JPS64964B2 - - Google Patents

Info

Publication number
JPS64964B2
JPS64964B2 JP8684981A JP8684981A JPS64964B2 JP S64964 B2 JPS64964 B2 JP S64964B2 JP 8684981 A JP8684981 A JP 8684981A JP 8684981 A JP8684981 A JP 8684981A JP S64964 B2 JPS64964 B2 JP S64964B2
Authority
JP
Japan
Prior art keywords
general formula
carbon atoms
alkyl group
polymerization
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8684981A
Other languages
Japanese (ja)
Other versions
JPS57202306A (en
Inventor
Yasuhiro Takeshita
Shigeaki Mizogami
Akio Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP8684981A priority Critical patent/JPS57202306A/en
Publication of JPS57202306A publication Critical patent/JPS57202306A/en
Publication of JPS64964B2 publication Critical patent/JPS64964B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はα−オレフインの重合方法に関し、詳
しくは特定の活性化チタン触媒成分と有機アルミ
ニウム化合物よりなる触媒を用いて、α−オレフ
インを高活性で重合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing α-olefin, and more particularly to a method for polymerizing α-olefin with high activity using a catalyst comprising a specific activated titanium catalyst component and an organoaluminum compound.

従来から、マグネシウム、チタンおよびハロゲ
ンを含有する固体触媒成分と有機金属化合物から
なる触媒で用いて、オレフイン類を重合する方法
は知られており、例えば特開昭54−40293号公報
および特開昭56−30681号公報に開示された方法
などがある。
Conventionally, methods for polymerizing olefins using a catalyst consisting of a solid catalyst component containing magnesium, titanium, and halogen and an organometallic compound have been known. There is a method disclosed in Japanese Patent No. 56-30681.

しかし、これらの方法では、触媒の単位重量あ
たりの活性が充分でない、生成ポリマーの粒度分
布が広範囲にわたり微粉末が存在し好ましくない
などの欠点があつた。
However, these methods have disadvantages such as insufficient activity per unit weight of the catalyst, and the particle size distribution of the produced polymer is wide over a wide range and contains fine powder, which is undesirable.

そこで本発明者らは上記従来技術の欠点を改良
すべく鋭意研究を重ねた。その結果、特定のマグ
ネシウム化合物、チタン化合物およびアルコール
を混合して反応させて得られる均一溶液に、ルイ
ス酸を主成分とする析出剤を添加して生成する固
体成分を触媒の一成分として用いることにより目
的を達成しうることを見出した。本発明はかかる
知見に基いて完成したものである。すなわち本発
明は、(A)一般式Mg(OR12〔式中、R1は炭素数1
〜5のアルキル基を示す。〕で表わされるアルコ
キシマグネシウム化合物、一般式TiX1 4〔式中、
X1はハロゲン原子を示す。〕で表わされるハロゲ
ン含有チタン化合物および一般式R2OH〔式中、
R2は炭素数4〜20のアルキル基を示す。〕で表わ
されるアルコールを加熱下で反応させて均一溶液
とした後、該溶液に一般式TiX2 4〔式中、X2はハ
ロゲン原子を示す。〕または一般式AlR3 2X3〔式中、
R3は炭素数1〜5のアルキル基を示し、X3はハ
ロゲン原子を示す。〕で表わされる析出剤を添加
して生成する固体成分および(B)一般式AlR4 3〔式
中、R4は炭素数1〜5のアルキル基を示す。〕で
表わされる有機アルミニウム化合物を成分とする
触媒を用いて炭素数2〜8のα−オレフインを重
合することを特徴とするα−オレフインの重合方
法を提供するものである。
Therefore, the inventors of the present invention have conducted extensive research in order to improve the drawbacks of the above-mentioned conventional techniques. As a result, a solid component produced by adding a precipitation agent mainly composed of Lewis acid to a homogeneous solution obtained by mixing and reacting a specific magnesium compound, titanium compound, and alcohol can be used as a component of the catalyst. We found that the purpose could be achieved by The present invention was completed based on this knowledge. That is, the present invention provides (A) general formula Mg(OR 1 ) 2 [wherein R 1 is carbon number 1]
~5 alkyl group is shown. ], an alkoxymagnesium compound represented by the general formula TiX 1 4 [wherein,
X 1 represents a halogen atom. ] and a halogen-containing titanium compound represented by the general formula R 2 OH [wherein,
R 2 represents an alkyl group having 4 to 20 carbon atoms. ] is reacted under heating to form a homogeneous solution, and then the solution is mixed with the general formula TiX 2 4 [wherein, X 2 represents a halogen atom]. ] or the general formula AlR 3 2 X 3 [wherein,
R 3 represents an alkyl group having 1 to 5 carbon atoms, and X 3 represents a halogen atom. ] and (B) a solid component produced by adding a precipitating agent represented by the general formula AlR 4 3 [wherein R 4 represents an alkyl group having 1 to 5 carbon atoms]. The present invention provides a method for polymerizing α-olefin, which comprises polymerizing α-olefin having 2 to 8 carbon atoms using a catalyst containing an organoaluminum compound represented by the following formula.

