison, #952) calcined at 600°C were placed in the 3-necked flask described in Example 1, and then 100 ml of tetrahydrofuran was added and reacted at 60°C for 2 hours. Afterwards, it was dried under reduced pressure at 120°C to remove tetrahydrofuran. next,
After adding 50 ml of hexane and stirring, 1 ml of diethyldiethoxysilane was added and reacted for 2 hours under refluxing hexane to obtain a solid powder (B). The solid powder (B) obtained above was mixed with titanium tetrachloride 30
ml, reacted at 120°C for 2 hours, and washed with hexane until titanium tetrachloride was no longer detected in hexane to obtain a solid catalyst component.
The content of titanium in 1 g of the obtained solid catalyst component was 60 mg. (b) Gas phase polymerization The following gas phase polymerization was carried out using the apparatus described in Example 1. In an autoclave adjusted to 60℃, add 100 mg of the above solid catalyst component and 2.5 mg of triethylaluminum.
mmol, and phenyltriethoxysilane
0.5 mmol was added, and propylene was continuously supplied so that the total pressure was 8.5 Kg/cm 2 ·G, and polymerization was carried out for 8 hours. 430 g of spherical polypropylene with a bulk density of 0.45 and an average particle size of 900 Όm was produced. Also, the catalyst activity is 72000g polypropylene/g
It was Ti. The residual percentage of this polypropylene extracted with boiling heptane was 89% by weight. Example 3 (a) Production of solid catalyst component 10 g of commercially available anhydrous magnesium chloride and 1.3 g of magnesium diethoxide were placed in the ball mill pot described in Example 1, and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a reaction product. I got it. 5 g of the above reaction product and 5 g of alumina calcined at 600°C were placed in the three-necked flask described in Example 1, and then 100 g of tetrahydrofuran was added.
ml and reacted at 60℃ for 2 hours,
Drying was performed under reduced pressure at 120°C to remove tetrahydrofuran. Next, 50 ml of hexane was added and stirred, and then 2 ml of tetraethoxysilane was added and reacted for 2 hours under refluxing hexane to form a solid powder.
I got (C). The solid powder (C) obtained above was mixed with titanium tetrachloride 30
ml, reacted at 120°C for 2 hours, and washed with hexane until titanium tetrachloride was no longer detected in hexane to obtain a solid catalyst component. The content of titanium in 1 g of the obtained solid catalyst component was 100 mg. (b) Gas phase polymerization The following gas phase polymerization was carried out using the apparatus described in Example 1. In an autoclave adjusted to 60℃, add 100 mg of the above solid catalyst component and 2.5 mg of triethylaluminum.
mmol, and 0.7 m of tetraethoxysilane
mol, and propylene was continuously supplied so that the total pressure was 8.5 Kg/cm 2 ·G, and polymerization was carried out for 8 hours. 500 g of spherical polypropylene with a bulk density of 0.41 and an average particle size of 950 Όm was produced. Catalytic activity is 50000
g polypropylene/g Ti, and the residual ratio after extraction with boiling heptane was 92% by weight. Example 4 (a) Production of solid catalyst component 10 g of commercially available anhydrous magnesium chloride and 4.2 g of aluminum triethoxide were placed in the ball mill pot described in Example 1, and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours to obtain a reaction product. I got it. 5 g of the above reaction product and 5 g of alumina calcined at 600°C were placed in the three-necked flask described in Example 1, and then tetrahydrofuran was added.
After adding 100ml and reacting at 60℃ for 2 hours,
Drying was performed under reduced pressure at 120°C to remove tetrahydrofuran. Next, 50 ml of hexane was added and stirred, and then 2 ml of diethyldiethoxysilane was added and reacted for 2 hours under refluxing hexane to obtain a solid powder (D). The solid powder (D) obtained above was mixed with titanium tetrachloride 30
ml, reacted at 120°C for 2 hours, and washed with hexane until titanium tetrachloride was no longer detected in hexane to obtain a solid catalyst component. The content of titanium in 1 g of the obtained solid catalyst component was 75 mg. (b) Gas phase polymerization The following gas phase polymerization was carried out using the apparatus described in Example 1. In an autoclave adjusted to 60℃, add 100 mg of the above solid catalyst component and 2.5 mg of triethylaluminum.
mmol, and diethyldiethoxysilane
0.5 mmol was added, and propylene was continuously supplied so that the total pressure was 8.5 Kg/cm 2 ·G, and polymerization was carried out for 8 hours. 450 g of spherical polypropylene with a bulk density of 0.40 and an average particle size of 980 Όm was produced. Catalytic activity is 60000g polypropylene/gTi, and extraction residue with boiling heptane is 90% by weight.
It was hot. Example 5 A stainless steel autoclave equipped with an induction stirrer was replaced with nitrogen, and 1000 ml of hexane was added.
2.5 mmol of triethylaluminum and 50 mg of the solid catalyst component obtained in Example 1 were added, and further 0.25 mmol of phenyltriethoxysilane was added, and the temperature was raised to 50° C. with stirring. Next, propylene was charged to 85Kg/cm 2・G to start polymerization.
Polymerization was carried out for 8 hours while maintaining the autoclave pressure at 8.5 kg/cm 2 ·G. After the polymerization was completed, the polymer slurry was transferred to a beaker, and hexane was removed under reduced pressure to obtain 34.4 g of polypropylene. This polypropylene has a bulk density of 0.41 and an average particle size
They were spherical particles of 1300 ÎŒm. Catalyst activity is 98000
g polypropylene/g Ti. The residual rate after extraction with boiling heptane was 75% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明の方法で甚いる觊媒の調補工皋
を瀺すフロヌチダヌト図である。
FIG. 1 is a flowchart showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特蚱請求の範囲】  [](1) ケむ玠酞化物およびたたはアルミ
ニりム酞化物、 (2) ゞハロゲン化マグネシりムず䞀般匏Me
ORoXz-oここでMeはMgたたはAlを
瀺す。は炭玠数〜24の炭化氎玠残基を、
はハロゲン原子を瀺す。は、Meの原子
䟡を衚わし、は≊である。で衚
わされる化合物ずの反応生成物、 (3) 䞀般匏 ここでR1R2R3は炭玠数〜24の炭化
氎玠残基たたはアルコキシ基を瀺し、R4は
炭玠数〜24の炭化氎玠残基を瀺す。は
≊≊30であるで衚わされる化合物、およ
び (4) 䞀般匏TiORoX4-oここでは炭玠数
〜20のアルキル基、アリヌル基たたはアラル
キル基を瀺し、はハロゲン原子を瀺す。
は≊≊であるで衚わされるチタン化
合物 を盞互に接觊し、反応させお埗られる固䜓觊媒
成分、 [] 䞀般匏 ここでR1R2R3は炭玠数〜24の炭化氎
玠残基たたはアルコキシ基を瀺し、R4は炭玠
数〜24の炭化氎玠残基を瀺す。は≊≊
30であるで衚わされる化合物、および [] 有機アルミニりム化合物、 を組み合わせおなる觊媒系により、α−オレフむ
ンを重合あるいは共重合するこずを特城ずするポ
リオレフむンの補造方法。
[Claims] 1 [](1) Silicon oxide and/or aluminum oxide, (2) Magnesium dihalide and general formula Me
(OR) o X zo (Here, Me represents B, Mg or Al. R represents a hydrocarbon residue having 1 to 24 carbon atoms,
X represents a halogen atom. z represents the valence of Me, and n satisfies 0<n≩z. ) reaction product with a compound represented by (3) general formula (Here, R 1 , R 2 , R 3 represent a hydrocarbon residue having 1 to 24 carbon atoms or an alkoxy group, and R 4 represents a hydrocarbon residue having 1 to 24 carbon atoms. n is 1
≩n≩30), and (4) a compound represented by the general formula Ti(OR) o X 4-o (where R is a carbon number of 1
-20 alkyl, aryl or aralkyl groups, and X represents a halogen atom. n
is 0≩n≩4)) A solid catalyst component obtained by contacting and reacting titanium compounds represented by [] General formula (Here, R 1 , R 2 , R 3 represent a hydrocarbon residue having 1 to 24 carbon atoms or an alkoxy group, and R 4 represents a hydrocarbon residue having 1 to 24 carbon atoms. n is 1≩n≩
A method for producing a polyolefin, which comprises polymerizing or copolymerizing an α-olefin using a catalyst system comprising a combination of a compound represented by 30) and an organoaluminum compound.
JP19611382A 1982-11-10 1982-11-10 Production of polyolefin Granted JPS5986607A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19611382A JPS5986607A (en) 1982-11-10 1982-11-10 Production of polyolefin
CA000440272A CA1219996A (en) 1982-11-10 1983-11-02 Process for preparing polyolefins
GB08329764A GB2133020B (en) 1982-11-10 1983-11-08 Polymerising olefins with an improved ziegler catalyst
DE19833340754 DE3340754A1 (en) 1982-11-10 1983-11-10 METHOD AND CATALYST COMPONENT FOR PRODUCING POLYOLEFINES
FR8317941A FR2535724B1 (en) 1982-11-10 1983-11-10 PROCESS FOR PRODUCING POLYOLEFINS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19611382A JPS5986607A (en) 1982-11-10 1982-11-10 Production of polyolefin