本発明に用いるアルコキシマグネシウム化合物
は、一般式Mg(OR12で表わされるものであり、
ここでR1は前述した如く炭素数1〜5のアルキ
ル基を示す。このアルコキシマグネシウム化合物
のうち好ましいものを例示すれば、マグネシウム
ジエトキシド、マグネシウムジエトキシド、マグ
ネシウムジプロポキシド、マグネシウムジブトキ
シドなどがあげられる。
The alkoxymagnesium compound used in the present invention is represented by the general formula Mg(OR 1 ) 2 ,
Here, R 1 represents an alkyl group having 1 to 5 carbon atoms as described above. Preferred examples of the alkoxymagnesium compounds include magnesium diethoxide, magnesium diethoxide, magnesium dipropoxide, and magnesium dibutoxide.

また本発明に用いるハロゲン含有チタン化合物
は、一般式TiX1 4で表わされるものであり、ここ
でX1はハロゲン原子を示す。このようなハロゲ
ン含有チタン化合物としては具体的にはTiCl4
TiBr4などが挙げられる。
Further, the halogen-containing titanium compound used in the present invention is represented by the general formula TiX 14 , where X 1 represents a halogen atom. Specifically, such halogen-containing titanium compounds include TiCl 4 ,
Examples include TiBr 4 .

さらに本発明に用いるアルコールは、一般式
R2OHで表わされ、ここでR2は炭素数4〜20のア
ルキル基を示す。このアルコールの具体例を示せ
ば、ブタノール、イソブタノール、アミルアルコ
ール、オクタノール等をあげることができる。
Furthermore, the alcohol used in the present invention has the general formula
It is represented by R 2 OH, where R 2 represents an alkyl group having 4 to 20 carbon atoms. Specific examples of this alcohol include butanol, isobutanol, amyl alcohol, octanol, and the like.

本発明においては、まず上述のアルコキシマグ
ネシウム化合物、ハロゲン含有チタン化合物およ
びアルコールを加熱下で反応させて均一溶液を調
製する。ここで上記三者の配合割合は特に制限は
なく適宜定めればよいが、通常は、アルコキシマ
グネシウム化合物1モルに対して、ハロゲン含有
チタン化合物とアルコールの合計量が1〜10モ
ル、好ましくは2〜5モルとする。またアルコー
ル1モルに対してハロゲン含有チタン化合物0.05
〜0.5モル、好ましくは0.1〜0.3モルとする。これ
ら三者の反応は加熱下でペンタン、ヘキサン、ヘ
プタン、オクタン等の不活性炭化水素溶媒中ある
いは無溶媒下にて行なう。加熱温度は条件に応じ
て適宜選択すればよいが、通常は室温〜200℃、
好ましくは40〜150℃とすべきである。はた反応
時間は5分〜10時間、好ましくは30分〜5時間と
すべきである。
In the present invention, first, the above-mentioned alkoxymagnesium compound, halogen-containing titanium compound, and alcohol are reacted under heating to prepare a homogeneous solution. Here, the blending ratio of the three above is not particularly limited and may be determined as appropriate, but usually the total amount of the halogen-containing titanium compound and alcohol is 1 to 10 mol, preferably 2 mol, per 1 mol of the alkoxymagnesium compound. ~5 moles. Also, 0.05 halogen-containing titanium compounds per mole of alcohol.
~0.5 mol, preferably 0.1-0.3 mol. The reaction between these three is carried out under heating in an inert hydrocarbon solvent such as pentane, hexane, heptane, octane, etc. or without a solvent. The heating temperature can be selected as appropriate depending on the conditions, but it is usually room temperature to 200℃,
Preferably it should be between 40 and 150°C. The reaction time should be between 5 minutes and 10 hours, preferably between 30 minutes and 5 hours.

本発明の方法においては、上述の反応によつて
均一溶液を生成し、次いで得られた均一溶液にル
イス酸からなる析出剤を添加する。ここでルイス
酸としては一般式TiX2 4で表わされるテトラハロ
ゲン化チタン化合物または一般式AlR3 2X3で表わ
されるジアルキルアルミニウムモノハライドを用
いる。ここでR3は炭素数1〜5のアルキル基を
示し、X2,X3は塩素、臭素、沃素などのハロゲ
ン原子を示す。上記一般式TiX2 4で表わされるテ
トラハロゲン化チタン化合物として具体的には四
塩化チタンをあげることができる。また、上記一
般式AlR3 2X3で表わされるジアルキルアルミニウ
ムモノハライドとしてはジエチルアルミニウムモ
ノクロリド、ジイソプロピルアルミニウムモノク
ロリド、ジイソブチルアルミニウムモノクロリド
などがあげられる。
In the method of the present invention, a homogeneous solution is produced by the above-mentioned reaction, and then a precipitation agent consisting of a Lewis acid is added to the homogeneous solution obtained. Here, as the Lewis acid, a tetrahalogenated titanium compound represented by the general formula TiX 2 4 or a dialkyl aluminum monohalide represented by the general formula AlR 3 2 X 3 is used. Here, R 3 represents an alkyl group having 1 to 5 carbon atoms, and X 2 and X 3 represent halogen atoms such as chlorine, bromine, and iodine. A specific example of the tetrahalogenated titanium compound represented by the general formula TiX 2 4 is titanium tetrachloride. Examples of the dialkylaluminum monohalide represented by the general formula AlR 3 2

上記ルイス酸よりなる析出剤の添加量は条件等
に応じて適宜定めればよいが、通常は前述のアル
コール1モルに対してハロゲン含有チタン化合物
と析出剤の合計量が1〜50モル、好ましくは1.5
〜10モルとなるようにすべきである。
The amount of the precipitation agent made of the Lewis acid to be added may be determined as appropriate depending on the conditions, etc., but usually the total amount of the halogen-containing titanium compound and the precipitation agent is 1 to 50 mol, preferably 1 to 50 mol, per 1 mol of the alcohol. is 1.5
It should be ~10 mol.

上述の均一溶液に析出剤を添加する反応は、通
常は0〜200℃、好ましくは20〜150℃にて5分〜
10時間、好ましくは30分〜5時間行なえばよい。
The reaction of adding a precipitating agent to the above-mentioned homogeneous solution is usually carried out at 0 to 200°C, preferably 20 to 150°C for 5 minutes to
It may be carried out for 10 hours, preferably 30 minutes to 5 hours.

反応終了後、生成する固体成分を、n−ヘプタ
ン等の不活性溶媒で充分に洗浄した後、炭素数2
〜8のα−オレフインの重合触媒の(A)成分(固体
触媒成分)として用いる。
After the reaction is complete, the resulting solid component is thoroughly washed with an inert solvent such as n-heptane, and then
It is used as the component (A) (solid catalyst component) of the α-olefin polymerization catalyst of ~8.