Publications (2)

Publication Number Publication Date
JPS5986607A JPS5986607A (en) 1984-05-18
JPH0149165B2 true JPH0149165B2 (en) 1989-10-23

Family

ID=16352449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19611382A Granted JPS5986607A (en) 1982-11-10 1982-11-10 Production of polyolefin

Country Status (1)

Country Link
JP (1) JPS5986607A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578408B2 (en) * 1986-08-06 1997-02-05 䞉菱化孊株匏䌚瀟 Gas phase polymerization of olefins
CN1229400C (en) * 2003-09-18 2005-11-30 䞭囜石油化工股仜有限公叞 Catalyst compoment used for olefinic polymerization and its catalyst

Also Published As

Publication number Publication date
JPS5986607A (en) 1984-05-18

Similar Documents

Publication Publication Date Title
JPS6411651B2 (en)
JPS64404B2 (en)
JPS62104811A (en) Production of alpha-olefin polymer
JPS647087B2 (en)
JPS647086B2 (en)
JPH0134447B2 (en)
JPH0149165B2 (en)
JPS6412286B2 (en)
JPH04261408A (en) Production of polyolefin
JPS64403B2 (en)
JPH0149287B2 (en)
JPS6412289B2 (en)
JPH03121103A (en) Production of polyolefin
JPS5812889B2 (en) Polyethylene material
JPS6363561B2 (en)
JPS647085B2 (en)
JPH0149286B2 (en)
JPH0149282B2 (en)
JPH0149164B2 (en)
JPH0532404B2 (en)
JPS6410529B2 (en)
JPH0532407B2 (en)
JPH0617399B2 (en) Method for producing polyolefin
JPH06104688B2 (en) Process for producing catalyst component for α-olefin polymerization
JPS6365681B2 (en)