本発明の方法によれば、上記固体成分を(A)成分
とし、また有機アルミニウム化合物を(B)成分とし
た、(A),(B)両成分よりなる触媒を用いて炭素数2
〜8のα−オレフインの重合を行なう。
According to the method of the present invention, the above-mentioned solid component is the (A) component, and the organoaluminum compound is the (B) component.
Polymerization of α-olefin of ~8 is carried out.

オレフイン類の重合にあたつては、反応系に(A)
成分である前記固体成分の分散液および(B)成分で
ある有機アルミニウム化合物を加え、次いでこの
系に炭素数2〜8のα−オレフインを導入する。
When polymerizing olefins, (A) is added to the reaction system.
A dispersion of the above-mentioned solid component as a component and an organoaluminum compound as a component (B) are added, and then an α-olefin having 2 to 8 carbon atoms is introduced into the system.

重合方法ならびに条件等は特に制限はなく、溶
液重合、懸濁重合、気相重合等のいずれも可能で
あり、また連続重合、非連続重合のどちらも可能
である。触媒成分の添加量は、溶液重合あるいは
懸濁重合の場合を例にとれば、(A)成分をチタン原
子に換算して0.001〜1.0ミリモル/とし、(B)成
分を(A)成分中のチタン原子に対して1〜1000(モ
ル比)、好ましくは5〜500(モル比)とする。ま
た反応系のオレフイン圧は常圧〜50Kg/cm2が好ま
しく、反応温度は室温〜300℃、好ましくは50〜
200℃とする。重合に際しての分子量調節は公知
の手段、例えば水素等により行なうことができ
る。なお反応時間は5分〜10時間、好ましくは30
分〜5時間の間で適宜選定すればよい。
The polymerization method and conditions are not particularly limited, and any of solution polymerization, suspension polymerization, gas phase polymerization, etc. is possible, and both continuous polymerization and discontinuous polymerization are possible. For example, in the case of solution polymerization or suspension polymerization, the amount of the catalyst component added is 0.001 to 1.0 mmol per titanium atom for component (A), and the amount of component (B) is 0.001 to 1.0 mmol per titanium atom. The amount is 1 to 1000 (molar ratio), preferably 5 to 500 (molar ratio) to titanium atoms. The olefin pressure in the reaction system is preferably normal pressure to 50 kg/ cm2 , and the reaction temperature is room temperature to 300°C, preferably 50 to 300°C.
The temperature shall be 200℃. Molecular weight adjustment during polymerization can be carried out by known means, such as hydrogen. The reaction time is 5 minutes to 10 hours, preferably 30 hours.
The time may be appropriately selected between minutes and 5 hours.

本発明の方法においては触媒の(B)成分として一
般式AlR4 3で表わされる有機アルミニウム化合物
(トリアルキルアルミニウム)を用いる。ここで
R4は炭素数1〜5のアルキル基であり、このよ
うな化合物として具体的にはトリメチルアルミニ
ウム、トリエチルアルミニウム、トリイソプロピ
ルアルミニウム、トリイソブチルアルミニウムな
どが挙げられ、これらの混合物も用いることがで
きる。
In the method of the present invention, an organoaluminum compound (trialkyl aluminum) represented by the general formula AlR 4 3 is used as the component (B) of the catalyst. here
R 4 is an alkyl group having 1 to 5 carbon atoms, and specific examples of such compounds include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, and mixtures thereof can also be used.

本発明の方法では上記の如き触媒を用いて炭素
数2〜8のα−オレフインを重合する。このよう
なα−オレフインとして通常は一般式R5−CH=
CH2(式中、R5は水素または炭素数1〜6のアル
キル基を示す。)で表わされるα−オレフイン類、
例えばエチレン、プロピレン、ブテン−1,ヘキ
セン−1、オクテン−1等の直鎖モノオレフイン
類をはじめ、4−メチル−ペンテン−1等の分岐
モノオレフイン類、ブタジエン等のジエン類その
他各種のものがあげられ、本発明は、これらの単
独重合、あるいは各種α−オレフイン相互の共重
合に有効に利用できる。
In the method of the present invention, an α-olefin having 2 to 8 carbon atoms is polymerized using the catalyst as described above. Such α-olefins usually have the general formula R 5 −CH=
α-olefins represented by CH 2 (in the formula, R 5 represents hydrogen or an alkyl group having 1 to 6 carbon atoms);
For example, linear monoolefins such as ethylene, propylene, butene-1, hexene-1, octene-1, etc., branched monoolefins such as 4-methyl-pentene-1, dienes such as butadiene, and various others. The present invention can be effectively utilized for homopolymerization of these or copolymerization of various α-olefins.

本発明の方法によれば、用いる触媒の活性が極
めて高く、しかも得られるポリマーのかさ密度が
高いため、製品価値の著しく高いものが得られ
る。また、上述した(A),(B)両成分よりなる触媒
に、アミン類、アミド類、ケトン類、ニトリル
類、ホスフイン類、ホスホルムアミド類、エステ
ル類、チオエーテル類、チオエステル類、酸無水
物類、酸ハライド類、アルデヒド類、有機酸類な
どの電子供与性化合物を加えたものを用いてプロ
ピレンの重合を行なうと、立体規則性指数(I.I.)
のすぐれたポリプロピレンが得られる。
According to the method of the present invention, the activity of the catalyst used is extremely high and the bulk density of the obtained polymer is high, so that products with extremely high product value can be obtained. In addition, in the catalyst consisting of both components (A) and (B) mentioned above, amines, amides, ketones, nitriles, phosphines, phosphoformamides, esters, thioethers, thioesters, acid anhydrides, etc. When propylene is polymerized using electron-donating compounds such as acid halides, aldehydes, and organic acids, the stereoregularity index (II) increases.
Polypropylene with excellent properties is obtained.

以上のように、本発明の方法は高活性重合であ
ると共に製品価値の高いポリマーが得られるもの
であるため、触媒の除去工程を省略できることと
あいまつて、非常に有効な方法であるということ
ができる。
As described above, the method of the present invention is a highly active polymerization method that yields polymers with high product value, and this combined with the ability to omit the catalyst removal step makes it a very effective method. can.

次に本発明の実施例を示す。なお、以下の実施
例における操作はすべてアルゴン気流下にて行な
つた。また実施例において求めた立体規則性指数
(I.I.)は次のように定義した。
Next, examples of the present invention will be shown. Note that all operations in the following examples were performed under an argon stream. Moreover, the stereoregularity index (II) determined in the examples was defined as follows.

I.I.=重合時に溶媒に不溶なポリマーの沸騰n−ヘ
プタン不溶性ポリマーの重量/重合時に溶媒に不溶なポ
リマーの重量×100(%) 実施例 1 (1) 固体触媒成分の製造 500mlガラス製フラスコに乾燥ヘキサン150ml、
マグネシウムジエトキシド10.0g(88ミリモル)
をとり、四塩化チタン4.2g(22ミリモル)、イソ
プロピルアルコール2.0g(33ミリモル)を加え
て昇温し、還流下1時間反応を行なつた。ここに
おける反応系はスラリー状態であつた。次いでこ
の系に2−エチルヘキサノール22.9g(176ミリ
モル)を加え、還流下2時間反応させると固体は
溶解し、均一な溶液が得られた。次いでこれに四
塩化チタン83.2g(440ミリモル)を滴下したと
ころ、固体が析出してきた。滴下終了後、還流下
3時間反応を行なつた。反応終了後、40℃で濾過
し固体成分をn−ヘキサンで充分に洗浄した。得
られた固体成分を比色法によりTi担持量を求め
たところ、49mg−Ti/g−担体であつた。
II = Boiling of polymer insoluble in solvent during polymerization Weight of n-heptane insoluble polymer / Weight of polymer insoluble in solvent during polymerization x 100 (%) Example 1 (1) Production of solid catalyst component Drying in a 500 ml glass flask 150ml hexane,
Magnesium diethoxide 10.0g (88 mmol)
4.2 g (22 mmol) of titanium tetrachloride and 2.0 g (33 mmol) of isopropyl alcohol were added, the temperature was raised, and the reaction was carried out under reflux for 1 hour. The reaction system here was in a slurry state. Next, 22.9 g (176 mmol) of 2-ethylhexanol was added to this system and reacted under reflux for 2 hours to dissolve the solid and obtain a homogeneous solution. Next, 83.2 g (440 mmol) of titanium tetrachloride was added dropwise to this, and a solid precipitated out. After the dropwise addition was completed, the reaction was carried out under reflux for 3 hours. After the reaction was completed, it was filtered at 40°C and the solid components were thoroughly washed with n-hexane. When the amount of Ti supported on the obtained solid component was determined by a colorimetric method, it was found to be 49 mg-Ti/g-support.

(2) エチレンの重合 1のオートクレープに乾燥ヘキサン400ml、
トリイソブチルアルミニウム(TIBA)2.0ミリ
モルおよび上記固体触媒成分をTiとして0.01ミリ
モル加え80℃に昇温した。次いで、水素を3Kg/
cm2、エチレンを5Kg/cm2加えた。さらに全圧を
9.3Kg/cm2に維持するようにエチレンを連続的に
供給しながら1時間重合した。その結果ポリエチ
レン138gが得られた。触媒活性はTi1g、1時
間当り288Kgであつた。ポリマーのメルトインデ
ツクス(MI、190℃、2160g荷重)は1.3g/10
分であり、かさ密度は0.30g/mlであつた。
(2) Polymerization of ethylene Add 400 ml of dry hexane to the autoclave from step 1.
2.0 mmol of triisobutylaluminum (TIBA) and 0.01 mmol of the above solid catalyst component as Ti were added, and the temperature was raised to 80°C. Next, hydrogen was added at 3 kg/
cm 2 , and 5 kg/cm 2 of ethylene was added. Furthermore, the total pressure
Polymerization was carried out for 1 hour while continuously supplying ethylene to maintain the pressure at 9.3 kg/cm 2 . As a result, 138 g of polyethylene was obtained. The catalytic activity was 288 kg per hour for 1 g of Ti. Polymer melt index (MI, 190℃, 2160g load) is 1.3g/10
minutes, and the bulk density was 0.30 g/ml.

(3) プロピレンの重合 1のオートクレーブに乾燥したn−ヘプタン
400ml、トリエチルアルミニウム2.0ミリモル、p
−トルイル酸メチル0.6ミリモルおよび上記固体
触媒成分をTiとして0.02ミリモル加え、70℃に昇
温した。次いで、水素を0.2Kg/cm2加え、プロピ
レンで全圧を7.0Kg/cm2に維持しながら70℃で2
時間重合した。その結果、ポリプロピレン162g
が得られた。このポリマーのI.I.は80.6%であり、
かさ密度は0.33g/mlであつた。また、重合溶媒
より可溶性ポリマー17.0gが回収された。
(3) Polymerization of propylene N-heptane dried in the autoclave from step 1
400ml, triethyl aluminum 2.0 mmol, p
-0.6 mmol of methyl toluate and 0.02 mmol of the above solid catalyst component as Ti were added, and the temperature was raised to 70°C. Then, 0.2Kg/ cm2 of hydrogen was added and the mixture was heated at 70℃ for 2 hours while maintaining the total pressure at 7.0Kg/ cm2 with propylene.
Polymerized for hours. As a result, 162g of polypropylene
was gotten. The II of this polymer is 80.6%,
The bulk density was 0.33 g/ml. Additionally, 17.0 g of soluble polymer was recovered from the polymerization solvent.

実施例 2 (1) 固体触媒成分の製造 500mlガラス製フラスコに乾燥ヘキサン150ml、
マグネシウムジエトキシド10g(88ミリモル)、
四塩化チタン(16.6g(88ミリモル)および2−
エチルヘキサノール45.8g(352ミリモル)を加
えて60℃で2時間反応させて均一な溶液を得た。
次にこの溶液を40℃にして、これにエチルアルミ
ニウムジクロリド112g(880ミリモル)を約1時
間にわたつて滴下した。さらに60℃に昇温した1
時間反応後静置して、傾瀉法により固体成分を分
離し、n−ヘキサンで充分に洗浄を行なつた。そ
の後、得られた固体成分に新しいn−ヘキサンを
加えて触媒スラリーを得た。この成分のTi担持
量は98mg−Ti/g−担体であつた。
Example 2 (1) Production of solid catalyst component 150 ml of dry hexane was added to a 500 ml glass flask.
Magnesium diethoxide 10g (88 mmol),
Titanium tetrachloride (16.6 g (88 mmol) and 2-
45.8 g (352 mmol) of ethylhexanol was added and reacted at 60°C for 2 hours to obtain a homogeneous solution.
Next, this solution was heated to 40°C, and 112 g (880 mmol) of ethylaluminum dichloride was added dropwise thereto over about 1 hour. The temperature was further increased to 60℃ 1
After reacting for an hour, the mixture was allowed to stand, and solid components were separated by decanting and thoroughly washed with n-hexane. Thereafter, fresh n-hexane was added to the obtained solid component to obtain a catalyst slurry. The amount of Ti supported in this component was 98 mg-Ti/g-carrier.

(2) エチレンの重合 固体触媒成分として上記のものをTiとして0.01
ミリモル使用した以外は実施例1と全く同じ条件
でエチレンの重合を行なつた。その結果、ポリエ
チレン120gが得られた。触媒活性はTi1g、1
時間当り250Kgであつた。また、得られたポリマ
ーのかさ密度は0.29g/mlであり、MIは1.2g/
10分であつた。
(2) Polymerization of ethylene The above is used as a solid catalyst component and Ti is 0.01
Ethylene polymerization was carried out under exactly the same conditions as in Example 1 except that millimole was used. As a result, 120 g of polyethylene was obtained. Catalytic activity is Ti1g, 1
It was 250Kg per hour. In addition, the bulk density of the obtained polymer was 0.29 g/ml, and the MI was 1.2 g/ml.
It was hot in 10 minutes.

比較例 1 (1) 固体触媒成分の製造 実施例1において、2−エチルヘキサノールを
加えなかつたこと以外は実施例1と同様の処理を
行なつた。その結果、四塩化チタン滴下前の反応
液は不均一なものであつた。また、得られた固体
成分のTi担持量は150mg−Ti/g−担体であつ
た。
Comparative Example 1 (1) Production of solid catalyst component The same treatment as in Example 1 was performed except that 2-ethylhexanol was not added. As a result, the reaction solution before dropping titanium tetrachloride was non-uniform. Further, the amount of Ti supported in the obtained solid component was 150 mg-Ti/g-support.

(2) エチレンの重合 固体触媒成分として上記のものをTiとして0.02
ミリモル使用したこと以外は実施例1と同じ条件
でエチレンの重合を行なつた。その結果、ポリエ
チレン96gが得られ。また、触媒活性はTi1g、
1時間当り100Kgであり、得られたポリマーのか
さ密度は0.18g/mlでMIは1.8g/10分であつた。
(2) Polymerization of ethylene The above is used as a solid catalyst component and Ti is 0.02
Ethylene polymerization was carried out under the same conditions as in Example 1, except that millimole was used. As a result, 96 g of polyethylene was obtained. In addition, the catalytic activity is Ti1g,
The resulting polymer had a bulk density of 0.18 g/ml and an MI of 1.8 g/10 min.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法で用いる触媒の調製工程
を表わした図面である。
FIG. 1 is a drawing showing the steps for preparing a catalyst used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 (A)一般式Mg(OR12〔式中、R1は炭素数1〜
5のアルキル基を示す。〕で表わされるアルコキ
シマグネシウム化合物、一般式TiX1 4〔式中、X1
はハロゲン原子を示す。〕で表わされるハロゲン
含有チタン化合物および一般式R2OH〔式中、R2
は炭素数4〜20のアルキル基を示す。〕で表わさ
れるアルコールを加熱下で反応させて均一溶液と
した後、該溶液に一般式TiX2 4〔式中、X2はハロ
ゲン原子を示す。〕または一般式AlR3 2X3〔式中、
R3は炭素数1〜5のアルキル基を示し、X3はハ
ロゲン原子を示す。〕で表わされる析出剤を添加
して生成する固体成分および(B)一般式AlR4 3〔式
中、R4は炭素数1〜5のアルキル基を示す。〕で
表わされる有機アルミニウム化合物を成分とする
触媒を用いて炭素数2〜8のα−オレフインを重
合することを特徴とするα−オレフインの重合方
法。
[Claims] 1 (A) General formula Mg(OR 1 ) 2 [In the formula, R 1 is a carbon number of 1 to
5 shows the alkyl group. ], an alkoxymagnesium compound represented by the general formula TiX 1 4 [wherein X 1
indicates a halogen atom. ] and a halogen-containing titanium compound represented by the general formula R 2 OH [wherein R 2
represents an alkyl group having 4 to 20 carbon atoms. ] is reacted under heating to form a homogeneous solution, and then the solution is mixed with the general formula TiX 2 4 [wherein, X 2 represents a halogen atom]. ] or the general formula AlR 3 2 X 3 [wherein,
R 3 represents an alkyl group having 1 to 5 carbon atoms, and X 3 represents a halogen atom. ] and (B) a solid component produced by adding a precipitating agent represented by the general formula AlR 4 3 [wherein R 4 represents an alkyl group having 1 to 5 carbon atoms]. A method for polymerizing an α-olefin, which comprises polymerizing an α-olefin having 2 to 8 carbon atoms using a catalyst containing an organoaluminum compound represented by the following formula.
JP8684981A 1981-06-08 1981-06-08 Polymerization of olefin Granted JPS57202306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8684981A JPS57202306A (en) 1981-06-08 1981-06-08 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8684981A JPS57202306A (en) 1981-06-08 1981-06-08 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS57202306A JPS57202306A (en) 1982-12-11
JPS64964B2 true JPS64964B2 (en) 1989-01-10

Family

ID=13898254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8684981A Granted JPS57202306A (en) 1981-06-08 1981-06-08 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS57202306A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620887B1 (en) * 2004-07-01 2006-09-19 삼성토탈 주식회사 Method of polymerization of olefin and olefin/?-olefin using aryloxy-based olefin-copolymerization catalyst
JP4521821B2 (en) * 2005-03-30 2010-08-11 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization

Also Published As

Publication number Publication date
JPS57202306A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
KR100572935B1 (en) Polyolefin catalysts for polymerizing propylene and methods of making and using them.
JP3913814B2 (en) Polymerization method of ethylene
JPS647087B2 (en)
JPS647086B2 (en)
JPS64964B2 (en)
JPH0575766B2 (en)
JPH0315644B2 (en)
JPS642125B2 (en)
JP3253650B2 (en) Method for producing ethylene (co) polymer
JPH0119406B2 (en)
JPS64962B2 (en)
JP3407352B2 (en) Method for producing polyethylene
JPS64963B2 (en)
JPH0429683B2 (en)
JPS642121B2 (en)
JPS638124B2 (en)
JPH0151485B2 (en)
JPH07109305A (en) Production of ethylene polymer
JPH0134246B2 (en)
JPS64965B2 (en)
JPS584924B2 (en) Method for manufacturing polyolefin
KR810001467B1 (en) Process for polymerization of -oleffins
JPS6251283B2 (en)
JPH0575765B2 (en)
JPS6310721B2 (en)